

Acoustique Traitement du signal Informatique Appliqués à la Musique

A survey of Machine Learning techniques

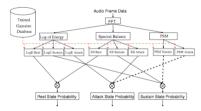
Arshia Cont
Musical Representations Team, IRCAM.
cont@ircam.fr

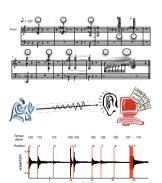
ATIAM 2011-12

Tuesday, November 15, 2011

Some musical examples

- The score following problem:
 - O Need observation models at the front-end.
- O From audio frames to low-level state probs:





- O This was the model for suivi object (now defunct!)
- O Problem 1: is how to train the generative probability models which give informative probabilities on Rest/Attack/Sustain

Arshia Cont: Survey of Machine Learning

Plan

- O Last time we saw:
 - O Bayesian Decision Theory
 - O Maximum Likelihood Parameter Estimations
 - O Bayesian Parameter Estimation
- O Today, we will look at:
 - O Kernel Based Parameter Estimation
- O Mixture Models and EM Algorithm
- O Some Non-parametric methods
- O Sequential Learning
- O HMMs
- O Kalman Filters

Arshia Cont: Survey of Machine Learning

.

Tuesday, November 15, 2011

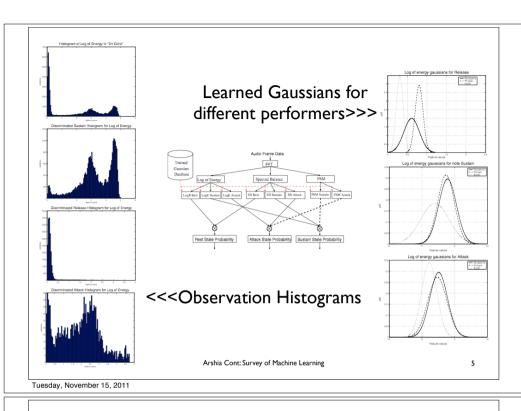
Example

- O Problem 2: These models will be probably different from performance to performance / musician to musician!
- O Design cycle: Learning from rehearsal recordings
 - O Gather segmented data
 - O Design the generative models for each attribute
 - O Train models from labeled database
- O Test!
- O Incorporate them in the realtime system for the performance.

master, ATIAM

Arshia Cont: Survey of Machine Learning

4



Plan

- O We have already looked at Bayesian Decision Rules, and how to optimize them through Maximum-Likelihood (ML) or Bayesian Parameter Estimation....
- O In all these formulations, we assume that X is generated by a probability
- O Practical densities do not approximate well using simple probability density families!
- O We now look at ways to approach P(X) when the data is nontrivial or more complicated than a known and simple probability family....
 - O So far, we have considered parametric density estimations...
 - O Today, we consider *non-parametric* density estimates...

master, ATIAM

Arshia Cont: Survey of Machine Learning

Kernel-based and non-parametric methods

Tuesday, November 15, 2011

Non-parametric density estimates

▶ Given iid training set $\mathcal{D} = \{\mathbf{x}_1, \dots \mathbf{x}_n\}$, the goal is to estimate

$$P_{\mathbf{X}}(\mathbf{x})$$

ightharpoonup Consider a region \mathcal{R} , and define

$$P = P_{\mathbf{X}}[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

and define

$$K = \sharp \{ \mathbf{x}_i \in \mathcal{D} | \mathbf{x}_i \in \mathcal{R} \}.$$

ightharpoonup This is a binomial distribution of paramter P

$$P_K(k) = \mathcal{B}(n, P)$$

$$= \binom{n}{k} P^k (1 - P)^{n-k}$$

Arshia Cont: Survey of Machine Learning

Binomial random variable

► ML estimate of P

$$\hat{P} = \frac{k}{n}.$$

and statistiscs

$$E[\hat{P}] = \frac{1}{n}E[k] = \frac{1}{n}nP = P$$
$$var[\hat{P}] = \frac{1}{n^2}var[k] = \frac{P(1-P)}{n}.$$

▶ Note that $var[\hat{P}] \leq 1/4n$ goes to zero very quickly, i.e.

$$\hat{P} \rightarrow P$$
.

N	10	100	1,000	
Var[P] <	0.025	0.0025	0.00025	

master,,,

Arshia Cont: Survey of Machine Learning

0

Tuesday, November 15, 2011

Histogram

hence

$$P_{\mathbf{X}}(\epsilon) = \frac{P}{V(\mathcal{R})} \approx \frac{\hat{P}}{V(\mathcal{R})} = \frac{k}{nV(\mathcal{R})}$$

• using continuity of $P_X(x)$ again and assuming R is small

$$P_{\mathbf{X}}(\mathbf{x}) \approx \frac{k}{nV(\mathcal{R})}, \ \forall \mathbf{x} \in V(\mathcal{R})$$

- ▶ this is the histogram
- ▶ it is the simplest possible non-parametric estimator
- ▶ can be generalized into kernel-based density estimator

master, ATIAM

Arshia Cont: Survey of Machine Learning

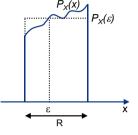
П

Histogram

- ▶ this means that k/n is a very good estimate of P
- ▶ on the other hand, from the mean value theorem, if $P_X(x)$ is continuous $\exists \epsilon \in \mathcal{R}$, such that

$$P = \int_{\mathcal{R}} P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = P_{\mathbf{X}}(\epsilon) \int_{\mathcal{R}} d\mathbf{x} = P_{\mathbf{X}}(\epsilon) V(\mathcal{R}).$$

- ▶ this is easiest to see in 1D
 - can always find a box such that the integral of the function is equal to that of the box
 - since P_X(x) is continuous there must be a ε such that P_X(ε) is the box height



master,,,

Arshia Cont: Survey of Machine Learning

10

Tuesday, November 15, 2011

Kernel density estimates

 \blacktriangleright assume \mathcal{R} is the d-dimensional cube of side h

$$V = h^d$$

and define indicator function of the unit hypercube

$$\phi(\mathbf{u}) = \begin{cases} 1, & \text{if } |u_i| < 1/2 \\ 0, & \text{otherwise.} \end{cases}$$

hence

$$\phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) = 1$$

iif $x_i \in \text{hypercube of volume } V \text{ centered at } x.$

▶ the number of sample points in the hypercube is

$$k_n = \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Arshia Cont: Survey of Machine Learning

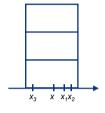
12

Kernel density estimates

▶ this means that the histogram can be written as

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- which is equivalent to:
 - "put a box around X for each X_i that lands on the hypercube"
 - can be seen as a very crude form of interpolation
 - better interpolation if contribution of X_i decreases with distance to X
- ightharpoonup consider other windows $\phi(x)$



Arshia Cont: Survey of Machine Learning

13

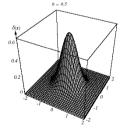
Tuesday, November 15, 2011

Gaussian kernel

▶ probably the most popular in practice

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}d} e^{-\frac{1}{2}\mathbf{x}^T\mathbf{x}}$$

▶ note that P_X(x) can also be seen as a sum of pdfs centered on the X_i when φ(x) is symmetric in X and X_i



$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Arshia Cont: Survey of Machine Learning

15

Windows

- ▶ what sort of functions are valid windows?
- ▶ note that $P_x(x)$ is a pdf if and only if

$$P_{\mathbf{X}}(\mathbf{x}) \geq 0, \forall \mathbf{x} \text{ and } \int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = 1$$

▶ since
$$\int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = \frac{1}{nh^d} \sum_{i=1}^n \int \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) d\mathbf{x}$$

$$= \frac{1}{nh^d} \sum_{i=1}^n \int \phi(\mathbf{y}) h^d d\mathbf{y}$$

$$= \frac{1}{n} \sum_{i=1}^n \int \phi(\mathbf{y}) d\mathbf{y}$$

▶ these conditions hold if $\phi(x)$ is itself a pdf

$$\phi(\mathbf{x}) \geq 0, orall \mathbf{x}$$
 and $\int \phi(\mathbf{x}) d\mathbf{x} = 1$

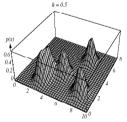
Arshia Cont: Survey of Machine Learning

- 1

Tuesday, November 15, 2011

Gaussian kernel

- ▶ Gaussian case can be interpreted as
 - sum of n Gaussians centered at the X_i with covariance hI
 - more generally, we can have a full covariance



- $P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^{d} |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} \mathbf{x}_{i})^{T} \Sigma^{-1} (\mathbf{x} \mathbf{x}_{i})}$
- \blacktriangleright sum of *n* Gaussians centered at the X_i with covariance Σ
- ► Gaussian kernel density estimate: "approximate the pdf of X with a sum of Gaussian bumps"

Tuesday, November 15, 2011

master, ATiAM "

Kernel bandwidth

▶ back to the generic model

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- ▶ what is the role of *h* (bandwidth parameter)?
- defining

$$\delta(\mathbf{x}) = \frac{1}{h^d} \phi\left(\frac{\mathbf{x}}{h}\right)$$

we can write

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \delta(\mathbf{x} - \mathbf{x}_i)$$

▶ i.e. a sum of translated replicas of $\delta(x)$

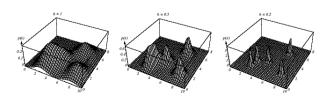
Arshia Cont: Survey of Machine Learning

17

Tuesday, November 15, 2011

Kernel bandwidth

- ▶ it controls the smoothness of the estimate
 - as h goes to zero we have a sum of delta functions (very "spiky" approximation)
 - as h goes to infinity we have a sum of constant functions (approximation by a constant)
 - in between we get approximations that are gradually more smooth



Arshia Cont: Survey of Machine Learning

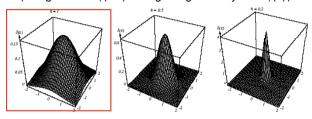
19

Kernel bandwidth

- h has two roles:
 - 1. rescale the x-axis

$$\delta(\mathbf{x}) = \frac{1}{h^d} \phi\left(\frac{\mathbf{x}}{h}\right)$$

- 2. rescale the amplitude of $\delta(x)$
- ▶ this implies that for large *h*:
 - 1. $\delta(x)$ has low amplitude
 - 2. iso-contours of *h* are quite distant from zero (*x* large before $\phi(x/h)$ changes significantly from $\phi(0)$)



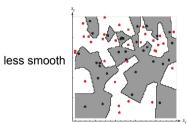
Arshia Cont: Survey of Machine Learning

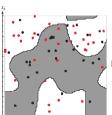
I

Tuesday, November 15, 2011

Kernel bandwidth

- why does this matter?
- when the density estimates are plugged into the BDR
- smoothness of estimates determines the smoothness of the boundaries





more smooth

▶ this affects the probability of error!

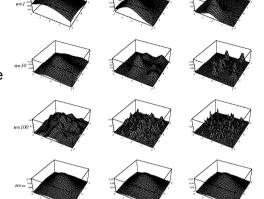
Tuesday, November 15, 2011

Arshia Cont: Survey of Machine Learning

20

Example

- ▶ example: fit to N(0,I) using h = $h_1/n^{1/2}$
- small h: spiky
- ▶ need a lot of points to converge (variance)
- ▶ large h: approximate $\dot{N}(\dot{0},I)$ with a sum of Gaussians of larger covariance
- ▶ will never have zero error (bias)



Arshia Cont: Survey of Machine Learning

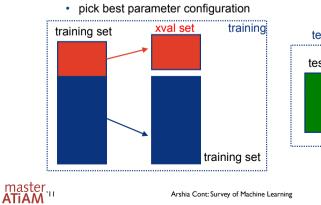
21

23

Tuesday, November 15, 2011

Cross-validation

- ▶ basic idea:
 - leave some data out of your training set (cross validation set)
 - · train with different parameters
 - · evaluate performance on cross validation set



testing test set

Tuesday, November 15, 2011

Optimal bandwidth

- ▶ in practice this has limitations
 - · does not say anything about the finite data case (the one we care about)
 - still have to find the best k
- ▶ usually we end up using trial and error or techniques like cross-validation

Arshia Cont: Survey of Machine Learning

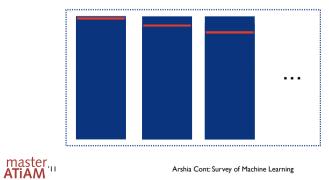
22

24

Tuesday, November 15, 2011

Leave-one-out cross-validation

- many variations
- ▶ leave-one-out CV:
 - compute n estimators of $P_X(x)$ by leaving one X_i out at a time
 - for each $P_X(x)$ evaluate $P_X(X_i)$ on the point that was left out
 - pick $P_{x}(x)$ that maximizes this likelihood



testing test set

Arshia Cont: Survey of Machine Learning

Non-parametric classifiers

- given kernel density estimates for all classes we can compute the BDR
- ▶ since the estimators are non-parametric the resulting classifier will also be non-parametric
- ▶ this term is general and applies to any learning algorithm
- ▶ a very simple example is the nearest neighbor classifier

master,,,

Arshia Cont: Survey of Machine Learning

25

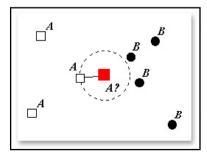
Tuesday, November 15, 2011

Nearest neighbor classifier

- ▶ to define it mathematically we need to define
 - a training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - x_i is a vector of observations, y_i is the label
 - a vector x to classify
- ▶ the "decision rule" is

set
$$y = y_{i*}$$

where
 $i* = \underset{i \in \{1,...,n\}}{\min} d(x, x_i)$

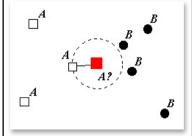


Arshia Cont: Survey of Machine Learning

27

Nearest neighbor classifier

- ▶ is the simplest possible classifier that one could think of:
 - it literally consists of assigning to the vector to classify the label of the closest vector in the training set
 - · to classify the red point:
 - measure the distance to all other points
 - if the closest point is a square, assign to "square" class
 - otherwise assign to "circle" class



▶ it works a lot better than what one might predict

master,,, ATIAM

Arshia Cont: Survey of Machine Learning

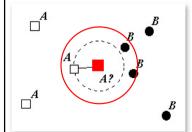
26

Tuesday, November 15, 2011

k-nearest neighbors

▶ instead of the NN, assigns to the majority vote of the k nearest neighbors

- ▶ in this example
 - NN rule says "A"
 - but 3-NN rule says "B"
- ▶ for x away from the border does not make much difference



- ▶ usually best performance for k > 1, but there is no universal number
- ▶ k large: performance degrades (no longer neighbors)
- ▶ k should be odd, to prevent ties

Tuesday, November 15, 2011

Arshia Cont: Survey of Machine Learning

28

Mixture density estimates

▶ back to BDR-based classifiers

Consider the problem of instrument classification

- summary:
 - Estimate instrument type (brass, string, percu) from audio
 - Measure some audio feature
 - · estimate pdf
 - use BDR
- ▶ clearly this is not Gaussian
- possible solution: use a kernel-based model

master, ATIAM

Arshia Cont: Survey of Machine Learning

29

Tuesday, November 15, 2011

mixture density estimate

- it looks like we could do better by just picking the right # of Gaussians
- ▶ this is indeed a good model:
 - density is multimodal because there is a hidden variable Z
 - O Z can determine the type of intermediate musical instruments (for example)

 $Z \in \{Violin, Piano, Saxophone, Flute, Drum\}$

- O Note that this is different from Y which is the instrument type (brass, string, percussion)
- For a given instrument type, the density is approximate Gaussian here.
- O The density is a mixture of Gaussians

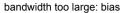
master, ATIAM

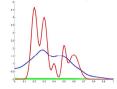
Arshia Cont: Survey of Machine Learning

31

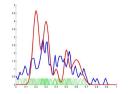
Kernel-based estimate

- ▶ simple learning procedure
 - · measure audio feature X
 - place a Gaussian on top of each measurement
- ▶ can be overkill
 - spending all degrees of freedom (# of training points) just to get the Gaussian means
 - cannot use the data to determine variances
- ► handpicking of bandwidth can lead to too much bias or variance





bandwidth too small: variance



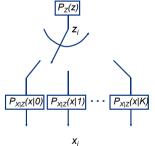
Arshia Cont: Survey of Machine Learning

30

Tuesday, November 15, 2011

mixture model

- ▶ two types of random variables
 - Z hidden state variable
 - X observed variable
- observations sampled with a two-step procedure
 - a state (class) is sampled from the distribution of the hidden variable



$$P_{7}(z) \rightarrow z_{i}$$

 an observation is drawn from the class conditional density for the selected state

$$P_{X|Z}(x|z_i) \rightarrow x_i$$

Arshia Cont: Survey of Machine Learning

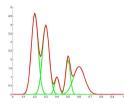
32

mixture model

▶ the sample consists of pairs (x_i, z_i)

$$D = \{(x_1, z_1), \dots, (x_n, z_n)\}$$

but we never get to see the z_i



▶ the pdf of the observed data is

$$P_{\mathbf{X}}(\mathbf{x}) = \sum_{c=1}^{C} P_{\mathbf{X}|Z}(\mathbf{x}|c) P_{Z}(c)$$
 component "weight"
$$= \sum_{c=1}^{C} P_{\mathbf{X}|Z}(\mathbf{x}|c) \pi_{c}$$
 cth "mixture component"

Arshia Cont: Survey of Machine Learning

33

Tuesday, November 15, 2011

mixture disadvantages

- ▶ main disadvantage is learning complexity
- ▶ non-parametric estimates
 - simple: store the samples (NN); place a kernel on top of each point (kernel-based)
- ▶ parametric estimates
 - small amount of work: if ML equations have closed-form
 - · substantial amount of work: otherwise (numerical solution)
- mixtures:
 - · there is usually no closed-form solution
 - always need to resort to numerical procedures
- ▶ standard tool is the expectation-maximization (EM) algorithm

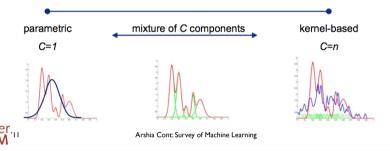
Arshia Cont: Survey of Machine Learning

35

Tuesday, November 15, 2011

Mixtures vs Kernel and parametric

- OA parametric model is a mixture with one component
 - O The weight is one
 - O The mixture density is the parametric density itself!
 - O More degrees of freedom in mixture => less bias
- O A mixture density is like a kernel density less components
 - O less components => less learning parameters, less variance
- O Mixture is a compromise between these two extremes:



34

Tuesday, November 15, 2011

Clustering and EM algorithm

master, ATIAM

Classes vs. Clusters

- Supervised: $X = \{x^t, r^t\}$
- Classes C_i i=1,...,K

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid C_i) P(C_i)$$

where $p(\mathbf{x} | C_i) \sim \mathcal{N}(\mu_i, \Sigma_i)$

 $\Phi = \{P(C_i), \mu_i, \Sigma_i\}_{i=1}^K$

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N} \quad m_i = \frac{\sum_{t} r_i^t x^t}{\sum_{t} r_i^t}$$

$$S_i = \frac{\sum_{t} r_i^t (x^t - m_i) x^t - m_i)}{\sum_{t} r_i^t}$$

- Unsupervised : $X = \{x^t\}_t$
- Clusters $G_i i=1,...,k$

$$p(\mathbf{x}) = \sum_{i=1}^{k} p(\mathbf{x} \mid \mathcal{Z}_i) P(\mathcal{Z}_i)$$

where $p(\mathbf{x} | \mathbf{Z}_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ $\bullet = \{P(\mathbf{Z}_i), \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}_{i=1}^k$

Labels, r_i^t ?

Arshia Cont: Survey of Machine Learning

37

Tuesday, November 15, 2011

K-Means clustering: EM

• Find values for $\{r_{nk}\}$ and $\{\mu_k\}$ to minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

O Iterative procedure:

O Expectation: Minimize J with regards to $\{r_{nk}\}$, keep $\{\mu_k\}$ fixed

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} ||x_n - \mu_k||^2 \\ 0, & \text{otherwise} \end{cases}$$

O Maximization: Minimize J with regards to $\{\mu_k\}$, keep $\{r_{nk}\}$ fixed

$$2\sum_{n=1}^{N} r_{nk}(x_n - \mu_k) = 0$$

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

Arshia Cont: Survey of Machine Learning

39

Tuesday, November 15, 2011

K-Means Clustering

O Dataset $D = \{x_1, x_2, ..., x_n\}$

O Goal: Partition in K clusters

O Cluster prototype: μ_k

O Binary indicator variable (I-of-K coding scheme)

$$r_{nk} \in \{0,1\}$$

 $r_{nk} = 1$, and $r_{nj} = 0$ for $j \neq k$

hard assignment

O Distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

O K-means gives k reference vectors (prototypes) which can be used as decision rule

O Our sample communication problem:

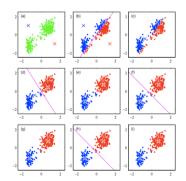
 $E(\mathbf{m}_i)_{i=1}^k | \mathcal{X} = \sum_i \sum_i b_i^t | \mathbf{x}^t - \mathbf{m}_i |$

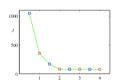
master,,,

Arshia Cont: Survey of Machine Learning

Tuesday, November 15, 2011

K-Means Clustering: Example





- ▶ Each E or M step reduces the value of the objective function J
- ► Convergence to a global or local maximum

Tuesday, November 15, 2011

Arshia Cont: Survey of Machine Learning

40

K-means and clustering

O Problems:

- O How many clusters? (K)
 - O Various methods available: Bayesian Information Criterion, Akaike Information Criterion, Minimum Description Length
- O Or guessing + cross-validation!
- O Local minimum only
- O Can be a source of head-ache!
- O Initialization of the means
 - O Another source of head-ache!
 - O Usual method: mean-splitting....
- O Sounds great...
 - O But what about non-classification problems?!

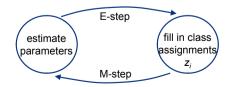
Arshia Cont: Survey of Machine Learning

41

Tuesday, November 15, 2011

Learning with incomplete data (EM)

- ▶ the basic idea is quite simple
 - 1. start with an initial parameter estimate $\mathcal{Y}^{(0)}$
 - **2. E-step:** given current parameters $\Psi^{(j)}$ and observations in D, "guess" what the values of the z_i are
 - **3. M-step:** with the new z_i , we have a complete data problem, solve this problem for the parameters, i.e. compute $\mathcal{L}^{(i+1)}$
 - 4. go to 2.
- this can be summarized as



master, ATIAM

Arshia Cont: Survey of Machine Learning

43

Tuesday, November 15, 2011

The basics of EM

- ▶ as usual, we start from an iid sample $D = \{x_1, ..., x_N\}$
- lacktriangle goal is to find parameters \mathcal{Y} that maximize likelihood with respect to D

$$\begin{split} \Psi^{\star} &= \arg\max_{\Psi} P_{\mathbf{X}}(\mathcal{D}; \Psi) \\ &= \arg\max_{\Psi} \int P_{\mathbf{X}|Z}(\mathcal{D}|z; \Psi) P_{Z}(z; \Psi) dz \end{split}$$

▶ the set

$$D_c = \{(x_1, z_1), \dots, (x_N, z_N)\}$$

is called the complete data

▶ the set

$$D = \{x_1, ..., x_N\}$$

is called the incomplete data

Arshia Cont: Survey of Machine Learning

42

Tuesday, November 15, 2011

Classification-maximization

- ▶ C-step:
 - given estimates $\Psi^{(i)} = \{ \Psi^{(i)}_{1}, \dots, \Psi^{(i)}_{C} \}$
 - determine z_i by the BDR

$$z_l = rg \max_c P_{\mathbf{X}|Z}\left(\mathbf{x}_l|c; \mathbf{\Psi}_c^{(i)}
ight)\pi_c^{(i)}, l \in \{1,\dots,n\}$$

split the training set according to the labels z_i

$$D^1 = \{x_i | z_i = 1\}, \quad D^2 = \{x_i | z_i = 2\}, \quad \dots \quad , \ D^C = \{x_i | z_i = C\}$$

- M-step:
 - as before, determine the parameters of each class independently

$$\Psi_c^{(i+1)} = \arg \max_{\Psi,\pi} P_{\mathbf{X}|Z}(\mathcal{D}^c|c, \Psi)\pi$$

Arshia Cont: Survey of Machine Learning

44

For Gaussian mixtures

C-step

•
$$z_l = \arg\max_{c} \left\{ -\frac{1}{2} \left(\mathbf{x}_l - \mu_c^{(i)} \right)^T \left(\boldsymbol{\Sigma}_c^{(i)} \right)^{-1} \left(\mathbf{x}_l - \mu_c^{(i)} \right) - \frac{1}{2} log \left| \boldsymbol{\Sigma}_c^{(i)} \right| + \log \pi_c^{(i)} \right\}, l \in \{1, \dots, n\}$$

• split the training set according to the labels z_i

$$D^1 = \{x_i | z_i = 1\}, \quad D^2 = \{x_i | z_i = 2\}, \quad \dots \quad , D^C = \{x_i | z_i = C\}$$

M-step:

$$\boldsymbol{\pi}_{c}^{(i+1)} = \frac{|\{\mathbf{x}_{i} \in \mathcal{D}^{c}\}|}{n} \qquad \boldsymbol{\mu}_{c}^{(i+1)} = \frac{1}{|\{\mathbf{x}_{i} \in \mathcal{D}^{c}\}|} \sum_{i | \mathbf{x}_{i} \in \mathcal{D}^{c}} \mathbf{x}_{i}$$

$$\boldsymbol{\Sigma}_{c}^{(i+1)} = \frac{1}{|\{\mathbf{x}_{i} \in \mathcal{D}^{c}\}|} \sum_{i | \mathbf{x}_{i} \in \mathcal{D}^{c}} \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{c}^{(i+1)}\right) \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{c}^{(i+1)}\right)^{T}$$

Arshia Cont: Survey of Machine Learning

45

Tuesday, November 15, 2011

Expectation-Maximization

O What about problems that are not about classification?

O EM suggests:

- O Do the most intuitive operation that is ALWAYS possible
- O Don't worry about Z_i directly
- O E-Step: "estimate the likelihood of the complete data by its expected value given the observed data"
- O M-step: "Maximize this expected value"
- O This leads to the so called *Q-function*

master, ATIAM

K-means

- when covariances are identity and priors uniform
- C-step:
 - $z_l = \arg\min_c ||\mathbf{x}_l \mu_c^{(i)}||^2, \quad l \in \{1, \dots, n\}$
 - split the training set according to the labels \mathbf{z}_i

$$D^1 = \{x_i | z_i = 1\}, \quad D^2 = \{x_i | z_i = 2\}, \quad \dots \quad , \quad D^C = \{x_i | z_i = C\}$$

M-step:

•
$$\mu_c^{(i+1)} = \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i | \mathbf{x}_i \in \mathcal{D}^c} \mathbf{x}_i$$

- ▶ this is the K-means algorithm, aka generalized Loyd algorithm, aka LBG algorithm in the vector quantization literature:
 - "assign points to the closest mean; recompute the means"

Arshia Cont: Survey of Machine Learning

4

Tuesday, November 15, 2011

The Q function

▶ is defined as

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

- and is a bit tricky:
 - it is the expected value of likelihood with respect to complete data (joint X and Z)
 - given that we observed incomplete data (X=D)
 - note that the likelihood is a function of $\,\varPsi({\rm the}\,\,{\rm parameters}\,\,{\rm that}\,\,{\rm we}$ want to determine)
 - but to compute the expected value we need to use the parameter values from the previous iteration (because we need a distribution for Z|X)
- ▶ the EM algorithm is, therefore, as follows

Expectation-maximization

► E-step:

- given estimates $\Psi^{(n)} = \{ \Psi^{(n)}_1, ..., \Psi^{(n)}_C \}$
- · compute expected log-likelihood of complete data

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

- ► M-step:
 - · find parameter set that maximizes this expected log-likelihood

$$\Psi^{(n+1)} = \arg \max_{\Psi} Q(\Psi; \Psi^{(n)})$$

▶ let's make this more concrete by looking at the mixture case

Arshia Cont: Survey of Machine Learning

49

Tuesday, November 15, 2011

EM for mixtures (step 1)

- ▶ the first thing we always do in a EM problem is
 - · compute the likelihood of the COMPLETE data
- ▶ very neat trick to use when z is discrete (classes)
 - instead of using z in {1, 2, ..., C}
 - use a binary vector of size equal to the # of classes

$$\mathbf{z} \in \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

• where z = j in the z in $\{1, 2, ..., C\}$ notation, now becomes

$$\mathbf{z} = \mathbf{e}_j = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} (j^{th}position)$$

Arshia Cont: Survey of Machine Learning

51

Tuesday, November 15, 2011

Expectation-maximization

- ▶ to derive an EM algorithm you need to do the following
- 1. write down the likelihood of the COMPLETE data
 - E-step: write down the Q function, i.e. its expectation given the observed data
 - M-step: solve the maximization, deriving a closed-form solution if there is one

Arshia Cont: Survey of Machine Learning

50

Tuesday, November 15, 2011

EM for mixtures (step 1)

we can now write the complete data likelihood as

$$P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},\mathbf{z};\boldsymbol{\Psi}) = P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{z};\boldsymbol{\Psi})P_{\mathbf{Z}}(\mathbf{z};\boldsymbol{\Psi})$$
$$= \prod_{j=1}^{C} \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_{j},\boldsymbol{\Psi})\pi_{j} \right]^{z_{j}}$$

• for example, if z = k in the z in $\{1, 2, ..., C\}$ notation,

$$P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},k;\boldsymbol{\Psi}) = P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},\mathbf{e}_k;\boldsymbol{\Psi})$$
$$= \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_k,\boldsymbol{\Psi})\pi_k\right]^1 \prod_{i \neq k} \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_j,\boldsymbol{\Psi})\pi_j\right]^0$$

▶ the advantage is that

$$\log P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},\mathbf{z};\mathbf{\Psi}) = \sum_{j=1}^{C} z_{j} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_{j},\mathbf{\Psi}) \pi_{j} \right]$$

 \blacktriangleright becomes LINEAR in the components $z_i!!!$

Arshia Cont: Survey of Machine Learning

52

EM for mixtures (step 1)

• for the complete iid dataset $D_c = \{(x_1, z_1), ..., (x_N, z_N)\}$

$$P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \mathbf{\Psi}) = \prod_{i=1}^{N} P_{\mathbf{X},Z}(\mathbf{x}_i, \mathbf{z}_i; \mathbf{\Psi})$$
$$= \prod_{i=1}^{N} \prod_{j=1}^{C} \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \mathbf{\Psi}) \pi_j \right]^{z_{ij}}$$

▶ and the complete data log-likelihood is

$$\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \mathbf{\Psi}) = \sum_{i,j} z_i \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \mathbf{\Psi}) \pi_j \right]$$

 this does not depend on z and simply becomes a constant for the expectation that we have to compute in the E-step

Arshia Cont: Survey of Machine Learning

53

Tuesday, November 15, 2011

EM for mixtures (step 2)

• once we have the complete data likelihood

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$
$$= \sum_{i,j} E_{Z|\mathbf{X}; \Psi^{(n)}} [z_{ij} | \mathcal{D}] \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i | \mathbf{e}_j, \Psi) \pi_j \right]$$

▶ i.e. to compute the Q function we only need to compute

$$E_{Z|\mathbf{X};\mathbf{\Psi}^{(n)}}[z_{ij}|\mathcal{D}], \ \forall i,j$$

- ▶ note that this expectation can only be computed because we use $\mathcal{Y}^{(n)}$
- note that the Q function will be a function of both Ψ and Ψ (n)

Arshia Cont: Survey of Machine Learning

55

Expectation-maximization

- ▶ to derive an EM algorithm you need to do the following
 - 1. write down the likelihood of the COMPLETE data
- E-step: write down the Q function, i.e. its expectation given the observed data
 - M-step: solve the maximization, deriving a closed-form solution if there is one
- important E-step advice:
 - · do not compute terms that you do not need
 - · at the end of the day we only care about the parameters
 - terms of Q that do not depend on the parameters are useless, e.g. in

$$Q = f(z, \Psi) + \log(\sin z)$$

the expected value of log(sin z) appears to be difficult and is completely unnecessary, since it is dropped in the M-step

Arshia Cont: Survey of Machine Learning

54

Tuesday, November 15, 2011

EM for mixtures (step 2)

ightharpoonup since z_{ii} is binary and only depends on x_i

$$E_{\mathbf{Z}|\mathbf{X}:\mathbf{\Psi}^{(n)}}[z_{ij}|\mathcal{D}] = P_{\mathbf{Z}|\mathbf{X}}(z_{ij} = 1|\mathbf{x}_i;\mathbf{\Psi}^{(n)}) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i;\mathbf{\Psi}^{(n)})$$

- ▶ the E-step reduces to computing the posterior probability of each point under each class!
- defining

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \mathbf{\Psi}^{(n)})$$

the Q function is

$$Q(\Psi; \Psi^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

Arshia Cont: Survey of Machine Learning

56

Expectation-maximization

- ▶ to derive an EM algorithm you need to do the following
 - 1. write down the likelihood of the COMPLETE data

$$\log P_{\mathbf{X},Z}(\mathcal{D},\{\mathbf{z}_1,\ldots,\mathbf{z}_N\};\mathbf{\Psi}) \ = \ \sum_{i,j} z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j,\mathbf{\Psi})\pi_j \right]$$

E-step: write down the Q function, i.e. its expectation given the observed data

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \mathbf{\Psi}^{(n)})$$

$$Q(\Psi; \Psi^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

3. M-step: solve the maximization, deriving a closed-form solution if there is one

$$\boldsymbol{\Psi}^{(n+1)} \ = \ \arg\max_{\boldsymbol{\Psi}} \sum_{ij} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \boldsymbol{\Psi}) \pi_j \right]$$

Arshia Cont: Survey of Machine Learning

57

Tuesday, November 15, 2011

M-step for Gaussian mixtures

▶ M-step:

$$\begin{split} \Psi^{(n+1)} &= \arg\max_{\Psi} \sum_{ij} h_{ij} \log \left[\mathcal{G} \left(\mathbf{x}_i, \mu_j, \sigma_j \right) \pi_j \right] \\ &= \arg\min_{\Psi} \sum_{ij} \frac{h_{ij} (\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi_j \end{split}$$

- important note:
 - in the M-step, the optimization must be subject to whatever constraint may hold
 - in particular, we always have the constraint $\sum_j \pi_j = 1$
 - · as usual we introduce a Lagrangian

$$L = \sum_{ij} \left[\frac{h_{ij}(\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi_j \right] + \lambda \left(\sum_j \pi_j - 1 \right)$$

Not familiar with Lagrange multipliers? See http://en.wikipedia.org/wiki/Lagrange_multipliers

Arshia Cont: Survey of Machine Learning

59

EM for Gaussian mixtures

- ▶ in summary:
 - CM = EM + hard assignments
 - · CM special case, cannot be better
- ▶ let's look at the special case of Gaussian mixtures
- E-step:

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_{j}|\mathbf{x}_{i}; \mathbf{\Psi}^{(n)})$$

$$= \frac{\mathcal{G}\left(\mathbf{x}_{i}, \mu_{j}^{(n)}, \sigma_{j}^{(n)}\right) \pi_{j}^{(n)}}{\sum_{k=1}^{C} \mathcal{G}\left(\mathbf{x}_{i}, \mu_{k}^{(n)}, \sigma_{k}^{(n)}\right) \pi_{k}^{(n)}}$$

Arshia Cont: Survey of Machine Learning

Tuesday, November 15, 2011

M-step for Gaussian mixtures

Lagrangian

$$L = \sum_{ij} \left[\frac{h_{ij} (\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi_j \right] + \lambda \left(\sum_j \pi_j - 1 \right)$$

setting derivatives to zero

$$\frac{\partial L}{\partial \mu_j} = -\sum_i \frac{h_{ij}(\mathbf{x}_i - \mu_j)}{\sigma_j^2} = 0$$

$$\frac{\partial L}{\partial \sigma_j^2} = -\sum_i \left[\frac{h_{ij}(\mathbf{x}_i - \mu_j)^2}{\sigma_j^4} - \frac{h_{ij}}{\sigma_j^2} \right] = 0$$

$$\frac{\partial L}{\partial \pi_j} = -\sum_i \frac{h_i}{\pi_j} + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = \sum_j \pi_j - 1 = 0$$

Arshia Cont: Survey of Machine Learning

61

M-step for Gaussian mixtures

▶ leads to the update equations

$$\mu_j^{(n+1)} = \frac{\sum_i h_{ij} \mathbf{x}_i}{\sum_i h_{ij}} \qquad \pi_j^{(n+1)} = \frac{1}{n} \sum_i h_{ij}$$
$$\sigma_j^{2(n+1)} = \frac{\sum_i h_{ij} (\mathbf{x}_i - \mu_j)^2}{\sum_i h_{ij}}$$

comparing to those of CM

$$\pi_c^{(n+1)} = \frac{|\{\mathbf{x}_i \in \mathcal{D}^c\}|}{N} \qquad \mu_c^{(n+1)} = \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i | \mathbf{x}_i \in \mathcal{D}^c} \mathbf{x}_i$$

$$\Sigma_c^{(n+1)} = \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i | \mathbf{x}_i \in \mathcal{D}^c} \left(\mathbf{x}_i - \mu_c^{(n+1)}\right) \left(\mathbf{x}_i - \mu_c^{(n+1)}\right)^T$$

▶ they are the same up to hard vs soft assignments.

master,,,

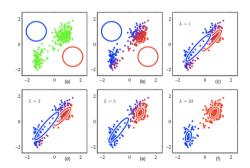
Arshia Cont: Survey of Machine Learning

. . .

Tuesday, November 15, 2011

EM on Gaussian Mixtures

© Example:



Arshia Cont: Survey of Machine Learning

63

Expectation-maximization

- note that the procedure is the same for all mixtures
 - 1. write down the likelihood of the COMPLETE data

$$\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \mathbf{\Psi}) = \sum_{i,j} z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i | \mathbf{e}_j, \mathbf{\Psi}) \pi_j \right]$$

E-step: write down the Q function, i.e. its expectation given the observed data

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_{j}|\mathbf{x}_{i}; \mathbf{\Psi}^{(n)})$$

$$Q(\mathbf{\Psi}; \mathbf{\Psi}^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_{i}|\mathbf{e}_{j}, \mathbf{\Psi}) \pi_{j} \right]$$

M-step: solve the maximization, deriving a closed-form solution if there is one

$$\Psi^{(n+1)} = \arg \max_{\Psi} \sum_{ij} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

Arshia Cont: Survey of Machine Learning

62

Tuesday, November 15, 2011

Group Homework 3

O Derive the EM algorithm for a mixture of exponential distributions:

$$P_X(x) = \sum_{i=1}^{C} \pi_i \lambda_i e^{-\lambda_i x}$$

- O Write down the E-step
- O Write down the M-step, solve the maximization and derive iterative solutions for $\ \lambda_k \quad {\rm and} \quad \pi_k$
 - O hint: Use the Lagrangian.....

Sequential Learning

master,,, ATIAM

Tuesday, November 15, 2011

Markov Models

First-order Markov model:

$$P(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_t) = P(\mathbf{y}_1)P(\mathbf{y}_2|\mathbf{y}_1)\cdots P(\mathbf{y}_t|\mathbf{y}_{t-1})$$

The term *Markov* refers to a conditional independence relationship. In this case, the Markov property is that, given the present observation (\mathbf{y}_t) , the future $(\mathbf{y}_{t+1}, \ldots)$ is independent of the past $(\mathbf{y}_1, \ldots, \mathbf{y}_{t-1})$.

Second-order Markov model:

$$P(\mathbf{y}_1, \dots, \mathbf{y}_t) = P(\mathbf{y}_1)P(\mathbf{y}_2|\mathbf{y}_1) \cdots P(\mathbf{y}_t|\mathbf{y}_{t-2}, \mathbf{y}_{t-1})$$

Arshia Cont: Survey of Machine Learning

67

Tuesday, November 15, 2011

Sequential Learning

- O Up to now, our approach was rather *static*. Now imagine that you have a problem set where data arrives *sequentially*. (e.g. Time Series)
 - A sequence of observations: $y_1, y_2, y_3, \dots, y_t$
 - O Considered as independent...:

$$P(y_1, y_2, \dots, y_t) = \prod_{n=1}^t p(y_n | y_1, \dots, y_{n-1})$$

O Many many ways to model sequential data! We will look at some....

master, ATIAM

Arshia Cont: Survey of Machine Learning

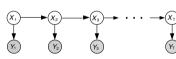
.

Tuesday, November 15, 2011

Hidden Variables

Speech recognition:

- x underlying phonemes or words
- v acoustic waveform



Vision:

- x object identities, poses, illumination
- y image pixel values

Industrial Monitoring:

- x current state of molten steel in caster
- y temperature and pressure sensor readings

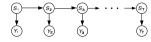
Two frequently-used tractable models:

- Linear-Gaussian state-space models
- Hidden Markov models

Arshia Cont: Survey of Machine Learning

68

Hidden Markov Models (HMM)



• Discrete hidden states $s_t \in \{1..., K\}$, and outputs \mathbf{y}_t (discrete or continuous). Joint probability factorizes:

$$\mathsf{P}(s_1,\ldots,s_{\tau},\mathbf{y}_1\ldots,\mathbf{y}_{\tau}) = \mathsf{P}(s_1)\mathsf{P}(\mathbf{y}_1|s_1)\prod_{t=2}^{\tau}\mathsf{P}(s_t|s_{t-1})\mathsf{P}(\mathbf{y}_t|s_t)$$

- Leading to the following important structural elements:
 - Transition probabilities:

$$a_{ij} = P(s_t = S_j | s_{t-1} = S_i)$$
, $a_{ij} \ge 0$ and $\sum_{j=1}^{N} a_{ij} = 1$

- Observation probabilities
 - Discrete case:

 $b_i(m) = P(y_t = Y_m | s_t = S_i)$

• Initial probabilities (prior):

$$\pi_i = P(s_1 = S_i) , \quad \sum_{j=1}^N \pi_j = 1$$

Arshia Cont: Survey of Machine Learning

69

Tuesday, November 15, 2011

HMMs

Three basic HMM problems:

- 1. Evaluation: Given λ , and O, calculate $P(O | \lambda)$
- 2. State sequence: Given λ , and O, find Q^* such that

$$P(Q^* | O, \lambda) = \max_O P(Q | O, \lambda)$$

3. Learning: Given $X=\{O^k\}_k$, find λ^* such that

$$P(X | \lambda^*) = \max_{\lambda} P(X | \lambda)$$

master, ATIAM

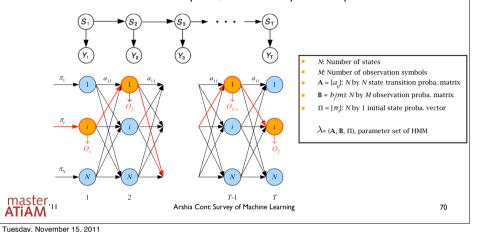
Arshia Cont: Survey of Machine Learning

71

Hidden Markov Models (HMM)

O Notes:

- O Hidden states (S_i) are markov... but not necessarily the output process (Y i). In reality, they are NOT markov....
- O For each observation sequence, there are multiple state sequences



Likelihood in HMM

- O The likelihood $P(O_1, \dots, O_{\tau} | \lambda)$ is an extremely hard computation
 - O Number of possible paths grow exponentially with time (# of paths= K^{τ})
- O To compute this likelihood, there exist an efficient *forward* recursion algorithm using dynamic programming:

$$\alpha_t(i) = P(O_1, \dots, O_t, s_t = S_i | \lambda)$$

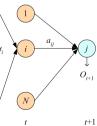
Initialization:

$$\alpha_1(i) = \pi_i b_i(O_1)$$

Recursion:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{i}j\right]b_{j}(O_{t+1})$$

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$



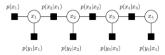
Tuesday, November 15, 2011

Arshia Cont: Survey of Machine Learning

72

Likelihood in HMM

or:



$$\begin{array}{ll} p(y_{1:K}) & = & \sum\limits_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K}) \\ \\ & = & \sum\limits_{x_{K}} p(y_{K}|x_{K}) \sum\limits_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum\limits_{x_{2}} p(x_{3}|x_{2})p(y_{2}|x_{2}) \sum\limits_{x_{1}} p(x_{2}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(x_{2}|x_{1})}_{\alpha_{1}|1} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(x_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(x_{1}|x_{1})}_{\alpha_{1}|$$

Arshia Cont: Survey of Machine Learning

73

Tuesday, November 15, 2011

Most likely state-sequence

- O Forward variable gives the likelihood of an observation sequence given model parameters or $P(O|\lambda)$
- O What about the most-likely sequence or $P(S^*|O,\lambda) = \max_{G} P(S|O,\lambda)$
 - O Forward variable is the most-likely belief from time 0 to t (t=present)
 - O Need also a belief towards future (from time t to T)
 - O Backward variable:

$$\beta_t(i) = P(O_{t+1}, \dots, O_T, s_t = S_i | \lambda)$$

Initialization:

$$\beta_T(i) = 1$$

Recursion .

$$\beta_t(j) = \left[\sum_{i=1}^N \alpha_{t+1}(i)a_i j\right] b_j(O_{t+1})$$

$$t+1$$

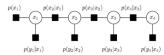
Arshia Cont: Survey of Machine Learning

75

Tuesday, November 15, 2011

Likelihood in HMM

O Note:



Predict

$$\begin{array}{rcl} \alpha_{k|k-1}(x_k) & = & p(y_{1:k-1}, x_k) = \sum_{x_{k-1}} p(x_k|x_{k-1}) p(y_{1:k-1}, x_{k-1}) \\ \\ & = & \sum_{x_{k-1}} p(x_k|x_{k-1}) \alpha_{k-1|k-1}(x_{k-1}) \end{array}$$

Update

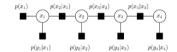
$$\alpha_{k|k}(x_k) = p(y_{1:k}, x_k) = p(y_k|x_k)p(y_{1:k-1}, x_k)
= p(y_k|x_k)\alpha_{k|k-1}(x_k)$$

Arshia Cont: Survey of Machine Learning

74

Tuesday, November 15, 2011

O Another view:



$$\begin{array}{lll} p(y_{1:K}) & = & \sum_{x_1} p(x_1) p(y_1|x_1) \ldots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) p(y_K|x_K) \underbrace{\mathbf{1}}_{\beta_K|K+1} \\ & = & \sum_{x_1} p(x_1) p(y_1|x_1) \cdots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) \beta_K|_K \\ & = & \sum_{x_1} p(x_1) p(y_1|x_1) \cdots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \beta_{K-1}|_K \\ & = & \sum_{x_1} p(x_1) p(y_1|x_1) \cdots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) \beta_{K-1|K-1} \\ & = & \sum_{x_1} p(x_1) p(y_1|x_1) \cdots \beta_{K-2|K-1} \end{array}$$

Arshia Cont: Survey of Machine Learning

76

Most-likely state-sequence

O Combine the two propagations and use

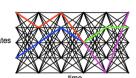
$$\begin{array}{lll} \text{maximum likelihood?} & s_t(i) & = & P(s_t = S_i | O, \lambda) \\ & = & \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)} & \alpha_i \end{array} \qquad \overbrace{\qquad \qquad } \qquad \overbrace{\qquad \qquad \qquad } \qquad \overbrace{\qquad \qquad \qquad } \qquad \overbrace{\qquad \qquad }$$

Problem:

O Is the set of locally optimal states, equal to the global optimal path?

 $s_t^* = \arg \max s_t(i)$

- O NO! not necessarily....
- $\alpha_i(t)$ gives total *inflow* of prob. to node (t, i); $\beta_i(t)$ gives total *outflow* of prob.



O Need to maximize over the WHOLE PATH and not just one state:

$$s_t(i) = \max_{s_1 s_2 \cdots s_{t-1}} P(s_1, s_2 \cdots s_{t-1}, s_t = S_i, O_1, \cdots, O_t | \lambda)$$

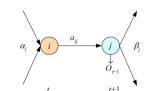
master.,,

Arshia Cont: Survey of Machine Learning

77

Tuesday, November 15, 2011

Parameter Learning



O Use EM Algorithm:

O Auxiliary variable:

$$Z_i^t = \begin{cases} 1, & \text{if } s_t = S_i \\ 0, & \text{otherwise} \end{cases}$$

$$Z_i^t = \begin{cases} 1, & \text{if } s_t = S_i \\ 0, & \text{otherwise} \end{cases} \qquad Z_{ij}^t = \begin{cases} 1, & \text{if } s_t = S_i \text{ and } s_{t+1} = S_j \\ 0, & \text{otherwise} \end{cases}$$

O E-Step:
$$E[z_i^t] = s_t(i)$$
 $E[z_{ij}^t] = \xi_t(i,j)$

O recall:
$$s_t(i) = P(s_t = S_i | O, \lambda) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)}$$

O M-Step:

$$\hat{\pi}_{i} = \frac{\sum_{k=1}^{K} K}{s_{t}^{k}(i)} K$$

$$\hat{a}_{ij} = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} \xi_{t}^{k}(i,j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} s_{t}^{k}(i)}$$

$$\hat{b}_{j}(m) = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} s_{t}^{k}(j) \delta(O_{t}^{k} - v_{m})}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} s_{t}^{k}(i)}$$

master, ATIAM

Viterbi Algorithm

$$s_t(i) = \max_{s_1 s_2 \cdots s_{t-1}} P(s_1, s_2 \cdots s_{t-1}, s_t = S_i, O_1, \cdots, O_t | \lambda)$$

O Initialization:

$$s_1(i) = \pi_i b_i(O_1), \quad \psi_1(i) = 0$$

O Recursion:

$$s_t(j) = \max_i s_{t-1}(i)a_{ij}b_j(O_t)$$

$$\psi_t(j) = \arg\max s_{t-1}(i)a_{ij}$$

O Termination:

$$p^* = \max_{i} s_T(i) , s_T^* = \arg \max_{i} s_T(i)$$

O Backtracking:

$$s_t^* = \psi_{t+1}(s_{t+1}^*), t = T - 1, T - 2, \dots, 1$$

Arshia Cont: Survey of Machine Learning

78

Tuesday, November 15, 2011

HMM State Duration

O The time an observation would spend in a state is implicit:

$$p_i(d) = a_{ii}^{(d-1)}(1 - a_{ii})$$

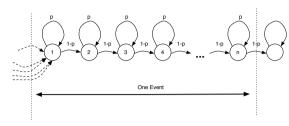
O where $p_i(d)$ is the probability of staying 'd' discrete times in state i

O This is an exponential model of time

O Not very desirable for all temporal sequences... such as music!

Group Homework 4

O Consider the following Markov topology for one event:



- 1. What is the probability of staying 'd' times within the *n* states (or in the global event)?
- 2. What is the name of this probability model?!
- 3. Assuming n is fixed, solve for p for an expected duration d.

master,,,

Arshia Cont: Survey of Machine Learning

81

Tuesday, November 15, 2011

HMMs

- O So far, we have assumed that our underlying models are static!
 - O In some cases this works out well as an approximation
 - O In many cases it won't!
 - O Real-life systems are dynamic systems
- O Dynamics systems
 - O Are generally hard to model....
- O Much easier if they are linear....
- O Much harder if they are non-linear....

Arshia Cont: Survey of Machine Learning

83

HMM Variants

O Discrete observations:

$$P(O_t \mid s_t = S_j, \lambda) = \prod_{m=1}^{M} b_j(m)^{r_m^t} \qquad r_m^t = \begin{cases} 1 & \text{if } O_t = v_m \\ 0 & \text{otherwise} \end{cases}$$

O Continuous observations:

$$P(O_t | s_t = S_j, \lambda) \sim \mathcal{N}(\mu_j, \sigma_j^2)$$

use EM to find parameters....

O Gaussian Mixtures:

$$P(O_t \mid q_t = S_j, \lambda) = \sum_{l=1}^{L} P(G_{jl}) p(O_t \mid q_t = S_j, G_l, \lambda)$$

 $\sim \mathcal{N}(\mu_1, \Sigma_1)$

- O Duration-Focused models
 - O Transitions as explicit functions of time....
- O And many more....

Arshia Cont: Survey of Machine Learning

82

Tuesday, November 15, 2011

Kalman Filter Models

- O Also known as Linear Dynamical Systems
- O Imagine a sequential framework where latent variable S and observations Y are continuous
- O and underlying dynamics is linear.... (or can be approximated so)
- O Example:
 - O A one dimensional tracking system:

$$\mathbf{s}_k = \left(egin{array}{c} \mathsf{position} \ \mathsf{velocity} \end{array}
ight)_k = \left(egin{array}{c} 1 & 1 \ 0 & 1 \end{array}
ight) \mathbf{s}_{k-1} = \mathbf{A} \mathbf{s}_{k-1}$$

$$y_k = \mathsf{position}_k = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_k = \mathbf{C} \mathbf{s}_k$$

master, ATIAM

Arshia Cont: Survey of Machine Learning

84

Kalman Filter Models

O Tracking example:

O Imagine that we have unknown accelerations (dynamics!)

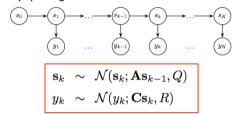
$$\mathbf{s}_{k} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_{k}$$

$$= \mathbf{A} \mathbf{s}_{k-1} + \epsilon_{k}$$

$$y_{k} = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_{k} + \nu_{k}$$

$$= \mathbf{C} \mathbf{s}_{k} + \nu_{k}$$

O Generatively speaking,



master,,, ATIAM

Arshia Cont: Survey of Machine Learning

85

87

Tuesday, November 15, 2011

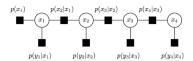
Kalman Filter Models

O Goal:

- O Find an a posteriori belief based on prior estimate and a weighted difference between the actual measurement y_t and a measurement prediction \hat{s}_t
- O A series of predictions <> corrections
- O Results into closed form solutions in the Gaussian case...

Kalman Filter Models

Inference is similar to HMM: summations are replaced by integrations



Forward Pass

$$p(y_{1:K}) \quad = \quad \underbrace{\int_{x_K} p(y_T|x_K) \int_{x_{K-1}} p(x_K|x_{K-1})}_{\alpha_K} \dots \underbrace{\int_{x_2} p(x_3|x_2) \underbrace{p(y_2|x_2)}_{x_2} \underbrace{\int_{x_1} p(x_2|x_1)}_{\alpha_2} \underbrace{p(y_1|x_1) \underbrace{p(y_1|x_1)}_{\alpha_1} \underbrace{p(y_1|$$

Backward Pass

$$p(y_{1:K}) = \int_{x_1} p(x_1) p(y_1|x_1) \dots \underbrace{\int_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\int_{x_K} p(x_K|x_{K-1}) p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\mathbf{1}}_{\beta_K}$$

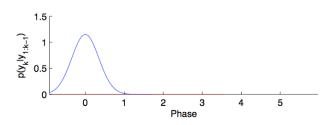
Arshia Cont: Survey of Machine Learning

0/

Tuesday, November 15, 2011

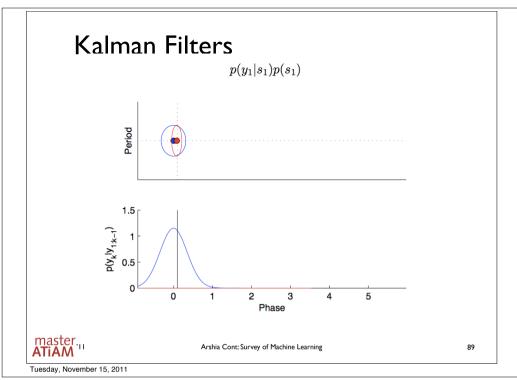
Kalman Filters

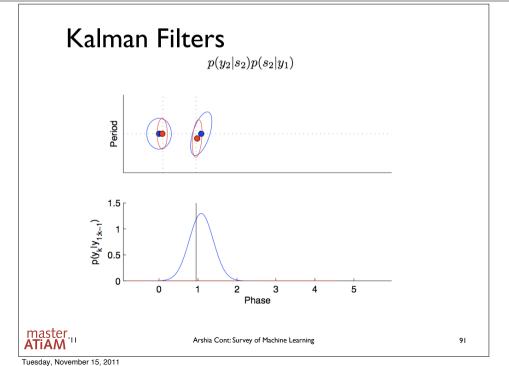
 $p(s_1)$

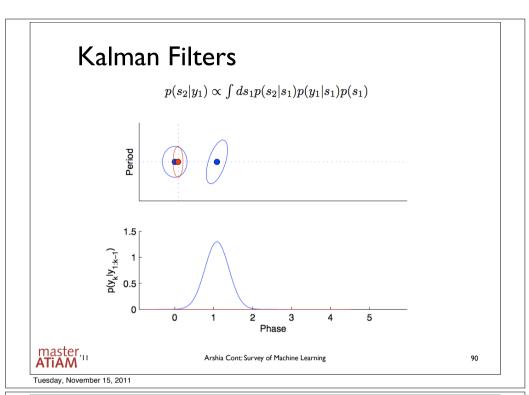


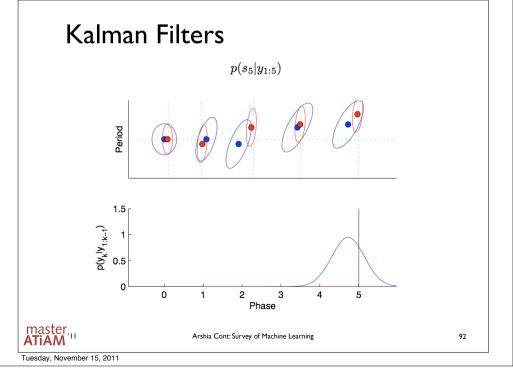
Arshia Cont: Survey of Machine Learning

88









Sequential learning applications in audio

- O Score Following (AKA real-time alignment of audio to symbolic scores)
- O Gesture Following
- O Speech Recognition
- O Automatic Transcription
- O and many many many more....

Arshia Cont: Survey of Machine Learning

93

