

Institut Mines-Telecom Topology of wireless networks

L. Decreusefond

Also starring (by chronological order of appearance)

P. Martins, E. Ferraz, F. Yan, A. Vergne, I. Flint, N.K. Le

Séminaire Brillouin



# Historique

Algebraic topology

Poisson homologies







1870



1970



2000



# Sensors : ambient or pervasive computing









# Applications : intelligent vehicle, agriculture, house,





. . .



#### Historique

Algebraic topology

Poisson homologies









# Mathematical framework

Geometry leads to a combinatorial object Combinatorial object is equipped with a Linear algebra structure

Coverage and connectivity reduce to compute the rank of a matrix

Localisation of hole: reduces to the computation of a basis of a vector matrix, obtained by matrix reduction (as in Gauss algorithm).



























-



# Cech complex





# Cech complex



$$\begin{array}{l} \mbox{Vertices}: \ \left\{ \mbox{ a, b, c, d, e} \right\} = \mathcal{C}_0 \\ \mbox{Edges}: \ \left\{ \mbox{ab, bc, ca, be, ec, ed} \right\} = \mathcal{C}_1 \\ \mbox{Triangles}: \ \left\{ \mbox{bec} \right\} = \mathcal{C}_2 \\ \mbox{Tetrahedron}: \ \emptyset = \mathcal{C}_3 \end{array}$$



\_



# Cech complex

# *k*-simplices

$$\mathcal{C}_k = \bigcup \{ [x_0, \cdots, x_{k-1}], \ x_i \in \omega, \cap_{i=0}^k B(x_i, \epsilon) \neq \emptyset \}$$

#### Nerve theorem

We can read some topological properties of  $\bigcup_{x \in \omega} B(x, \epsilon)$  on  $(C_k, k \ge 0)$ 

- Same nb of connected components
- Same nb of holes
- Same Euler characteristic





# Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$
  
 $[v_0, \cdots, v_k] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v_j}, \cdots]$ 



# Boundary operator

#### Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$
  
 $[v_0, \cdots, v_k] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$ 

### Example

$$\partial_2(bec) = ec - bc + be$$



# Boundary operator

# Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$
  
 $[v_0, \cdots, v_k] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$ 

#### Example

$$\partial_2(bec) = ec - bc + be$$
  
 $\partial_1\partial_2(bec) = c - e - (c - b) + e - b = 0$ 





#### Theorem

$$\partial_k \circ \partial_{k+1} = 0$$

Consequence

 ${\sf Im}\,\,\partial_{k+1}\subset{\sf ker}\partial_k$ 

# Definition

$$H_k = \ker \partial_k / \operatorname{Im} \partial_{k+1}$$
 and  $\beta_k = \dim \ker \partial_k - \operatorname{range} \partial_{k+1}$ 



#### Interpretation : The magic

- $\beta_0$  : number of connected components
- $\beta_1$  : number of holes
- $\beta_2$  : number of voids
- to be continued



# **Example**

$$\partial_0 \equiv 0, \ \partial_1 = \left( egin{array}{cccccc} -1 & 0 & 1 & -1 & 0 & 0 \ 1 & -1 & 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{array} 
ight)$$

#### Nb of connected components

dim ker  $\partial_0 = 5$ , range  $\partial_1 = 4$  hence  $\beta_0 = 1$ 





$$\partial_2 = \begin{pmatrix} 0\\ -1\\ 0\\ 1\\ 1\\ 0 \end{pmatrix}$$

# Nb of holes

dim ker
$$\partial_1 = 2$$
, range  $\partial_2 = 1$  hence  $\beta_1 = 1$ 



# Polygons=cycles

### $\beta_1 =$ Nb of independent polygons – Nb of independent triangles.



# Polygons=cycles

 $\beta_1 = \text{ Nb of independent polygons} - \text{ Nb of independent triangles.}$ 





#### Polygons=cycles

 $\beta_1 =$  Nb of independent polygons – Nb of independent triangles.



$$\beta_1 = 2 - 1 = 1.$$



#### Polygons=cycles

 $\beta_1 =$  Nb of independent polygons – Nb of independent triangles.



$$\beta_1 = 2 - 2 = 0.$$



# Euler characteristic

# Definition

$$\chi = \sum_{j=0}^d (-1)^j \beta_j$$

#### Discrete Morse inequality

$$-|\mathcal{C}_{k-1}|+|\mathcal{C}_k|-|\mathcal{C}_{k+1}|\leq \beta_k\leq |\mathcal{C}_k|$$



# Euler characteristic

### Definition

$$\chi = \sum_{j=0}^{d} (-1)^{j} \beta_{j} = \sum_{j=0}^{\infty} (-1)^{j} |\mathcal{C}_{k}|$$

#### Discrete Morse inequality

$$-|\mathcal{C}_{k-1}|+|\mathcal{C}_k|-|\mathcal{C}_{k+1}|\leq \beta_k\leq |\mathcal{C}_k|$$



### Alternative complex

#### Cech complex

$$[v_0,\cdots,v_k]\in \mathcal{C}_k \iff \cap_{j=0}^k B(x_j,\,\epsilon)\neq \emptyset$$

#### Rips-Vietoris complex

$$[v_0, \cdots, v_k] \in \mathcal{R}_k \Longleftrightarrow B(x_j, \epsilon) \cap B(x_k, \epsilon) \neq \emptyset$$

k simplex = clique of k + 1 points



# Difference RV vs Cech

#### For the $I^{\infty}$ distance

RV = Cech

#### Euclidean norm : false negative

Rips complex may miss some holes


# Difference RV vs Cech

#### For the $I^{\infty}$ distance

RV = Cech

#### Euclidean norm : false negative

Rips complex may miss some holes <



# Cech vs Rips

$$\mathcal{R}_{\epsilon'}(\mathcal{V})\subset \check{\mathrm{C}}_{\epsilon}(\mathcal{V})\subset \mathcal{R}_{2\epsilon}(\mathcal{V})$$
 whenever

$$rac{\epsilon}{\epsilon'} \ge \sqrt{rac{d}{2(d+1)}}$$

# Euclidean distance (D.-Feng-Martins)

- Coverage radius R<sub>S</sub>
- Communication radius  $R_C = \gamma R_S$



# Upper-bound of the error

# Theorem ( $\sqrt{3} \le \gamma \le 2$ )

$$p_{2dl}(\lambda) = 2\pi\lambda^2 \int_{R_s}^{R_c/\sqrt{3}} r_0 dr_0 \int_{\varphi_l(r_0)}^{\varphi_u(r_0)} d\varphi_1 \int_{r_0}^{R_1(r_0,\varphi_1)} e^{-\lambda\pi r_0^2}$$
(1)  
  $\times e^{-\lambda|S^+(r_0,\varphi_1)|} (1 - e^{-\lambda|S^-(r_0,r_1,\varphi_1)|}) r_1 dr_1$ 

where

$$\varphi_{I}(r_{0}) = 2 \arccos(R_{c}/(2r_{0})), \ \varphi_{u}(r_{0}) = 2 \arcsin(R_{c}/(2r_{0})) - 2 \arccos(R_{c}/(2r_{0}))$$

$$R_{1}(r_{0},\varphi_{1}) = \min(\sqrt{R_{c}^{2} - r_{0}^{2} \sin^{2}\varphi_{1}} - r_{0} \cos\varphi_{1}$$

$$\sqrt{R_{c}^{2} - r_{0}^{2} \sin^{2}(\varphi_{1} + \varphi_{I}(r_{0}))} + r_{0} \cos(\varphi_{1} + \varphi_{I}(r_{0})))$$







Probability to miss a hole using  $\mathcal{R}_{R_s}$  and  $\mathcal{R}_{R_c}$ 



#### Goals and related works

- Evaluate Betti nb and Euler charac. in some random settings
- ▶ Penrose : Asymptotics of E[|C<sub>k</sub>|<sup>m</sup>] for Euclidian-RG Rips complex on the whole space (m = 1, 2)
- ► Kähle : Asymptotics of E[β<sub>k</sub>] for Euclidian-RG Cech complex (deterministic number of points) and ER



# Goals and related works

- Evaluate Betti nb and Euler charac. in some random settings
- ▶ Penrose : Asymptotics of E[|C<sub>k</sub>|<sup>m</sup>] for Euclidian-RG Rips complex on the whole space (m = 1, 2)
- ► Kähle : Asymptotics of E[β<sub>k</sub>] for Euclidian-RG Cech complex (deterministic number of points) and ER

#### Our results

Exact expressions of all moments of  $|\mathcal{C}_k|$  and  $\chi$  in any dimension for RG complex on a torus for the  $l^\infty$  norm



Euler characteristic Asymptotic results Robust estimate

#### Historique

Algebraic topology

Outline

Poisson homologies Euler characteristic Asymptotic results Robust estimate



Euler characteristic Asymptotic results Robust estimate

## Random setting





Euler characteristic Asymptotic results Robust estimate

# Euler characteristic

- ▶ d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } ⇔ { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ }  $\Leftrightarrow$  { domain is covered }
- ► d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ }  $\Leftrightarrow$  { space is covered }



Euler characteristic Asymptotic results Robust estimate

Euler characteristic (D.-Ferraz-Randriam-Vergne)

#### Euler characteristic

$$\mathsf{E}\left[\chi\right] = -\frac{\lambda e^{-\theta \, a^d}}{\theta} B_d(-\theta \, a^d) \text{ where } \theta = \lambda \left(\frac{2\epsilon}{a}\right)^d$$

where  $B_d$  is the *d*-th Bell polynomial

$$B_d(x) = \left\{ \begin{array}{c} d \\ 1 \end{array} \right\} x + \left\{ \begin{array}{c} d \\ 2 \end{array} \right\} x^2 + \ldots + \left\{ \begin{array}{c} d \\ d \end{array} \right\} x^d$$



Euler characteristic Asymptotic results Robust estimate

# k simplices

#### The key remark

$$|\mathcal{C}_k| = \int h(x_1, \cdots, x_k) d\omega^{(k)}(x_1, \cdots, x_k)$$

#### where

$$h(x_1, \cdots, x_k) \triangleq \frac{1}{k!} \prod_{i \neq j} \mathbf{1}_{\{\|x_i - x_j\| < \epsilon\}}$$

#### First moments

$$\mathsf{E}[|\mathcal{C}_k|] = \lambda \mathsf{a}^d \; rac{(k+1)^d}{(k+1)!} \; (\mathsf{a}^d heta)^k$$



Euler characteristic Asymptotic results Robust estimate

# **Dimension 5**





Euler characteristic Asymptotic results Robust estimate

# Depoissonization

## k simplices

$$\mathsf{E}[|\mathcal{C}_k| \mid |\mathcal{C}_0| = n] = \binom{n}{k+1}(k+1)^d \left(\frac{2\epsilon}{a}\right)^{dk}$$

#### Euler characteristic

$$\mathsf{E}[\chi \mid |\mathcal{C}_0| = n] = \sum_{k=0}^n \binom{n}{k+1} (-1)^k (k+1)^d \left(\frac{2\epsilon}{a}\right)^{dk}$$



Euler characteristic Asymptotic results Robust estimate

# Second order moments

$$Cov(|\mathcal{C}_k|, |\mathcal{C}_l|) = \left(\frac{1}{2\epsilon}\right)^d \sum_{i=0}^{l-1} \frac{1}{i!(k-l+i)!(l-i)!} \theta^{k+i} \times \left(k+i+2\frac{i(k-l+i)}{l-i+1}\right)^d.$$



Euler characteristic Asymptotic results Robust estimate

## Second order moments

$$\operatorname{Cov}(|\mathcal{C}_k|, |\mathcal{C}_l|) = \left(\frac{1}{2\epsilon}\right)^d \sum_{i=0}^{l-1} \frac{1}{i!(k-l+i)!(l-i)!} \theta^{k+i} \times \left(k+i+2\frac{i(k-l+i)}{l-i+1}\right)^d.$$

#### Tools

- Chaos decomposition of  $|C_k|$
- Chaos multiplication formula





Euler characteristic Asymptotic results Robust estimate

# Poisson chaos

#### Theorem

$$I_n(f^{\otimes n}) = \left(\int f(x_1) (d\omega(x_1) - \lambda \ dx_1)\right)^n$$
  
=  $\int \dots \int \prod_{j=1}^k f(x_j) \otimes_{j=1}^n (d\omega(x_j) - \lambda dx_j)$   
=  $\sum_{k=0}^n \binom{n}{k} (-1)^{n-k}$   
 $\times \int \prod_{j=1}^k f(x_j) \ d\omega^{(k)}(x_1, \dots, x_k) (\int f(x)\lambda \ dx)^{n-k}$ 



Euler characteristic Asymptotic results Robust estimate

# Chaos

#### Extension

• Any symmetric  $f(x_1, \dots, x_k)$  is the limit of

$$g_n = \sum_i \alpha_{n,i} \prod_{j=1}^k f_{n,i}(x_j)$$

For f non symmetric, let

$$f^{s}(x_{1}, \cdots, x_{k}) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} f(x_{\sigma(1)}, \cdots, x_{\sigma(k)})$$

and

$$I_n(f) := I_n(f^s)$$

Euler characteristic Asymptotic results Robust estimate

# Chaos multiplication formula

#### Theorem

$$I_{i}(f_{i})I_{j}(f_{j}) = \sum_{s=0}^{2(i\wedge j)} I_{i+j-s} \left( \sum_{s \leq 2t \leq 2(s \wedge i \wedge j)} t! \binom{i}{t} \binom{j}{t} \binom{t}{s-t} f_{i} \circ_{t}^{s-t} f_{j} \right)$$



Euler characteristic Asymptotic results Robust estimate

# Euler characteristic

#### Euler characteristic

$$\operatorname{var}[\chi] = \left(\frac{a}{2\epsilon}\right)^d \sum_{n=1}^{\infty} c_n^d \, \theta^n,$$

where

$$c_{n}^{d} = \sum_{j=\lceil (n+1)/2 \rceil}^{n} \left[ 2 \sum_{i=n-j+1}^{j} \frac{(-1)^{i+j}}{(n-j)!(n-i)!(i+j-n)!} \left( n + \frac{2(n-i)(n-j)}{1+i+j-n} \right)^{d} - \frac{1}{(n-j)!^{2}(2j-n)!} \left( n + \frac{2(n-j)^{2}}{1+2j-n} \right)^{d} \right].$$



Euler characteristic Asymptotic results Robust estimate

# Euler characteristic

# Euler characteristic

$$\operatorname{var}[\chi] = \left(\frac{a}{2\epsilon}\right)^d \sum_{n=1}^{\infty} c_n^d \, \theta^n,$$

#### where

$$c_{n}^{d} = \sum_{j=\lceil (n+1)/2 \rceil}^{n} \left[ 2 \sum_{i=n-j+1}^{j} \frac{(-1)^{i+j}}{(n-j)!(n-i)!(i+j-n)!} \left( n + \frac{2(n-i)(n-j)}{1+i+j-n} \right)^{d} - \frac{1}{(n-j)!^{2}(2j-n)!} \left( n + \frac{2(n-j)^{2}}{1+2j-n} \right)^{d} \right].$$

In dimension 1,

$$\mathsf{Var}(\chi) = \left( heta e^{- heta} - 2 heta^2 e^{-2 heta}
ight)$$



Euler characteristic Asymptotic results Robust estimate

#### Asymptotic results

# If $\lambda \to \infty$ , $\beta_i(\omega) \xrightarrow{p.s.} \beta_i(\mathbb{T}^d) = \binom{d}{i}$ .



Euler characteristic Asymptotic results Robust estimate

# Limit theorems

#### CLT for Euler characteristic

$$\mathsf{distance}_{\mathcal{T}\mathcal{V}}\left(\frac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} \cdot$$



Euler characteristic Asymptotic results Robust estimate

# Limit theorems

#### CLT for Euler characteristic

$$\mathsf{distance}_{\mathcal{T}V}\left(rac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)
ight) \leq rac{c}{\sqrt{\lambda}}.$$

#### Method

- Stein method
- Malliavin calculus for Poisson process



Euler characteristic Asymptotic results Robust estimate

## Concentration inequality

- Discrete gradient  $D_x F(\omega) = F(\omega \cup \{x\}) F(\omega)$
- $D_x\beta_0 \in \{1, 0, -1, -2, -3\}$



Euler characteristic Asymptotic results Robust estimate

## Concentration inequality

- Discrete gradient  $D_x F(\omega) = F(\omega \cup \{x\}) F(\omega)$
- $D_x\beta_0 \in \{1, 0, -1, -2, -3\}$



Euler characteristic Asymptotic results Robust estimate

## **Concentration inequality**

• Discrete gradient  $D_x F(\omega) = F(\omega \cup \{x\}) - F(\omega)$ 

• 
$$D_x \beta_0 \in \{1, 0, -1, -2, -3\}$$

# $c > \mathsf{E}[\beta_0]$

$$P(eta_0 \geq c) \leq \exp\left[-rac{c - \mathsf{E}[eta_0]}{6}\log\left(1 + rac{c - \mathsf{E}[eta_0]}{3\lambda}
ight)
ight]$$



Euler characteristic Asymptotic results Robust estimate

# **Complexity**

#### An important remark

Construction of the complex is exponential (worst case)



Euler characteristic Asymptotic results Robust estimate

# **Complexity**

#### An important remark

- Construction of the complex is exponential (worst case)
- Computations of Betti numbers is polynomial



Euler characteristic Asymptotic results Robust estimate

# Further application (D.-Martins-Vergne)

#### Green networking

Switch off some sensors keeping the coverage

# Height of an edge

Rank of the highest simplex it belongs to

#### Index of a vertex

Infimum of the height of its adjacent edges



Euler characteristic Asymptotic results Robust estimate

$$V_{2} \qquad V_{3} \qquad V_{4} \qquad V_{1} \qquad V_{4} \qquad V_{1} \qquad V_{2} = D[v_{0}, v_{1}, v_{3}] = D[v_{0}, v_{2}, v_{3}] = D[v_{1}, v_{2}, v_{3}] = 3$$

$$D[v_{1}, v_{3}, v_{4}] = 2$$

$$I[v_{0}] = I[v_{2}] = 3 \text{ and } I[v_{1}] = I[v_{3}] = I[v_{4}] = 2$$



Euler characteristic Asymptotic results Robust estimate

# Example



#### • Complexity C bounded by $2^{H}$



Euler characteristic Asymptotic results Robust estimate

# Complexity

$$\theta_n = (r_n/a)^d$$

$$\theta'_{k} = \frac{k^{\frac{1+\eta-d}{k-1}}}{n^{\frac{k}{k-1}}}, \ \theta_{k} = \frac{k^{-\frac{1+\eta+d}{k-1}}}{n^{\frac{k}{k-1}}}$$
$$\theta_{n} \in [\theta'_{k}, \theta_{k}] \Longrightarrow C \xrightarrow{n \to \infty} k$$



Euler characteristic Asymptotic results Robust estimate

# Other regimes

# Theorem (Critical: $n\theta_n \rightarrow 1$ )

$$C = O(n^3 \ln n).$$



Euler characteristic Asymptotic results Robust estimate

# Other regimes

## Theorem (Critical: $n\theta_n \rightarrow 1$ )

 $C = O(n^3 \ln n).$ 

#### Theorem (Super-critiqual: $n\theta_n \to \infty$ )

$$C_n = O(2^n n^3)$$



Euler characteristic Asymptotic results Robust estimate

#### Improvement

# Energy saving Path loss $\frac{\text{Emitted power}}{\text{distance}(E,R)^{\gamma}}$ Received Power = K



Euler characteristic Asymptotic results Robust estimate

#### Improvement

#### Energy saving

Path loss

Received Power = 
$$K \frac{\text{Emitted power}}{\text{distance}(E, R)^{\gamma}}$$

Covering radius such that

Received Power  $\geq$  Threshold


Euler characteristic Asymptotic results Robust estimate

#### Improvement

### Energy saving

Path loss

Received Power = 
$$K \frac{\text{Emitted power}}{\text{distance}(E, R)^{\gamma}}$$

Covering radius such that

Received Power  $\geq$  Threshold

• Covering radius proportional to (Emitted power) $^{1/\gamma}$ 



Euler characteristic Asymptotic results Robust estimate

# Power saving algorithm I

get collection of cells  $\mathbb{C}$  and corresponding vertice  $\mathbb{V}$ ; build Čech complex for  $\mathbb{C}$ ; compute Betti number  $\beta_{0}^{*}$ ,  $\beta_{1}^{*}$  and index  $\hat{i}_{v}$  for each  $v \in \mathbb{V}$ ; flag fence, critical cells as not reducible; flag cells whose index < 2 as not reducible;  $\hat{i}_{\max} = \max\{\hat{i}_{\nu} | \nu \in \mathbb{V}\};$ while exist a reducible cell do  $\mathbb{C}^* \leftarrow \mathsf{collection} \mathsf{ of cells whose index} = \hat{i}_{\mathsf{max}}$ c is a cell  $\in \mathbb{C}^*$  whose biggest radius;  $R_{old} \leftarrow R_c;$ if  $R_c - \Delta R_c \geq R_{c,\min}$  then  $R_c \leftarrow R_c - \Delta R_c$ else turn off cell c:



Euler characteristic Asymptotic results Robust estimate

# Power saving algorithm II

#### end if

build Čech complex for  $\mathbb{C}$  and compute  $\beta_0$ ,  $\beta_1$ ; compute index for cell c;

if 
$$\beta_0 \neq \beta_0^*$$
 or  $\beta_0 \neq \beta_0^*$  or  $\hat{i}_c < 2$  then  
 $R = R + \Delta R$ 

 $R_c = R_c + \Delta R_c;$ 

set cell c is not reducible and set index of c to -1; end if

 $\begin{array}{l} \mbox{compute index for every cell} \in \mathbb{C};\\ \hat{i}_{\max} = \max\{\hat{i}_{v} | v \in \mathbb{V}\};\\ \mbox{end while} \end{array}$ 



Euler characteristic Asymptotic results Robust estimate

# Around 60% of power saving



Euler characteristic Asymptotic results Robust estimate

### Damaged wireless network





Coverage



Euler characteristic Asymptotic results Robust estimate



- Quality of Service
  - Coverage
- Disaster
  - Damaged nodes
  - Coverage holes
  - Several connected components



Euler characteristic Asymptotic results Robust estimate





Euler characteristic Asymptotic results Robust estimate

# Recovery

#### Addition of temporary nodes

- Not in the same positions as the previous ones
- Just enough to repair the network

#### Questions

- How do we know that the network is repaired?
- Where do we put the new nodes?



Euler characteristic Asymptotic results Robust estimate



- Addition of virtual boundary nodes
  - To define the area to cover



Euler characteristic Asymptotic results Robust estimate



- Addition of virtual boundary nodes
  - To define the area to cover



Euler characteristic Asymptotic results Robust estimate



- Addition of virtual boundary nodes
  - To define the area to cover
- Computation of the coverage complex
  - ▶ β<sub>0</sub> = 2
  - ▶ β<sub>1</sub> = 1



Euler characteristic Asymptotic results Robust estimate

### Where do we put the new nodes?

#### Constraints

- Add enough nodes to repair the network
- Not too much

#### Last step

#### Remove superfluous nodes



Euler characteristic Asymptotic results Robust estimate

### Where do we put the new nodes?

### Virtual nodes addition methods

- Grid
- Uniform
- Determinantal



Euler characteristic Asymptotic results Robust estimate



- Grid method
  - Deterministic number of nodes
  - Deterministic positions



Euler characteristic Asymptotic results Robust estimate



- Grid method
  - Deterministic number of nodes
  - Deterministic positions



Euler characteristic Asymptotic results Robust estimate



- Grid method
  - Deterministic number of nodes
  - Deterministic positions



Euler characteristic Asymptotic results Robust estimate



- Uniform method
  - Add nodes until the square is covered
  - Random positions following a uniform law on the square



Euler characteristic Asymptotic results Robust estimate



- Uniform method
  - Add nodes until the square is covered
  - Random positions following a uniform law on the square



Euler characteristic Asymptotic results Robust estimate



- Uniform method
  - Add nodes until the square is covered
  - Random positions following a uniform law on the square



Euler characteristic Asymptotic results Robust estimate

# Ginibre point process

#### Ginibre point process

- ► Let  $K(x, y) = \sum_{k=1}^{\infty} B_k \phi_k(x) \overline{\phi_k(y)}$ , where  $B_k, k = 1, 2, ...,$ are k independent Bernoulli variables and  $\phi_k(x) = \frac{1}{\sqrt{\pi k!}} e^{\frac{-|x|^2}{2}} x^k$  for  $x \in \mathbb{C}$  and  $k \in \mathbb{N}$
- The Ginibre point process is the point process with correlation function given by

$$\rho_n(x_1,\ldots,x_n) = \det(K(x_i,x_j)_{1 \le i,j \le n})$$

$$E[\xi(K)(\xi(K)-1)\dots(\xi(K)-n+1)]$$
  
=  $\int_{K^n} \rho_n(x_1,\dots,x_n) dx_1\dots dx_n$ 



Euler characteristic Asymptotic results Robust estimate

# Ginibre point process

#### Ginibre point process

► Let  $K(x, y) = \sum_{k=1}^{\infty} B_k \phi_k(x) \overline{\phi_k(y)}$ , where  $B_k, k = 1, 2, ...,$ are k independent Bernoulli variables and  $\phi_k(x) = \frac{1}{\sqrt{\pi k!}} e^{-|x|^2} x^k$  for  $x \in \mathbb{C}$  and  $k \in \mathbb{N}$ 

The Ginibre point process is the point process with correlation function given by

$$\rho_n(x_1,\ldots,x_n) = \det(K(x_i,x_j)_{1 \le i,j \le n})$$

$$E[\xi(\mathcal{K})(\xi(\mathcal{K})-1)\dots(\xi(\mathcal{K})-n+1)]$$
  
=  $\int_{\mathcal{K}^n} \rho_n(x_1,\dots,x_n) dx_1\dots dx_n$ 



Euler characteristic Asymptotic results Robust estimate

# Repulsion

# Definition (Papangelou intensity)

$$c(x, \omega) = P(x + \omega \subset \xi | \omega \subset \xi)$$



Euler characteristic Asymptotic results Robust estimate

# Repulsion

## Definition (Papangelou intensity)

$$c(x,\,\omega)=P(x+\omega\subset\xi\,|\,\omega\subset\xi)$$

### Theorem (For a Ginibre process)

$$c(x, \{x_1, \cdots, x_n\}) = \frac{\det J(\{x_1, \cdots, x_n, x\})}{\det J(\{x_1, \cdots, x_n\})}$$

where

$$J(x,y) = \sum_{n \ge 1} \mathcal{K}^{\circ(n)}(x,y)$$
$$\mathcal{K}^{\circ(n)}(x,y) = \int \mathcal{K}^{\circ(n-1)}(x,z)\mathcal{K}(z,y) \, dz$$



Euler characteristic Asymptotic results Robust estimate

# Repulsion

## Definition (Papangelou intensity)

$$c(x,\,\omega)=P(x+\omega\subset\xi\,|\,\omega\subset\xi)$$

### Theorem (For a Ginibre process)

$$c(x, \{x_1, \cdots, x_n\}) = \frac{\det J(\{x_1, \cdots, x_n, x\})}{\det J(\{x_1, \cdots, x_n\})}$$

where

$$J(x,y) = \sum_{n \ge 1} \mathcal{K}^{\circ(n)}(x,y)$$
$$\mathcal{K}^{\circ(n)}(x,y) = \int \mathcal{K}^{\circ(n-1)}(x,z)\mathcal{K}(z,y) \, dz$$



Euler characteristic Asymptotic results Robust estimate





Euler characteristic Asymptotic results Robust estimate

# Ginibre determinantal point process



Figure : Poisson point process vs Ginibre determinantal point process



LECON

Euler characteristic Asymptotic results Robust estimate

## Determinantal addition method



- Determinantal method
  - Add nodes until the square is covered
  - Random positions using a Ginibre point process



Euler characteristic Asymptotic results Robust estimate

### Determinantal addition method



- Determinantal method
  - Add nodes until the square is covered
  - Random positions using a Ginibre point process


Euler characteristic Asymptotic results Robust estimate

### Determinantal addition method



- Determinantal method
  - Add nodes until the square is covered
  - Random positions using a Ginibre point process



Euler characteristic Asymptotic results Robust estimate

# Final configuration (with determinantal addition method)



- Reduction algorithm
  - Removal of superfluous added nodes
  - Optimized number of added nodes



Euler characteristic Asymptotic results Robust estimate

# Final configuration (with determinantal addition method)



- Reduction algorithm
  - Removal of superfluous added nodes
  - Optimized number of added nodes



Euler characteristic Asymptotic results Robust estimate

# Final configuration (with determinantal addition method)



- Reduction algorithm
  - Removal of superfluous added nodes
  - Optimized number of added nodes



Euler characteristic Asymptotic results Robust estimate

## Comparison between addition methods

- Different scenarios depending on the percentage of area still covered after the disaster
- Square side of 1
- Coverage radius of 0.25
- Mean number of added vertices:

| % of area initially covered | 20%   | 40%   | 60%   | 80%   |
|-----------------------------|-------|-------|-------|-------|
| Grid method                 | 9.00  | 9.00  | 9.00  | 9.00  |
| Uniform method              | 32.51 | 29.34 | 24.64 | 15.63 |
| Determinantal method        | 16.00 | 14.62 | 12.36 | 7.79  |



Euler characteristic Asymptotic results Robust estimate

## Comparison with a greedy algorithm

#### Greedy algorithm

- Lays nodes along a grid
- Adds nodes from the furthest to the nearest
- Until the furthest is already covered
- Similar to our algorithm with the grid addition method
- Mean final number of added vertices:

| % of area initially covered | 20%  | 40%  | 60%  | 80%  |
|-----------------------------|------|------|------|------|
| Greedy algorithm            | 3.69 | 3.30 | 2.84 | 1.83 |
| Homology algorithm          | 4.42 | 3.87 | 2.97 | 1.78 |



Euler characteristic Asymptotic results Robust estimate

### Robustness

| % of area initially covered | 20%  | 40%  | 60%  | 80%  |
|-----------------------------|------|------|------|------|
| Greedy algorithm            | 0.68 | 0.67 | 0.48 | 0.35 |
| Homology algorithm          | 0.58 | 0.52 | 0.36 | 0.26 |

Table : Mean number of holes after a Gaussian perturbation

| % of area initially covered | 20%   | 40%   | 60%   | 80%   |
|-----------------------------|-------|-------|-------|-------|
| Greedy algorithm            | 40.7% | 45.2% | 58.8% | 68.9% |
| Homology algorithm          | 54.0% | 58.0% | 68.8% | 76.1% |

Table : Probability that there is no hole after a Gaussian perturbation



Euler characteristic Asymptotic results Robust estimate

## Conclusion

#### Disaster recovery algorithm

- patches damaged wireless network
- adds enough virtual nodes to repair the network
- runs a reduction algorithm on the virtual added nodes
- Simplicial homology representation
  - to compute the connectivity and the coverage of a wireless network
- Ginibre determinantal point process
  - to place nodes where they are needed



Euler characteristic Asymptotic results Robust estimate

## **Bibliography I**

- L. Decreusefond, E. Ferraz, H. Randriam and A. Vergne. Simplicial Homology of Random Configurations. In Advances in Applied Probability, 46(2), 2014. hal-00578955
- [2] L. Decreusefond, I. Flint, and A. Vergne. Efficient simulation of the Ginibre process. hal-00869259, to appear in Adv. in Applied Prob.
- [3] A. Vergne, L. Decreusefond, and P. Martins. Reduction algorithm for simplicial complexes. In *INFOCOM*, 2013 *Proceedings IEEE*, pages 475–479, 2013. hal-00864303



Euler characteristic Asymptotic results Robust estimate

## **Bibliography II**

- [4] A. Vergne, I. Flint, L. Decreusefond, and P. Martins. Disaster Recovery in Wireless Networks: A Homology-Based Algorithm. In International Conference on Telecommunications 2014 (ICT2014), May 2014. Best paper award. hal-00800520
- [5] A. Vergne. Topologie algébrique appliquée aux réseaux de capteurs, PhD (2013) Prix de thèse Futur et Ruptures, 2014

