

A survey of Machine Learning techniques

Arshia Cont MuTant Team, IRCAM. cont@ircam.fr

ATIAM 2013-14

Some musical examples

- O Need observation models at the front-end.
- O From audio frames to low-level state probs:

- O This was the model for suivi object (now defunct!)
- O Problem 1: is how to train the generative probability models which give informative probabilities on Rest/Attack/Sustain

Plan

O Last time we saw:

- O Bayesian Decision Theory
- O Maximum Likelihood Parameter Estimations
- O Bayesian Parameter Estimation

O Today, we will look at:

- O Kernel Based Parameter Estimation
- O Mixture Models and EM Algorithm
- O Some Non-parametric methods
- O Sequential Learning
- o HMMs
- O Kalman Filters

master. ATIAM

Arshia Cont: Survey of Machine Learning

2

Example

- O Problem 2: These models will be probably different from performance to performance / musician to musician!
- O Design cycle: Learning from rehearsal recordings
 - O Gather segmented data
 - O Design the generative models for each attribute
 - O Train models from labeled database
 - O Test!
 - O Incorporate them in the realtime system for the performance.

Plan

- O We have already looked at Bayesian Decision Rules, and how to optimize them through Maximum-Likelihood (ML) or Bayesian Parameter Estimation....
 - $o\,$ In all these formulations, we assume that X is generated by a probability density P(X)
- O Practical densities do not approximate well using simple probability density families!
- O We now look at ways to approach P(X) when the data is nontrivial or more complicated than a known and simple probability family....
 - O So far, we have considered *parametric* density estimations...
 - O Today, we consider *non-parametric* density estimates...

Kernel-based and non-parametric methods

master, ATIAM

Non-parametric density estimates

▶ Given iid training set $D = {x_1, ..., x_n}$, the goal is to estimate

 $P_{\mathbf{X}}(\mathbf{x})$

 \blacktriangleright Consider a region $\mathcal R,$ and define

$$P = P_{\mathbf{X}}[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

and define

$$K = \sharp \{ \mathbf{x}_i \in \mathcal{D} | \mathbf{x}_i \in \mathcal{R} \}.$$

 \blacktriangleright This is a binomial distribution of paramter P

$$P_K(k) = \mathcal{B}(n, P)$$

= $\binom{n}{k} P^k (1-P)^{n-k}$

Binomial random variable

ML estimate of P

$$\hat{P} = \frac{k}{n}.$$

and statistiscs

$$E[\hat{P}] = \frac{1}{n}E[k] = \frac{1}{n}nP = P$$
$$var[\hat{P}] = \frac{1}{n^2}var[k] = \frac{P(1-P)}{n}$$

• Note that $var[\hat{P}] \leq 1/4n$ goes to zero very quickly, i.e.

Ν	10	100	1,000	
Var[P] <	0.025	0.0025	0.00025	

master. ATiAM

Arshia Cont: Survey of Machine Learning

Histogram

hence

$$P_{\mathbf{X}}(\epsilon) = \frac{P}{V(\mathcal{R})} \approx \frac{\hat{P}}{V(\mathcal{R})} = \frac{k}{nV(\mathcal{R})}$$

• using continuity of $P_{x}(x)$ again and assuming *R* is small

$$P_{\mathbf{X}}(\mathbf{x}) \approx \frac{k}{nV(\mathcal{R})}, \ \forall \mathbf{x} \in V(\mathcal{R})$$

- ▶ this is the histogram
- ▶ it is the simplest possible non-parametric estimator
- ▶ can be generalized into kernel-based density estimator

Histogram

- ▶ this means that *k/n* is a very good estimate of *P*
- ▶ on the other hand, from the mean value theorem, if $P_X(x)$ is continuous $\exists \epsilon \in \mathcal{R}$ such that

Kernel density estimates

 \blacktriangleright assume ${\mathcal R}$ is the d-dimensional cube of side h

 $V = h^d$

and define *indicator* function of the unit hypercube

$$\phi(\mathbf{u}) = \left\{ egin{array}{ll} 1, & ext{if } |u_i| < 1/2 \\ 0, & ext{otherwise.} \end{array}
ight.$$

hence

$$\phi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h}\right) = 1$$

iif $\mathbf{x}_i \in$ hypercube of volume V centered at \mathbf{x} .

▶ the number of sample points in the hypercube is

$$k_n = \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Arshia Cont: Survey of Machine Learning

11

Kernel density estimates

▶ this means that the histogram can be written as

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- which is equivalent to:
 - "put a box around X for each X_i that lands on the hypercube"
 - can be seen as a very crude form of interpolation
 - better interpolation if contribution of *X_i* decreases with distance to *X*
- consider other windows $\phi(x)$

13

15

master.

master.₁₃

Arshia Cont: Survey of Machine Learning

Gaussian kernel

▶ probably the most popular in practice

$$\phi(\mathbf{x}) = rac{1}{\sqrt{2\pi}^d} e^{-rac{1}{2}\mathbf{x}^T\mathbf{x}}$$

► note that P_X(x) can also be seen as a sum of pdfs centered on the X_i when φ(x) is symmetric in X and X_i

$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$

Arshia Cont: Survey of Machine Learning

Windows

- what sort of functions are valid windows?
- note that $P_X(x)$ is a pdf if and only if

$$P_{\mathbf{X}}(\mathbf{x}) \ge 0, \forall \mathbf{x} \text{ and } \int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = 1$$

$$\blacktriangleright \text{ since } \int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = \frac{1}{nh^d} \sum_{i=1}^n \int \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) d\mathbf{x}$$

$$= \frac{1}{nh^d} \sum_{i=1}^n \int \phi(\mathbf{y}) h^d d\mathbf{y}$$

$$= \frac{1}{n} \sum_{i=1}^n \int \phi(\mathbf{y}) d\mathbf{y}$$

• these conditions hold if $\phi(x)$ is itself a pdf

 $\phi(\mathbf{x}) \geq 0, orall \mathbf{x} ext{ and } \int \phi(\mathbf{x}) d\mathbf{x} = \mathbf{1}$

master.

Arshia Cont: Survey of Machine Learning

Gaussian kernel

- ► Gaussian case can be interpreted as
 - sum of *n* Gaussians centered at the X_i with covariance *h*I
 - more generally, we can have a full covariance

 $P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^{d} |\mathbf{\Sigma}|}} e^{-\frac{1}{2} (\mathbf{x} - \mathbf{x}_{i})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{x}_{i})}$

h = 0.5

- **•** sum of *n* Gaussians centered at the X_i with covariance Σ
- Gaussian kernel density estimate: "approximate the pdf of X with a sum of Gaussian bumps"

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Leave-one-out cross-validation

- many variations
- ► leave-one-out CV:
 - compute n estimators of $P_x(x)$ by leaving one X_i out at a time

18

- for each $P_X(x)$ evaluate $P_X(X_i)$ on the point that was left out
- pick $P_{x}(x)$ that maximizes this likelihood

- it looks like we could do better by just picking the right # of Gaussians
- this is indeed a good model:

master.₁₃

- density is multimodal because there
 is a hidden variable Z
- Z can determine the type of intermediate musical instruments (for example)

 Note that this is different from Y which is the instrument type (brass, string, percussion)

Arshia Cont: Survey of Machine Learning

- O For a given instrument type, the density is approximate Gaussian here.
- O The density is a mixture of Gaussians

Kernel-based estimate

- simple learning procedure
 - measure audio feature X
 - place a Gaussian on top of each measurement
- can be overkill
 - spending all degrees of freedom (# of training points) just to get the Gaussian means
 - cannot use the data to determine variances
- handpicking of bandwidth can lead to too much bias or variance

bandwidth too large: bias

bandwidth too small: variance

master.

Arshia Cont: Survey of Machine Learning

27

mixture disadvantages

- main disadvantage is learning complexity
- non-parametric estimates
 - simple: store the samples (NN); place a kernel on top of each point (kernel-based)
- parametric estimates
 - · small amount of work: if ML equations have closed-form
 - · substantial amount of work: otherwise (numerical solution)
- mixtures:
 - · there is usually no closed-form solution
 - · always need to resort to numerical procedures
- standard tool is the expectation-maximization (EM) algorithm

Clustering and EM algorithm

K-Means clustering: EM

O Find values for $\{r_{nk}\}$ and $\{\mu_k\}$ to minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

O Iterative procedure:

O Expectation: Minimize J with regards to $\{r_{nk}\}$, keep $\{\mu_k\}$ fixed

$$r_{nk} = \left\{ \begin{array}{ll} 1, & \text{if } k = \arg\min_j ||x_n - \mu_k||^2 \\ 0, & \text{otherwise} \end{array} \right.$$

O Maximization: Minimize J with regards to $\{\mu_k\}$, keep $\{r_{nk}\}$ fixed

$$2\sum_{n=1}^{N} r_{nk}(x_n - \mu_k) = 0$$
$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

Arshia Cont: Survey of Machine Learning

35

<section-header><section-header><section-header><section-header><figure><list-item><list-item><list-item><image>

Learning with incomplete data (EM)

- the basic idea is quite simple
 - 1. start with an initial parameter estimate $\Psi^{(0)}$
 - **2. E-step:** given current parameters $\Psi^{(i)}$ and observations in *D*, "guess" what the values of the z_i are
 - **3. M-step:** with the new z_{i} , we have a complete data problem, solve this problem for the parameters, i.e. compute $\Psi^{(i+1)}$
 - 4. go to 2.

master.₁₃

this can be summarized as

Classification-maximization

- C-step:
 - given estimates $\Psi^{(i)} = \{\Psi^{(i)}, \dots, \Psi^{(i)}_{C}\}$
 - determine z_i by the BDR

$$z_l = rg\max_c P_{\mathbf{X}|Z}\left(\mathbf{x}_l|c; \mathbf{\Psi}_c^{(i)}
ight) \pi_c^{(i)}, l \in \{1, \dots, n\}$$

- split the training set according to the labels z_i $D^1 = \{x_i | z_i=1\}, \quad D^2 = \{x_i | z_i=2\}, \quad \dots, \quad D^C = \{x_i | z_i=C\}$
- M-step:
 - as before, determine the parameters of each class independently

$$\Psi_c^{(i+1)} = \arg \max_{\Psi,\pi} P_{\mathbf{X}|Z}(\mathcal{D}^c|c,\Psi)\pi$$

39

For Gaussian mixtures

Expectation-Maximization

O What about problems that are not about classification?

O EM suggests:

master, 3

- O Do the most intuitive operation that is ALWAYS possible
- O Don't worry about Z_i directly
- O E-Step: "estimate the likelihood of the complete data by its expected value given the observed data"

Arshia Cont: Survey of Machine Learning

- O M-step:"Maximize this expected value"
- O This leads to the so called <u>Q-function</u>

K-means

- when covariances are identity and priors uniform
- C-step:
 - $z_l = \arg\min_c ||\mathbf{x}_l \mu_c^{(i)}||^2, \quad l \in \{1, ..., n\}$
 - split the training set according to the labels z_i $D^1 = \{x_i | z_i=1\}, \quad D^2 = \{x_i | z_i=2\}, \quad \dots, \quad D^C = \{x_i | z_i=C\}$
- M-step: • $\mu_c^{(i+1)} = \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i|\mathbf{x}_i \in \mathcal{D}^c} \mathbf{x}_i$
- this is the K-means algorithm, aka generalized Loyd algorithm, aka LBG algorithm in the vector quantization literature:
 - "assign points to the closest mean; recompute the means"

master.

Arshia Cont: Survey of Machine Learning

The Q function

▶ is defined as

l

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

- ▶ and is a bit tricky:
 - it is the expected value of likelihood with respect to complete data (joint X and Z)
 - given that we observed incomplete data (X=D)
 - note that the likelihood is a function of Ψ (the parameters that we want to determine)
 - but to compute the expected value we need to use the parameter values from the previous iteration (because we need a distribution for Z|X)
- the EM algorithm is, therefore, as follows

Expectation-maximization

► E-step:

- given estimates $\Psi^{(n)} = \{\Psi^{(n)}_{1}, ..., \Psi^{(n)}_{C}\}$
- · compute expected log-likelihood of complete data

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

- M-step:
 - · find parameter set that maximizes this expected log-likelihood

$$\Psi^{(n+1)} = \arg \max_{\Psi} Q(\Psi; \Psi^{(n)})$$

 let's make this more concrete by looking at the mixture case

master, ATiAM

master.

Arshia Cont: Survey of Machine Learning

EM for mixtures (step 1)

- ▶ the first thing we always do in a EM problem is
 - · compute the likelihood of the COMPLETE data
- very neat trick to use when z is discrete (classes)
 - instead of using z in {1, 2, ..., C}
 - use a binary vector of size equal to the # of classes

• where *z* = *j* in the *z* in {1, 2, ..., *C*} notation, now becomes

Arshia Cont: Survey of Machine Learning

 $\mathbf{z} = \mathbf{e}_j = \begin{bmatrix} 0 \\ \vdots \\ 1 & (j^{th} position) \\ \vdots \\ 0 \end{bmatrix}$

EM for mixtures (step 1)

 $P_{\mathbf{X},\mathbf{Z}}$

we can now write the complete data likelihood as

$$\begin{aligned} \mathbf{(x, z; \Psi)} &= P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{z}; \Psi) P_{\mathbf{Z}}(\mathbf{z}; \Psi) \\ &= \prod_{j=1}^{C} \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_{j}, \Psi) \pi_{j} \right]^{z_{j}} \end{aligned}$$

• for example, if z = k in the z in $\{1, 2, ..., C\}$ notation,

$$P_{\mathbf{X},Z}(\mathbf{x},k;\Psi) = P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},\mathbf{e}_k;\Psi)$$

= $\left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_k,\Psi)\pi_k\right]^1 \prod_{i\neq k} \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_j,\Psi)\pi_j\right]^0$

- ► the advantage is that $\log P_{\mathbf{X},\mathbf{Z}}(\mathbf{x},\mathbf{z};\Psi) = \sum_{j=1}^{C} z_j \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|\mathbf{e}_j,\Psi)\pi_j \right]$
- ▶ becomes LINEAR in the components *z_j*!!!

45

47

EM for mixtures (step 1)

• for the complete iid dataset $D_c = \{(x_1, z_1), \dots, (x_N, z_N)\}$

$$P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \Psi) = \prod_{i=1}^N P_{\mathbf{X},Z}(\mathbf{x}_i, \mathbf{z}_i; \Psi)$$
$$= \prod_{i=1}^N \prod_{j=1}^C \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]^{z_{ij}}$$

• and the complete data log-likelihood is $\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \Psi) = \sum z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i | \mathbf{e}_j, \Psi) \pi_j \right])$

constant for the expectation that we have to compute in the E-step

master, ATiAM

Arshia Cont: Survey of Machine Learning

EM for mixtures (step 2)

• once we have the complete data likelihood

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$
$$= \sum_{i,j} E_{Z|\mathbf{X}; \Psi^{(n)}} [z_{ij} | \mathcal{D}] \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i | \mathbf{e}_j, \Psi) \pi_j \right]$$

▶ i.e. to compute the Q function we only need to compute

$$E_{Z|\mathbf{X};\boldsymbol{\Psi}^{(n)}}[z_{ij}|\mathcal{D}], \ \forall i,j$$

- note that this expectation can only be computed because we use \u03c8⁽ⁿ⁾
- note that the Q function will be a function of both Ψ and $\Psi^{(n)}$

Expectation-maximization

- to derive an EM algorithm you need to do the following
 - 1. write down the likelihood of the COMPLETE data
- E-step: write down the Q function, i.e. its expectation given the observed data
 - 3. M-step: solve the maximization, deriving a closed-form solution if there is one
- ▶ important E-step advice:
 - do not compute terms that you do not need
 - at the end of the day we only care about the parameters
 - terms of Q that do not depend on the parameters are useless, e.g. in

 $Q = f(z, \Psi) + log(sin z)$

the expected value of log(sin z) appears to be difficult and is completely unnecessary, since it is dropped in the M-step

```
master.
```

Master.

Arshia Cont: Survey of Machine Learning

50

EM for mixtures (step 2)

• since z_{ij} is binary and only depends on x_i

 $E_{\mathbf{Z}|\mathbf{X};\boldsymbol{\Psi}^{(n)}}[z_{ij}|\mathcal{D}] = P_{\mathbf{Z}|\mathbf{X}}(z_{ij} = 1|\mathbf{x}_i;\boldsymbol{\Psi}^{(n)}) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i;\boldsymbol{\Psi}^{(n)})$

- the E-step reduces to computing the posterior probability of each point under each class!
- defining

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \mathbf{\Psi}^{(n)})$$

▶ the Q function is

$$Q(\Psi; \Psi^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

Expectation-maximization

- to derive an EM algorithm you need to do the following
 - 1. write down the likelihood of the COMPLETE data

$$\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \Psi) = \sum_{i,j} z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

2. E-step: write down the Q function, i.e. its expectation given the observed data

$$\begin{split} h_{ij} &= P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \mathbf{\Psi}^{(n)}) \\ Q(\mathbf{\Psi}; \mathbf{\Psi}^{(n)}) &= \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \mathbf{\Psi}) \pi_j \right] \end{split}$$

 M-step: solve the maximization, deriving a closed-form solution if there is one

$$\Psi^{(n+1)} = \arg \max_{\Psi} \sum_{ij} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

master, ATiAM

Master, 3

Arshia Cont: Survey of Machine Learning

M-step for Gaussian mixtures

M-step:

$$\Psi^{(n+1)} = \arg \max_{\Psi} \sum_{ij} h_{ij} \log \left[\mathcal{G} \left(\mathbf{x}_i, \mu_j, \sigma_j \right) \pi_j \right]$$

$$= \arg \min_{\Psi} \sum_{ij} \frac{h_{ij} (\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi$$
important note:
• in the M-step, the optimization must be subject to whatever constraint may hold

- in particular, we always have the constraint $\sum \pi_j = 1$
- as usual we introduce a Lagrangian

$$L = \sum_{ij} \left[\frac{h_{ij} (\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi_j \right] + \lambda \left(\sum_j \pi_j - 1 \right)$$

Not familiar with Lagrange multipliers? See http://en.wikipedia.org/wiki/Lagrange_multipliers

53

EM for Gaussian mixtures

- ▶ in summary:
 - CM = EM + hard assignments
 - CM special case, cannot be better
- let's look at the special case of Gaussian mixtures
- E-step:

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \mathbf{\Psi}^{(n)})$$

=
$$\frac{\mathcal{G}\left(\mathbf{x}_i, \mu_j^{(n)}, \sigma_j^{(n)}\right) \pi_j^{(n)}}{\sum_{k=1}^C \mathcal{G}\left(\mathbf{x}_i, \mu_k^{(n)}, \sigma_k^{(n)}\right) \pi_k^{(n)}}$$

master.₁₃

Arshia Cont: Survey of Machine Learning

M-step for Gaussian mixtures

- Lagrangian $L = \sum_{ij} \left[\frac{h_{ij} (\mathbf{x}_i - \mu_j)^2}{2\sigma_j^2} + \frac{h_{ij}}{2} \log \sigma_j^2 - h_{ij} \log \pi_j \right] + \lambda \left(\sum_j \pi_j - 1 \right)$
- setting derivatives to zero

$$\frac{\partial L}{\partial \mu_j} = -\sum_i \frac{h_{ij}(\mathbf{x}_i - \mu_j)}{\sigma_j^2} = 0$$
$$\frac{\partial L}{\partial \sigma_j^2} = -\sum_i \left[\frac{h_{ij}(\mathbf{x}_i - \mu_j)^2}{\sigma_j^4} - \frac{h_{ij}}{\sigma_j^2} \right] = 0$$
$$\frac{\partial L}{\partial \pi_j} = -\sum_i \frac{h_i}{\pi_j} + \lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = \sum_j \pi_j - 1 = 0$$

master.

Arshia Cont: Survey of Machine Learning

M-step for Gaussian mixtures

leads to the update equations

$$\mu_j^{(n+1)} = \frac{\sum_i h_{ij} \mathbf{x}_i}{\sum_i h_{ij}} \qquad \pi_j^{(n+1)} = \frac{1}{n} \sum_i h_{ij}$$
$$\sigma_j^{2(n+1)} = \frac{\sum_i h_{ij} (\mathbf{x}_i - \mu_j)^2}{\sum_i h_{ij}}$$

comparing to those of CM

$$\begin{aligned} \pi_c^{(n+1)} &= \frac{|\{\mathbf{x}_i \in \mathcal{D}^c\}|}{N} \qquad \mu_c^{(n+1)} = \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i \mid \mathbf{x}_i \in \mathcal{D}^c} \mathbf{x}_i \\ \mathbf{\Sigma}_c^{(n+1)} &= \frac{1}{|\{\mathbf{x}_i \in \mathcal{D}^c\}|} \sum_{i \mid \mathbf{x}_i \in \mathcal{D}^c} \left(\mathbf{x}_i - \mu_c^{(n+1)}\right) \left(\mathbf{x}_i - \mu_c^{(n+1)}\right)^T \end{aligned}$$

• they are the same up to hard vs soft assignments.

master, ATiAM

Master.

Arshia Cont: Survey of Machine Learning

EM on Gaussian Mixtures

O Example:

Arshia Cont: Survey of Machine Learning

Expectation-maximization

 $h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \Psi^{(n)})$

- note that the procedure is the same for all mixtures
 - 1. write down the likelihood of the COMPLETE data

$$\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_N\}; \Psi) = \sum_{i,j} z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

2. E-step: write down the Q function, i.e. its expectation given the observed data

$$Q(\Psi; \Psi^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

3. M-step: solve the maximization, deriving a closed-form solution if there is one

$$\Psi^{(n+1)} = \arg \max_{\Psi} \sum_{ij} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

master, ATIAM

57

59

Arshia Cont: Survey of Machine Learning

58

Group Homework 3

O Derive the EM algorithm for a mixture of exponential distributions:

$$P_X(x) = \sum_{i=1}^C \pi_i \lambda_i e^{-\lambda_i x}$$

O Write down the E-step

- O Write down the M-step, solve the maximization and derive iterative solutions for $\lambda_k ~~{\rm and}~~\pi_k$
 - O hint: Use the Lagrangian.....

Sequential Learning

master.

Markov Models

First-order Markov model:

$$P(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_t) = P(\mathbf{y}_1) P(\mathbf{y}_2 | \mathbf{y}_1) \cdots P(\mathbf{y}_t | \mathbf{y}_{t-1})$$

$$(Y_1) \longrightarrow (Y_2) \longrightarrow (Y_3) \longrightarrow \cdots \longrightarrow (Y_T)$$

The term *Markov* refers to a conditional independence relationship. In this case, the Markov property is that, given the present observation (\mathbf{y}_t) , the future $(\mathbf{y}_{t+1},...)$ is independent of the past $(\mathbf{y}_1,...,\mathbf{y}_{t-1})$.

Second-order Markov model:

$$P(\mathbf{y}_1,\ldots,\mathbf{y}_t) = P(\mathbf{y}_1)P(\mathbf{y}_2|\mathbf{y}_1)\cdots P(\mathbf{y}_t|\mathbf{y}_{t-2},\mathbf{y}_{t-1})$$

Sequential Learning

O Up to now, our approach was rather *static*. Now imagine that you have a problem set where data arrives *sequentially*. (e.g. Time Series)

- **O** A sequence of observations: $y_1, y_2, y_3, \dots, y_t$
- O Considered as independent...:

$$P(y_1, y_2, \dots, y_t) = \prod_{n=1}^t p(y_n | y_1, \dots, y_{n-1})$$

O Many many ways to model sequential data! We will look at some....

master. ATIAM

Arshia Cont: Survey of Machine Learning

Hidden Variables

Speech recognition:

- $\bullet~{\bf x}$ underlying phonemes or words
- y acoustic waveform

Vision:

- x object identities, poses, illumination
- $\bullet~\mathbf{y}$ image pixel values

Industrial Monitoring:

- $\bullet~{\bf x}$ current state of molten steel in caster
- $\bullet~{\bf y}$ temperature and pressure sensor readings

Two frequently-used tractable models:

- Linear-Gaussian state-space models
- Hidden Markov models

64

HMMs

Three basic HMM problems:

- 1. Evaluation: Given λ , and *O*, calculate $P(O \mid \lambda)$
- 2. State sequence: Given λ , and *O*, find Q^* such that

 $P(Q^* \mid O, \lambda) = \max_Q P(Q \mid O, \lambda)$

3. Learning: Given $\mathcal{X}=\{O^k\}_k$, find λ^* such that

$P(X \mid \lambda^*) = \max_{\lambda} P(X \mid \lambda)$

Hidden Markov Models (HMM)

O Notes:

- O Hidden states (S_i) are markov... but not necessarily the output process (Y_i). In reality, they are NOT markov... .
- For each observation sequence, there are multiple state sequences

Likelihood in HMM

O The likelihood $P(O_1, \ldots, O_\tau | \lambda)$ is an extremely hard computation

O Number of possible paths grow exponentially with time (# of paths= K^{τ})

• To compute this likelihood, there exist an efficient *forward* recursion algorithm using dynamic programming:

Master, 3

Likelihood in HMM O Note: $p(y_1|x_1)$ $p(y_2|x_2)$ $p(y_3|x_3)$ $p(y_1|x_2)$ Predict $lpha_{k|k-1}(x_k) = p(y_{1:k-1}, x_k) = \sum_{x_{k-1}} p(x_k|x_{k-1}) p(y_{1:k-1}, x_{k-1})$ $= \sum_{x_{k-1}} p(x_k | x_{k-1}) \alpha_{k-1|k-1}(x_{k-1})$ Update $\alpha_{k|k}(x_k) = p(y_{1:k}, x_k) = p(y_k|x_k)p(y_{1:k-1}, x_k)$ $= p(y_k|x_k)\alpha_{k|k-1}(x_k)$ Master. 13

Arshia Cont: Survey of Machine Learning

HMM State Duration

O The time an observation would spend in a state is implicit:

$$p_i(d) = a_{ii}^{(d-1)}(1 - a_{ii})$$

O where $p_i(d)$ is the probability of staying 'd' discrete times in state *i*

- O This is an exponential model of time
- O Not very desirable for all temporal sequences... such as music!

Kalman Filter Models

O Also known as Linear Dynamical Systems

- O Imagine a sequential framework where latent variable S and observations Y are continuous
- O and underlying dynamics is linear.... (or can be approximated so)

O Example:

O A one dimensional tracking system:

$$\mathbf{s}_k = \begin{pmatrix} \mathsf{position} \\ \mathsf{velocity} \end{pmatrix}_k = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} = \mathbf{A}\mathbf{s}_{k-1}$$

$$y_k \;\;=\;\; \mathsf{position}_k = ig(egin{array}{cc} 1 & 0 \end {array} ig) \, \mathbf{s}_k = \mathbf{C} \mathbf{s}_k$$

Arshia Cont: Survey of Machine Learning

79

HMMs

- O So far, we have assumed that our underlying models are static!
- O In some cases this works out well as an approximation
- O In many cases it won't!
- O Real-life systems are dynamic systems

O Dynamics systems

- O Are generally hard to model....
- O Much easier if they are linear....
- O Much harder if they are non-linear....

master. ATIAM

Arshia Cont: Survey of Machine Learning

Kalman Filter Models

O Tracking example:

O Imagine that we have unknown accelerations (dynamics!)

$$\mathbf{s}_{k} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_{k}$$
$$= \mathbf{A}\mathbf{s}_{k-1} + \epsilon_{k}$$
$$u_{k} = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_{k} + \nu_{k}$$

$$egin{array}{rcl} y_k &=& egin{array}{cccc} 1 & 0 \ egin{array}{ccccc} \mathbf{s}_k +
u_k \end{array} \ &=& \mathbf{C}\mathbf{s}_k +
u_k \end{array}$$

O Generatively speaking,

Kalman Filter Models

- Find an a posteriori belief based on prior estimate and a weighted difference between the actual measurement y_t and a measurement prediction \hat{s}_t
- A series of predictions <> corrections
- Results into closed form solutions in the Gaussian case...

Arshia Cont: Survey of Machine Learning

Sequential learning applications in audio

- O Score Following (AKA real-time alignment of audio to symbolic scores)
- O Gesture Following
- O Speech Recognition
- O Automatic Transcription
- O and many many more

Discriminant Learning

Likelihood vs. Discriminant

O Likelihood based classification

O Assume a model for $p(x|C_i)$ and use Bayes' rule to calculate $p(C_i|x)$

 $g_i(x) \sim \log P(C_i|x)$

O Discriminant based

- O Assume a model for $g_i(x|\Psi_i)$; no density estimation
- O Estimating the boundaries is enough
- O No need to accurately estimate the densities inside the boundaries

Example O Two classes: $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$ $= (\mathbf{w}_1^T \mathbf{x} + \mathbf{w}_{10}) - (\mathbf{w}_2^T \mathbf{x} + \mathbf{w}_{20})$ $= (\mathbf{w}_1 - \mathbf{w}_2)^T \mathbf{x} + (\mathbf{w}_{10} - \mathbf{w}_{20})$ $g(x) = w_{1}x_{1} + w_{2}x_{2} + w_{0} = 0$ g(x) > 0 $\circ \circ c_i$ $g(x) \leq 0$ С, $= \boldsymbol{W}^T \boldsymbol{X} + \boldsymbol{W}_0$ 0 0 0 0 choose $\begin{cases} C_1 & \text{if } g(\mathbf{x}) > 0 \\ C_2 & \text{otherwise} \end{cases}$ \times X x_1 Master, 3 Arshia Cont: Survey of Machine Learning 92

master. ATIAM

Discriminants to Posteriors

O When $p(x|C_i) \sim N(\mu_i, \Sigma)$ $g_i(x|w_i, b_i) = w_i^T x + b_i$ $w_i = \Sigma^{-1}\mu_i$, $b_i = \frac{-1}{2}\mu_i^T \Sigma^{-1}\mu_i + \log P(C_i)$ where $y = P(C_1 | \mathbf{x})$ and $P(C_2 | \mathbf{x}) = 1 - y$ choose C_1 if $\begin{cases} y > 0.5 \\ y/(1-y) > 1 \\ \log [y/(1-y)] > 0 \end{cases}$ and C_2 otherwise

Arshia Cont: Survey of Machine Learning

Master.

O Pairwise Separation

Discriminants to Posteriors

master, ATiAM

95

Arshia Cont: Survey of Machine Learning

Gradient-Descent #*=arg min_w E(w | X) Gradient ∇_wE = [∂E/∂w₁, ∂E/∂w₂,..., ∂E/∂w_d]^T Gradient-descent: Starts from random w and updates w iteratively in the negative direction of gradient

Example

O Two classes:

$$\mathcal{X} = \left\{ \mathbf{x}^{t}, r^{t} \right\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$
$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp\left[-\left(\mathbf{w}^{T}\mathbf{x} + w_{0}\right)\right]}$$
$$l(\mathbf{w}, w_{0} \mid \mathcal{X}) = \prod_{t} \left(y^{t}\right)^{\left(t^{t}\right)} \left(1 - y^{t}\right)^{\left(1 - r^{t}\right)}$$
$$E = -\log l$$
$$E(\mathbf{w}, w_{0} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + \left(1 - r^{t}\right) \log \left(1 - y^{t}\right)$$

Example

O Gradient-Descent

$$E(\mathbf{w}, w_0 \mid \mathcal{X}) = -\sum_{i} r^{i} \log y^{i} + (1 - r^{i}) \log (1 - y^{i})$$

If $y = \text{sigmoid}(a)$ $\frac{dy}{da} = y(1 - y)$
 $\Delta w_j = -\eta \frac{\partial E}{\partial w_j} = \eta \sum_{i} \left(\frac{r^{i}}{y^{i}} - \frac{1 - r^{i}}{1 - y^{i}}\right) y^{i} (1 - y^{i}) x_j^{i}$
 $= \eta \sum_{i} \left(r^{i} - y^{i}\right) x_j^{i}, j = 1, ..., d$
 $\Delta w_0 = -\eta \frac{\partial E}{\partial w_0} = \eta \sum_{i} \left(r^{i} - y^{i}\right)$

master, ATIAM

Arshia Cont: Survey of Machine Learning

Generalized Linear Models

O Quadratic:

$$\log \frac{P(x|C_i)}{p(x|C_k)} = x^T W_i x + W_i^T x + w_{i0}$$

O Sum of basis functions Φ

$$\log \frac{P(x|C_i)}{p(x|C_k)} = w_i^T \Phi(x) + w_{i0}$$

O Kernels in Support Vector Machines (SVM)

O Hidden units in Neural Networks

Example

O Gradient-Descent Training

Generalized Linear Models 1) use a higher-order decision function • e.g. a quadratic boundary $\mathbf{X}^{T}\mathbf{W}\mathbf{X} + \mathbf{W}^{T}\mathbf{X} + \mathbf{W}_{0} = 0$ · is the optimal solution for any Gaussian problem (2 Gaussian classes no constraints) ► looks like we are going to need a very high-order polynomial in general! lots of parameters · too much complexity · where to stop? can we do something else to keep the simplicity of the linear boundary? master, ATIAM Arshia Cont: Survey of Machine Learning 104

O Using KERNELS

- O Kernel functions transform the feature space to a higher-dimensional space!
- O The VERY basic idea is this:
- O Using BDR we know how to solve for an optimal discriminant case ONLY if our two classes are *linearly discriminant*!
- O The Kernel transformations, move the world to a higher-dimensional space, and with mathematical care and hope, it that higher-dimensional space, things are linearly discriminant!
- Once the BDR determines the discriminant factor then we come back to the real-world.

Linear Discriminants

O But how can Discriminant learning assure generalization if we do not have any models??

O Optimal Separating Hyperplanes

Intuition

this is penalizing complexity

- e.g. the smaller the ||w|| the larger the number of components set to zero
- this is searching for the more stable hyperplane

g(x) = +1

1/||w|| 2/11w

0

 x_1

110

g(x) = -1

С,

- among the ones that have zero training error
- is the one that has most room for discrepancies between training and testing
- the margin as a "security gap"
- there are many details which we have not filled

master.₁₃

Support Vector Machines

 $L_{p} = \frac{1}{2} \left(\mathbf{w}^{T} \mathbf{w} \right) - \mathbf{w}^{T} \sum_{i} \alpha^{i} r^{i} \mathbf{x}^{i} - w_{0} \sum_{i} \alpha^{i} r^{i} + \sum_{i} \alpha^{i}$

 $= -\frac{1}{2} \sum \sum \alpha^{t} \alpha^{s} r^{t} r^{s} (\mathbf{x}^{t})^{T} \mathbf{x}^{s} + \sum \alpha^{t}$

subject to $\sum \alpha^{t} r^{t} = 0$ and $\alpha^{t} \ge 0, \forall t$

• These are support vectors

 $=-\frac{1}{2}(\mathbf{w}^T\mathbf{w})+\sum \alpha^t$

O Most α^t are zero and only a small number are useful....

master, ATIAM

Do not forget...

- O Our goal today is to *introduce* some well-known and wellestablished approaches in AI and Machine Learning
 - O The methods presented today are not *domain-specific* but for every problem, you start with a design, collect *related data* and then define the learning problem. We will not get into *design* today....
- O Keep in mind that,
- O Al is an empirical science! (See "Science of the Artificial" by H.A. Simons, MIT Press, 1969)
- O DO NOT apply algorithms blindly to your data/problem set!
- O The MATLAB Toolbox syndrome: Examine the hypothesis and limitation of each approach before hitting enter!
- O Do not forget your own intelligence!

Contact: <u>cont@ircam.fr</u>

In this course...

- O We looked at some basic problem solving approaches in machine learning literature...
 - O Introduction to Bayesian Decision Theory and Learning
 - O Gaussian Classifiers, EM Algorithm,
 - O Basics of Sequential Learning and Decision theory
 - O Introduction to Discriminant Learning Theory
- O What we did not see ... :
 - Dimensionality Reduction Algorithms: Principle Component Analysis (PCA), Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF) etc.
- Fuzzy logic based algorithms
- Some important unsupervised learning approaches: Spectral Clustering etc.
- Important sequential learning algorithms: Reinforcement Learning (RL), Active Learning etc.
- ... and much more ...

Arshia Cont: Survey of Machine Learning

114

master. ATIAM