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ATiAM BRSO Miam == e N Artificial Intelligence (Al)
Acoustique ® What is Artificial Intelligence?
Traitemept du signal b)’ John McCarthy._ N
Informatique http://www-formal.stanford.edu/jmc/whatisai/

Appliq ués ala e “After WWII, a number of people independently started to work on intelligent machines. The English

. mathematician Alan Turing may have been the first. He gave a lecture on it in 1947. He also may have
Musi que been the first to decide that Al was best researched by programming computers rather than by building
machines. By the late 1950s, there were many researchers on Al, and most of them were basing their
work on programming computers.”

® Towards complexity of real-world structures

A survey of Machine Learning techniques ' Anccoloy ol

“The complex behavior of the ant colony is due to the complexity of its environment and not to the
complexity of the ants themselves. This suggests the adaptive behavior of learning and representation

ArShia Cont and the path the science of the artificial should take.”
. . (H.A. Simons, The Science of the Artificial, MIT Press, 1969)
Musical Representations Team, IRCAM.
cont@ircam.fr

ATIAM 2011-12

http://repmus.ircam.fr/atiam_ml_201 |
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Machine Learning and Al Pattern Recognition

® Machine Learning deals with sub-problems in engineering and ® Pattern recognition in action: ecision
sciences rather than the global “intelligence” issue!
e Applied e Examples: ‘
e A set of well-defined approaches each within its limits that can be applied to a | Classificati post-processing < costs
problem set ¢ Instrument Llassification adjustments for

/ context

e Classification / Pattern Recognition / Sequential Reasoning / Induction / Parameter . .
S ® Audio to Score Alignment

Estimation etc. (score following)

® Our goal today is to introduce some well-known and well-
established approaches in Al and Machine Learning ® Music genre classification

® The methods presented today are not domain-specific but for every problem, you
start with a design, collect related data and then define the learning problem.We
will not get into design today.... °

. X Gesture Recognition
* Keep in mind that

e Al is an empirical science! ® Music Structure Discovery
® See “Science of the Artificial” by H.A. Simons, MIT Press, 1969

e DO NOT apply algorithms blindly to your data/problem set! ¢ Concatenative Synthesis (unit selection)
®  The MATLAB Toolbox syndrome: Examine the hypothesis and limitation of each approach before hitting enter! T

adjustments for
missing features

® Automatic Improvisation

e Do not forget your own intelligence! ® Artist Recovery
input
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Pattern Recognition

® Pattern recognition design cycle:
e Examples:

® Instrument Classification
e Audio to Score Alignment (score following)

® Music genre classification prior knowledge —
(e.g., invariances) \

® Automatic Improvisation

e Gesture Recognition

® Music Structure Discovery

train classifier

e Concatenative Synthesis (unit selection)

® Room Acoustics (parameter adaptation)

® Physical Modeling (model learning/adaptation)

o etc!

end
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Machine Learning

® Provide tools and reasoning for the design process of a given
problem

® |s an empirical science

® Has a profound theoretical background

® |s extremely diverse

® Should keep you honest (and not the contrary!)

® Course objective:

® To get familiar with Machine Learning tools and reasoning and prepare you for
attacking real-world problems in Music Processing

Anriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Sample Example (l)

® Communication theory:
® Question:What should an optimal decoder do to recover Y from X ?
® X is usually referred to as observation and is a random variable.

® In most problems, the real state of the world (y) is not observable to us! So we try
to infer this from the observation.

Y X
—| channel |—

Anjr?ztﬁl | Arshia Cont: Survey of Machine Learning 7
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Sample Example (l)

® This is a typical Classification problem

® |[ntuitive Solution:
® Threshold on 0.5

® But let’'s make life more difficult!

Y X
—| channel |—

m
master,

= I Arshia Cont: Survey of Machine Learning
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Sample Example (I)

® Simple Solution 1:
e Define a decision function g(x) that predicts the state of the world (y).

® and learn it!

® | am thus assuming that the family of g(x) that generate X if |
have Y (the inverse problem).

P(C)
o
o
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Sample Example (I)

® Simple Solution 2:
® Try to find an optimal boundary (defined as g(x)) that can best separate the two.

® Define the decision function as + or - distance from this boundry.

® | am thus assuming that the family of g(x) that discriminate X

classes.
&)
/
(]
H I 8o
oo y .. °
°°8
o/
< L >
/
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Sample Example (l)

® We just saw two different philosophies to solve our simple
problem:

Likelihoods
04 T T T T T T T T T

® Generative Design:

PN,
-
[

T

e Discriminative Design: 2%
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Sample Example (l)

® |n the real world things are not as simple
® Consider the following 2-dimensional problem

® Not hard to see the problem!

| ety

Anjr?'ztl\e/{l ! Arshia Cont: Survey of Machine Learning 12
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Sample Example (I)

® |n the real world things are not as simple
e Consider the following 2-dimensional problem

I. To what extend does our solution
generalize to new data?

1-Nearest Neignbor Classifier

® The central aim of designing a classifier
is to correctly classify novel input!

Sample Example (I)

® |n the real world things are not as simple
e Consider the following 2-dimensional problem

. To what extend does our solution
generadlize to new data?

* The central aim of designing a classifier
is to correctly classify novel input!

2. How do we know when we have
collected adequately large and

15-Nearest Neighbor Classifier

J

representative set of examples N )
Sy 90 % {
for training? b k& §
Pt ;
4 £ g
)/;/ S
g
/S
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® |n the real world things are not as simple ® This is a typical Regression problem
® Consider the following 2-dimensional problem ° Polynomial Curve Fitting
I. To what extend does our solution i
generalize to new data?
1
* The central aim of designing a classifier Bayes Optimal Classiler '
is to correctly classify novel input! / | °
\ (o)
o\ ©
2. How do we know when we have | / 0
collected adequately large and \ |
representative set of examples \ Y ° o/
for training? ey \ o
4 ‘\ } \ _1
3. How can we decide model // Nedrd \
complexity versus performance? — i
A 0 1
x
M
y(x, w) = wo + w1z +wax?® + ... +wyaM = Z w;x’
J=0
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Sample Example (ll)

® Polynomial Curve Fitting

® Sum-of-squares Error Function

Sample Example (ll)

® Polynomial Curve Fitting

e 0th order polynomial

! oty
e 1F —~0 M=0
O//’Q \
t /
r,1/ Y(@n, W) o J,«j [o)
7 O
/ or ¢ \ /
\’{ /
! 2\\ [o} 9
XQ //‘
_1 L e
.’L‘=n &
1 0 L1
2
E(w) = 5 Z {Y(Tn, W) —tn}
n=1
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® Polynomial Curve Fitting ® Polynomial Curve Fitting
® |st order polynomial ® 3rd order polynomial
1t it
t t
of ot
1t =1}
0 | 0 . 1
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Sample Example (ll)

® Polynomial Curve Fitting

e 9th order polynomial

Sample Example (ll)

® Polynomial Curve Fitting

e Overfitting

1
—©— Training
1t —6— Test
t
2]
Z 05
or =
—1t
0
0 3 M 6 9
Root-Mean-Square (RMS) Error:  Egyg = /2E(w*)/N
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® Polynomial Curve Fitting ® Polynomial Curve Fitting
® Over-fitting and regularization ® Regularization
e Effect of data set size (9th order polynomial) ® Penalize large coefficient values
1 A
- 2 2
E(w) =5 > {ywn, w) —ta}* + Jllw]
n=1
1 e 9th order polynomial with InA——18
t
0 1
¢
=1 0
1
0 1
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Sample Example (lll)

® | want my computer to learn the “style” of Bach and to
generate new Bach’s music that has not happened before.
® Harder to imagine..

e But we'll soon get there!

o —utd o LS Lerg

ar
Vi

Ve

Yaesr s Tiesewdg Lo olel
7 E;j ‘ot LN e L e ot
U Sy

Ll oLl

T ITT
Py ey

Important Questions

® Given that we have learned what we want...

e If my g(x) can predict well on the data | have, will it also predict well on other
sources of X | have not seen before?

® ORTo what extent the knowledge that has been learned applies to the whole
world outside? OR how does my learning generdlize itself? (Generalization)

® Does having more data necessarily mean | learn better?
e No! Overfitting... .
® Does having more complex models necessarily improve learning?

e No! Regularization... .

Rjr?zﬁl | Arshia Cont: Survey of Machine Learning 25 Anriaitl\el{l | Arshia Cont: Survey of Machine Learning 26
Tuesday, November 8, 2011 Tuesday, November 8, 2011
. . . . . . ) ® Supervised Learning Families:
Imagine an organism or machine which experiences a series of sensory inputs:
Classification: The desired outputs y; are discrete class labels.
T1, T2, T3y Ty oo - The goal is to classify new inputs correctly (i.e. to generalize).
Supervised learning: The machine is also given desired outputs vy, 2, ..., and its goal is Regression: The desired outputs y; are continuous valued.
to learn to produce the correct output given a new input. The goal is to predict the output accurately for new inputs.
Unsupervised learning: The goal of the machine is to build a model of z that can be
used for reasoning, decision making, predicting things, communicating etc.
Reinforcement learning: The machine can also produce actions aq,as, ... which affect
the state of the world, and receives rewards (or punishments) 71, 7o, .... Its goal is to learn
to act in a way that maximises rewards in the long term.
Aq—?ztAeAr’l | Arshia Cont: Survey of Machine Learning 27 Anjr?ztls/{’l | Arshia Cont: Survey of Machine Learning 28
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Machine Learning Models

I. Generative Learning

®  When we start with the hypothesis that a family of parametric models can
generate X givenY

® The notion of prior model!

® At the core of Bayesian learning.. Subject of ongoing and historical philosophical
debates.

® Pros:

® We can incorporate our own belief and knowledge into the model and
eventually test and refine it.

® In most cases simplifies the mathematical structure of the problem.
e Guaranteed solutions exist in many situations!

e Cons:
e Tautology?!

® Curse of Dimensionality

Machine Learning Models

|. Discriminative Learning

®  When we do not assume a model over data, but assume a form on how they are
separated from each other and fit it to discriminate classes....

® Neural Networks, Kernel methods, Support Vector Machines etc.
® Pros:

® No curse of dimensionality (in most cases)

® Good when you can not formally describe the hidden generative process.
e Cons:

® Prior knowledge for discriminant factors are hard to imagine/justify.. .

® For complicated problems, they “seem” less intuitive than Generative
methods....

® Less appealing for applications where generation is also important....
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Probability Theory
® A probabilistic model of the data can be used to
® Make inference about missing inputs
® Generate predictions/fantasies!
® Make decisions with minimized expected loss
e Communicate the data in an efficient way
o ® Statistical modeling is equivalent to other views of learning
P ro ba b I I Ity T h e O ry ® Information theoretic: Finding compact representations of the data
®  Physics: Minimizing free energy of a corresponding mechanical system
® [f not, what else?
® knowledge engineering approach vs. Empirical induction approach
e Domain of Probabilities vs. Domain of Possibilities (fuzzy logic)
® LogicAl..
'&Ur?itl\e/\rw | An:ll-?ﬁtl\e/{ 1 Arshia Cont: Survey of Machine Learning 32
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Probability Theory

Ci
—
Marginal Probability
Y5 nij T Ci
! ’ } ! p(X =) = N
T

Joint Probability Conditional Probability

-
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p(Y =yl X =) = 2

i
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Probability Theory

Ci
~
Sum Rule
c 1 L
Yi 4 } g P(X—ﬂci)—ﬁl—ﬁj;nn
L
j=1

Product Rule

TLz‘j _ nij &

p(X =2;,Y =y )

N C; N
p(Y =y |X = 2)p(X = x;)
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Probability Theory Probability Theory
® Rules of Probability: ® Bayes’ Theorem:
Y p(X)
Product Rule P(X,Y) = p(¥|X)p(X) p(X) =Y p(X[Y)p(Y)
Y
o Independence: posterior « likelihood x prior
e Random variables X andY are independent if
p(X[Y) = p(X)
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Probability Theory

® Probability Densities

Probability Theory

® Expectations

Elf] = 3 o) (@) Blf] = [ )7 (0)de
Conditional Expectati
Eo[fls) = 3 plaly) f(x) sl
N Approximate Expectation
E[f] ~ % Z f(zn) (discrete and continuous)
n=1
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Probability Theory

® Variances and Covariances

Probability Theory

N(z|p,0%)
® The Gaussian Distribution

o) {7
varlf] = E[(f(@) — Elf(@)])°] = Elf (2)?] - Elf (@)?

N(z|p,o%) >0

t T
T2

” N (z|p,0?) dz =1
covz,y] = Eoy[{z—E[z]} {y —E[y]}] /“X’ @
= [Egyloy] — Elz]E 1 1 1 a1
' [ y} [ } [y} N(X“L7 2) = (27T)D/2 ‘EP/Q exp{fi(xf I‘L)TE (Xf H’)}
covlx,y] = Exy[{x—Ex]}{y" -E[y"]}]

= Exylxy"] —EXE[y"]

® Gaussian Mean and Variance: Ejz] = /Oo N (zlp, 0?) zda =

E[z?] = / N (z|p, 0?) 2 dz = p® + o®

var[z] = E[z?] — E[z]* = o>
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Basic Rules of Probability

Probabilities are non-negative P(x) > 0 Vz.

Generative vs. Discriminative

® Generative approach:

e Model  p(t,x) = p(x[t)p(t)

Probab_il.ities no_rr_nalise: > . P(x) = 1 for discrete distributions and [ p(z)dz = 1 for e Use Bayes’ theorem (t]x) = p(x[t)p(t)
probability densities. p ,
p(x)
Likelihoods
The joint probability of z and y is: P(z,y). - !
0 yay TEAN
/87N /94
The marginal probability of x is: P(x) = 3°, P(x,y). < / f-.\ /-f?\
. /o /o7 g}
The conditional probability of = given y is: P(x|y) = P(z,y)/P(y) 4,//‘, '/ § \\\;
Bayes Rule: ' 0 1
869
I ° S .
Pley) = P@WPG) = Po)Pal) = | Pl -T2 Discriminative approach: o !
- e Model p(t|X) directly 8 / 80
0% ; %°
° 8
o/
«— L
/
master, - . . master, - cont . .
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® Framework for computing optimal decisions on problems
involving uncertainty (probabilities)
® Basic concepts:
. . e e World:
Baye S I a n D e C I S I O n ® has states or classes, drawn from a random variable Y
® Instrument classification, Y € {violin, piano, trumpet, drums, ...}
I h e O ry ® Audio to Score Alignment, Y € {notel, chord2,note3, trill4, ...}
e Observer:
® Measures observations (features), drawn from a random process X
® Instrument classification, X = MFCC features € R"
Aq-?'is\e,\rl | Anjr?'ztl\e/{l | Arshia Cont: Survey of Machine Learning 44
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Bayesian Decision Theory

= we will also mostly consider the “0-1” loss function

L[g(x),y]=

» but the regression case

(1L gx)=y
1\0, gx)=y

» the observer tries to predict a continuous y
g(x)eR
* is basically the same, for a suitable loss
function, e.g. squared error

Lg(),y1=|y-g@ :

Aq-?z‘ss{l | Arshia Cont: Survey of Machine Learning
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Basics of Bayesian Decision Theory

® Question: How to choose the best class given the data?
® Choose the Maximum A Posteriori (MAP) class:
& = argmax Pr(wi‘x)
;
® Intuitively: Choose the most probable class given the observation.
o But we don’t know P7’(wi|l’)
® But we know Pr(z|w;)
e Apply Bayes rule:

the search for & = argmax Pr(wi‘x)
.

13
b p(x\(ﬂi)'Pr(U)i)
ecomes argmax g5
o, Ejp(x\wj) P;(wj)
but denominator = p(x) is the same over all w;
hence @ = argmax p(x\(ui) - Pr(w;)
(OB

i
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Basics of Bayesian Decision Theory

® |et’'s now go back to our sample example (l):

Y X
—| channel |/

® |[ntuitively, the decision rule can be: Yy — {

Anr?ztAeAr’l | Arshia Cont: Survey of Machine Learning
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Basics of Bayesian Decision Theory

® We need:

e Class probabilities:

® in the absence of any other information let’s say Py (0) = Py(1) =1/2
® Class-conditional densities:

® Noise results from thermal processes, a lot of independent events that add up

® By the central limit theorem, it is reasonable to assume that noise is Gaussian

® Denote a Gaussian random variable of mean &+ and variance
by o

X ~ N(p,0)

Anjr?'itAe/{’l | Arshia Cont: Survey of Machine Learning
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Basics of Bayesian Decision Theory

» the Gaussian probability density function is

(x-p)°
MELT)s

P, (x)=G(x, 4,0) = e
71'02

» since noise is Gaussian, and assuming it is just added to
the signal we have

Y X 2
—| channel |— X:Y+€, SNN(O,U )l

» in both cases, X corresponds to a constant (Y) plus zero-mean
Gaussian noise

« this simply adds Y to the mean of the Gaussian

A[H-?zﬁl | Arshia Cont: Survey of Machine Learning 49
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Basics of Bayesian Decision Theory

® |n summary:

PX\Y(x | 0) = G(.X',O,U)
PX\Y(X | 1) = G(xvla O-)

BO)=PRM=1

 or, graphically,

Likelihoods
T

P(IC)
o
o

T
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Basics of Bayesian Decision Theory

® To compute the Bayesian Decision Rule (or MAP) we use log
probabilities here:

i*(x) = arg max [log Py |y (]t) 4 log Py (i)

e and note that
e terms which are constant can be dropped

® Hence, if priors are equal, then we have:

i*(x) = arg maxlog Px |y (z|i)

Anjr?ztﬁ{l | Arshia Cont: Survey of Machine Learning 51
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Basics of Bayesian Decision Theory

® Graphically this MAP solution is equal to:

» we pick the class that “best explains” (gives higher probability)
the observation

* in this case, we can solve visually

Likelhoods

0
pick 0 pick 1
» but the mathematical solution is equally simple

/ \
/
SR KL \‘\\#
1
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Basics of Bayesian Decision Theory

® Now let’s consider the general case:

[Py (x10)= Gt 0) Py (xD = Glx, . 0)]

» for which

i"(x) = argmax log Py (x]0)

i

1 7(%#2)2
=argmax log e

N27zo?

1 2y (r—p)’
=argmaxs ——log(2no”) - —F
gi { 2 g ) 207

Basics of Bayesian Decision Theory

_ 2
. or ,-*:argminw
i 20

=argmin(x’ - 2xu, + yf)

=argmin(—2xy, + ,u,.Z)
 the optimal decision is, therefore
* pick O if
2 2

=2xpy+ py <2xp + 4
2 2
2x(p = Ho) < 1y — Hy

* or, pick 0 if
2
L (x—p +
~angoin U= 4 x<titt
i o} 2
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Basics of Bayesian Decision Theory Basics of Bayesian Decision Theory
® Or graphically, ® “Yeah! So what?”
iethonds ® Bayesian Decision Theory keeps you honest!
04
® In practice we never have one variable but a vector of observations >>
03 Multivariate Gaussians
2 02 ® Priors are not uniform.
ol ® |t also forces us to make our assumptions explicit!
1o " = assumptions we have made
¢ pick 0 pick 1 « uniform class probabilities P (0)= Py(l):%
° + Gaussianity Py (x]i)=G(x,,0,)
« the variance is the same under the two states
* noise is additive
» even for a trivial problem, we have made lots of assumptions
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Gaussian Classifiers

® |et’s imagine the Bayesian Decision Rule (BDR) for the case of
two multivariate Gaussian case:

Pyy(x]0) :mexp{_%(x_ﬂi)rz;l(x_ﬂi)}

» the BDR

/'*(X) = argmax[log PX\Y x|+ logP,,(/')]

* becomes

/'*(X)=argmax[—%(x—ﬂ;)rz?l(X—ﬂ;)

- % log(27)?|2,|+log Py(/)}

master, |
ATIAM
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Gaussian Classifiers

» this can be written as ﬁiﬁ]’fﬁ"ﬁ 'Stg;
/*(X)=argmin[d,()(,y,)+a,] \
with 0
@)= =) 5 (x—y) O

a; =log(27)?|S,|-2log B, (/)

» the optimal rule is to assign x to the closest class

» closest is measured with the Mahalanobis distance di(x,y)

» to which the « constant is added to account for the class

master, |
ATIAM

prior

Arshia Cont: Survey of Machine Learning 58

Tuesday, November 8, 2011

Gaussian Classifiers

» first special case of interest:

« all classes have the same covariance, |
=2 Vi

» the BDR becomes

i'(x)= mgﬁﬁn[d(xaﬂg)+ ai]

* with

d(x,y)=(x-y)' = (x-y)

@, = 1og§z@d\z] —2log P, (i)
—

same metric for
all classes

constant, not function
of i, can be dropped

master,
ATIAM
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i*(x)

master,
ATIAM

Gaussian Classifiers

® |n detail:
= argmin [(z — ) 27 (2 — pg) — 2log Py (i)]
= argmin [2" S e — 2" Sy — pf ST + pf B — 2log Py ()]

= argmin [xTZAx —2utT S e+ puT 8y — 2log Py(i)]

1
= argmax |u! 27w — —pl B + 2log Py (i)
i | —— 2

T
w; w0
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Gaussian Classifiers

discriminant:

» in summary, Pyx(Ilx) = 0.5

i"(x) = argmax g,(x)
» with O

2= wxsw, 0
W, = Z_I/Ui

1
Wio = _E/’liTzilllji + log Py (l)

» the BDR is a linear function or a linear discriminant

master, |
ATIAM
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Gaussian Classifiers

O Group Homework 0

O Find the Geometric equation for the
hyperplane separating the two classes M\
for the linear discriminant of the Gaussian u
classifier.

o Hint: This is the set such that

Rjriaitl\el{l I Arshia Cont: Survey of Machine Learning
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The role of prior

® The prior can offset the “threshold” value (in our simple
example):

master,
ATIAM
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The role of covariance
® So far, our covariance matrices were simple! If they are
different, the the nice hyper-plane for a 2-class problem
becomes hyper-quadratic:

»in 2 and

Anjr?'itAeAr’l | Arshia Cont: Survey of Machine Learning
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Bayesian Decision Theory

® Advantages
e BDR is optimat and can not be beaten!
® Bayes keeps you honest
® Models reflect causal interpretation of the problem, or how we think!

® Natural decomposition into “what we knew already” (prior) and “what data tells
us” (obs)

e No need for heuristics to combine these two sources of information
e BDR is intuitive
® Problems

e BDR is optimal ONLY if the models are correct!
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Maximum Likelihood
Estimation
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Bayesian Decision Theory

O Advantages
© BDR is optimal and can not be beaten!
O Bayes keeps you honest
O Models reflect causal interpretation of the problem, or how we think!

0 Natural decomposition into “what we knew already” (prior) and “what data
tells us” (obs)

0 No need for heuristics to combine these two sources of information
O BDR is intuitive
O Problems

© BDR is optimal ONLY if the models are correct!
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Bayesian Decision Theory

O WHAT??
© We do have an optimal (and geometric) solution:
1
() = argmax[p! 27 e — —puT B s 4+ 2log Py (4)]
wl

K wio
O but we do not know the values of the parameters (1, %, Py (i)
O We have to estimate these values!
O We can estimate from a training set

O example: use the average value as an estimate for the mean!

An:ll-?'ztl\e/{-’l | Arshia Cont: Survey of Machine Learning

Tuesday, November 8, 2011

68




Maximum Likelihood

O We rely on the maximum likelihood (ML) principle.
O ML has three main steps:

I. Choose a parametric model for all probabilities (as a function of unknown
parameters)

2. Assemble a training data-set

3. Solve for parameters that maximize probabilities on the data-set!
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Maximum Likelihood

» we rely on the maximum likelihood (ML) principle

« this has three steps:
1) we choose a parametric model for all probabilities

to make this clear we denote the vector of parameters by @ and
the class-conditional distributions by

PX|Y(x 11;0)

note that this means that @is NOT a random variable (otherwise
it would have to show up as subscript)

it is simply a parameter, and the probabilities are a function of this
parameter
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Maximum Likelihood

— 2) we assemble a collection of datasets
o0 ={x,0, ..., x,7} set of examples drawn independently from
class i

— 3) we select the parameters of class i to be the ones that
maximize the probability of the data from that class

Q, =arg maxPX‘Y(D(i) |i;®)
[©]

= argmax log Py, (D(i) |i; @)
[©]

— like before, it does not really make any difference to maximize
probabilities or their logs
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Maximum Likelihood

O Maximum Likelihood

* since
— each sample @) is considered independently
— parameter @), estimated only from sample o)

» we simply have to repeat the procedure for all classes
* s0, from now on we omit the class variable

0" = argmax P, (D; @)
(€]

=argmaxlog P, (D; @)
(€]

« the function Py(D;0) is called the likelihood of the
parameter @ with respect to the data
» or simply the likelihood function

Anjr?'itl\e/{l ! Arshia Cont: Survey of Machine Learning 72

Tuesday, November 8, 2011




Maximum Likelihood

O In short: Given some data-points, we are solving for

©" = argmax P, (D; @)
©

O If © is scalar, this is high-school calculus!
O We have maximum when first derivative is zero + second derivative is
negative!
O We review higher dimensional tools for this aim very quick....

Maximum Likelihood

O The gradient:
© in higher dimensions, the generalization of the derivative is the gradient. The

gradient of a function f(x) at z is:

V1) = (e o (z))T

O It has a nice geometric interpretation:

O It points in the direction of /&w
maximum growth of the function

O Perpendicular to the contour where
the function is constant
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Maximum Likelihood

O The gradient

3
D
<

* note that if V=0
- there is no direction of growth
— also -V = 0, and there is no direction of
decrease
— we are either at a local minimum or maximum

or “saddle” point

* conversely, at local min or max or saddle
point
- no direction of growth or decrease
- V=0

» this shows that we have a critical point if
and only if Vf=0

* to determine which type we need second
order conditions -«

saddle

44

(

Maximum Likelihood

O The Hessian:
O extension of the 2nd-order derivative is the Hessian Matrix:

rooo%f 0% O°F ]
azg Odxg Oz Oxo Oy 1
_0%f °f I <
dz1 Oz Ox? Ox1 Oy —1
V2 f(x) =
o*f f . %
| Oxrp—1 O OTp_1 Oz Omi_l B

0 In an ML setup we have a maximum when Hessian is negative definite or

2TV2f(z)x <0
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Maximum Likelihood

O The Hessian:

* this means that, when gradient is
zero at x, we have

— amaximum when function can be
approximated by an “upwards-facing”
quadratic

— a minimum when function can be
approximated by a “downwards-facing”
quadratic

— asaddle point otherwise

saddle

¢

Aq-?z‘ss{l | Arshia Cont: Survey of Machine Learning 77

Tuesday, November 8, 2011

Maximum Likelihood

O In summary:
I. Choose a parametric model for probabilities Px (x; @)
2. Assemble D = { X7, ..., X,,} of independently drawn examples
3. Select parameters that maximize the probability of the data

O or Given a data-set we need to solve

0" = arg max Px(D;0)

= argmax log Px(D;©

O The solutions are the parameters such that

V@P)((D;(”)) 0
0'VEPx(D;0)0 < 0,V0€R”
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Maximum Likelihood

O Sample Example II:

1
Polynomial Regression : /
o
O Two random variables X and Y 0 o\ © 9

O A dataset of examples o

D:{(Xlayl)ﬁ"w(Xn7Yn)} =1
O A parametric model of the form

y = f(z;0) + € where ¢ ~ N(0,0?) 0 P
K
0 Concretely, f(z;0) = Zﬁ,z’
=0

© where the data is distributed as Pz x(D|z;©) = G(z, f(x;0),0?)

© Show that ©* = 71717y where 1 - a2k
O GROUP | (for next class) r—
1 Tff
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ML + BDR

O Going back to our simple classification problem....

O We can combine ML and Bayesian Decision Rule to make things safer and
pick the desired class i if:

i*(x) = arg max Py |y (xi; 0] ) Py (i)

where ] = arg max Px )y (Dli,0)

Likelitoods

e e I

A
N
o
o
o

\
5
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Estimators

O We now know how to produce estimators using Maximum-
Likelihood....

O How do we evaluate an estimator? Using bias and variance

O Bias
O A measure how the expected value is equal to the true value
olIf §=f(Xy,...,X,) then Bias(d) = Ex, . x,[f(X1,...,X,) — 0]
O An estimator that has bias will usually not converge to the perfect estimate!
No matter how large the data-set is!
O Variance
0 Given a good bias, how many sample points do we need?

o Var(d) = Ex,..x, {f(X1,---. Xn) — Ex, . x,[f(X1,.... X0)]*}

O Variance usually decreases with more training examples....
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Estimators

O Example

O ML estimator for the mean of a Gaussian N(u, 02)

Bias(i) = FEx, .. x,[it—#]

= EXL»--,Xn [ﬂ] —H

1

= =) EBx,.x.[Xi]-p
ne
1

= 7ZEXi[X’i]_:u
ne

= pu—pu=0

O The estimator is thus unbiased
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Bayesian Parameter
Estimation
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Bayesian Parameter Estimation

® Bayesian parameter estimation is an alternative framework for
parameter estimation

® There is fundamental difference between Bayesian and ML
methods!
® The long debate between frequentists vs Bayesians
® To understand this, we need to distinguish between two components:
® The definition of probability (intact)
® The assessment of probability (differs)

® We need to review these fundamentals!
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Probability Measures

® This does not change between frequentist and Bayesian
philosophies

® Probability measure satisfies three axioms:
— P(A)>0 Vevents A

—  P(universal event) = 1

— if A()B=0 then P(A+ B) = P(A) + P(B)

Frequentist vs Bayesian

e Difference is in interpretation!

® Frequentist view:
® Probabilities are relative frequencies
® Make sense when we have a lot of observations (no bias)
® Problems:
® In most cases we do not have large number of observations!
® In most cases probabilities are not objective!

® This is not usually how people behave.
® Bayesian view:
® Probabilities are subjective (not equal to relative count)

® Probabilities are degrees of belief on the outcome of experiment
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Bayesian Parameter Estimation Bayes vs. ML
® Difference with ML: © is a random variable. ® Optimal estimate
® PBasic concept: e under ML there is one “best” estimate
e TrainingsetD = {X3,...,X,,} of examples drawn independently ® under Bayes there is no “best” estimate
e Probability density for observations given parameter ® |t makes no sense under Bayes to talk about “best” estimate
Px|e(z|©) ® Predictions
®  Prior distribution for parameter configurations ® We do not really care about the parameters themselves! Only in the fact that they
E@ build models....
J
encodes prior belief on @ ® Models can be used to make predictions
® Goal: Compute the posterior distribution e Unlike ML, Bayes uses ALL information in the training set to make predictions
D
olX (@|D)
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Bayes vs ML
* let’'s consider the BDR under the “0-1” loss and an
independent sample ® ={x, , ..., X}

* ML-BDR:
— pick i if

i"(x)= argmax Py, (x |i;0; )PY @)

where 0, = arg max PX‘Y(D | i,6’)
4

* two steps:
— i) find 6
— i) plug into the BDR

+ all information not captured by 6* is lost, not used at
decision time
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Bayes vs ML

* note that we know that information is lost
— e.g. we can’t even know how good of an estimate 6" is
— unless we run multiple experiments and measure bias/variance

» Bayesian BDR

— under the Bayesian framework, everything is conditioned on the
training data

— denote T = {X,, ..., X,,} the set of random variables
from which the training sample ® = {x, , ..., .} is drawn
* B-BDR:
— pick i if

i*(x) = arg max PX‘Y’T(x |7, D, )PY (9)

+ the decision is conditioned on the entire training set
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Bayesian BDR

 to compute the conditional probabilities, we use the
marginalization equation

PX\Y,T(x |i,D, ): IPX|®,Y,T(x 10,i,D, )P®|Y,T(‘9 |i,D, )dH
* note 1: when the parameter value is known, x no longer
depends on T, e.g. X|®@ ~ N(6,6?)

— we can, simplify equation above into
PX\Y,T (x |i,D, ): IPX|®,Y(X | Hvi)P@ny,T (9 |i,D, )d@

* note 2: once again can be done in two steps (per class)
— i) find P (6D)
— i) compute Py, 7(xi, D)) and plug into the BDR

* no training information is lost
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Bayesian BDR

* in summary
— pick i if

i"(x)=arg max Py, (x |i,D, )PY @)
where Py, o (x10.D; )= [ Pyy o(x1 .00, (011D, a6

* note:
— as before the bottom equation is repeated for each class
— hence, we can drop the dependence on the class
— and consider the more general problem of estimating

PX|T(x|D):JPX\G(X|9)P®|T(‘9|D)d9

Anjr?'itAeAr’l | Arshia Cont: Survey of Machine Learning

Tuesday, November 8, 2011

92




Predictive Distribution

® The distribution
Pxir(z|D) = [ Pxje(x|0)Por(0|D)do

is known as the predictive distribution. It allows us

® to predict the value of x given ALL the information in the training set

® Bayes vs. ML:
® ML picks one model, Bayes averages all models
e ML is a special case of Bayes when we are very confident about the model
® In otherwords ML~Bayes when
® prior is narrow
e if the sample space is quite large
e intuition: Given a lot of training data, there is little uncertainty
® Bayes regularizes the ML estimate!
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MAP approximation

» this sounds good, why use ML at all?
+ the main problem with Bayes is that the integral

PX|T(x|D):IPX\G(xle)P®|T(0|D)d6

can be quite nasty
* in practice one is frequently forced to use approximations
+ one possibility is to do something similar to ML, i.e. pick
only one model
+ this can be made to account for the prior by

— picking the model that has the largest posterior probability given
the training data

O,4p = arg ;nax P@)\T (9 | D)
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MAP approximation

* this can usually be computed since

0, =arg znax Fyr (6]D)

=argmax Py (D|6)P,(6)
[4

and corresponds to approximating the prior by a delta
function centered at its maximum

Pf—)r(9|D) P(-)\T(H‘D)

HMA P GMA P
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MAP approximation

* in this case

PX|T(x | D): _[PX\(a(x | HB(Q_GMAP)de
= PX\G) (x | HMAP)

- the BDR becomes
— pick i if

i (x) = arg max Pyy (x |7 tS’l.M”“D)Py @

where 0" =arg ;nax Pye (D4, 9)P@|y (01i)

— when compared to the ML this has the advantage of still
accounting for the prior (although only approximately)
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MAP vs ML

* ML-BDR
— pick i if

i" (x) = argmax Pyy (x |i;0; )PY(i)

where 6 = arg max PX‘Y(D | i,9)
4

» Bayes MAP-BDR
— picki if -
i (x)=argmax Py, (x |i; 0" )PY @)

where """ =arg max Py o(D1i,0)P,,(01)

— the difference is non-negligible only when the dataset is small
« there are better alternative approximations

Bayesian Learning

Summary
Apply the basic rules of probability to learning from data.
Data set: D = {z1,...,x,} Models: m, m’ etc. Model parameters: 6

Prior probabilities on models: P(m), P(m/) etc.
Prior probabilities on model parameters: e.g. P(6|m)
Model of data given parameters: P(xz|6,m)
If the data are independently and identically distributed then:
P(D|0,m) = HP(:I:i\F),m)
i=1

Posterior probability of model parameters:

P(O|D,m) = 7}3@'2’(;‘):)(9'@

Posterior probability of models:

P(m|D) = D)
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Example Example

» communications problem » the BDR is

+ pick “0” if
X
atmosphere receiver X< M -0
2
» this is optimal and everything works wonderfully, but
» two states: + one day we get a phone call: the receiver is generating a lot of
errors!
* Y=0 transmit signal s = -y, . . .
oo  there is a calibration mode:
* Y=1 transmit signal s = p,
.  rover can send a test sequence
» noise model L . )
 but it is expensive, can only send a few bits
X=Y+¢e, &~ N(0,0'z) « if everything is normal, received means should be g, and —,
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Example

» action:

« ask the system to transmit a few 1s and measure X

» compute the ML estimate of the mean of X
1
H= ;ZXI

» result: the estimate is different than g,

» we need to combine two forms of information

* our prior is that

p~N(py,0*)

e our “data driven” estimate is that

X ~N(i,0%)
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Bayesian solution

» Gaussian likelihood (observations)

PT\;;(D|IU):G(D3,UaO-2)

o’is known

» Gaussian prior (what we know)

P.(11) =G (u, 1y, 0)

* 4,042 are known hyper-parameters

» we need to compute

 posterior distribution for p
P (| D)=

B (D] )P, (1)

£ (D)
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Bayesian solution

» the posterior distribution is
P, (| D) =Glu. .57

2 2 2 2
O'ozxi+ﬂoo' _ hoy
_ i = lLln - 2 2 L+ 2 2 10
n = 2 2
H o +no, o +no,
o°+no,
a, l1-a,
5 gzgg 1 _ 1 n
o.= o S|P 2t
o +noy o, 0, O

» this is intuitive
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Bayesian solution

» for free, Bayes also gives us
+ the weighting constants

2
no,

- 2 2
" o’+no,

» a measure of the uncertainty of our estimate

1 1 n

- =+
2 2 2
o, 0O0, ©O

n

 note that 1/c2 is a measure of precision
+ this should be read as

PBayes = PML +P

prior

» Bayesian precision is greater than both that of ML and prior
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Observations
« 1) note that precision increases with n, variance goes to zero
1 1 n

o, 0, ©O

n

we are guaranteed that in the limit of infinite data we have
convergence to a single estimate

» 2) for large n the likelihood term dominates the prior term
lun = an:[l + (1 - an )IUO
a,€[01], «a, =1, a —0

n—»o n—0

the solution is equivalent to that of ML
. for small n, the prior dominates
. this always happens for Bayesian solutions

Py|T(/u|D) o HPX\y(xi |,U)Pﬂ(,u)
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Observations

« 3)foragivenn

1’10'02 ILtn:anl[l—'—(l_an)/’lO
a,€[01], o, -1, a —0

n—0

a =

n

2 2
o +no,

if 5,2>>c2, i.e. we really don’t know what p is a priori
then p, =y,

. on the other hand, if 5,2<<c?, i.e. we are very certain a priori,
then Hn = Ko

» in summary,

» Bayesian estimate combines the prior beliefs with the evidence
provided by the data

* in a very intuitive manner
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Conjugate priors

» note that
+ the prior P, (u)=G(u, u,,o?) is Gaussian
+ the posterior A, (u| D) = G(x, u,,57) is Gaussian
» whenever this is the case (posterior in the same family as
prior) we say that
* P,(u) is a conjugate prior for the likelihood Py (X | 1)
* posterior P, (u|D) is the reproducing density

> a number of likelihoods have conjugate priors
Likelihood Conjugate prior
Bernoulli Beta
Poisson Gamma
Exponential Gamma

Normal (known &) Gamma
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Group Homework 2

O Histogram Problem
© Imagine a random variable X such that, Px (k) = 3, k€ 1,...,N

O Suppose we draw n independent observations from X and form a random
vector C' = (Cp,--- ,Cn)T where C} is the number of times where the
observed value is k

0 C is then a histogram and has a multinomial distribution:

N

n! ;

Pe,,..on(ci, ... en) = e H ”Jc‘j
[T en! 55

0 Note that 7 = (7q,...,Ty) are probabilities and thus: m; > 0 , Zm =1

. Derive the ML estimate for parameters 7k, ke{l,.,N}

O hint: If you know about lagrange multipliers, use them! Otherwise, keep in
mind that minimizing for a function f(a,b) constraint to a+b=1 is
equivalent to minimizing for f{q,[-a).
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Group Homework 2

O Histogram Problem
2. Derive the MAP solution using Dirichlet priors:
> One possible prior model over 7y is the Dirichlet Distribution:
N
F(ijl)uj) N uj—1
N T
Hj:l F(“’j) j=1

> where u is the set of hyper-parameters (prior parameters to solve) and
o0

P, nn(m1,...,7N) =

I(z) = / ettt
is the Gamma function. ©
> You should show that the posterior is equal to:
r% oci+u)y v _
PH‘C(W‘C) _ (%]71 J .7) H W;]+(1] 1
e L(ej +ug) 55

3. Compare the MAP estimator with that of ML in part (I). What is the role of
this prior compared to ML?
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