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Some musical examples

O The score following problem:
O Need observation models at the front-end.

O From audio frames to low-level state probs:

1 R S T
[Rest state prodabilty Attack State Probabilty] [Sustain State Provaoity

time (s)

O This was the model for suivi object (now defunct!)

O Problem I:is how to train the generative probability models
which give informative probabilities on Rest/Attack/Sustain
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Plan

O Last time we saw:
O Bayesian Decision Theory
O Maximum Likelihood Parameter Estimations
O Bayesian Parameter Estimation
O Today, we will look at:
O Kernel Based Parameter Estimation
O Mixture Models and EM Algorithm
O Some Non-parametric methods
O Sequential Learning
o HMMs

O Kalman Filters
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Example

O Problem 2: These models will be probably different from
performance to performance / musician to musician!
O Design cycle: Learning from rehearsal recordings
O Gather segmented data
O Design the generative models for each attribute
O Train models from labeled database
O Test!

O Incorporate them in the realtime system for the performance.
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Learned Gaussians for
Ll | different performers>>>-

(Famomm oy

Attack State Probabilty [Susta

<<<Observation Histograms
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Arshia Cont: Survey of Machine Learning

Plan

O We have already looked at Bayesian Decision Rules, and how to
optimize them through Maximum-Likelihood (ML) or Bayesian
Parameter Estimation....

O In all these formulations, we assume that X is generated by a probability
density P(X)

O Practical densities do not approximate well using simple
probability density families!

O We now look at ways to approach P(X) when the data is non-
trivial or more complicated than a known and simple
probability family....

O So far, we have considered parametric density estimations...

O Today, we consider non-parametric density estimates...
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Kernel-based and
non-parametric methods
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Non-parametric density estimates

» Given iid training set D = {x1,...xXn}, the goal is to estimate

Px(x)
p Consider a region R, and define
P=PxlxeR] = /R Py (x)dx.
and define
K = t{x; € D|x; € R}.
P This is a binomial distribution of paramter P
Pg(k) = B(n,P)
= < Y ) Pk(1 - p)nk

master,
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Binomial random variable

* ML estimate of P

p="
n
and statistiscs
~ 1 1
E[P] = -E[kl=-nP=P
n n
~ 1 P(1-P
var[P] = —Qz;ar[k] = g
n

* Note that var[P] < 1/4n goes to zero very quickly, i.e.

PP

N 10 100 1,000
Var[P] < 0.025 0.0025 0.00025
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Histogram
» hence
P P k

XO =R v T v

» using continuity of P,(x) again and assuming R is small

Px(x) ~ vx € V(R)

k
nV(R)’
» this is the histogram
» it is the simplest possible non-parametric estimator

» can be generalized into kernel-based density estimator

master, ,
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Histogram
» this means that k/n is a very good estimate of P

» on the other hand, from the mean value theorem, if Py(x) is
continuous Je € R such that

P= /R Px(x)dx = Px(e) /R dx = Px(e)V(R).

Px(X)
» this is easiest to see in 1D 7 P2

» can always find a box such that
the integral of the function is equal
to that of the box

* since Py(x) is continuous there
must be a ¢ such that Py(e)
is the box height

master, ,
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Kernel density estimates

» assume R is the d-dimensional cube of side h
Vv = n?
and define indicator function of the unit hypercube

1, if Ju;| < 1/2
0, otherwise.

(52

iif x; € hypercube of volume V centered at x.
» the number of sample points in the hypercube is

= (55

¢(u) = {

hence

master, ,
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Kernel density estimates

» this means that the histogram can be written as

Px(x) = dzas(x )

» which is equivalent to:

« “put a box around X for each X; that lands
on the hypercube”

* can be seen as a very crude form of
interpolation

* better interpolation if contribution of X;
decreases with distance to X

» consider other windows ¢(x) —

X3 X XiXp

Aq-iaitAe/\r 13 Arshia Cont: Survey of Machine Learning 13

Gaussian kernel

» probably the most popular in practice

_1,.T
2XX

$(x) = Fd
» note that P,(x) can also be seen as a
sum of pdfs centered on the X; when

#(x) is symmetric in X and X;

PxG0 =5 Y o (*5)
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Windows

» what sort of functions are valid windows?
» note that P,(x) is a pdf if and only if

Px(x) > 0,vx and /Px(x)dx =1

» since /PX(x)dx = ij/ (x X’) dx
= = Zn: /¢(y)hddy
= %éﬁ/dﬂy)dy

» these conditions hold if ¢(x) is itself a pdf
#(x) > 0,Vx and /¢(x)dx =1
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Gaussian kernel

» Gaussian case can be interpreted as

» sum of n Gaussians centered at the X; with
covariance hl

* more generally, we can have a full
covariance

Px(x) = o3 x—x)TE 7L (x—x;)

\/Wm

» sum of n Gaussians centered at the X; with covariance %

» Gaussian kernel density estimate: “approximate the pdf of
X with a sum of Gaussian bumps”
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Example

» example: fit to
N(O,l) using h =
h,/n'?2

» small h: spiky
» need a lot of

points to converge
(variance)

» large h:
approximate
N(0,I) with a sum
of Gaussians of
larger covariance

» will never have
zero error (bias)
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Cross-validation

» basic idea:

» leave some data out of your training set (cross validation set)

« train with different parameters

« evaluate performance on cross validation set

 pick best parameter configuration

training set xval set training

testing

test set

training set
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Optimal bandwidth

» in practice this has limitations

+ does not say anything about the finite data case (the one we
care about)

« still have to find the best k

» usually we end up using trial and error or techniques
like cross-validation

A‘Ur?itl\eAr‘B Arshia Cont: Survey of Machine Learning

Leave-one-out cross-validation

» many variations

» leave-one-out CV:
+ compute n estimators of Py(x) by leaving one X; out at a time
« for each Py(x) evaluate Py (X)) on the point that was left out
+ pick Py(x) that maximizes this likelihood

testing

test set

Ar-}-?itl\e/{'w Arshia Cont: Survey of Machine Learning
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Non-parametric classifiers

» given kernel density estimates for all classes we can
compute the BDR

» since the estimators are non-parametric the resulting
classifier will also be non-parametric

» this term is general and applies to any learning algorithm
» a very simple example is the nearest neighbor classifier

maSter Arshia Cont: Survey of Machine Learning
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Nearest neighbor classifier

» to define it mathematically we need to define

+ atraining set ® = {(x,,¥4), .-, (XY )}
* X;is a vector of observations, y;is the label

* a vector x to classify
» the “decision rule” is DA B
. 5 ®
st y= s af
where LI .A PR
i*=argmind(x,x,) o N 3
ie{l,...n} ®
master.
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Nearest neighbor classifier
» is the simplest possible classifier that one could think of:

« it literally consists of assigning to the vector to classify the label of
the closest vector in the training set

* to classify the red point: A

* measure the distance B
to all other points T e

« if the closest point A; B
is a square, assign L_J—‘. , @
to “square” class e i

» otherwise assign O B
to “circle” class @

» it works a lot better
than what one might predict
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k-nearest neighbors

» instead of the NN, assigns to the majority vote of the k
nearest neighbors

» in this example A
* NN rule says “A”
* but 3-NN rule
says “B”

» for x away from the A
border does not make O
much difference

» usually best performance
for k > 1, but there is no universal number

» k large: performance degrades (no longer neighbors)
» k should be odd, to prevent ties

master, ,
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Mixture density estimates

» back to BDR-based classifiers
Consider the problem of .
instrument classification  *

B summary: T

* Estimate instrument type (brass,
string, percu) from audio
+ Measure some audio feature

25
2

« estimate pdf
« use BDR

» clearly this is not Gaussian

» possible solution: use a kernel-based model

master . ! )
= 13 Arshia Cont: Survey of Machine Learnin; 25
ATIAM ’ ®

mixture density estimate

» it looks like we could do better by
just picking the right # of
Gaussians

» this is indeed a good model:

» density is multimodal because there
is a hidden variable Z

O Z can determine the type of
intermediate musical instruments (for example)

Z € {Violin, Piano, Saxophone, Flute, Drum}

O Note that this is different from Y which is the instrument type (brass,
string, percussion)

O For a given instrument type, the density is approximate Gaussian here.

O The density is a mixture of Gaussians
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Kernel-based estimate

» simple learning procedure bandwidth too large: bias

* measure audio feature X

+ place a Gaussian on top of each
measurement

» can be overkill

+ spending all degrees of freedom (#
of training points) just to get the

Gaussian means bandwidth too small: variance

» cannot use the data to determine
variances

» handpicking of bandwidth can
lead to too much bias or
variance
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mixture model

» two types of random variables
* Z - hidden state variable

* X —observed variable

» observations sampled with a
two-step procedure

« a state (class) is sampled from the [ Pxz(10)] [ Puz(XI7)] = * = [ Puz(XIK]
distribution of the hidden variable

R

Py(z) — z X

* an observation is drawn from the class conditional density for
the selected state

PXlZ(x|z,) - X

m’?itl\e/{.n Arshia Cont: Survey of Machine Learning
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mixture model

» the sample consists of pairs (x;z,)

D ={(x.z4), ..., (Xp,Z))}

but we never get to see the z;

» the pdf of the observed data is

# of mixture components

- ——————
— I
PX(X) - Cgcl‘\ component “weight”
C

= Y Pxs(xlom.

c=1

cth “mixture component”
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mixture disadvantages

» main disadvantage is learning complexity
» non-parametric estimates

» simple: store the samples (NN); place a kernel on top of each
point (kernel-based)

» parametric estimates

» small amount of work: if ML equations have closed-form

» substantial amount of work: otherwise (numerical solution)
» mixtures:

« there is usually no closed-form solution

» always need to resort to numerical procedures

» standard tool is the expectation-maximization (EM)
algorithm

Aq-?iﬁ"lfﬂ Arshia Cont: Survey of Machine Learning

29

31

Mixtures vs Kernel and parametric

O A parametric model is a mixture with one component
O The weight is one
O The mixture density is the parametric density itself!

O More degrees of freedom in mixture => less bias
O A mixture density is like a kernel density less components
O less components => less learning parameters, less variance

O Mixture is a compromise between these two extremes:

® e
L 4 o

parametric __mixture of C components kernel-based
C=1 C=n
I\ (N I
[ A | ! | & | M M
/| [V YATR
j JAN M\[ \[‘\» \M\M/\
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Clustering and
EM algorithm

master. ,
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Classes vs. Clusters

Classes C; i=1,....K

p(x)= gp(x 1CPC)

Clusters G, i=1,...,k
k

p(x)= X p(x1Z)P(Z)
i=1

where p (x| Z)~N( u¢;, %)
O ={P(Z), 1, 2}

3 where p (x| C) ~N( u;, %))
O ={P(C) #y, ZK
e)- B 2

Labels, r;?
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K-Means clustering: EM

O Find values for {r=+} and {u} to minimize:

N K
J= Z Zrnknxn - ﬂkHz
n=1k=1
O Iterative procedure:
O Expectation:  Minimize | with regards to{r,;} , keep {1} fixed

— 1, if k = argmin; ||z, — u||?
mk =0, otherwise

O Maximization: Minimize | with regards to {1}, keep {7} fixed

N
2 rnk(zn - /—l‘k) =0
n=1
e = Zn TnkTn
2o Tk

Aq-?iﬁ"lfﬂ Arshia Cont: Survey of Machine Learning
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K-Means Clustering

O Dataset D = {z1,22,...,2,}

O Goal: Partition in K clusters
O Cluster prototype: [k
O Binary indicator variable (1-of-K coding scheme)
rar € {0,1}
rak = 1, andr,; =0for j#Ek
hard assignment

O Distortion measure

N K
T=3"3" ruklln — il

n=1k=1

O K-means gives k reference vectors (prototypes) which can be
used as decision rule : ,
iE(%"i}ix‘X): ErElbi

O Our sample communication problem: ibf {1 if [ - m/| - minjx' ~m,|
b = J

¥

0 otherwise
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K-Means Clustering: Example

» Each E or M step reduces the value of the objective function J

» Convergence to a global or local maximum

Anr?itl\e/{'w Arshia Cont: Survey of Machine Learning
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K-means and clustering

O Problems:
O How many clusters? (K)

O Various methods available: Bayesian Information Criterion, Akaike Information
Criterion, Minimum Description Length

O Or guessing + cross-validation!
O Local minimum only
O Can be a source of head-ache!
O Initialization of the means
O Another source of head-ache!
0 Usual method: mean-splitting... .
O Sounds great..

O But what about non-classification problems?!
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Learning with incomplete data (EM)

» the basic idea is quite simple
1. start with an initial parameter estimate ¥@

2. E-step: given current parameters 9 and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;, we have a complete data problem,
solve this problem for the parameters, i.e. compute ¥+

4. goto 2.
» this can be summarized as

— Estep >

fill in class
assignment

estimate

parameters
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The basics of EM

» as usual, we start from an iid sample D = {x,,...,x\}

» goal is to find parameters ¥ that maximize likelihood with
respect to D

w* = arg m\SxPX(D;\IJ)

= arg m\SX/PX|Z('D|z; W)Py(z;, W)dz
» the set
D, ={(x1.z4), ... (Xn,ZN)}
is called the complete data
» the set

D={x, ..., x\}
is called the incomplete data

AUr?XtAeAr'B Arshia Cont: Survey of Machine Learning

Classification-maximization

» C-step:
» given estimates w0 ={¥0, .., w0}
* determine z; by the BDR

z = arg max Px,z (xl|c; \uﬁi)) ng),l e{1,...,n}

+ split the training set according to the labels z;

D' ={x|z=1}, D?={x|z=2}, , D€ = {x|z=C}
» M-step:
» as before, determine the parameters of each class
independently
ng+1) —

arg max Px|;(DCc, V)7
U

m’?itl\e/{.n Arshia Cont: Survey of Machine Learning
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For Gaussian mixtures

" ?_Steri 1 O\ (@) ! (0)
zp = argmcax{—E (Xl—uc ) (Zc ) (Xz—uc )

—%log ’Zgi) + log wci)} ,Je{1,...,n}

 split the training set according to the labels z;

D" = {x|z=1}, D?={x|z=2}, , D¢ = {x|z=C}
» M-step:
i x; € D¢ i 1
-Gt H{xi 3 LD Y x
n [T € D] e
i1 1 i1 i1 T
SO 2 LS (s ) ()
[{x; € D} ijx;€De
Aq-iaitAe/\r’lﬁi Arshia Cont: Survey of Machine Learning 41

Expectation-Maximization

O What about problems that are not about classification?

O EM suggests:
0 Do the most intuitive operation that is ALWAYS possible
O Don’t worry about Z_i directly

O E-Step:“estimate the likelihood of the complete data by its expected value
given the observed data”

O M-step:“Maximize this expected value”

O This leads to the so called Q-function
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K-means

» when covariances are identity and priors uniform
» C-step:
— ; _ @02
- oy o= argmin||x; — pe”||% le{l,...,n}

+ split the training set according to the labels z;

D' = {x|z=1}, D?={x|z=2}, , D° = {x|z=C}
» M-step:
(i+1) _ 1
oo - - X
¢ ‘{X’L € IDC}‘ i‘x,;ZG:'Dc !

» this is the K-means algorithm, aka generalized Loyd
algorithm, aka LBG algorithm in the vector quantization
literature:

» “assign points to the closest mean; recompute the means”

AUr?XtAeAr'B Arshia Cont: Survey of Machine Learning

The Q function

» is defined as
Q(W, \U(n)) = EZ|X,‘~U(n) [|Og PX,Z(D7 {Z]_, e ,ZN}; W)|D]

» and is a bit tricky:

« itis the expected value of likelihood with respect to complete data
(joint X and Z)

 given that we observed incomplete data (X=D)

+ note that the likelihood is a function of ¥ (the parameters that we
want to determine)

* but to compute the expected value we need to use the parameter
values from the previous iteration (because we need a
distribution for Z|X)

» the EM algorithm is, therefore, as follows

m’?itl\e/{.n Arshia Cont: Survey of Machine Learning
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Expectation-maximization

» E-step:
* given estimates w™ ={ym, .. ¥}
* compute expected log-likelihood of complete data

QW) =B,y [109 Px 2(D. {21, 25} W)ID)

» M-step:

» find parameter set that maximizes this expected log-likelihood

wntl) = g muzj\xQ(\lJ;\U(”))

» let’s make this more concrete by looking at the mixture
case
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EM for mixtures (step 1)

» the first thing we always do in a EM problem is
= compute the likelihood of the COMPLETE data

» very neat trick to use when z is discrete (classes)
* instead of using zin {1, 2, ..., C}
« use a binary vector of size equal to the # of classes

1 0 0 0
0 1 0 0

AS of,{O0},|1]|,....]0

o
o -
-

0
* where z=jinthe zin {1, 2, ..., C} notation, now becomes
0
z=e;=|1 (jthposition)

0
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Expectation-maximization

» to derive an EM algorithm you need to do the following
— 1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one

Anr?'itl\eAr'B Arshia Cont: Survey of Machine Learning 46

EM for mixtures (step 1)

» we can now write the complete data likelihood as
Pxz(x,z; V) = Pxz(x|z; W)Pz(z; V)

c )
= H [PX|Z(X|ej, \U)vrj} K

v

for example, if z = kin the z in {1, 2, ..., C} notation,
Px 7(x,k; V) = Pxz(x e, W)

= [PX|Z(X|ek:w)7Tk]1 II [PX\Z(X|ej:\U)7Tj]O
=k
» the advantage is that ”

c
log PX,Z(Xv Z, \U) = Z Zj log [PX|Z(X|ej7 W)WJ]
Jj=1
» becomes LINEAR in the components z;!!!
master,
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EM for mixtures (step 1)

» for the complete iid dataset D, = {(x,,z,), ..., (X 2Zp)}

N
Px 7(D,{z1,...,an}; W) = [ Px z(xi,2i W)
i=1
N C

= H H [PXlZ(xi|ej,\U)7rj]zij

i=1j=1
» and the complete data log-likelihood is
log Px 7(D,{z1,...,z2n}; V) = Zzz log [PX|Z(Xi|ej7‘V)7Tj

(3

» this does not depend on z and simply becomes a
constant for the expectation that we have to compute in
the E-step

master, .
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EM for mixtures (step 2)

» once we have the complete data likelihood
QU VM) = B,y [109 Px 2(D {21, 2n ) WD)

= > Eyx.wmlz;|Dllog [PX|Z(Xi|ej: w)ﬂ'j]
i,J
i.e. to compute the Q function we only need to compute

v

v

note that this expectation can only be computed
because we use ¥"

note that the Q function will be a function of both ¥and
wn)

v

master, ,
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Expectation-maximization

» to derive an EM algorithm you need to do the following
1. write down the likelihood of the COMPLETE data

— 2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one

» important E-step advice:
do not compute terms that you do not need
at the end of the day we only care about the parameters

terms of Q that do not depend on the parameters are useless,
e.g.in

Q =1(z,'P) + log(sin z)
the expected value of log(sin z) appears to be difficult and is
completely unnecessary, since it is dropped in the M-step

master, ,
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EM for mixtures (step 2)

» since z; is binary and only depends on x;

Ezxowmlzi|Pl = Pzx(zi5 = 11xi; vy = Pzx (ejlx;; w)

v

the E-step reduces to computing the posterior
probability of each point under each class!

v

defining
hij = Pgx(ejlxi; wn)y

» the Q function is

QWM = 3" hy;log [Pxz(xiles, W]
i

master, ,
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Expectation-maximization

» to derive an EM algorithm you need to do the following

1. write down the likelihood of the COMPLETE data

log Px 7(D,{z1,...,z2x}; W) = ) zjlog [PX]Z(Xi|ej: \V)Trj]
i,j

2. E-step: write down the Q function, i.e. its expectation given the
observed data
hij = Pyjx (ejlxi; w™)
Q(\U; \U(n)) = Z hij Iog [PX‘Z(xﬂe]-, \U)ﬂﬂ

1]
—> 3. M-step: solve the maximization, deriving a closed-form solution if

there is one

wntl) — arg m\ethijlog [PX‘Z(XHGJ',W)TI‘]}
j
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M-step for Gaussian mixtures

» M-step:
vt — 5eg m“zlaxzhij log [Q (xi,uj,oj) wj}
ij

o hi(xi = )% by 2

= argmin) ——~—— 4+ —~logo5 — h;;logm;
gmi % 202 + 5 10g0f — hijlogm,
» important note:

* in the M-step, the optimization must be subject to whatever
constraint may hold

« in particular, we always have the constraint >_m = 1
. . J
» as usual we introduce a Lagrangian

hij(xi = pj)® | hij
L=y "5 +§|oga]2—hijlog7rj A1
J J

| Not familiar with Lagrange multipliers? See http://en.wikipedia.org/wiki/Lagrange_multipliers |
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EM for Gaussian mixtures

» in summary:
+ CM=EM + hard assignments
* CM special case, cannot be better

» let's look at the special case of Gaussian mixtures
» E-step:
hij = Pgx(ejlx;; w™)

6 (5.1, 0) 2

Zle g (xi7 N;(gn)v gl(cn)> W}gn)

Anr?'itl\eAr'B Arshia Cont: Survey of Machine Learning

M-step for Gaussian mixtures

» Lagrangian

oo (% — )2 R
L = Z[M-F ZJ'Ogo?—hijlogﬂ'j:|+)\<Zﬂ'j—l

. g
i 20'j 2
» setting derivatives to zero

J

oL _ -y hij(XiQ_ 1) _ 0

8uj i Uj

oL hij(xi — )% hij

o = —Z{”(;—ﬂ“)—;ﬁ} -0
J i J J

oL hi

o Z?Tj+

oL

3
o= %:nj—lzo

Aq-?‘itl\el{w Arshia Cont: Survey of Machine Learning
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M-step for Gaussian mixtures

» leads to the update equations

X
“§n+1) _ ZZZ ijXi (n—l—l) Zhw
7 1_7
G2+ S hij(xi — 115)?
J i hij

» comparing to those of CM

Aty Hxi €D prt — 1 )

<

N T e DYl i

(n+1) _ 1 ( (n+1>)( _ (n+1))T
= = Xi — — e
‘ [ € D]y 2, 1) i

» they are the same up to hard vs soft assignments.
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EM on Gaussian Mixtures

O Example:
2 2 A, ‘gh
@, 1O:; ‘ﬁ | P
O/ #°0
0 @ 2 -2 0 @) 2 0 g 2
2 L=2 ~“ﬁ:\. N .}*;’- N == .:‘l‘r,
| || e || e
o & L W o W
) 2 0 g 2 2 o @ 2
master.
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Expectation-maximization

» note that the procedure is the same for all mixtures
1. write down the likelihood of the COMPLETE data
log Px (D, {z1,....2x}i W) = 3 ;109 [Pxjz(xilej, W]
,J

2. E-step: write down the Q function, i.e. its expectation given the
observed data

hij = Pzx(ejlxi; wm)y
Q(\U; \U(n)) = Z hij Iog {PX\Z(X”ejv \U)TI'J}
i,
3. M-step: solve the maximization, deriving a closed-form solution if
there is one

vt — arg m\Sthijlog [PX‘Z(x”ej,\l/)wﬂ
ij

Anr?'itl\eAr 13 Arshia Cont: Survey of Machine Learning

Group Homework 3

O Derive the EM algorithm for a mixture of exponential
distributions:

Px(z) = Y00, mdiee

O Write down the E-step

O Write down the M-step, solve the maximization and derive iterative
solutions for \;, and

O hint: Use the Lagrangian.....

Anr?“jtl\e/{ 13 Arshia Cont: Survey of Machine Learning
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Sequential Learning

st

D

I,

>3
=
>QJ

Markov Models

First-order Markov model:

P(y1,y2,---,yt) = P(y1) P(y2ly1) - - P(yelyi-1)

D> (D@ - ("

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (y:), the future (y;41,...) is independent
of the past (y1,...,yi-1)-

Second-order Markov model:

P(y1,...,yi) = P(y1)P(yaly1) - - P(yelyi—2,y:-1)

An:ll-iait’\e/‘rm Arshia Cont: Survey of Machine Learning 63

Sequential Learning

O Up to now, our approach was rather static. Now imagine that
you have a problem set where data arrives sequentially.
(e.g.Time Series)

O A sequence of observations:  Y1,Y2,¥3,---: Yt

O Considered as independent...:
t
Py, vz ou) = [[ pwmlyn, - gn1)
n=1
O Many many ways to model sequential data! We will look at
some....

QO
«n
—
[¢)
-

-AM 13 Arshia Cont: Survey of Machine Learning

23

Hidden Variables

Speech recognition:

e x - underlying phonemes or words 0 @@ e @
e y - acoustic waveform
®» ©® ®)

Vision:
e x - object identities, poses, illumination

e y - image pixel values

Industrial Monitoring:
e x - current state of molten steel in caster

e y - temperature and pressure sensor readings

Two frequently-used tractable models:
e Linear-Gaussian state-space models
e Hidden Markov models

Aq-?ifl\c}\r'w Arshia Cont: Survey of Machine Learning
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Hidden Markov Models (HMM) Hidden Markov Models (HMM)
i_,@?g,@?ﬁ - 4@? O Notes:
7 ® ® ® O Hidden states (S_i) are markov... but not necessarily the output process

(Y_i). In reality, they are NOT markov....

e Discrete hidden states s, € {1..., K}, and outputs y; (discrete or continuous). O For each observation sequence, there are multiple state sequences

Joint probability factorizes:
P(s1,..,8r,¥1---,¥r) = P(s1)P(y1]s1) HP Selst—1)P(ylst) —> . 4?
¢ Leading to the following important structural elements:
N: Number of states

e Transition PrObabllltles; M: Number of observation symbols
m l 1 A= [aul: Nby N state transition proba. matrix

T
ij = P(st = Sj‘st—l = S,L) . ai; >0 and E a;; =1 B = b(m) Nby M observation proba. matrix

i=1

nm= [rr,J: Nby 1 initial state proba. vector

. . e
Observation probabilities )= (A, B, II), parameter set of HMM

¢ Discrete case: [p;(m) = Py, = Yiu[s: = 5;)

mi = P(s1=5i), Zﬂj=1
=1

AT-‘I'-?XtAe/\r’B Arshia Cont: Survey of Machine Learning 65 maSter

¢ Initial probabilities (prior):

1 2 T-1 T
Arshia Cont: Survey of Machine Learning 66

HMMs Likelihood in HMM

O The likelihood P(Oy,...,0|)) is an extremely hard computation

© Number of possible paths grow exponentially with time (# of paths=K")

Three basic HMM problems:
Given 4, and O, calculate P(O| 1) O To compute this likelihood, there exist an efficient forward

Given 4, and O, find Q' such that recursion algorithm using dynamic programming:

P(Q*IO,1)=maXQP(Q|O,A) a(i) = P(Oq,...,04 5 = SilA)

Given X={Ok}k, find A* such that Initialization :
(11<’L) = 7Tib,j(01)

P(X|A")=max, P(X|1)

Recursion :
aei1(f) [Z o (i)aif | bj(Oria)
i=1
P(O|N) Z ar(i 4 1
i=1
master. Arshia Cont: Survey of Machine Learning 67 Aq’iaitl\e/{ 13 Arshia Cont: Survey of Machine Learning 68
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Likelihood in HMM

plz1) JIEAEN] plxs|es) plxsles)
or: .T.TT._’ Co—a—()—a—()
Plysz:) pltalaz) plysles) P(yales)

pyk) = Y. pyuklenk)p(z1k)
T1LK
a1jo
—n—
= Y plyklex) Y plexlzr—1)-- Y p(zslze)p(yale2)y p(zalz1) p(yilz1) p(z1)
FACHE R A2 V)
TK TK-1 T3 o1 o1
= Yopluxlex) Y. plexlzr-1)--- ) plesle)p(yalz2)d ] plealzi)oy) (21)
TK TK-1 e e
= Y pluklex) Y. P(11<\1‘K—1)"'ZP(l‘:slz'z)ll(yz\Iz)uzu(wz)
Tk TE-1 =2
= Y plyklex) Y plexlzk 1)y p(zslza)ay,(z2)
K TK-1 )
= Y plyklex) Y. pleklex_1). .. agp(zs)
TK TK-1
maSter’lﬁi Arshia Cont: Survey of Machine Learning
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Most likely state-sequence

O Forward variable gives the likelihood of an observation
sequence given model parameters or P(O|\)

O What about the most-likely sequence or P(5*(0,)) = max P(S]0, \)
O Forward variable is the most-likely belief from time 0 to t (t=present)
O Need also a belief towards future (from time t to T)

O Backward variable:

Bi(i) = P(Ott1,...,07, 58 = Si| )

Initialization :
BrE) = 1
Recursion :
N
B(j) = [; at+1(i)aij:| bj(Or41) p “l
Ar-}iaifl\e/‘r‘ﬂ Arshia Cont: Survey of Machine Learning
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Likelihood in HMM

[e) . pla:) p(z2|z1) ples|z2) plaslzs)
Note ° e ° °

plyslz:) plyz12) plyslzs) Plyslea)

e Predict
apk-1(zr) = P(Yrk—1,Tk) = Zp(zk|$k~1)p(y1:k~l,mk~l)
Tp—1
= Zp(xk|1'lc—1)ak—1\k—1(Ik—l)
T—1
e Update

app(zr) = PYrk,Tk) = P(Yk|Tk)D(Y1:6—1, Tk)

P(Yr|Tr) -1 (k)

Il

master

= 13 Arshia Cont: Survey of Machine Learning
ATIAM
O Another view:
plz:) plxaz)) plzs|zz) plza|zs)
plyler) plyzle2) plyslzs) Plyales)
pix) = Y ple)p(lz)... Y plex-ilex—2)px-1lzx-1)) pleklek-1)plyklex) 1
B3 TR-1 K BK|K+1
= Y p)p(uilz) - Y, plex-ilzk—2)p(yk—1lzk_1) Y plek|er—1)Bx Kk
Ty TK-1 TK
= Y p)p(yiler) -+ Y. plek-1lzk—2)p(yk—1lzK-1)BK_11K
E3) TK—1
= Y pE)p(ilz) - Y. plek-1lzk—2)BK 1K1
E31 TK—1
= Y ple)p@ilz1) ... Bx_sx_1
Ty
master,
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Most-likely state-sequence

O Combine the two propagations and use

maximum likelihood? s,(i) = P(s, = S|0,A)
e )
Z/ 1o (7)Be(5) ' J
Problem: si = argmaxs(i) t

O Is the set of locally optimal states, equal to the global optimal path?
© NO! not necessarily... .

e «;(t) gives total inflow of prob. to node (t,1);

Bi(t) gives total outflow of prob. states

O Need to maximize over the WHOLE PATH and not just one state:

se(1) = _ max P(s1,80---8i-1,8 = 83,01, -+ ,O|\)
$182S¢—1
AT-‘I'-?XtAe/\r’B Arshia Cont: Survey of Machine Learning 73

Parameter Learning

&(ij) = Pls=Si50410,0)
at(i)ai]‘bj(OtJrl)ﬂtJrl(j)
Ek Z[ [ (k)(l,k[bg(OtJrl)ﬂtJrl (Z)

O Use EM Algorithm:

O Auxiliary variable:
7t - { (1) if s, =8; 7t = { 1, ifs; =5 and 841 = 5;

otherwise - 0, otherwise
O E-Step: E[2{] = (i) E[Zf]] =&(i,7)
. oy (1) B4 (1)
O recall: s:(i) = P(s;=50,\) = ————""—
Yol cu(i)Bi()
O M-Step: K
PR v
K3 k I3
s¢(4)
G = Zk 1ZTA lgf ZJ)
g
Y Tk sk(
R Tr—1 k k _
)](Hl) = Ek 12 Tk I(IS) o
master. 13 Arshia Cont:S Zfl‘le:L i o) 75
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Viterbi Algorithm

s¢(i)) = max P(sy,s2---5t-1,5: = S8i, 01, , 0|

8182 5t—1

O Initialization:

s1()) = mbi(O1), (i) =
O Recursion:

s:(5) nlle'St—l(i)a’i.ibj<Ot)

e (4) arg max i1 (1)

O Termination:
p* =maxsr(i) , sp = argmax sp(i)
O Backtracking:

st =e(si), t=T—-1,T—=2,...,1

= 13 Arshia Cont: Survey of Machine Learning
ATIAM

HMM State Duration

pi(d) = aﬁf_l)(l — ai)

© where pi(d) is the probability of staying ‘d’ discrete times in state i
O This is an exponential model of time

O Not very desirable for all temporal sequences... such as music!

Aq-iaitl\e/{ 13 Arshia Cont: Survey of Machine Learning

O The time an observation would spend in a state is implicit:
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HMM Variants

O Discrete observations:
i " 1 if O =v
P(O1s.=5..A)=]]b. - Lo
( R ) n m) {O otherwise

m=1

O Continuous observations:
P(O,1s,=8,,A) ~ N(u,.07)
use EM to find parameters....
O Gaussian Mixtures:
L
P(Oz lg, = 5117‘)= Zp(gﬂ)p(ot lg, = SerIJ\)

. ~ N(}"llzl)
O Duration-Focused models

O Transitions as explicit functions of time....

O And many more....
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Kalman Filter Models

O Also known as Linear Dynamical Systems

O Imagine a sequential framework where latent variable S and
observations Y are continuous

O and underlying dynamics is linear.... (or can be approximated
so)

O Example:

O A one dimensional tracking system:

_ positon | /1 1 _
Sk = ( velocity )k B ( 0 1 )5kt = Ask

yr = position, = (1 0 )s=Csy

An:ll-?if]\e/{"l:s Arshia Cont: Survey of Machine Learning 79

HMMs

O So far, we have assumed that our underlying models are static!
O In some cases this works out well as an approximation
O In many cases it won't!
O Real-life systems are dynamic systems
O Dynamics systems
O Are generally hard to model....
O Much easier if they are linear....

O Much harder if they are non-linear....

QO
«n
—
[¢)
-
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Kalman Filter Models

O Tracking example:

O Imagine that we have unknown accelerations (dynamics!)

11
S = (0 1>Sk—1+5k

Asg_1 + €

(1 O)Sk+l/k
Csg + vk

Yk

© Generatively speaking,
sk~ N(sk;Ase-1,Q)
Yk ~ N(y;Csi, R)

Aq-?ifl\c}\r'w Arshia Cont: Survey of Machine Learning 80




Kalman Filter Models

Inference is similar to HMM: summations are replaced by

integrations
plz1) p(rzlm p(r:x\wu) P(I:IJ) °
pyilz1) ply:lz2) P(ys|zs) Pyalza)
o Forward Pass
2|1 a
R 1/0
—~—
k) = LK"‘“'“‘)/I,_ p(zmwm).../Qp(z:nzz)p(yzm/xlp(zzwzup(yuzil)p(m
ag ag
e Backward Pass
p(yrk) = / p(l’l)p(yl\m)---/ P(ZK71‘2}(—2)1’(?41(—1[1'[(—1)/ pzkler-1)p(yklzr) 1
31 TK-1 K Ax
Br—2 BK-1
AT-‘I'-?XtAe/\r’B Arshia Cont: Survey of Machine Learning 8l
p(s1)
B 7\
5 | o
@ _/
151
LA
>
> 05t \
a K
0 . A . L s
0 1 2 3 4 5
Phase
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Kalman Filter Models

O Goal:

O Find an a posteriori belief based on prior estimate and a weighted difference
between the actual measurement Yt and a measurement prediction 3¢

O A series of predictions <> corrections

O Results into closed form solutions in the Gaussian case...

R-}-?Xt’a"ﬁ Arshia Cont: Survey of Machine Learning

Kalman Filters
p(y1|s1)p(s1)

3 T\
5 | @)
o W/
151
Lo
\g \
2, \
> 05) \
Q
0 ‘ X ‘ . . .
0 1 2 3 4 5
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Kalman Filters

p(s2ly1) oc [ dsip(s2|s1)p(yi|s1)p(s1)

Period

® /)
(Y

P, Y, 4_p)
o -
A
N
/

Phase
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Kalman Filters

p(ssly1:5)
| y
E \/‘;\\‘ .. [ ‘/““‘
1) ) (@] e/
2y
L
1.5
o1
=
X
2 05f
Q
0 . . L L — -
0 1 2 3 4 5
Phase
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Kalman Filters

p(y2|s2)p(s2(y1)

Period
LB
S

15¢

-
T

PY, 1Y,y
o
o (9]

Phase
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Sequential learning applications in audio

O Score Following (AKA real-time alignment of audio to symbolic
scores)

O Gesture Following
O Speech Recognition
O Automatic Transcription

O and many many many more....
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Discriminant Learning

master. ,
ATIAM

Linear Discriminant

d
O Linear discriminant  g;(z|w,b) = w"z +b=» wjz; +b

j=1
» in summary, the decision rule

0 ifgx)>0 .
x) {1 i g(x) <0 with (g(x)=w'x+b
» has the properties

 itdivides x into two “half-spaces”

* boundary is the plane with:

* normal w

« distance to the origin b/|w||

* g(x)/||w]| is the distance from point x
to the boundary

* g(x) = 0 for points on the plane
* g(x) > 0 on the side w points to (“positive side”)
* g(x) < 0 on the “negative side”

Arshia Cont: Survey of Machine Learning
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Likelihood vs. Discriminant

O Likelihood based classification
© Assume a model for p(z|C;) and use Bayes’ rule to calculate p(Ci|z)
9i(x) ~ log P(Ci|z)
O Discriminant based

© Assume a model for ¢i(z|¥;) ; no density estimation

O Estimating the boundaries is enough

O No need to accurately estimate the densities inside the boundaries

Likelihoods
04 T T
[+] / 0
8 1 & N
0%  %° g o
o "/ og z
° 01
< / >
b / " 0 1
Arshia Cont: Survey of Machine Learning

Example

O Two classes:

A
= )y=w x, Fw,x, 1w, =0 g(X)= 9 (X)_ 9> (X)

gx)<0 o Og(x)>0 = (WITX + Wi )‘ (Wsz + Wy }

c, ¢ = (wl -W, )TX + (Wl() - Wzn)

x X ° 5 =wix+w,

X
X O
< O

x X . choose [C1 if g(x)> 0

\ > C, otherwise

master, ,
ATIAM
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Example

O Multiple Classes

T
gi(x | Wi’Wi0)= W; X+ Wy,

Choose C; if

9,(0)- maxg, (x)

Classes are

maSter Arshia Cont: Survey of Machine Learning

ATIAM "

Discriminants to Posteriors

O When p(z(C;) ~ N(ui, %)
gi(wlws, bi) = wlz +b;
-1
wi =" b= 3 g+ log P(C)

where y = P(C, |x) and P(C,|x)=1-¥
y>0.5
choose C,if] y/(l-y)>1 and C, otherwise
log[y/(L-y)]>0

maSter Arshia Cont: Survey of Machine Learning
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Example

O Pairwise Separation

<A T
o gU(xle,wUO)= WX+ W,
>0 if xeC,
g,j(x)= <0 if xEC,

don'tcare otherwise

choose C; if
Vj=i,g,(x)>0

X
AUr?XtAeAr'B Arshia Cont: Survey of Machine Learning 94
, “log PC %) - P(C,1x)
logit(P(C, | x))=log T-PC, %) log PC. 1%)
px1Cy) . PC)
=lo lo
¥pixic.)” ¥ PC,)
1og & espl (/2w Y -] )
Cay s Pexpl 1/ 2)x -, Y = (k- w,)| PG,
=wix+w,
1
where w = 271(}11 - Pz) W, = ‘E(}h + Pz)Tzil(UI - Hz)
The inverse of logit
P(C | X) T
log—— 1 1%
Ogl—P(Cl B wix+w,
. . 1
P(C, 1 x)= sigmoid(w”x + w, )= m]
m’?itl\e/{.n Arshia Cont: Survey of Machine Learning 96




Sigmoid (Logistic) Function

02

o.

1 E E a— [ ¥ 10

1. Calculate g(x)= w'x + w, and choose C, if g(x)> 0, or
2.Calculatey = sigmoid(wa +W, )and choose C, if y > 0.5

Aq-iaitAe/{"B Arshia Cont: Survey of Machine Learning 97
Gradient-Descent
aw, =2 vi
aw,
\ W, =W, + AWi
EW)
E (w1
Wt WHI
n
master,
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Gradient-Descent

E(W|X) is error with parameters w on sample X
wr=arg min,, E(w | X)

T
Gradient V. E- oE ’ oE o oE
aw, ow, " aw,

Gradient-descent:

Starts from random w and updates w iteratively
in the negative direction of gradient

AUr?XtAeAr'B Arshia Cont: Survey of Machine Learning

Example

O Two classes:

X ={x’,r’}’ r'ix' ~ Bernoulli(y’)
1
1+ exp[—(wa + wo)]

[ww, 1X) = n(y:)("‘)(l_y,)(l,,f)

t

y=P(C 1x)=

E =-log/
E(w,w, 1 X)= —Er’log y' +(l—r’)log (1—y’)

m’?itl\e/{.n Arshia Cont: Survey of Machine Learning
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Example

O Gradient-Descent
E(w,wy1X)= —Er'log v+ (1— r’)log (1— y’)

t

If y = sigmoid(a) ? =y(1-y)
a

oE ! 1- ! t t t
Aw =—778Wj=772(;,‘1_;,)y (l—y )xj
= nz(r’ - y[)x;.,j =1,...,.d
Aw, = —U;TE = nz(r’ - y’)
0 t
A‘UriaitAe/\r’B Arshia Cont: Survey of Machine Learning 101

Generalized Linear Models

O Quadratic:
lOg M = ITWil‘ + WITI + wio
p(z|Cy)
O Sum of basis functions @
P(z]C;) T
lo =w; (z) + w;
B plalCy) — 4 P F o

O Kernels in SupportVector Machines (SVM)

O Hidden units in Neural Networks

Anriazfl\e/\r'ﬂ Arshia Cont: Survey of Machine Learning 103

Example

O Gradient-Descent Training

For j=0,..., d
wj «—rand(-0.01,0.01)
Repeat
For j=0,..., d
Aw;j «— 0
Fort=1,....N
o—0
For j=0,..., d

0+— o0+ wj 13

y — sigmoid(o)
Awj «— Aw; + (rt — ;z/),r}‘

wj — wj + nAw;
Until convergence

Anr?'itl\eAr'B Arshia Cont: Survey of Machine Learning 102

Generalized Linear Models

» 1) use a higher-order decision function

* e.g. aquadratic boundary . —

X Wx+w” x+w, =0 e
+ is the optimal solution for any Gaussian . !
problem (2 Gaussian classes no constraints) |
» looks like we are going to need a
very high-order polynomial in general!
* lots of parameters
* too much complexity
» where to stop?

» can we do something else to keep the simplicity of the
linear boundary?
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Linear Discriminants

» 2) transform the space:
» introduce a mapping

DX > 2Z

such that dim(z) > dim(x)

» learning a linear boundary in Zis
equivalent to learning a non-linear
boundary in x

»e.g.

+ two scalar Gaussians

« zero mean, different variances

Aq-iaitAe/{"B Arshia Cont: Survey of Machine Learning 105

Linear Discriminants

O But how do we determine p?
O Using KERNELS
O Kernel functions transform the feature space to a higher-dimensional space!
O The VERY basic idea is this:

O Using BDR we know how to solve for an optimal discriminant case
ONLY if our two classes are linearly discriminant!

O The Kernel transformations, move the world to a higher-dimensional
space, and with mathematical care and hope, it that higher-dimensional
space, things are linearly discriminant!

O Once the BDR determines the discriminant factor then we come back to
the real-world.
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Linear Discriminants

Px|wy)

» since Py, (X |/)=G(x.,0,0;)
» using the BDR
h*(x)= argmaxPX‘y[X | /]Py[/]

leads to this |

» cannot be implemente

with a linear discriminant

» but becomes feasible by
mapping to 2D

£
D: RN : ®,
2
X = (x,x%) : %
== =1 1 -3
AUr?XtAeAr'B Arshia Cont: Survey of Machine Learning

Linear Discriminants

O But how can Discriminant learning assure generalization if we
do not have any models??

O Optimal Separating Hyperplanes

» is the distance from the boundary . =1

to the closest point\

» there will be no error if it is strictly . i
greater than zero L y=A

y,(w’x,+b)>0, Vi o "

» note that this is ill-defined in the sense that
v does not change if both w and b are ANy
scaled by 1 N

» we need a normalization

make |g(x)| = 1 for the closest point, i.e.

under which

m’?itl\e/{.n Arshia Cont: Survey of Machine Learning
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Support Vector Machines

O Under this normalization, the empirical error is zero IF AND
ONLY IF
W’x, +b|21 Vi <
sgn(WTX, +bXWTX, +b)21 Vi &
y,(WTX, +b)21 Vi

» the SVM is the classifier that maximizes the margin under
this set of constraints

nyglgl ||W||2 subject to y,.(WTX,. +b)21 7

Aq-iaitAe/\r’lﬁi Arshia Cont: Survey of Machine Learning 109

Support Vector Machines

Ly = %(WTW)_ WTEarerI _W‘)Ea'r' + Ea'
' 7 -
= —l(WTW) + Zaz
2 '
SSere e
e '

subject to Ea’r’ =0and a' =0,V¢
t

O Most @' are zero and only a small number are useful....

O These are support vectors

Ar-}iaifl\e/‘r‘ﬂ Arshia Cont: Survey of Machine Learning i

Support Vector Machines
min %HWHZ subject to r‘(waf +W, )2 +1,Vt
L= 2wl - iaf[rf(wfxf swy)-1]

1 2 to.t Tt < t
=§HWH —Ear(w X +W0)+§0L
=

A
L g glx)=+1
a i N
2 _0=w=Ya'rx' -1 rv O
oW 4 gx)=-
@)
dL N C ¢
P -0= Ya'r' =0 ¢ 04
aw, X
x X Qo
X A
KX (Vi
" o
/|l
\ >
il
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» this is penalizing complexity

* e.g. the smaller the ||w|| the larger the
number of components set to zero

» this is searching for the more stable
hyperplane

» among the ones that have zero training
error

* is the one that has most room for discrepancies between training
and testing

» the margin as a “security gap”

» there are many details which we have not filled
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Finally...
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Do not forget...

O Our goal today is to introduce some well-known and well-

established approaches in Al and Machine Learning

O The methods presented today are not domain-specific but for every
problem, you start with a design, collect related data and then define the
learning problem.We will not get into design today... .

O Keep in mind that,

O Al is an empirical science! (See “Science of the Artificial” by H.A. Simons, MIT
Press, 1969)

0 DO NOT apply algorithms blindly to your data/problem set!
O The MATLAB Toolbox syndrome: Examine the hypothesis and limitation

of each approach before hitting enter!
0 Do not forget your own intelligence!

Contact: cont@ircam.fr
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In this course...

O We looked at some basic problem solving approaches in
machine learning literature...
O Introduction to Bayesian Decision Theory and Learning
O Gaussian Classifiers, EM Algorithm,
O Basics of Sequential Learning and Decision theory

O Introduction to Discriminant Learning Theory

O What we did not see...:

O Dimensionality Reduction Algorithms: Principle Component Analysis (PCA),
Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF)
etc.

O Fuzzy logic based algorithms
O Some important unsupervised learning approaches: Spectral Clustering etc.

O Important sequential learning algorithms: Reinforcement Learning (RL), Active
Learning etc.

O ...and much more ...
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