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Plan

O Last time we saw:
O Bayesian Decision Theory
0 Maximum Likelihood Parameter Estimations
O Bayesian Parameter Estimation
O Today, we will look at:
0 Kernel Based Parameter Estimation
© Mixture Models and EM Algorithm
6 Some Non-parametric methods
O Sequential Learning
0 HMMs

O Kalman Filters
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Some musical examples

O The score following problem:
O Need observation models at the front-end.

© From audio frames to low-level state probs:

Audo Frame Data

[ Rest State Probabilty

Postion: (12 s 5 o 7 e g
3 ”
H

ime 5)

O This was the model for suivi object (now defunct!)

O Problem I:is how to train the generative probability models
which give informative probabilities on Rest/Attack/Sustain

master,
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Example

O Problem 2: These models will be probably different from
performance to performance / musician to musician!
O Design cycle: Learning from rehearsal recordings
O Gather segmented data
0 Design the generative models for each attribute
0 Train models from labeled database
o Test!

O Incorporate them in the realtime system for the performance.
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Learned Gaussians for
different performers>>>:

<<<Observation Histograms

L
k.
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Kernel-based and
non-parametric methods
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Plan

O We have already looked at Bayesian Decision Rules, and how to
optimize them through Maximume-Likelihood (ML) or Bayesian
Parameter Estimation....

O In all these formulations, we assume that X is generated by a probability
density P(X)

O Practical densities do not approximate well using simple
probability density families!

O We now look at ways to approach P(X) when the data is non-
trivial or more complicated than a known and simple
probability family... .

O So far, we have considered parametric density estimations...

0 Today, we consider non-parametric density estimates...

Aq—?ztAeAr’l | Arshia Cont: Survey of Machine Learning

Non-parametric density estimates

» Given iid training set D = {x1,...xn}, the goal is to estimate
Px(x)
p Consider a region R, and define
P=PxlxeR] = /R Py (x)dx.
and define
K = f{x; € D|x; € R}.
® This is a binomial distribution of paramter P
Py (k) = B(n,P)
= ( i ) PE(1 - p)nF
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Binomial random variable

» ML estimate of P

Histogram

» this means that k/n is a very good estimate of P

VR) T V(R) ~ aV(R)
» using continuity of Py(x) again and assuming R is small

Px(x) =~ vx € V(R)

_k
nV(R)’
» this is the histogram

» it is the simplest possible non-parametric estimator

» can be generalized into kernel-based density estimator

master,
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and define indicator function of the unit hypercube
i < 1/2
¢(u) = { 0, otherwise.
hence

o(57) =

iif x; € hypercube of volume V centered at x.
» the number of sample points in the hypercube is

=30 (%)
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P k » on the other hand, from the mean value theorem, if Py(x) is
o continuous Je € R such that
and statistiscs
A 1 1 P = / Py (x)dx = PX(e)/ dx = Px(e)V(R).
E[P] = ~E[kl=-nP=P R R
n n P(x)
var[P] = %var[k] — P(1 - P)_ » this is easiest to see in 1D Ve Py(e)
n » can always find a box such that
* Note that var[P] < 1/4n goes to zero very quickly, i.e. the integral of the function is equal
to that of the box
P— P » since Py(x) is continuous there
must be a £ such that Py(s)
N 10 100 1,000 is the box height >
Var[P] < 0.025 0.0025 0.00025 — X
R
Aq-?zﬁ'll Arshia Cont: Survey of Machine Learning 9 Rjriaitl\el{ll Arshia Cont: Survey of Machine Learning 10
Tuesday, November 15, 2011 Tuesday, November 15, 2011
Histogram Kernel density estimates
» hence » assume R is the d-dimensional cube of side h
P P _.d
Px(e) = y V=h

Tuesday, November 15, 2011




Kernel density estimates

» this means that the histogram can be written as

Px(x) = n;d; o (22)

» which is equivalent to:

+ “put a box around X for each X; that lands
on the hypercube”

* can be seen as a very crude form of
interpolation

* better interpolation if contribution of X;
decreases with distance to X

» consider other windows ¢(x) .

v

&
<4
x4
< 1
N

Aq-?z‘ss{l | Arshia Cont: Survey of Machine Learning 13
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Windows

» what sort of functions are valid windows?
» note that P,(x) is a pdf if and only if

Px(x) > 0,vx and /PX(x)dx =1
» since /Px(x)dx = #Zﬁﬁ(x;xl’) dx
i=1
_ 1 & d
= nhdi;/¢(y)h dy

1TL
= = é(y)d
”Z;/ (y)dy

» these conditions hold if ¢(x) is itself a pdf

#(x) > 0,Vx and /¢(x)dx -1

Rjriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Gaussian kernel
» probably the most popular in practice
$(x) = ———e 2 X

» note that P,(x) can also be seen as a
sum of pdfs centered on the X; when
#(x) is symmetric in X and X

=80 05%)

Anjr?zﬁl | Arshia Cont: Survey of Machine Learning 15

Gaussian kernel

» Gaussian case can be interpreted as

» sum of n Gaussians centered at the X with
covariance hl

* more generally, we can have a full
covariance

n
Py(x) =+ L e s xx)

";1 V()|
» sum of n Gaussians centered at the X; with covariance ~

» Gaussian kernel density estimate: “approximate the pdf of
X with a sum of Gaussian bumps”

master,
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Kernel bandwidth
» back to the generic model
1 2 X —X;
Px() = a3 6 (557)

» what is the role of h (bandwidth parameter)?
» defining

1 X
0= ()
() =20 (5
» we can write
1 n
Px(x) == §(x—x)
=1
» i.e. a sum of translated replicas of &(x)

master, |
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Kernel bandwidth

» h has two roles: 1 x
1. rescale the x-axis o(x) = ﬁgb (E)

2. rescale the amplitude of §(x)

» this implies that for large h:
1. &(x) has low amplitude

2. iso-contours of h are quite distant from zero
(x large before ¢(x/h) changes significantly from ¢(0))

h=02

F=T Bmis

master, |
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Kernel bandwidth

» it controls the smoothness of the estimate

» as h goes to zero we have a sum of delta functions (very “spiky”
approximation)

» as h goes to infinity we have a sum of constant functions
(approximation by a constant)

* in between we get approximations that are gradually more
smooth

master,
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Kernel bandwidth

» why does this matter?
» when the density estimates are plugged into the BDR

» smoothness of estimates determines the smoothness of
the boundaries

less smooth more smooth

» this affects the probability of error!

master,
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Example

» example: fit to
N(O,I) using h =
h,/n12

» small h: spiky

» need a lot of
points to converge
(variance)

» large h:
approximate
N(0,I) with a sum
of Gaussians of
larger covariance

» will never have
zero error (bias)

E-}-iazﬁl | Arshia Cont: Survey of Machine Learning 21
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Optimal bandwidth

» in practice this has limitations

» does not say anything about the finite data case (the one we
care about)

« still have to find the best k

» usually we end up using trial and error or techniques
like cross-validation

Rjriaitl\el{l | Arshia Cont: Survey of Machine Learning

Tuesday, November 15, 2011

22

Cross-validation

» basic idea:
» leave some data out of your training set (cross validation set)
« train with different parameters
» evaluate performance on cross validation set

+ pick best parameter configuration

training set xval set training testing

test set

training set

Er?;ﬁl | Arshia Cont: Survey of Machine Learning 23

Leave-one-out cross-validation

» many variations
» leave-one-out CV:
« compute n estimators of Py(x) by leaving one X out at a time

 for each Py(x) evaluate Py(X) on the point that was left out
» pick Py(x) that maximizes this likelihood

testing

test set

Anjr?'itAe/{’l | Arshia Cont: Survey of Machine Learning
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Non-parametric classifiers

» given kernel density estimates for all classes we can

compute the BDR

» since the estimators are non-parametric the resulting

classifier will also be non-parametric

» this term is general and applies to any learning algorithm

» a very simple example is the nearest neighbor classifier

master
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Nearest neighbor classifier
» is the simplest possible classifier that one could think of:

« it literally consists of assigning to the vector to classify the label of
the closest vector in the training set

* to classify the red point: A

. O] B
* measure the distance B [ ]
to all other points T

« if the closest point A; B
is a square, assign l:'_—. 3 )
to “square” class t. i

 otherwise assign n F
to “circle” class 9

» it works a lot better
than what one might predict

Rjriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Nearest neighbor classifier
» to define it mathematically we need to define

» atraining set ® = {(x,¥4), ..., (Xp, Y )}

» X;is a vector of observations, y; is the label

+ a vector x to classify
» the “decision rule” is

set Y =Yu
where

i*=argmind(x,x,)

master,
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k-nearest neighbors
» instead of the NN, assigns to the majority vote of the k

nearest neighbors

» in this example A
* NN rule says “A”
* but 3-NN rule
says “B”

» for x away from the A
border does not make U
much difference

» usually best performance
for k > 1, but there is no universal number

» k large: performance degrades (no longer neighbors)
» k should be odd, to prevent ties

Anjr?'itl\e/{’l | Arshia Cont: Survey of Machine Learning
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Mixture density estimates

» back to BDR-based classifiers
Consider the problem of .
instrument classification =

» summary: s

° Estimate instrument type (brass, .
string, percu) from audio
. Measure some audio feature

+ estimate pdf
» use BDR

» clearly this is not Gaussian

» possible solution: use a kernel-based model

master
= "1l Arshia Cont: Survey of Machine Learnin; 29
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Kernel-based estimate

» simple learning procedure bandwidth too large: bias

* measure audio feature X

» place a Gaussian on top of each
measurement

» can be overkill

» spending all degrees of freedom (#
of training points) just to get the

Gaussian means bandwidth too small: variance

» cannot use the data to determine
variances

» handpicking of bandwidth can
lead to too much bias or
variance

Rjriaitl\c){l | Arshia Cont: Survey of Machine Learning

Tuesday, November 15, 2011

30

mixture density estimate

» it looks like we could do better by
just picking the right # of ]
Gaussians ’

» this is indeed a good model:

+ density is multimodal because there
is a hidden variable Z

2\ A NN
02 03 04 05 06 07 o8 o8 1

O Z can determine the type of o
intermediate musical instruments (for example)

Z € {Violin, Piano, Saxophone, Flute, Drum}

© Note that this is different from Y which is the instrument type (brass,
string, percussion)

O For a given instrument type, the density is approximate Gaussian here.

O The density is a mixture of Gaussians

An}?"zﬁl | Arshia Cont: Survey of Machine Learning 31
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mixture model

» two types of random variables
» Z - hidden state variable
» X —observed variable

» observations sampled with a
two-step procedure

« a state (class) is sampled from the | Pxz(10)][ Puz(XI7)] * * * [ Puz(XIK]
distribution of the hidden variable

Py(z) - z Xi

* an observation is drawn from the class conditional density for
the selected state

PXIZ(xlz,) - X

Anjr?'itAe/{’l | Arshia Cont: Survey of Machine Learning
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mixture model

» the sample consists of pairs (x;,z)

D = {(X1,Z1), feay (Xnyzn)}

but we never get to see the z;

» the pdf of the observed data is

# of mixture components

Px(x) = %“‘\ component “weight”

= Z PX\Z(X|C)7TC
c=1

cth “mixture component”

Rjr?zﬁ I Arshia Cont: Survey of Machine Learning 33
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Mixtures vs Kernel and parametric

O A parametric model is a mixture with one component
O The weight is one
© The mixture density is the parametric density itself!
O More degrees of freedom in mixture => less bias
O A mixture density is like a kernel density less components
O less components => less learning parameters, less variance

O Mixture is a compromise between these two extremes:

P e
@ ®

parametric __mixture of C components kernel-based
Cc=1 C=n

Anriaitl\e,{ 11 Arshia Cont: Survey of Machine Learning
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mixture disadvantages

» main disadvantage is learning complexity
» non-parametric estimates

» simple: store the samples (NN); place a kernel on top of each
point (kernel-based)

» parametric estimates
+ small amount of work: if ML equations have closed-form
 substantial amount of work: otherwise (numerical solution)
» mixtures:
« there is usually no closed-form solution
» always need to resort to numerical procedures

» standard tool is the expectation-maximization (EM)
algorithm

Aq—aztAeAr I Arshia Cont: Survey of Machine Learning 35

Clustering and
EM algorithm
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Classes vs. Clusters

Classes C; i=1,...,.K
K
plo)- S px 1 CIP(C)

where p (x| C) ~N(u;, X))
O ={P(C), u;, Z;¥,

pe)- 2t m%

i
S mlem)
[ Elr’r

Clusters G;i=1,...,.k
k

p(x)= Ep(x 1Z)P(Z)
i=1

where p (x| Z) ~ N(1;, %))
®={P(Zi); Il,-,zi}ki:1

Labels, r¢;?

master

K-Means Clustering

O Dataset D = {z1,22,...,%,}

O Goal: Partition in K clusters
0 Cluster prototype: [k
O Binary indicator variable (I-of-K coding scheme)
k. € {0,1}
ok = 1, andry; =0for j #k
hard assignment

O Distortion measure

N K
J = Zz’nkHln - Nk‘H2

n=1k=1

O K-means gives k reference vectors (prototypes) which can be
used as decision rule E(%",,ksl‘x%g,zzb:xr*ml

0 Our sample communication problem: ib‘ ) {1 if er -m,

- minfx' -m|
0 otherwise 3

master
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O Find values for {r»+} and {u} to minimize: . —
N K x x J§> ﬁ
J = Z Z Tnk ‘ |=’En — Mk ‘ |2 #;‘lt' v ’ #’X‘;
n=1k=1 2 : 5
O Iterative procedure: ’ 345’ . 3;5' I jﬁ’
O Expectation:  Minimize J with regards to{r,} , keep {u} fixed ¥ A % ’ : % ‘ Ny
- { (1)7 ifﬁ = argmin; [|Zn — ]| 1 : :
, otherwise oy
s
.&.‘ ‘ %.‘ . .&.‘
O Maximization: Minimize | with regards to {uy} , keep {r,i} fixed R 3
N
QZr”k(z" — k) =0 » Each E or M step reduces the value of the objective function J
n=1
> » Convergence to a global or local maximum
_ n TnkTn
S Sy
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K-means and clustering

O Problems:
© How many clusters? (K)

© Various methods available: Bayesian Information Criterion, Akaike Information
Criterion, Minimum Description Length

O Or guessing + cross-validation!
O Local minimum only
0O Can be a source of head-ache!
O Initialization of the means
O Another source of head-ache!
0 Usual method: mean-splitting....
O Sounds great..

O But what about non-classification problems?!

Aq-?z‘ss{l | Arshia Cont: Survey of Machine Learning 41
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The basics of EM

» as usual, we start from an iid sample D = {x,,...,x\}

» goal is to find parameters ¥ that maximize likelihood with
respectto D

w* = arg m\la)xPX(D;w)

= arg mu?x / PX|Z(D|z; V)Py(z; V)dz
» the set
D, ={(x1,24), ... XnZN)}
is called the complete data
» the set
D ={x,, ..., X}
is called the incomplete data

Rjriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Learning with incomplete data (EM)

» the basic idea is quite simple
1. start with an initial parameter estimate #©

2. E-step: given current parameters ¥ and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;, we have a complete data problem,
solve this problem for the parameters, i.e. compute ¥+

4. goto 2.
» this can be summarized as

— Estep >
estimate fill in class
parameters assignment
—_Mstp —~
Anjr?zt;s{| | Arshia Cont: Survey of Machine Learning 43

Classification-maximization

» C-step:
» given estimates w0 = (w0, ..., ¥0.}
» determine z; by the BDR

7z = arg max PX‘Z (Xl|c; \Ugi)) wgi),l e{1,...,n}

» split the training set according to the labels z;
D" ={x|z=1}, D?={x|z=2}, , D€ = {x|z=C}
» M-step:

» as before, determine the parameters of each class
independently

with) — ag T}axPX|Z(DC|c,\U)7r
T

master,
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For Gaussian mixtures

» C-step: . 7 4 '
Tz = arg mcaX{—E (Xz-u@) (Zg’)) (Xz-u@)

—I—lOngi)},le{l,...,n}

 split the training set according to the labels z;

1 (4)
——1 >
> og ‘ ¢

D" ={x|z=1}, D?={x|z=2}, , D¢ = {x|z=C}
» M-step:

o Gt X € DY LG = Y

n |{Xl € D }I i[XiEDC
. 1 . . T

RO L5 () (- 4

[ € DH 1,2
’[H-?zﬁl | Arshia Cont: Survey of Machine Learning 45
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K-means

» when covariances are identity and priors uniform

» C-step:
.oz = argmcin||xl—p((3i)||2, le{l,...,n}
» split the training set according to the labels z;
D' ={x|z=1}, D?={x|z=2}, , D€ = {x|z=C}
» M-step: .
o Gty )
RS e vl 2

» this is the K-means algorithm, aka generalized Loyd
algorithm, aka LBG algorithm in the vector quantization
literature:

» “assign points to the closest mean; recompute the means”

Anriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Expectation-Maximization

O What about problems that are not about classification?

O EM suggests:
0 Do the most intuitive operation that is ALWAYS possible
© Don’t worry about Z_j directly

O E-Step:“estimate the likelihood of the complete data by its expected value
given the observed data”

O M-step: “Maximize this expected value”

O This leads to the so called Q-function

Anjr?ztﬁ{l | Arshia Cont: Survey of Machine Learning 47
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The Q function

» is defined as
Q(w: w)y = By x {Iog Px 7(D,{z1,...,2n}; \U)|D}

» and is a bit tricky:

* itis the expected value of likelihood with respect to complete data
(joint X and Z)

+ given that we observed incomplete data (X=D)

» note that the likelihood is a function of ¥ (the parameters that we
want to determine)

» but to compute the expected value we need to use the parameter
values from the previous iteration (because we need a
distribution for Z|X)

» the EM algorithm is, therefore, as follows

Anjr?'itl\e/{’l | Arshia Cont: Survey of Machine Learning
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Expectation-maximization

» E-step:
= given estimates ¥ ={wm .., wh.}
» compute expected log-likelihood of complete data

Q(\U, \U(")) = EZ‘X,\U(") [|Og PX,Z(D7 {Z]_7 ey ZN}, W)lp}
» M-step:
« find parameter set that maximizes this expected log-likelihood

wntl) — 5pg m\ng(\U;\U(”))

» let's make this more concrete by looking at the mixture
case

E-}-iazﬁl | Arshia Cont: Survey of Machine Learning 49
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Expectation-maximization

» to derive an EM algorithm you need to do the following
— 1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one

Rjriaitl\el{l | Arshia Cont: Survey of Machine Learning
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EM for mixtures (step 1)

» the first thing we always do in a EM problem is
« compute the likelihood of the COMPLETE data

» very neat trick to use when z is discrete (classes)
* instead of using zin {1, 2, ..., C}
» use a binary vector of size equal to the # of classes

1 0 0 0
0 1 0 0
AS O,/ 0,{1],..., 0
0 0 0 1

* where z=jinthe zin {1, 2, ..., C} notation, now becomes
0

Z=€]=

1 (jthposition)

Lo J

Er?;ﬁl | Arshia Cont: Survey of Machine Learning 51

EM for mixtures (step 1)

» we can now write the complete data likelihood as
Px 7(x,z; V) = PX‘Z(x|z; W) Py (z; W)

c )
= H [PX}Z(x|ej, \U)Tfj]z]

for example, if z = kin the z in {1, 2, ..., C} notation,

v

Px z(x,k; W) = Pxz(x,e, W)

1 0
= [Pxpz(xler, W) II | Px|z(xlej, W)
» the advantage is that o S

|Og PX,Z(X7Z; \U) = Z Zj |Og [PXIz(X|e]', W)’]T]]
Jj=1
» becomes LINEAR in the components z;!!!

Anjr?'itAe/{’l | Arshia Cont: Survey of Machine Learning
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EM for mixtures (step 1)

» for the complete iid dataset D, = {(x;.z), ..., (Xn.ZW)}

N

PX,Z(D’ {Zl, P ,ZN}; \U) = H PX,Z(X’L»Z’i; \U)
i=1

N C s
=TI I [Pxz(xilej, w)m;|™
i=1j=1
» and the complete data log-likelihood is

|OgPX7z(D,{Z1,...,ZN};\U) = ZZZ' log [PX‘Z(xi\ej,\U)Trj
'/i-Lf—v

» this does not depend on z and simply becomes a
constant for the expectation that we have to compute in
the E-step

Aq-?z‘ss{l | Arshia Cont: Survey of Machine Learning 53
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Expectation-maximization

» to derive an EM algorithm you need to do the following
1. write down the likelihood of the COMPLETE data

— 2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one

» important E-step advice:
» do not compute terms that you do not need
« at the end of the day we only care about the parameters

+ terms of Q that do not depend on the parameters are useless,
e.g.in
Q =f(z, ¥) + log(sin z)
the expected value of log(sin z) appears to be difficult and is
completely unnecessary, since it is dropped in the M-step

Rjriaitl\c){l | Arshia Cont: Survey of Machine Learning
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EM for mixtures (step 2)

» once we have the complete data likelihood
Qv wmy — Exwm 109 Px 7(D, {21, 2} W)|D)]
= > Eyx.wmlzilDllog [Pxz(xilej, W)m)]
2
» i.e. to compute the Q function we only need to compute

EZ‘X,\U(”) [Z’LJ|D]> VZ,j

» note that this expectation can only be computed
because we use ¥

» note that the Q function will be a function of both ¥ and
wn)
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EM for mixtures (step 2)

» since z; is binary and only depends on x;
Ezxowmlzi5|Pl = Pyx(zij = 1]xi; vy = Pz x (ejlx;; w)

v

the E-step reduces to computing the posterior
probability of each point under each class!

v

defining
hij = Pyx (ejlxi; w(m)

» the Q function is
QMW wM) = 3 hy;log [Pxz(xile;, W]

i,J

Anjr?'itAe/{’l | Arshia Cont: Survey of Machine Learning
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Expectation-maximization

» to derive an EM algorithm you need to do the following

1. write down the likelihood of the COMPLETE data

log Px 7(D,{z1,..., 2y}, W) = ) zjlog [PX\Z(Xﬂej: W)Wj]
i,j

2. E-step: write down the Q function, i.e. its expectation given the
observed data
hij = Pgyx(ejlxi; W)
QW w(M) = Y py;log [PX|Z(Xi‘ej7 “V)ﬂ”j}

i,J
— 3. M-step: solve the maximization, deriving a closed-form solution if

there is one

wntl) — arg m\ﬁxzhij log [PX|Z(xi|ej,\U)7rj]
ij

master, |
ATIAM
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EM for Gaussian mixtures

» in summary:
« CM=EM + hard assignments
* CM special case, cannot be better

» let's look at the special case of Gaussian mixtures
» E-step:
hij = Pgx(ejlx;; wm)
g (Xi7 ,u§n), JJ(-")> 7TJ(-n)
2246 (0, o)

master, |
ATIAM
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M-step for Gaussian mixtures

» M-step:
wtl)  — grg mu:j]xz h;jlog [g (xi, s O'j) 71']']
ij

hij(xi = )? | hij

27 + - log 6% — hyjlogm;
j

= ar i
gmullnz
ij
» important note:

* in the M-step, the optimization must be subject to whatever
constraint may hold

* in particular, we always have the constraint Zﬂj =1
. . J
+ as usual we introduce a Lagrangian

h,.(XA_M,)2 s
L =Y %+#Ioga]27hijlogﬂj +A X -1
J J

master, -~ oo ommmEEsEes
ATIAM
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M-step for Gaussian mixtures

» Lagrangian

(xs — 1)2
L = Z[M+7Ioga]2—hijlogﬂj}+>\(ij—1>
J

2
i 203
» setting derivatives to zero

oL _ i)

6Nj i O'j

oL hii(x — )2 hes
J ( J J
L h;

87 = _ZJ_*_/\:O

Om; 7T

oL

Y %:71'] 0

master,
ATIAM
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M-step for Gaussian mixtures

» leads to the update equations

(n41) _ 2ihijX (n+1)
K = S Z hij
1 Ibij
o2 +1) > hij(x; — pg)?
I i hij
» comparing to those of CM
(nt+1) _ {xi € DY (n+1) _
e N He |{xZ € D¢ }l i e’DCXZ
(n+1) _ 1 e+ (o e\T
Zc = |{Xi c Dc}l i‘XizeDc (Xz He ) <X1, He )

» they are the same up to hard vs soft assignments.

Expectation-maximization

» note that the procedure is the same for all mixtures
1. write down the likelihood of the COMPLETE data

log Px (D, {z1,....2x}i W) = 3 ;109 [Pxjz(xilej, W)m)]

1,J
2. E-step: write down the Q function, i.e. its expectation given the
observed data
hij = Pzix(ejlx;; w)

Q(v; \U(n)) Z h"Lj log [PX|Z(xz|e]7 w)“’]}
4]

3. M-step: solve the maximization, deriving a closed-form solution if

there is one
vt — 5eg mu?xz:hij log [PX|Z(xi|ej,\U)7rj}
ij
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O Example: O Derive the EM algorithm for a mixture of exponential
distributions:
2 2 2 C — .
O ||O% || 5 Pr() = £ mihe e
s
O g O O Write down the E-step
2 L i O Write down the M-step, solve the maximization and derive iterative
O : ‘@ solutions for A\, and
e '%. i O hint: Use the Lagrangian.....
4("’ 2
-2 0 @ 2 0@ 2
maSter 1 Arshia Cont: Survey of Machine Learning 63 maSter ' Arshia Cont: Survey of Machine Learning 64
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Sequential Learning

Sequential Learning

O Up to now, our approach was rather static. Now imagine that
you have a problem set where data arrives sequentially.
(e.g. Time Series)

n=1

O Many many ways to model sequential data! We will look at

Tuesday, November 15, 2011

some....
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First-order Markov model: Speech recognition:
e x - underlying phonemes or words 6 4’ te 4’
P(y1,¥2,---,yt) = P(y1)P(yaly1) - - P(yelyi—1) * ¥ - acoustic waveform o e @ o
Vision:
@_» v e X - object identities, poses, illumination
( : — ( : | I p—— ) 7
e y - image pixel values
The term Markov refers to a conditional independence relationship. In this case, the Markov Industrial Monitoring:
Eﬁprﬁrtgalsi E:,at, glve}z’n th)e present observation (y;), the future (y;41,...) is independent o x - current state of molten steel in caster
Tyeey Yt—1)
’ e y - temperature and pressure sensor readings
Second-order Markov model:
Two frequently-used tractable models:
e Linear-Gaussian state-space models
P(y1,...,yt) = P(y1)P(y2ly1) - P(yelye—2,y1-1) e Hidden Markov models
Aq—?ztAe/{”I | Arshia Cont: Survey of Machine Learning 67 An:ll-?'ztl\e/{-’l | Arshia Cont: Survey of Machine Learning 68
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Hidden Markov Models (HMM)

S

o Discrete hidden states s; € {1..., K}, and outputs y, (discrete or continuous).

Joint probability factorizes: T
P(sty..esSry1---,yr) = P(s1)P(y1]s1) H P(se|si—1)P(ylst)
t=2

® Leading to the following important structural elements:

Hidden Markov Models (HMM)

O Notes:

© Hidden states (S_i) are markov... but not necessarily the output process
(Y_i). In reality, they are NOT markov....

O For each observation sequence, there are multiple state sequences

I z > z I
N: Number of states

* Transition probabilities: M: Number of observation symbols
4l /_\ “n ”H A= [uv]: Nby N state transition proba. matrix
i = P(St — Sj‘Si,fl — SL> . g >0 and Z a;j; = 1 B= bj(m): Nby M observation proba. matrix
=1 I1=[m]: Nby 1 initial state proba. vector
* Observation probabilities A< (A, B, ), parameter set of HMM
e Discrete case: pi(m) = P(y: = Yiu[s: = S;) o
* Initial probabilities (prior): X
=P =50, 3 m =) e
1 2 T-1 T
R}?zﬁ I Arshia Cont: Survey of Machine Learning 69 Anriaitl\e,{ 1 Arshia Cont: Survey of Machine Learning 70
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O The likelihood P(Oy,..., 0.\ is an extremely hard computation
y P
Three basic HMM problems: © Number of possible paths grow exponentially with time (# of paths=K")
Given A, and O, calculate P (O | 1) O To compute this likelihood, there exist an efficient forward
Given 4, and O, find Q" such that recursion algorithm using dynamic programming:
P(Q10,1)= maXQP(QI 0,7) (i) = P(Oq,...,0 s = Si|A\)
Given X={Ok}k, find 2" such that Initialization :
X ai(i) = mbi(0q)
P(X|A")=max, P(X|1)
Recursion :
N
o (j) = {Z at(i)aij:| bj(Or+1)
i=1
N
PO = Y ar(i) t t+1
i=1
Aq—aztAeAr I Arshia Cont: Survey of Machine Learning 71 Anjraztﬂ I Arshia Cont: Survey of Machine Learning 72
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Likelihood in HMM Likelihood in HMM

plz1) plx2ixy) plas|zz) plzalzs)
or: © Note: ) pi-r.-m m.m_w p::;\:,: o
plnlz) plyz\z2) plyslzs) P(yalzs)
pluler) plyalz2) plyslzs) Plyalzs)
PlY1: = Pk IT1K)P(Z]: .
(v1:x) I%:K (v1:x |21:6)P(21:K) e Predict
10
PN — —
= Y stuxlex) ¥ plakler—1)- - Y paslea)p(ualan)Y plaaler) plusley) per) ok-1(mk) = PYrk-1,2%) = D p(Tk[zH-1)PY1:8-1, T51)
TK TK—1 T2 1 ay|; Tp_1
= Y pluxlek) Y pleglox_1) Y ples|ea)p(yalz2)y p(zalz)e ) (1) = Z p(l'k|zk*1)ak7uk—l(Ik—l)
TK TK—1 z2 1 Tp_1
= Y pluxlzx) Y. P(GEK[IK—l)"'ZP(I:s\zz)zl(yz\lv)dz“(£2)
K TK-1 2 e Update
= Y plyklek) Y. pleklzk_1)--+ Y p(zslza)ays(za)
K FK-1 2 apk(Tr) = pYrk,Tk) = P(Yk|TK)P(Y1:k—1, Tk)
= > pluxler) Y, pleklek-1)...agp(es) = p(yrlor)okk—1(zk)
K TK-1
’[H-?zﬁl | Arshia Cont: Survey of Machine Learning 73 Anriaitl\el{l | Arshia Cont: Survey of Machine Learning
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Most likely state-sequence

O Forward variable gives the likelihood of an observation O Another view:
sequence given model parameters or P(O|) P »'“ff- ) "‘«“’-’f r"?”“ ®
O What about the most-likely sequence or P(5*|0,)) = max P(S]0, ) : : : :
O Forward variable is the most-likely belief from time 0 to t (t=present) Plke) Pl pllm) bl
O Need also a belief towards future (from time tto T
( ) pyk) = Y ple)pluiler)... Y. plek_ilex_2)plyx_1lzx-1)) pleklex_1)p(yklex) L
O Backward variable: 1 FK-1 K BK|K+1

= > pE)pile) - Y plex-_ilzk—_2)plyk—1lex—1) Y plek|zk-1)0k x
Ty TK-1 TK

Bi(i) = P(Oty1,...,07,5: = Si|A)

= > pypilz) - Y plex-1lzx—2)p(yx—1lex-1)Bk_1 Kk

Initialization : o o
Br(i) = 1 = %: p(z1)p(yilz1) - Lg: IP(CL'K—llTK—Z)'gAf, K-1
' = Y p)p@ile1) . Bx ok
Recursion : N 31 ‘
Be(d) = {Zl at+1(i)aﬂ} bj(O+1) ! r+1
Arq-?ztAeArYI | Arshia Cont: Survey of Machine Learning 75 Anjr?itls/{" | Arshia Cont: Survey of Machine Learning
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Most-likely state-sequence

© Combine the two propagations and use
maximum likelihood? s,(i) = P(s,

= 5,0, ))

_ (1) (4) « )
Y a()BG) '

"
St

arg max s (%)
Problem: ' ‘

O Is the set of locally optimal states, equal to the global optimal path?
© NO! not necessarily... .

e «;(t) gives total inflow of prob. to node (t,1);

Bi(t) gives total outflow of prob. states

0 Need to maximize over the WHOLE PATH and not just one stanée:

Viterbi Algorithm

si(i) = max  P(s1,82-- 81,8 = S;, 01, ,O|\)

5182°°8t—1

O Initialization:

s1() = mbi(O1), 1(é) =0
O Recursion:

si(4) = Infmxst,l(z)au b;(Oy)

Ye(j) = arg max s¢—1 (d)as;

O Termination:

p* = maxsr(i), sp = argmax sy (7)
1 3

O Backtracking:

si =ti1(sip) t=T-1T-2,...,1
si(i) = max  P(s1,82°+Si—1,5 = S;, 01, ,O¢|\)
S182-°5¢1
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O The time an observation would spend in a state is implicit:
§&(i,j) = P(si = Si, 51410, ) .
ai(1)ai;bj(Ory1)Bev1(5)
p _ (d-1)
Dok e (k) arebe(Or41) Brv1 () pi(d) = a;; (1 — ay)
O Use EM Algorithm: . o © where pi(d) is the probability of staying ‘d’ discrete times in state i

O Aucxiliary variable: O This is an exponential model of time
gt L ifse= ,Si gt =L ifse= Sl and s;41 = 5; © Not very desirable for all temporal sequences... such as music!

v 0, otherwise wJ 0, otherwise
0 E-Step:  Elz]] = s:(1)  Elz};] = &(i, J) "

) a (i) B (1)

o recall: s:(i) = P(s: =80\ = = ——

o0 M Sy a(5)Bi(i)
-Step: 4 — Ei-:l K
' Qf (i)
dj _ k 1 Tk1lftk('7j)
ij T
Zk 122 ! "’z’f(’)
Aj (m) = Ek 1 Z? ! k (Ot — Um)
T
master, I ] st (0 master,
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Group Homework 4

O Consider the following Markov topology for one event:

P P
1-p 1p '

OS50S

One Event

I. What is the probability of staying ‘d’ times within the n states (or in the
global event)?

2. What is the name of this probability model?!

3. Assuming n is fixed, solve for p for an expected duration d.

Rjr?ztﬂl | Arshia Cont: Survey of Machine Learning 8l
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HMM Variants

O Discrete observations:

P(0,15,=5,,1)= ﬁb/(m)lm r ={

m=1

1 if O, =v,
0 otherwise

O Continuous observations:
P(0,1s,=5,.A)~ N (u;.07)
use EM to find parameters....
O Gaussian Mixtures:
L
P(Or lg, = 5.7'7‘)= Zp(gjl)p(ot lg, = ijglfk)

. ~ N(MIIZI)
O Duration-Focused models

O Transitions as explicit functions of time....
O And many more....
An:ll-iaitl\el{’l | Arshia Cont: Survey of Machine Learning 82
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HMMs

O So far, we have assumed that our underlying models are static!
O In some cases this works out well as an approximation
O In many cases it won’t!
O Real-life systems are dynamic systems
O Dynamics systems
O Are generally hard to model....
O Much easier if they are linear....

© Much harder if they are non-linear....

AnrellztI\e/{’I | Arshia Cont: Survey of Machine Learning 83
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Kalman Filter Models

O Also known as Linear Dynamical Systems

O Imagine a sequential framework where latent variable S and
observations Y are continuous

O and underlying dynamics is linear.... (or can be approximated
s0)

O Example:

O A one dimensional tracking system:

position 11
= ) = _1=As;_
Sk ( velocity )k ( 0 1 )%kt A%kl

Y = pOS]tionk = ( 10 )Sk = Csy

An:ll-?'ztl\e/{-l | Arshia Cont: Survey of Machine Learning 84
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Kalman Filter Models

O Tracking example:

© Imagine that we have unknown accelerations (dynamics!)

Kalman Filter Models

Inference is similar to HMM: summations are replaced by
integrations

Tuesday, November 15, 2011

11
= ( 01 ) Skt Gk p(z1) JIENEN) plas|es) p(za|zs)
= Asp_1+te °
ve = (1 0)se+wm pyle:) plyafz2) plyslzs) P(yalza)
= Csp+ 1
o Forward Pass
O Generatively speaking, a1 a1
@_, 3 @ ° L ) = [ strler) [ pGexlex-n)-.. [ pleslen) punlzs) [ pleslen) plusle) )
. - TK TR -1 z2 ! — a
ap g !
@ @ @ e Backward Pass
p(yuk) = p(z1)p(yilz1).- .. p(zx-1lzk—2)P(yk-1lzK-1) p(zklzk-1)p(yk|zk) 1
S ~ N(Sk; ASk_l, Q) /*'1 /11(71 /TK \3“’;
BK_2 BK—1
yr ~ N(yk; Csi, R)
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O Goal plo)
oal:
O Find an a posteriori belief based on prior estimate and a weighted difference
between the actual measurement Y+ and a measurement prediction 5;
O A series of predictions <> corrections § ,/ .\,‘
[ \
O Results into closed form solutions in the Gaussian case... & N
151
VAN
By /
> 05f \
=1 \
0 . " ; . . .
0 1 2 3 4 5
Phase
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Kalman Filters
p(y1|s1)p(s1)

Period
L)

Kalman Filters

p(s2ly1) o [ dsip(s2|s1)p(y1]s1)p(s1)

Period

/-

=
SR

15
= —
s I 1 //\\
> = [\
s > 05) J \
a
2 3 4 5 0 . \
Phase 0 1 2 3 4 5
Phase
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Kalman Filters Kalman Filters
p(y2|s2)p(s2(y1)
p(85|y1:5)

Period
L)

1.5¢
Lo
=y
> 05} / \
Q
0 . . .
0 1 2 3 4 5
Phase
Er?;ﬁl | Arshia Cont: Survey of Machine Learning 91

Tuesday, November 15, 2011

Period

151

Lo
=
X

2 05
(=}

0 - = =
0 1 2 3 4 5
Phase
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Sequential learning applications in audio

O Score Following (AKA real-time alignment of audio to symbolic
scores)

O Gesture Following
O Speech Recognition
O Automatic Transcription

O and many many many more....
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