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Plan

Last time we saw:

Bayesian Decision Theory

Maximum Likelihood Parameter Estimations

Bayesian Parameter Estimation

Today, we will look at:

Kernel Based Parameter Estimation

Mixture Models and EM Algorithm

Some Non-parametric methods

Sequential Learning

HMMs

Kalman Filters
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Some musical examples

The score following problem:

Need observation models at the front-end.

From audio frames to low-level state probs:

This was the model for suivi object (now defunct!)

Problem 1: is how to train the generative probability models 
which give informative probabilities on Rest/Attack/Sustain
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Example

Problem 2:  These models will be probably different from 
performance to performance / musician to musician!

Design cycle:   Learning from rehearsal recordings

Gather segmented data

Design the generative models for each attribute

Train models from labeled database

Test!

Incorporate them in the realtime system for the performance.
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Learned Gaussians for
different performers>>>

<<<Observation Histograms
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Kernel-based and 
non-parametric methods
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Plan

We have already looked at Bayesian Decision Rules, and how to 
optimize them through Maximum-Likelihood (ML) or Bayesian 
Parameter Estimation... .

In all these formulations, we assume that X is generated by a probability 
density P(X)

Practical densities do not approximate well using simple 
probability density families!

We now look at ways to approach P(X) when the data is non-
trivial or more complicated than a known and simple 
probability family... .

So far, we have considered parametric density estimations...

Today, we consider non-parametric density estimates... 
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Non-parametric density estimates
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Binomial random variable 

N 10 100 1,000 …
Var[P] < 0 025 0 0025 0 00025

7

Var[P] <  0.025 0.0025 0.00025
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Histogram 

this means that k/n is a very good estimate of P

on the other hand, from the mean value theorem, if PX(x) is , , X( )
continuous

this is  easiest to see in 1D PX(!)

PX(x)

• can always find a box such that
the integral of the function is equal
to that of the box

PX(!)

• since PX(x) is continuous there
must be a ! such that PX(!)
is the box height

x!

8

x!

R
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Histogram 

hence

i ti it f P ( ) i d i R i llusing continuity of PX(x) again and assuming R is small

this is the histogram

it is the simplest possible non-parametric estimator

can be generalized into kernel-based density estimator

9
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Kernel density estimates

10

Tuesday, November 15, 2011



Arshia Cont: Survey of Machine Learning’11 13

Kernel density estimates

this means that the histogram can be written as

hi h i i l t twhich is equivalent to:

• “put a box around X for each Xi that lands 
on the hypercube”

• can be seen as a very crude form of 
interpolation

• better interpolation if contribution of Xi• better interpolation if contribution of Xi
decreases with distance to X

consider other windows !(x)
x xx x

11

x1x2x3 x
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Windows

what sort of functions are valid windows?

note that P (x) is a pdf if and only ifnote that PX(x) is a pdf if and only if

since

these conditions hold if !(x) is itself a pdf

12
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Gaussian kernel

probably the most popular in practice

t th t P ( ) l bnote that PX(x) can also be seen as a 
sum of pdfs centered on the Xi when 
!(x) is symmetric in X and Xi

13
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Gaussian kernel

Gaussian case can be interpreted as

• sum of n Gaussians centered at the Xi withsum of n Gaussians centered at the Xi with
covariance hI

• more generally, we can have a full 
covariancecovariance

sum of n Gaussians centered at the Xi with covariance !sum of n Gaussians centered at the Xi with covariance !

Gaussian kernel density estimate: “approximate the pdf of 
X with a sum of Gaussian bumps”

14
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Kernel bandwidth

back to the generic model

h t i th l f h (b d idth t )?what is the role of h (bandwidth parameter)?

defining

we can write

15

i.e. a sum of translated replicas of !(x)
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Kernel bandwidth

h has two roles:

1 rescale the x-axis1. rescale the x-axis

2. rescale the amplitude of !(x)

this implies that for large h:p g

"# !(x) has low amplitude

2. iso-contours of h are quite distant from zero 
(x large before $(x/h) changes significantly from $(0))(x large before $(x/h) changes significantly from $(0))

16
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Kernel bandwidth

it controls the smoothness of the estimate

• as h goes to zero we have a sum of delta functions (very “spiky”as h goes to zero we have a sum of delta functions (very spiky  
approximation)

• as h goes to infinity we have a sum of constant functions
(approximation by a constant)(approximation by a constant)

• in between we get approximations that are gradually more 
smooth

18
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Kernel bandwidth

why does this matter?

when the density estimates are plugged into the BDRwhen the density estimates are plugged into the BDR

smoothness of estimates determines the smoothness of 
the boundaries

less smooth more smooth

this affects the probability of error!

19

this affects the probability of error!
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Example

example: fit to 
N(0,I) using h = 
h /n1/2h1/n

1/2

small h: spiky

need a lot ofneed a lot of 
points to converge 
(variance)

large hlarge h: 
approximate
N(0,I) with a sum 
of Gaussians ofof Gaussians of 
larger covariance

will never have 
(bi )

10

zero error (bias)
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Optimal bandwidth

in practice this has limitations

• does not say anything about the finite data case (the one we y y g (
care about)

• still have to find the best k

ll d i t i l d t h iusually we end up using trial and error or techniques 
like cross-validation

28
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Cross-validation

basic idea:

• leave some data out of your training set (cross validation set)y g ( )

• train with different parameters

• evaluate performance on cross validation set

• pick best parameter configuration

training set xval set training
testing

test set

29

training set
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Leave-one-out cross-validation

many variations

leave one out CV:leave-one-out CV:

• compute n estimators of PX(x) by leaving one Xi out at a time

• for each PX(x) evaluate PX(Xi) on the point that was left outX( ) X( i) p

• pick PX(x) that maximizes this likelihood 

testing

test set

g

...

30
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Non-parametric classifiers

given kernel density estimates for all classes we can 
compute the BDRp

since the estimators are non-parametric the resulting 
classifier will also be non-parametric

this term is general and applies to any learning algorithm

a very simple example is the nearest neighbor classifier

15
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Nearest neighbor classifier
is the simplest possible classifier that one could think of:

• it literally consists of assigning to the vector to classify the label ofit literally consists of assigning to the vector to classify the label of 
the closest vector in the training set

• to classify the red point:to classify the red point:

• measure the distance
to all other points

• if the closest point• if the closest point
is a square, assign
to “square” class

• otherwise assigng
to “circle” class

it works a lot better

16

than what one might predict
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Nearest neighbor classifier
to define it mathematically we need to define

• a training set ! = {(x1,y1), …, (xn,yn)}

• xi is a vector of observations, yi is the label

• a vector x to classify

the “decision rule” isthe decision rule  is 

    *iyyset !

),(minarg* ixxdi

where

!

},...,1{ ni"

17

Tuesday, November 15, 2011

Arshia Cont: Survey of Machine Learning’11 28

k-nearest neighbors
instead of the NN, assigns to the majority vote of the k 
nearest neighbors

in this example

• NN rule says “A”

• but 3 NN rule• but 3-NN rule
says “B”

for x away from the
border does not make
much difference

usually best performanceusually best performance
for k > 1, but there is no universal number

k large: performance degrades (no longer neighbors)

18

g p g ( g g )

k should be odd, to prevent ties
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Mixture density estimates

back to BDR-based classifiers

consider the bridge trafficconsider the bridge traffic 
analysis problem 

summary:y

• want to classify vehicles 
into commercial/private

hi l i ht• measure vehicle weight

• estimate pdf

• use BDR

clearly this is not Gaussian

possible solution: use a kernel-based model

19

p

Estimate instrument type (brass, 
string, percu) from audio
Measure some audio feature

Consider the problem of 
instrument classification
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Kernel-based estimate

simple learning procedure

• measure car weights x
i

bandwidth too large: bias

measure car weights x
i

• place a Gaussian on top of each 
measurement

can be overkill

• spending all degrees of freedom (# 
of training points) just to get the g p ) j g
Gaussian means

• cannot use the data to determine 
variances

bandwidth too small: variance

variances

handpicking of bandwidth can 
lead to too much bias or 

i

20

variance

audio feature X
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mixture density estimate

it looks like we could do better by
just picking the right # of 
G iGaussians

this is indeed  a good model:

• density is multimodal because there 
is a hidden variable Z

• Z determines the type of car

z ! {compact, sedan, station wagon, pick up, van}

• for a given car type the weight is approximately Gaussian (or has some• for a given car type the weight is approximately Gaussian (or has some 
other parametric form)

• the density is a “mixture of Gaussians”

21

Z can determine the type of 
intermediate musical instruments (for example)

Note that this is different from Y which is the instrument type (brass, 
string, percussion)

For a given instrument type, the density is approximate Gaussian here.

The density is a mixture of Gaussians

Z ∈ {V iolin, P iano, Saxophone, F lute, Drum}
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mixture model

two types of random variables

• Z – hidden state variable

PZ(z)

zZ – hidden state variable

• X – observed variable

observations sampled with a 

zi

p
two-step procedure

• a state (class) is sampled from the
distribution of the hidden variable

PX|Z(x|0) PX|Z(x|1) PX|Z(x|K)…
distribution of the hidden variable

PZ(z)   !"""zi
xi

• an observation is drawn from the class conditional density for 
the selected state

22

PX|Z(x|zi)   ! xi
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mixture model

the sample consists of pairs (xi,zi)

D = {(x z ) (x z )}D = {(x1,z1), …, (xn,zn)}

but we never get to see the zi

e.g. bridge example:e.g. bridge example:

• sensor only registers weight

• the car class was certainly there, but it is lost by the sensor

• for this reason Z is called hidden

the pdf of the observed data is
# of mixture components

component “weight”

23

cth “mixture component”
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Mixtures vs Kernel and parametric

A parametric model is a mixture with one component

The weight is one

The mixture density is the parametric density itself!

More degrees of freedom in mixture => less bias

A mixture density is like a kernel density less components

less components => less learning parameters, less variance

Mixture is a compromise between these two extremes:

34
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mixture disadvantages

main disadvantage is learning complexity

non parametric estimatesnon-parametric estimates

• simple: store the samples (NN); place a kernel on top of each 
point (kernel-based)

parametric estimates

• small amount of work: if ML equations have closed-form

• substantial amount of work: otherwise (numerical solution)

mixtures:

there is usually no closed form solution• there is usually no closed-form solution

• always need to resort to numerical procedures

standard tool is the expectation-maximization (EM)

27

standard tool is the expectation maximization (EM)
algorithm

Tuesday, November 15, 2011
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Clustering and 
EM algorithm
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Classes vs. Clusters

37

! Supervised: X = { xt ,rt }t 

! Classes Ci i=1,...,K

 where p ( x | Ci) ~ N ( !i , !i ) 

! " = {P (Ci ), !i , !i }
K

i=1

 

! Unsupervised : X = { xt }t 

! Clusters Gi i=1,...,k

 where p ( x | Zi) ~ N ( !i , !i ) 

! " = {P ( Zi ), !i , !i }
k
i=1

  Labels, r ti ?

  

! 

p x( ) = p x |Zi( )P Zi( )
i=1

k

"
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K-Means Clustering

Dataset 

Goal:  Partition in K clusters

Cluster prototype: 

Binary indicator variable (1-of-K coding scheme) 

hard assignment

Distortion measure

K-means gives k reference vectors (prototypes) which can be 
used as decision rule

Our sample communication problem: 

38

D = {x1, x2, . . . , xn}

µk

rnk ∈ {0, 1}
rnk = 1, and rnj = 0for j "= k

J =
N∑

n=1

K∑

k=1

rnk||xn − µk||2
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K-Means clustering: EM

Find values for         and         to minimize: 

Iterative procedure:

Expectation:     Minimize J with regards to          , keep         fixed  

Maximization:   Minimize J with regards to         , keep           fixed  

39

{rnk} {µk}

J =
N∑

n=1

K∑

k=1

rnk||xn − µk||2

{rnk} {µk}

rnk =
{

1, if k = arg minj ||xn − µk||2
0, otherwise

{µk} {rnk}
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K-Means Clustering: Example

40
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K-means and clustering

Problems:

How many clusters? (K)

Various methods available: Bayesian Information Criterion, Akaike Information 
Criterion, Minimum Description Length

Or guessing + cross-validation!

Local minimum only

Can be a source of head-ache!

Initialization of the means

Another source of head-ache!

Usual method: mean-splitting... .

Sounds great..

But what about non-classification problems?!

41
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The basics of EM

as usual, we start from an iid sample D = {x1,…,xN}

goal is to find parameters !* that maximize likelihood withgoal is to find parameters ! that maximize likelihood with 
respect to D

the setthe set

Dc = {(x1,z1), …, (xN,zN)}

is called the complete datais called the complete data

the set 

D = {x1, …, xN}{ 1, , N}

is called the incomplete data

6
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Learning with incomplete data (EM)

the basic idea is quite simple

1 start with an initial parameter estimate !(0)1. start with an initial parameter estimate !( )

2. E-step: given current parameters !(i) and observations in D, 
“guess” what the values of the zi are

3. M-step: with the new zi, we have a complete data problem, 
solve this problem for the parameters, i.e. compute !(i+1)

4. go to 2. 

this can be summarized as

E-step

estimate

parameters

fill in class

assignments

zi

p

i

M-step

7
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Classification-maximization

C-step:

• given estimates !"(i) = {!"(i) !"(i) }given estimates !"( ) = {!"( )
1, …, !"( )

C }

• determine zi by the BDR

• split the training set according to the labels zi

1 2 CD1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:

as before determine the parameters of each class• as before, determine the parameters of each class 
independently

8
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For Gaussian mixtures

C-step:

•

• split the training set according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:

•

9
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K-means

when covariances are identity and priors uniform

C step:C-step:

•

• split the training set according to the labels zip g g i

D1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:

•

this is the K-means algorithm aka generalized Loydthis is the K-means algorithm, aka generalized Loyd 
algorithm, aka LBG algorithm in the vector quantization 
literature:

10

• “assign points to the closest mean; recompute the means”
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Expectation-Maximization

What about problems that are not about classification?

EM suggests:

Do the most intuitive operation that is ALWAYS possible

Don’t worry about Z_i directly

E-Step: “estimate the likelihood of the complete data by its expected value 
given the observed data”

M-step: “Maximize this expected value”

This leads to the so called Q-function

47
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The Q function

is defined as

and is a bit tricky:

• it is the expected value of likelihood with respect to complete data
(joint X and Z)

• given that we observed incomplete data (X=!)g p ( )

• note that the likelihood is a function of ! (the parameters that we 
want to determine)

b t t t th t d l d t th t• but to compute the expected value we need to use the parameter 
values from the previous iteration (because we need a 
distribution for Z|X)

the EM algorithm is, therefore, as follows

11
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Expectation-maximization

E-step:

• given estimates !"(n) = {!"(n) !"(n) }given estimates !"( ) = {!"( )
1, …, !"( )

C }

• compute expected log-likelihood of complete data

M-step:

• find parameter set that maximizes this expected log-likelihood

let’s make this more concrete by looking at the mixture
casecase

12
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Expectation-maximization

to derive an EM algorithm you need to do the following

1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one

13
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EM for mixtures (step 1)

the first thing we always do in a EM problem is 

• compute the likelihood of the COMPLETE datacompute the likelihood of the COMPLETE data

very neat trick to use when z is discrete (classes)

• instead of using z in {1, 2, ..., C}g { , , , }

• use a binary vector of size equal to the # of classes

• where z = j in the z in {1, 2, ..., C} notation, now becomeswhere z  j in the z in {1, 2, ..., C} notation, now becomes

14
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EM for mixtures (step 1)

we can now write the complete data likelihood as

for example, if z = k in the z in {1, 2, ..., C} notation,

the advantage is thatthe advantage is that

becomes LINEAR in the components zj !!!

15
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EM for mixtures (step 1)

for the complete iid dataset  Dc = {(x1,z1), …, (xN,zN)}

and the complete data log-likelihood is

this does not depend on z and simply becomes a 
constant for the expectation that we have to compute in 
the E-step p

17
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Expectation-maximization

to derive an EM algorithm you need to do the following

1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one

important  E-step advice:p p

• do not compute terms that you do not need

• at the end of the day we only care about the parameters

• terms of Q that do not depend on the parameters are useless, 
e.g. in

Q = f(z,!) + log(sin z)
th t d l f l ( i ) t b diffi lt d ithe expected value of log(sin z) appears to be difficult and is 
completely unnecessary, since it is dropped in the M-step

18
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EM for mixtures (step 2)

once we have the complete data likelihood 

i.e. to compute the Q function we only need to compute 

note that this expectation can only be computed 
because we use !(n)because we use !

note that the Q function will be a function of both ! and 
!(n)

19
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EM for mixtures (step 2)

since zij is binary and only depends on xi

the E-step reduces to computing the posterior 
probability of each point under each class!probability of each point under each class!

defining 

the Q function is 

20
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Expectation-maximization

to derive an EM algorithm you need to do the following

1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one

21
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EM for Gaussian mixtures

in summary: 

• CM = EM  + hard assignments

• CM special case, cannot be better

let’s look at the special case of Gaussian mixtures

E-step: 

24
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M-step for Gaussian mixtures

M-step:

important note: 

• in the M-step, the optimization must be subject to whatever p, p j
constraint may hold

• in particular, we always have the constraint

• as usual we introduce a Lagrangian• as usual we introduce a Lagrangian

25Not familiar with Lagrange multipliers? See http://en.wikipedia.org/wiki/Lagrange_multipliers 
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M-step for Gaussian mixtures

Lagrangian

setting derivatives to zero

26
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M-step for Gaussian mixtures

leads to the update equations

comparing to those of CMp g

they are the same up to hard vs soft assignments.ey a e e sa e up o a d s so ass g e s

27
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Expectation-maximization

note that the procedure is the same for all mixtures

1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one

28
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EM on Gaussian Mixtures

Example:

63
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Group Homework 3

Derive the EM algorithm for a mixture of exponential 
distributions:

Write down the E-step

Write down the M-step, solve the maximization and derive iterative 
solutions for 

hint: Use the Lagrangian.... .

64

PX(x) =
∑C

i=1 πiλie−λix

λk and πk
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Sequential Learning
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Sequential Learning

Up to now, our approach was rather static. Now imagine that 
you have a problem set where data arrives sequentially.
(e.g. Time Series)

A sequence of observations:

Considered as independent... :

Many many ways to model sequential data! We will look at 
some... .

66

y1, y2, y3, . . . , yt

P (y1, y2, . . . , yt) =
t∏

n=1

p(yn|y1, . . . , yn−1)
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Markov ModelsMarkov models

First-order Markov model:

P (y1,y2, . . . ,yt) = P (y1)P (y2|y1) · · · P (yt|yt−1)

Y3Y1 Y2 YT

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (yt), the future (yt+1, . . .) is independent
of the past (y1, . . . ,yt−1).

Second-order Markov model:

P (y1, . . . ,yt) = P (y1)P (y2|y1) · · · P (yt|yt−2,yt−1)

67
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Hidden VariablesCausal structure and “hidden variables”

X 3

Y3

X 1

Y1

X 2

Y2

X T

YT

Speech recognition:

• x - underlying phonemes or words

• y - acoustic waveform

Vision:

• x - object identities, poses, illumination

• y - image pixel values

Industrial Monitoring:

• x - current state of molten steel in caster

• y - temperature and pressure sensor readings

Two frequently-used tractable models:

• Linear-Gaussian state-space models

• Hidden Markov models

68
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Hidden Markov Models (HMM)

• Leading to the following important structural elements:

• Transition probabilities: 

• Observation probabilities

• Discrete case: 

• Initial probabilities (prior):

Graphical Model for HMM

S 3

Y3

S 1

Y1

S 2

Y2

S T

YT

• Discrete hidden states st ∈ {1 . . . , K}, and outputs yt (discrete or continuous).
Joint probability factorizes:

P(s1, . . . , sτ ,y1 . . . ,yτ) = P(s1)P(y1|s1)
τ∏

t=2

P(st|st−1)P(yt|st)

• a Markov chain with stochastic measurements:

x1

y1 y2

x2 x3

y3

xt

yt

• or a mixture model with states coupled across time:

x1

y1 y2

x2 x3

y3

xt

yt
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aij = P (st = Sj |st−1 = Si) , aij ≥ 0 and
N∑

j=1

aij = 1

bj(m) = P (yt = Ym|st = Sj)

πi = P (s1 = Si) ,
N∑

j=1

πj = 1
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Hidden Markov Models (HMM)

Notes:

Hidden states (S_i) are markov... but not necessarily the output process 
(Y_i). In reality, they are NOT markov... .

For each observation sequence, there are multiple state sequences

70

! N: Number of states

! M: Number of observation symbols

! A = [a
ij
]: N by N state transition proba. matrix

! B = b
j
(m): N by M observation proba. matrix

! ! = [!
i
]: N by 1 initial state proba. vector

          = (A, B, !), parameter set of HMMλ
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HMMs

Three basic HMM problems:

1. Evaluation: Given !, and O, calculate P (O | !)

2. State sequence: Given !, and O, find Q* such that 

  P (Q* | O, ! ) = maxQ P (Q | O , ! ) 

3. Learning: Given X={Ok}k, find !* such that 

  P ( X | !* )=max
!
 P ( X | ! )

71
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Likelihood in HMM

The likelihood                      is an extremely hard computation

Number of possible paths grow exponentially with time (# of paths=     )  

To compute this likelihood, there exist an efficient forward 
recursion algorithm using dynamic programming:

72

Kτ

αt(i) = P (O1, . . . , Ot, st = Si|λ)

Initialization :
α1(i) = πibi(O1)

Recursion :

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1)

P (O|λ) =
N∑

i=1

αT (i)

P (O1, . . . , Oτ |λ)
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Likelihood in HMM

or:

73
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Likelihood in HMM

Note:

74
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Most likely state-sequence

Forward variable gives the likelihood of an observation 
sequence given model parameters or 

What about the most-likely sequence or

Forward variable is the most-likely belief from time 0 to t (t=present)

Need also a belief towards future (from time t to T)

Backward variable:

75

P (O|λ)

P (S∗|O,λ) = max
S

P (S|O,λ)

βt(i) = P (Ot+1, . . . , OT , st = Si|λ)

Initialization :
βT (i) = 1

Recursion :

βt(j) =

[
N∑

i=1

αt+1(i)aij

]
bj(Ot+1)
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Another view:

76
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Most-likely state-sequence

Combine the two propagations and use
maximum likelihood?

Problem:

Is the set of locally optimal states, equal to the global optimal path?

NO! not necessarily... .

Need to maximize over the WHOLE PATH and not just one state:

77

st(i) = P (st = Si|O,λ)

=
αt(i)βt(i)∑N

j=1 αt(j)βt(j)

s∗t = arg max
i

st(i)

st(i) = max
s1s2···st−1

P (s1, s2 · · · st−1, st = Si, O1, · · · , Ot|λ)
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Viterbi Algorithm

Initialization:

Recursion:

Termination:

Backtracking:

78

st(i) = max
s1s2···st−1

P (s1, s2 · · · st−1, st = Si, O1, · · · , Ot|λ)

s1(i) = πibi(O1) , ψ1(i) = 0

st(j) = max
i

st−1(i)aijbj(Ot)

ψt(j) = arg max
i

st−1(i)aij

p∗ = max
i

sT (i) , s∗T = arg max
i

sT (i)

s∗t = ψt+1(s∗t+1) , t = T − 1, T − 2, . . . , 1
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Parameter Learning

Use EM Algorithm:

Auxiliary variable:

E-Step:

recall: 

M-Step:

79

ξt(i, j) = P (st = Si, st+1|O,λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑

k

∑
! αt(k)ak!b!(Ot+1)βt+1(%)

Zt
i =

{
1, if st = Si

0, otherwise Zt
ij =

{
1, if st = Si and st+1 = Sj

0, otherwise
E[zt

i ] = st(i) E[zt
ij ] = ξt(i, j)

st(i) = P (st = Si|O,λ) =
αt(i)βt(i)∑N

j=1 αt(j)βt(j)

π̂i =
∑K

k=1

sk
t (i)

K

âij =
∑K

k=1

∑Tk−1
t=1 ξk

t (i, j)
∑K

k=1

∑Tk−1
t=1 sk

t (i)

b̂j(m) =
∑K

k=1

∑Tk−1
t=1 sk

t (j)δ(Ok
t − vm)

∑K
k=1

∑Tk−1
t=1 sk

t (i)
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HMM State Duration

The time an observation would spend in a state is implicit:

where          is the probability of staying ‘d’ discrete times in state i 

This is an exponential model of time

Not very desirable for all temporal sequences... such as music!

80

i

aii

i+1
pi(d) = a(d−1)

ii (1− aii)

pi(d)
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Group Homework 4

Consider the following Markov topology for one event:

1. What is the probability of staying ‘d’ times within the n states (or in the 
global event)?

2. What is the name of this probability model?!

3. Assuming n is fixed, solve for p for an expected duration d.

81

1 2 3 4 n

p p p p p

1-p1-p 1-p 1-p 1-p

...

1-p

One Event
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HMM Variants

Discrete observations:

Continuous observations:

use EM to find parameters... .

Gaussian Mixtures: 

Duration-Focused models

Transitions as explicit functions of time... .

And many more... .

82

! 

P Ot | st = S j ,"( ) = bj m( )
m=1

M

#
rm
t

     rm
t =

1 if  Ot = vm

0 otherwise

$ 
% 
& 

  

! 

P Ot | st = S j ,"( ) ~N µ j ,# j

2( )
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HMMs

So far, we have assumed that our underlying models are static!

In some cases this works out well as an approximation

In many cases it won’t!

Real-life systems are dynamic systems

Dynamics systems

Are generally hard to model... .

Much easier if they are linear... .

Much harder if they are non-linear... .

83
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Kalman Filter Models

Also known as Linear Dynamical Systems

Imagine a sequential framework where latent variable S and 
observations Y are continuous 

and underlying dynamics is linear... . (or can be approximated 
so)

Example:

A one dimensional tracking system:

84
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Kalman Filter Models

Tracking example:

Imagine that we have unknown accelerations (dynamics!)

Generatively speaking, 

85
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Kalman Filter Models

Inference is similar to HMM: summations are replaced by 
integrations

86
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Kalman Filter Models

Goal:

Find an a posteriori belief based on prior estimate and a weighted difference 
between the actual measurement     and a measurement prediction    

A series of predictions <> corrections 

Results into closed form solutions in the Gaussian case...

87

yt ŝt
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Kalman Filters

88
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Kalman Filters

89
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Kalman Filters

90
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Kalman Filters
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Kalman Filters

92
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Sequential learning applications in audio

Score Following (AKA real-time alignment of audio to symbolic 
scores)

Gesture Following

Speech Recognition

Automatic Transcription

and many many many more... .
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