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The abstraction of measurment, in terms of mathematical notions distance,

similarity, metric, etc. was originated by M.Fréchet (1906) and F.Hausdorff

(1914). Triangle inequality, crucial in it, appears already in Euclid.

Given a set X , a distance (or dissimilarity) on it is a function

d : X ×X → R≥0 with all d(x, x) = 0 and d(x, y)=d(y, x) (symmetry).

A similarity is a symmetric function s : X ×X → R≥0 such that

s(x, y) ≤ s(x, x) holds for all x, y ∈ X with equality if and only if x = y.

A metric is a symmetric function d : X ×X → R≥0 with d(x, y) = 0 iff

x = y and triangle inequality d(x, y) ≤ d(x, z) + d(z, y) if x, y, z ∈ X .

A metric space is a set X with a metric defined on it: (X, d).

Main transforms used to obtain a distance d from a similarity s ≤ 1 are:

d = arccos s, d = − ln s, d = 1− s, d = 1−s
s , d =

√
1− s, d =

√

2(1− s2).
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Metric spaces started century ago as a special case of an infinite

topological space. But from K.Menger (1928) and L.M.Blumenthal (1953),

an explosion of interest in both, finite and infinite metric spaces, occurred.

By now, theories involving distances and similarities florished in many areas

of Mathematics including Geometry, Probability, Coding/Graph Theory.

Many mathematical theories, in the process of their generalization, settled

down on the level of metric space. It is ongoing process in Riemannian

Geometry, Real Analysis, Approximation Theory.

On the other hand, distances and metrics are now an essential tool in many

areas of Applied Mathematics, say, Clustering, Data Analysis, Statistics,

Computer Graphics/Vision, Networks, Computational Biology.

Besides distances themselves, powerful distance-related notions and

paradigms (various generalized metrics, metric transforms, numerical

invariants, distance maps etc.) began to be applied.
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DISTANCES IN PATTERN RECOGNITION
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PR (Pattern Recognition) is a part of Machine Learning (extraction of the

regularity from the data) aiming to classify individual data (patterns,

objects) into groups, categories, i.e., assosiate each data item with the label

(say, ”color”) of a particular class.

For example, in optical character or handwriting PR (spatial items),

image feature vectors (shape, gray shade etc.) are labeled by characters in

the input, while in speech PR (temporal items), spectral or cepstral

features of waveforms are labeled by phones or words.

PR system consists of sensor gathering and filtering raw data, (in form of

measurements, observations), representatation computing information from

data and classifier, a PR algorithm actually classifying, or describing data.

Representatation is feature-based if objects are given as points in Rn

(feature vectors) once n features (parameters) are defined, or

distance-based if objects are given by their distances (pairwise and to given

ones) once a suitable distance function is defined.
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• Supervised PR (instance-based, memory-based learning): there is a

training set T of previously classified patterns (stored labeled examples,

instances, templates, prototypes).

Classifier algorithm generate a classification input-output function.

PR system learn (approximate) behaviour of this function, which maps

incoming pattern (query point, test point) into a class (the label of the

best match) comparing it with given input-output examples from T .

Main classifiers (decision rules) are: (relatively simple Bayesian,

distance-based and decision boundary-based (decision trees, support

vector machines, discriminant functions, powerful neural networks).

• Unsupervised PR learning: system itself establishes the classes, it does

clustering, i.e. partitioning a data set into clusters defined by a suitable

similarity (proximity) measure and so, by a distance function.
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Main distance-based classifiers are: minimum distance (choose label of

closest instance to query), k-nearest neighbor or k-NN (choose most

frequently represented label among k nearest neighbors or decide voting

weight by the distance of the neighbor), Parzen Windows (choose label with

maximal occurence within a given size window (say, a ball) around query.

(Artificial) neural network is a Neuroscience-inspired computational model:

the neurons (vertices, units, processing elements) are connected into an

adaptive, learning complex network. A distance is important in two cases:

Radial Basis Function: output depends of the distance to a prototype and

Self-organizing Map where a set of neurons learn (unsupervised) to map

input space I to less-dimensional output space preserving topology of I .

Another case of use of distances in PR: metric data structures indexing data

in metric space; especially, metric trees used in Nearest Neighbor Search.

7



So, one of main PR challenges (for distance-based representation, classifier

design, clustering etc.) is to define suitable distance function.

This choice is equivalent to implicit statistical assumption about data.

Compactness hypothesis (Arkadiev-Braverman, 1966): representations of

similar objects should be close. So, their distance should be invariant with

respect to small and irrelevant (preserving class) transformations of data.

Main unsolved PR problem is the relationship between data to be classified

and the performance of PR classifiers. At present, design of such algorithms

and, especially, distance functions is rather an art.

Inductive bias of any learning algorithm is the set of assumptions used to

predict certain target outputs given some training examples demonstrating

the intended input-output relation. For example, minimum description

length: simpler hypotheses are more likely to be true (Occam’s razor).

Cognitive bias: distortion of reality perception by humans (observer effects).
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The distance between objects can be between their feature vectors

(feature-based), or between their graphs (or other structural

representations) or directly between raw data (as for image shapes).

Distance measure can be selected/interpreted in a space: Euclidean, other

metric, non-metric including so general/exotic ones as kernels

(positive-definite inner products), pseudo-Euclidean (indefinite inner

product) and extended topology.

A distance d can be approximated by a metric: take d(x, y)+d(y, x) if d is a

quasi-metric (d(x, y) 6= d(y, x)) or eqv. classes if d is a semi-metric

(d(x, y)=0 for x 6= y) and shortest paths if the triangle inequality fails.

A classifier then applied to obtained distance values,

either in this space (usually, neighborhood-based algorithms),

or in one where dimensions refer to distances to given objects,

or in less-dimensional space where original one is projected/embedded.
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The PR distance measures are between models (statistical or

prototypes) or between a model and observations.

For Sound Recognition, the distances are between a template reference

and input signal, while for Noise Reduction, they are between original

(reference) and distorted signal.

For Image Retrieval, the distances are between feature vectors of a query

and reference, while for Image Processing (as Audio Noise Reduction),

they are between approximated and “true” digital images (to evaluate

algorithms).

Image Retrieval (similarity search) consists of (as for pattern

recognition with other data: audio, DNA/protein sequences, text

documents, time series etc.) finding images whose features values are

similar either between them, or to given query or in given range.
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Main ways of removing the irrelevant and redundant information in data :

Feature selection: most systems preselect a small (≤ 100, except automatic

text PR) set of features based on intuition.

Dimensionality reduction projects high-dimensional data to a space of lower

dimension (each new dimension is a combination of the original features)

with minimal loss of information. Example: Principal Component Analysis

Space partitioning looks for hyper-boxes (regions of the sample or feature

space, where the classes are represented with lower ambiguity. The best of

these regions are used to create rules for a rule-based classier.

In feature extraction, new features are created by combinations and

transformations of existing features.

Inductive decision trees are classiers recursively partitioning the space in

order to create classication trees. For example, difference of entropy before

and after the partition can be used to select the best feature.
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Needed training set can be too large. For example, in handwritten digit

PR, prototype digits of each class should come in all sizes, positions, angles,

line thicknesses, writing styles, skews. So, given the set T of all irrelevant

(i.e., preserving class) transformations, there are following solutions.

1. Feature extraction: find representation minimally affected by t ∈ T .

2. Design invariant distance d, i.e. d(x, y) = d(t1(x), t2(y)) for any pattern

x, prototype y and t1, t2 ∈ T . Simard, Le Gun, Denker, Victorri (1998)

tangent distance is, roughly, the distance between manifolds (or just

curves) T (x) and T (y). ( Procrustes distance between shapes is the

case when T consists of translations and rotations of image.)

But, in general, manifolds T (x), T (y) have no analytic expression

(hence, difficult to compute and store) and non-linear. So, the distance

is taken between linear surfaces that best approximate them, tangents.
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SVM (support vector machine) classifier (Vapnik, 1995) maps input vectors

x ∈ X ⊂ Rn (with non-linear class boundaries) into elements f(x) ∈ HN of

a Hilbert space with n ≪ N ≤ ∞, so that boundaries became hyperplanes

(linear) and inner product 〈f(x), f(y)〉 in H
N can still be computed in R

n.

It is possible if K(x, y) := 〈f(x), f(y)〉 is a kernel (symm. positive-definite

function). Kernel trick: equiv. of linear PR in HN to non-linear PR in Rn.

For example, if f(x = (x1, x2)) = (x2
1,
√
2x1x2, x

2
2), then

〈f(x), f(y)〉 = f(x)f(y)T = (〈x, y〉)2 = K(x, y).

Main kernels used in SVM are: xT y (linear), (axT y + b)c (polynomial),

exp{−a||x− y||2}(radial basis function), tanh{axy + b)} (sigmoid) where

a > 0 and b, c are positive integers.

Let {(x(i), yi))}mi=1 be the set of support vectors x(i) (instances lying on 2

bounding hyperplanes:
∑m

i=1 λiyi = 0, λi > 0) with labels yi ∈ {−1,+1}
(two-class classification). Final SVM classifier F (x)=t+

∑m
i=1 λiyiK(x(i), x)

(Cristianini and Shawe-Taylor, 2000) gives maximal margin of hyperplanes.
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Instead of fixing distance/similarity function, it can itself be learned.

In Content-Based Image Retrieval, it is learned from a training set of

positive and negative eqv. constraints (”similar” or ”different” point pairs).

El-Naqa et al., 2004: this learning is seen as nonlinear regression of the

similarity coefficient on the features of the image.

Hertz et al., 2005: such learning is by training binary classifiers (over pairs

of images) with margins to distinguish between pairs from the same or

different class. The signed margin is used as a distance function.

Eick et al., 2006: objects from data set are clustered by a given distance

function D, then local class density information of each cluster is used by a

weight adjustment heuristic to modify D so that density is increased in the

attribute space. Process is repeated until ”good” distance function is found.

Herz and Yanover, 2006: peptid-peptid distance was learned from pairs

of peptids known to co-bind or not the same Human Leucocyte Antigen.
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Main real-word PR applications are: Computer Vision (including Medical

Imaging, Handwriting, Face Recognition), Biometric Identification, Audio

(including Speech) Recognition, Biology, Credit scoring, Market Research,

Geostatistics (including weather maps), Interner search engines, Text

classification (spam/non spam, documents).

Especially intense ongoing search for suitable distances occurs in Image

Analysis, Speech Recognition, Biology, Information Retrieval.

Clustering is applied in Computational Biology/Bioinformatics in order:

to build groups of genes with related expression pattern;

to group homologous sequences into gene families;

to automatically assign genotypes in high-troughput genotyping platforms;

and, in Ecology, to generate artificial phylogenies of organisms sharing

some attributes at species/genus level or to make spatial/temporal

comparisons of communities of organisms in heterogeneous environments.
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Cluster Analysis consists of partition of data into relatively small number

of clusters, i.e., such sets of objects, that (with respect of selected measure

of distance) the objects, best possible “close” if belong to the same cluster,

“far” if not, and further subdivision will impair above two conditions.

We give two typical examples of clustering. In Information Retrieval

applications, nodes of peer-to-peer database network export a data

(collection of text documents); each document is characterized by a vector

from Rn. An user query consists of a vector x ∈ Rn, and user needs all

documents in database which are relevant to it, i.e., belong to the ball in

R
n, centered in x, of fixed radius and with convenient distance function.

In Record Linkage, each document (database record) is represented by a

term-frequency vector x ∈ R
n or a string, and one wants to measure

semantic relevancy of syntactically different records.
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Once a distance d between objects is selected, the linkage metric, i.e., a

distance between clusters A = {a1, . . . , am} and B = {b1, . . . , bn} is usually

one of the following:

average linkage: the average of the distances between the all members of

those clusters, i.e.,
∑

i

∑
j
d(ai,bj)

mn ;

single linkage (or set-set distance): the distance between the nearest

members of those clusters, i.e., mini,j d(ai, bj);

complete linkage: the distance between the furthest members of those

clusters, i.e., maxi,j d(ai, bj);

centroid linkage: the distance between the centroids of those clusters,

i.e, ||ã− b̃||2, where ã =
∑

i
ai

m , and b̃ =
∑

j
bj

n ;

Ward linkage: the distance
√

mn
m+n ||ã− b̃||2.
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A data set is a set of m n-sequences (xj
1, . . . , x

j
n), j = 1, . . . ,m. The range

x1
i , . . . , x

m
i represent attribute Si. It can be numerical, incl. continuous

(real numbers) and binary (presence/absence expressed by 1/0), ordinal

(numbers expressing rank only), or nominal (not ordered). Following

setting of distance-based machine learning is used for many real-world

applications with incomplete data and continuous+nominal attributes.

Given an m× (n+ 1) matrix ((xij)), its row (xi0, xi1, . . . , xin) means

instance input vector xi = (xi1, . . . , xin) with output class xi0; the set of

m instances represents a training set during learning. For any new input

vector y = (y1, . . . , yn), the closest (in terms of selected distance d) instance

xi is sought, in order to classify y, i.e., predict its output class as xi0.

Then, say, d(xi, y) =
√

∑n
j=1 d

2
j(xij , yj) with dj(xij , yj) = 1 if xij or yj is

unknown. dj(xij , yj) = 1xij 6=yj
if attribute j (range of xij) is nominal;

dj = |xij − yj |/maxt xtj −mint xtj if j continuous.
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The choice of similarities and distances in Clustering depends on the

nature of data and it is an art. Examples follow.

The cosine similarity (or Orchini similarity, angular similarity,

normalized dot product) on Rn is

〈x, y〉
||x||2 · ||y||2

= cosφ,

where φ is the angle between vectors x and y. In Record Linkage, it is is

called TF-IDF (for term Frequency – Inverse Document Frequency).

The cosine distance is 1− cosφ.
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The Hamming metric on Rn is dH = |{i : 1 ≤ i ≤ n, xi 6= yi}|.
On vertices of unit cube {0, 1}n it is l1-metric and squared l2-metric.

Eqv., for subsets A,B ⊂ X with |X | = n, it is measure metric |A△B|.

The Bray-Curtis distance on R
n is

∑ |xi−yi|∑
(xi+yi)

.

The Canberra distance on Rn is
∑ |xi−yi|

|xi|+|yi| .

The Mahalonobis distance (or statistical distance) on Rn is
√

(detA)
1
n (x− y)A−1(x− y)T ,

where A is a positive-definite matrix.

The Hellinger distance on R
n
+ is

√

2
∑

(

√

xi

x −
√

yi

y

)2

.
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EXAMPLE 1.

In Face Recognition, are used sets of (vertical/horizontal) cephalofacial

dimensions, i.e., distances between fiducial (used as a fixed standard of

reference for measurement) facial points. The distances are normalized, say,

with respect of inter-pupillary distance for horizontal ones.

For example, the following 5 independent facial dimensions are derived by

Fellous, 1997, for facial gender recognition:

distance E between external eye corners,

nostril-to-nostril width N ,

face wigth at cheek W

and two vertical distances: eye-to-eyebrow distance B and

distance L between eye midpoint and horizontal line of mouth.

In above terms, ”femaleness” relies on large E, B and small N,W,L.
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A typical example of real-world PR: Datcu and Rothkranz, 2007, proposed

a Web based automatic emotion recognition system from audio/video data.

User can upload speech (in German) and visual (video sequence or photo)

files and run remotely full emotion recognition process on the input face.

The output is one of 6 innate (to generate and interpret) facial expressions:

happiness, anger, disgust, fear/anxiety, surprise (or boredom), sadness. All

other expressions have to be learned by humans (Ekman and Friesen, 1978).

The visual data are encoded as vectors of 17 facial features. As above, they

are selected 17 Euclidean distances between selected key 21 facial points.

The emotional content of speech data is evaluated using database Berlin of

German emotional speech: utterance samples by 10 native German actors

(5 females and 5 males) simulating emotions, were recorded at freq. 16kHz.
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EXAMPLE 2.

In a computer, processor is the chip doing all the computations, and

memory usually refers to RAM (random access memory). Processor

cache stores small amounts of recently used information right next to the

processor where it can be accessed much faster than memory.

The reuse distance (Mattson et al, 1970) of a memory location is the

number of distinct memory references between two accesses of it. (Each one

is counted only once because after access it is moved in cache.) This

distance evaluate cache behavior of programs.

Cf. program locality metric (Gorla and Zhang, 1999) measuring globally

the locations of program’s components, their calls and the depth of nested

calls by
∑

i,j
fijdij

∑
i,j

fij
, where dij is a distance between calling components i, j,

and fij is the frequency of calls from i to j.
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Reuse pattern is a histogram of the percentage of memory accesses whose

reuse distance falls inside consecutive ranges k% divided between 0 and the

reuse data size (maximal reuse distance). PR here (Ding and Zhong,

2003) detects whether the reuse pattern is predictable accross data inputs.

Reference histogram show the average reuse distance of each k% of all

memory references. (Its use permits isolate effect of non-recurrent parts of

the program and control the granularity of prediction.)

Given 2 reference histograms from 2 training data inputs, the formula for

distance in i-th bin is di = ci + eif(si), where si is maximal reuse distance,

f is known (at most linear, say, constant or linear) function. Coefficients

ci, di are computed from at least 2 training inputs (d1, s1), (d2, s2).

Limitations: predicting reuse pattern does not mean predicting execution

time; the prediction gives the percentage distribution but not the total

number of memory accesses.
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EXAMPLE 3: distance function selection for PR in neuronal network.

To gain information about functional connectivity of a neuronal network,

one needs to classify neurons, in terms of their firing similarity; so, to select

a distance function and a clustering algorithm. A classical example: simple

and complex cells discrimination between in the primary visual cortex.

A human brain has ≈ 1011 of neurons (nerve cells). Neuronal response to

a stimulus is a continuous time series. It can be reduced, by a threshold

criterion, to much simpler discrete series of spikes (short electrical pulses),

A spike train is a sequence x = (t1, . . . , ts) of s events (neuronal spikes, or

hearth beats, etc.) listing absolute spike times or inter-spike time intervals.

”Good” distances between spike trains should minimize bias (due to

predefining analysis parameters if any) and resulting clusters should well

match the stimuli and reproduce some control clustering.
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Main distances between spike trains x = x1, . . . , xm and y = y1, . . . , yn:

1. |n−m|
max{m,n} (spike count distance); no bias by predefining analysis

parameters, but the temporal structure of trains is missed.

2.
∑

1≤i≤s(x
′
i − y′i)

2, where, say, x′ = x′
1, . . . , x

′
s is the sequence of local

firing rates of train x = x1, . . . , xm partitioned in s time intervals of length

Trate (firing rate distance); bias due to predefinition of Trate.

3. Let τij =
1
2 min{xi+1 − xi, xi − xi−1, yi+1 − yi, yi − yi−1} and c(x|y)=

∑m
i=1

∑n
j=1 Jij , where Jij = 1, 1

2 , 0 if 0 < xi − yi ≤ τij , xi=yi, else, resp.

Event sinchronization distance (Quiroga et al., 2002) is 1− c(x|y)+c(y|x)√
mn

.

Two metrics (above and below) have no parameter presetting time scale.

4. Let xisi(t) = min{xi : xi > t} −max{xi : xi < t} for x1 < t < xm, and

let I(t) = xisi(t)
yisi(t)−1 if xisi(t) ≤ xisi(t) and I(t) = 1− yisi(t)

xisi(t)
, otherwise.

Kreuz et al., 2007, ISI distances are
∫ T

t=0
dt|I(t)| and ∑m

i=1 |I(ti)|.
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5. information distances (Kullback-Leibler distance
∑

i xi ln
xi

yi
or

Kolmogorov complexity K(x|y) of train x given train y, i.e., the length

of the shortest program to compute x if y is provided as an auxiliary input.

The Kolmogorov complexity (algotithmic entropy) K(x) of x is the

length of a shortest program x∗ (ultimate compressed version of x) to

compute x on an universal computer usung a Turing-complete language.

6. The Lempel-Ziv distance between two binary n-strings x and y is

max{LZ(x|y)
LZ(x) , LZ(y|x)

LZ(y) }, where LZ(x) = |P (x)| log |P (x)|
n approximates

uncomputable Kolmogorov complexity K(x), and

LZ(x|y) = |P (x)\P (y)| log |P (x)\P (y)|
n . Here P (x) is the set of non-overlapping

substrings into which x is parsed sequentially, so that new substring is not

yet contained in the set of substrings generated so far. For example, such

Lempel-Ziv parsing for x = 001100101010011 is 0|01|1|00|10|101|001|11.

27



7. Victor-Purpura distance is the minimal cost of transforming x into y

by operations: insert, delete, shift a spike by time t with costs 1, 1, qt.

8. van Rossum distance, 2001, is
√

∫∞
0

(ft(x)− ft(y))2)dt, where x is

convoluted with ht =
1
τ e

−t/τ and τ ≈ 12 ms (best); ft(x) =
∑m

0 h(t− xi).

Victor-Purpura distance ≈ van Rossum L1-distance with ht=
q
2 if 0 ≤ t < 2

q

9. Aronov et al. distance between two sets of labelled (by firing neuron)

spike trains is the minimal cost of transforming one to the other by spike

operations insert/delete, shift by time t, relabel with costs 1, qt, k, resp.
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PR of 3D structures, besides Image Analysis and Tomography, applied

mainly in following areas:

In Biology (from 1982), to predict protein secondary structure (roughly,

the set of helices, or the list of paired bases, making up protein) and

tertiary structure (geometric form protein takes in space) from multiple

aligned primary structures (amino acid sequences).

In pharmacore (minimum active sequence) identification and drug design

(from 1986).

In chemical reactivity studies (from 1987).

For 3D molecular template recognition (from 1991): molecular shape

similarities (from interatomic distances) and molecular electronic

similarities (comparaison of their density functions).

General observations on distance design follow.
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• Distance should be invariant with respect to small and irrelevant

transformations of data.

• Distance can be upgraded to metric and corrected for bias.

• Distance can be between a prototype and input (or query) or

between true and distorted (or approximated) data.

• Distance can be abstract R≥0-valued or physical (as length):

between spatial or temporal points (the length of journey till, say,

speed or concentration reach fixed value).

• Usually, several distances on the same data should be compared.

• Distance/similarity can be implicite as in Clustering.

• Instead of fixing distance/similarity function, it can be learned.

• The choice of good distance/similarity is rather an art.
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BIRDVIEW ON METRIC SPACES

1. Metric repairs

2. Generalizations of metric spaces

3. Transform metrics

4. Numeric invariants of metric spaces

5. Relevant notions: special subsets, mappings, curves, convexity

6. Main classes of metric spaces
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METRIC REPAIRS

Let X be a set. A function d : X ×X → R≥0 with all d(x, x) = 0 is called a

quasi-distance (or, in

Topology, premetric) on X .

A quasi-distance d is a quasi-semi-metric (or hemimetric) if it holds

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality) for all x, y, z ∈ X , and

it is a quasi-metric if, moreover, d(x, y) > 0 for x 6= y.

If d(x, y) = d(y, x) (symmetry) holds for all x, y ∈ X , then above

quasi-distance, quasi-semi-metric, quasi-metric become, respectively:

distance (or dissimilarity), semi-metric (or pseudo-metric), metric.
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For a distance d, the function, defined by D(x, x) = 0 and, for x 6= y by

D1(x, y) = d(x, y) + maxx,y,z∈X(d(x, y)− d(x, z)− d(y, z)) is a semi-metric.

Also, D2(x, y) = d(x, y)c is a semi-metric for sufficiently small c ≥ 0. Also,

the function D3(x, y) = inf
∑

i d(zi, zi+1), where the infimum is taken over

all sequences x = z0, . . . , zn+1 = y, is the shortest path semi-metric.

For a semi-metric d on X, define equivalence relation by x ∼ y if

d(x, y) = 0; let [x] be the equivalence class containing x. Then

D([x], [y]) = d(x, y) is a metric on the set {[x] : x ∈ X} of classes.

For a quasi-metric d, functions max{d(x, y), d(y, x)}, min{d(x, y), d(y, x)}
and (dp(x,y)+dp(y,x))

1
p

2 (usually, p = 1) are symmetrization metrics; they are

equivalent, i.e., define the same topology.

For a metric d, the function D(x, y) = d(x,y)
1+d(x,y) < 1, is a 1-bounded metric.
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1. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality), i.e., a metric;

2. d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u), a Ptolemaic metric;

3. d(x, y) + d(z, u) ≤ max(d(x, z) + d(y, u), d(x, u) + d(y, z)) (4-point

inequality), a R>0-edge-weighted tree metric (it is 2, 5, 7);

4. d(x, y) ≤ max(d(x, z), d(z, y)), an ultrametric (it is 3);

5. d(x, y) + d(z, u) ≤ 2δ +max{d(x, z) + d(y, u), d(x, u) + d(y, z)} for δ ≥ 0,

a δ-hyperbolic metric;

6. d(x, y) ≤ d(x, z) + d(z, y)− d(x, z)d(z, y) (equivalent to

1− d(x, y) ≥ (1− d(x, z))(1− d(z, y))), a P -metric;

7.
∑

1≤i<j≤n bibjd(xi, xj) ≤ 0 for b ∈ Zn,
∑n

i=1 bi = 1, a hypermetric;

8. d(x, y) ≤ C(d(x, z) + d(z, y)) for a constant C ≥ 1, a near-metric;

9. d(x, y) ≤ d(x, z) + d(z, y)− d(z, z) for 0 ≤ d(z, z) ≤ infu d(z, u), i.e.,

self-distances are small, a partial metric.
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OTHERS GENERALIZATIONS OF METRIC SPACES

A topological space (X, τ) is a set X with a topology τ , i.e., a collection

of subsets of X (called open sets), with the following properties:

1. X ∈ τ , ∅ ∈ τ ;

2. If A,B ∈ τ , then A ∩B ∈ τ ;

3. For any collection {Aα}α, if all Aα ∈ τ , then ∪αAα ∈ τ .

Any metric space (X, d) generates a metric topology consisting of all

open balls B(x, r) = {y ∈ X : d(x, y) < r}.
Two metrics d1 and d2 on a set X are called equivalent if they define the

same topology on X , i.e., if, for every x0 ∈ X , every open metric ball with

center at x0 defined with respect to d1, contains an open metric ball with

the same center but defined with respect to d2, and conversely. All metrics

on a finite set are equivalent; they generate the discrete topology.
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A resemblance is a symmetric function d : X ×X → R such that:

either all d(x, x) ≤ d(x, y) holds (then d is called forward resemblance),

or all d(x, x) ≥ d(x, y) holds (then d is called backward resemblance).

Any resemblance d induces a strict partial order ≺ on unordered pairs of

elements of X by defining {x, y} ≺ {u, v} iff d(x, y) < d(u, v). For backward

resemblance d, the forward one −d induces the same partial order.

A 2-metric is function d : X ×X ×X → R≥0 which is totally symmetric

(i.e., d(x1, x2, x3) is unchanged by any permutation of arguments),

zero conditioned (i.e., d(x1, x2, x3) = 0 iff xi = xj for some 1 ≤ i < j ≤ 3)

and satisfy tetrahedron inequality

d(x1, x2, x3) ≤ d(x4, x2, x3) + d(x1, x4, x3) + d(x1, x2, x4).

A m-metric (or m-volume) is defined by m-simplex inequality. The

cases m = 1, 2 correspond to usual metric (length) and area, respectively.
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The pseudo-Euclidean distance of signature (p, q = n− p) on Rn is

dpE(x, y) =

p
∑

i=1

(xi − yi)
2 −

n
∑

i=p+1

(xi − yi)
2.

The pseudo-Euclidean space of signature (p, q = n− p) is a real vector

space equipped with a non-degenerate, indefinite, symmetric bilinear

function 〈·, ·〉. A basis e1, . . . , ep+q is orthonormal if 〈ei, ej〉 = 0 for i 6= j,

〈ei, ei〉 = +1 for 1 ≤ i ≤ p and 〈ei, ei〉 = −1 for p+ 1 ≤ i ≤ p+ q.

Given an orthonormal basis, the inner product of two vectors x and y is

〈x, y〉 = ∑p
i=1 xiyi −

∑p+q
i=p+1 xiyi.

The pseudo-Euclidean space can be seen as Rp × iRq, where i =
√
−1.

The ”norm” 〈x, x〉 of non-zero vector x can be positive, negative or zero;

then x is called space, time or light vector, respectively.

The case (p, q) = (1, 3) is used as space-time model of Special Relativity.
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An uniform space (Weil, 1937) is a set X with a non-empty collection U
of subsets of X ×X (entourages) such that it holds:

1. Every subset of X ×X which contains a set of U , belongs to U ;

2. Every finite intersection of sets of U belongs to U ;

3. Every set V ∈ U contains the set {(x, x) : x ∈ X} ⊂ X ×X (diagonal);

4. If V belongs to U , then the set {(y, x) : (x, y) ∈ V } belongs to U ;

5. If V belongs to U , then there exists V
′ ∈ U such that (x, z) ∈ V ,

whenever (x, y), (y, z) ∈ V
′

.

Every metric space (X, d) is uniform: an entourage in (X, d) is a subset of

X ×X containing Vǫ = {(x, y) ∈ X ×X : d(x, y) < ǫ} for some ǫ > 0.

Other basic example of uniform space are topological groups.
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Every uniform space (X,U) generate a topology: all sets A ⊂ X such that,

for any x ∈ A, there is a set V ∈ U with {y : (x, y) ∈ V } ⊂ A.

Every uniformity induces a proximity σ where AσB if and only if A×B

has non-empty intersection with any entourage.

A proximity space is a set X with a proximity, i.e., symmetric binary

relation δ on the power set P (X) (of all its subsets) with AδA iff A 6= ∅
and Aδ(B ∪ C) if and only if AδB or AδC (additivity).

Every metric space (X, d) is a proximity space: define AδB iff

d(A,B) = infx∈A,y∈B d(x, y) = 0.
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An approach space (Lowe, 1989) is a pair (X,D), where X is a set, and

D is a point-set distance, i.e., a function D(x,A) ≥ 0 of x ∈ X and

A ⊂ X satisfying, for all x ∈ X and all A,B ⊂ X , to:

1. D(x, {x}) = 0;

2. D(x, {∅}) = ∞;

3. D(x,A ∪B) = min{D(x,A), D(x,B)};

4. D(x,A) ≤ D(x,Aǫ) + ǫ, for any ǫ ≥ 0

(here Aǫ = {x : D(x,A) ≤ ǫ} is “ǫ-ball” with the center x).

Any metric space (X, d) (moreover, any quasi-semi-metric space) is an

approach space with D(x,A)=miny∈A d(x, y) (the usual point-set distance).
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Consider a set X and a map cl : P (X) → P (X) with cl(∅) = ∅. The maps

cl(A) (for A ⊂ X), its dual int(A) = X\cl(X\A) and N : X → P (X) with

N(x) = {A ⊂ X : x ∈ int(A)} are called closure, interior and

neighborhood map, resp. A subset A ⊂ X is closed if A = cl(A) and

open if A = int(A). Consider the following possible properties of (X, cl):

1. A ⊆ B implies cl(A) ⊆ cl(B) (isotony);

2. A ⊆ cl(A)(enlarging);

3. cl(A ∪B) = cl(A) ∪ cl(B) (linearity, and, in fact, 3. implies 1.);

4. cl(cl(A)) = cl(A) (idempotency).

The pair (X, cl) is called extended topology if 1. hold, Brissaud space

(Brissaud, 1974) if 2. hold, neighborhood space (Hammer, 1964) if 1., 2.

hold, Smyth space (Smyth, 1995) if 3. hold, pretopology (Čech, 1966) if

2., 3. hold, and closure space (Soltan, 1984) if 1., 2, 4. hold.

(X, cl) is usual topology, in closure terms, if 2., 3., 4. hold.
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METRIC TRANSFORMS

A transform metric is a metric on a set X which is obtained as a

function of a given metric (or metrics) on X . Examples obtained from a

given metric d (or metrics d1 and d2) on X follow (here t > 0):

1. td(x, y) (t-scaled metric, or dilated metric);

2. min{t, d(x, y)} (t-truncated metric, or t-bounded metric);

3. max{t, d(x, y)} for x 6= y (t-discrete metric);

4. d(x, y) + t for x 6= y (t-translated metric);

5. d(x,y)
1+d(x,y) ;

6. max{d1(x, y), d2(x, y)};
7. αd1(x, y) + βd2(x, y), where α, β > 0 (so, semi-metric cone on X);

8. dz(x, y) = d(x,y)
d(x,z)+d(y,z)+d(x,y) where z is an fixed element of X

(biotope transform metric).
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• Given a metric space (X, d) and 0 < α ≤ 1, the power transform

metric (or snowflake transform metric) on X is (d(x, y))α.

It is a metric, for any positive α if and only if d is an ultrametric.

• Given a metric space (X, d) and a point z ∈ X , the involution

transform metric on X\{z} is

dz(x, y) =
d(x, y)

d(x, z)d(y, z)
.

It is a metric, for any z ∈ X , if and only if d is a Ptolemaic metric.

• Given a metric space (X, d) and λ > 0, the Schoenberg transform

metric on X is

D(x, y) = 1− e−λd(x,y),

D(x, y are P -metrics, i.e. D(x, y) ≤ D(x, z)+D(z, y)-D(x, z)D(z, y).
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• An induced metric is a restriction of a metric (X, d) to X
′ ⊂ X .

• Given metric spaces (X, dX), (Y, dY ) and injective mapping g : X → Y ,

the pullback metric (of (Y, dy) by g) on X is dY (g(x), g(y)).

• Given a metric space (X, d) and an equivalence relation ∼ on X , the

quotient semi-metric on the set X = X/ ∼ of equivalence classes is

d(x, y)=infm∈N

∑m
i=1 d(xi, yi), where the infimum is over all sequences

x1, y1, . . . , xm, ym with x1 ∈ x, ym ∈ y and yi ∼ xi+1 if 1 ≤ i =≤ m− 1

• Given n ≤ ∞ metric spaces (X1, d1), (X2, d2), . . . , (Xn, dn), the

product metric is any metric on their Cartesian product

X1 ×X2 × · · · ×Xn = {x = (x1, x2, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn},
defined as a function of d1, . . . , dn.
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• Given a metric space (X, d) and a point z ∈ X , the Farris transform

metric on X\{z} is defined by Dz(x, x) = 0 and, for x 6= y, by

Dz(x, y) = C − (x.y)z ,

where C > 0 is a constant and (x.y)z = 1
2 (d(x, z) + d(y, z)− d(x, y)) is

the Gromov product. It is a metric if and only if C ≥ C0 for some

number C0 ∈ (maxx,y∈X\{z},x 6=y(x.y)z ,maxx∈X\{z} d(x, z)].

Farris transform is an ultrametric if and only if d is a

R>0-edge-weighted tree metric.

In Phylogenetics, where it was applied first, the term Farris transform

is used for function d(x, y)− d(x, z)− d(y, z).
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• Given a metric space (X, d) with any points x, y ∈ X joined by a

rectifiable curve (i.e., of finite length), the intrinsic metric D(x, y)

is the infimum of the lengths of rectifiable curves connecting x and y.

A (metric) curve γ is a continuous mapping γ : I → X from an

interval I of R into X . The length l(γ) of a curve γ : [a, b] → X is

l(γ) = sup{
∑

1≤i≤n

d(γ(ti), γ(ti−1)) : n ∈ N, a = t0 < t1 < · · · < tn = b}).

• The Riemannian metric of a connected n-dim. smooth manifold

Mn, is a collection of positive-definite symmetric bilinear forms ((gij))

on the tangent spaces of Mn which varies smoothly from point to point.

The length of a curve γ on Mn is
∫

γ

√

∑

i,j gijdxidxj .

The Riemannian distance (between two points of Mn) is intrinsic

metric on Mn, i.e. the infimum of lengths of curves, connecting them.
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NUMERICAL INVARIANTS OF METRIC SPACES

• For any p, q > 0, let M q
p (X) = inf

∑+∞
i=1 (diamAi)

p, where infimum is

taken over all countable coverings {Ai} of X with diameter of Ai < q.

The Hausdorff dimension (or fractal dimension) of X is

dimHaus = inf{p : lim
q→0

M q
p (X) = 0}

.

• For any compact metric space (X, d), its topological dimension is

dimtop(X,d) = inf
d′
(dimHaus(X, d′)),

where d′ is any metric on X topologically equivalent to d.

Two metrics d1, d2 on a set X are equivalent if they define same

topology on X (for any x0 ∈ X , any open d1- metric ball centered at

x0 contains an open d2-metric ball centered at x0 and conversely).
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• A fractal is a metric space for which dimtop < dimHaus.

• For a metric space (X, d) and any q > 0, let NX(q) be the minimal

number of sets with diameter ≤ q needed in order to cover X . The

number dimmetr = limq→0
lnN(q)
ln(1/q) (if it exists) is called its metric

dimension (or Minkowski dimension, box-counting dimension).

For a totally bounded (X, d), it holds dimtop ≤ dimHaus ≤ dimmetr.

Any X ⊂ E
n with Int X 6= ∅ has dimHaus = dimmetr.

• The Assouad-Nagata dimension dimAN of a metric space (X, d) is

the smallest integer n for which there exist a constant C > 0 such that,

for all s > 0, there exists a covering of X by its subsets of diameter at

most Cs with no point of X belonging to more than n+ 1 elements.

d called a doubling metric if dimAN < ∞. It holds dimtop ≤ dimAN .
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RADII S OF METRIC SPACE

If (X, d) is A-bounded (A = supx,y∈X d(x, y) < ∞), then A is its

diameter. If (X, d) is a-discrete (a = infx,y∈X,x 6=y d(x, y) > 0), then
A
a is its metric spread (or aspect ratio, normalized diameter).

•• The metric radius of (X, d) is r = infx∈X supy∈X d(x, y). It holds
A
2 ≤ r ≤ A; some authors call radius the half-diameter.

• Given a subset M ⊆ X of bounded (X, d),

its metric hull the intersection of all closed metric balls containing M ,

its covering radius (or directed Hausdorff distance) is

ddHaus(X,M) = supx∈X infy∈M d(x, y),

its Chebyshev radius (or remoteness) is infx∈X supy∈M d(x, y),

its packing radius is sup{r : infx,y∈M,x 6=y d(x, y) > 2r}.
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• A metric space (X, d) has the order of congruence n if every finite

metric space which is not isometrically embeddable in (X, d) has a

subspace with ≤ n points which is not isometrically embeddable in it.

• Given a compact connected metric space (X, d), there exists a unique

rendez-vous number r(X, d) > 0, such that for all x1, . . . , xn ∈ X

and any n, there exists an x ∈ X with 1
n

∑n
i=1 d(xi, x) = r(X, d).

• Given a set D ⊂ R>0, the D-chromatic number of (X, d) is the

standard chromatic number of the D-distance graph of (X, d), i.e.,

the graph with the vertex-set X and the edge-set {xy : d(x, y) ∈ D}.

• The average distance is the number 1
|X|(|X|−1)

∑

x,y∈X d(x, y).

The Wiener index (used in Chemistry) is 1
2

∑

x,y∈X d(x, y).

• For s 6= 0, the s-energy (or unnormalized 1
s -moment) is

∑

x,y∈X,x 6=y
1

dp(x,y) . 0-energy is − log
∏

x,y∈X,x 6=y d(x, y).
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Given a metric space (X, d) and s > 0, the Frechét function is

Fs(x) = E[ds(x, y)]. For a finite M ⊂ X , Fs(x) =
∑

y∈M w(y)ds(x, y). ,

where w(y) is a weight function. The points minimizing F1(x) and

F2(x) are called Frechét median and Frechét-Karcher mean.

For (X, d) = (Rn, ||x− y||2) and equal weights, these points are called

the geometric median (or Fermat-Weber point, 1-median) and

the geometric center (or centroid, barycenter, center of mass).

For (X, d) = (R>0, |f(x)− f(y)|), where f : R>0 → R is injective and

continuous, the Frechét mean of M ⊂ R>0 is the Kolmogorov mean

(or f-mean) f−1(
∑

x∈M
f(x)

|M | ). It is arithmetic, geometric,

harmonic and power mean if f = x, log(x), 1
x and f = xp (p 6= 0)

which is quadratic, arithmetic, geometric, harmonic mean and

maximum, minimum for p = 2,= 1,→ 0,→ −1, and → +∞,→ −∞.
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RELEVANT NOTIONS: SUBSETS, MAPPINGS, CURVES,

CONVEXITY

• Given distinct points x, y ∈ X , the midset (or bisector) is the set

{z ∈ X : d(x, z) = d(y, z)} of midpoints z.

• M ⊂ X is a metric basis of X if d(x, z) = d(y, z) for all z ∈ M implies

x = y. The numbers d(x, z), z ∈ M, are the metric coordinates of x.

• Given a finite or countable semi-metric space (X = {x1, · · · , xn}, d), its
distance matrix is the symmetric n× n matrix ((dij)), where

dij = d(xi, xj) for any 1 ≤ i, j ≤ n.

The semi-metric cone is the set of all distance matrices on X .

• The proximity (or underlying) graph of metric space (X, d) is a

graph with the vertex-set X and xy being an edge if no point z ∈ X

with d(x, y) = d(x, z) + d(z, y) exists.

52



• The point-set distance d(x,M) between x ∈ X and M ⊂ X is

infy∈M d(x, y). The function fM (x) = d(x,M) is distance map.

Distance maps are used in MRI (M being gray/white matter interface)

as cortical maps, in Image Processing (M being image boundary), in

Robot Motion (M being the set of obstacle points).

• A subset M ⊂ X is Chebyshev set if for every x ∈ X , there is

unique z ∈ M with d(x, z) = d(x,M).

• The set-set distance between two subsets A,B ⊂ X is

infx∈A, d(x,B)=infx∈A,y∈B d(x, y). In Cluster Analysis, it is single

linkage, while supx∈A,y∈B d(x, y) is complete linkage.

• The Hausdorff metric (on all compact subspaces of (X, d)) is

dHaus(A,B)=max{ddHaus(A,B), ddHaus(B,A)} where ddHaus(A,B) is

maxx∈Aminy∈B d(x, y), i.e., the directed Hausdorff distance.
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MAPPINGS FOR METRIC SPACES

• Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is an

isometric embedding of X into Y if it is injective and

dY (f(x), f(y)) = dX(x, y) holds for all x, y ∈ X .

An isometry is a bijective isometric embedding.

• Two metric spaces (X, dX) and (Y, dY ) are homeomorphic if there

exists a bijection f : X → Y with continuous f and f−1 , i.e., all

points close to x map to points close to g(x).

• Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is

called a short mapping from X to Y if, for all x, y ∈ X , holds

dY (f(x), f(y)) ≤ dX(x, y). The category of metric spaces (Isbell),

denoted by Met, has metric spaces as objects and short mappings as

morphisms. In Met, the isomorphisms are isometries.

54



• Again, given metric spaces (X, dX) and (Y, dY ), a function f : X → Y

is an isometric embedding of X into Y if it is injective and

dY (f(x), f(y)) = dX(x, y) holds for all x, y ∈ X .

An isometry is a bijective isometric embedding.

• A function f : X → Y is a quasi-isometry if there are numbers C > 1

and c > 0 such that C−1dX(x, y)− c ≤ dY (f(x), f(y)) ≤ Cd(x, y) + c,

and for every point y ∈ Y there is a point x ∈ X with dY (y, f(x)) ≤ c.

A quasi-isometry with C = 1 is coarse (or rough) isometry.

• A metric space (X, d) is homogeneous if, for each two finite isometric

subsets Y = {y1, . . . , ym} and Z = {z1, . . . , zm} of X , there exists a

self-isometry (motion) of (X, d) mapping Y to Z.

• (X, d) is symmetric if for any p ∈ X there is a symmetry relative

to p, i.e., a motion (self-isometry) fp of (X, d) such that fp(fp(x)) = x

for all x ∈ X and p is an isolated fixed point of fp.
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CURVES AND CONVEXITY

Given a metric space (X, d), a curve γ is a continuous map γ : I → X

from an interval I ⊂ R. The length of a curve γ : [a, b] → X is

l(γ) = sup{
∑

1≤i≤n

d(γ(ti), γ(ti−1)) : n ∈ N, a = t0 < t1 < · · · < tn = b}.

• The internal metric of (X, d) is di(x, y) = inf l(γ) over all curves

γ(x, y) : [0, 1] → X with γ(0) = x, γ(1) = y and l(γ) < ∞. If d = di,

then d is called intrinsic metric and (X, d) length space.

• If, moreover, any two points x, y are joined by a shortest path (an

isometric embedding γ : [0, 1] → X with γ(0) = x, γ(1) = y), then d is

called strictly intrinsic and (X, d) geodesic space.

The curve γ(x, y) is called a geodesic (or locally shortest, locally

isometric) if l(γ(x, y)) = d(x, y).
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• A complete metric space (X, d) is geodesic iff it is midpoint convex,

i.e., for any x, y ∈ X , x 6= y, there is a midpoint z = m(x, y) ∈ X with

d(x, y) = d(x, z) + d(z, y) and d(x, z) = 1
2d(x, y).

• Midpoint convex (X, d) is Busemann convex if for any x, y, z ∈ X

and midpoints m(x, z) and m(y, z), it holds

d(m(x, z),m(y, z)) ≤ 1

2
d(x, y).

• Midpoint convex (X, d) is ball convex if for all x, y, z ∈ X it holds

d(m(x, y), z) ≤ max{d(x, z), d(y, z)}.

• Midpoint convex (X, d) is distance convex if for all x, y, z ∈ X holds

d(m(x, y), z) ≤ 1

2
(d(x, z) + d(y, z)).
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• Menger convex (or M-convex) if, for any different points x, y ∈ X ,

there exists a third point z ∈ X for which d(x, y) = d(x, z) + d(z, y).

• (X, d) is metrically convex if, for any different points x, y ∈ X and

any λ ∈ (0, 1), there exists a third point z = z(x, y, λ) ∈ X for which

d(x, y) = d(x, z) + d(z, y) and d(x, z) = λd(x, y).

(X, d) is strictly metrically convex if the point z(x, y, λ) is unique

for all x, y ∈ X and λ ∈ (0, 1).

• (X, d) is hyperconvex (or injective) if it is metrically convex and its

metric balls have the infinite Helly property, i.e., any family of

mutually intersecting closed balls in X has non-empty intersection.
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MAIN CLASSES OF METRICS

• Given a connected graph G = (V,E), the path metric between two

vertices is the number of edges of a shortest path connecting them.

• Given a finite set X and a finite set O of (unary) editing operations

on X , the editing metric on X is the path metric of the graph with

the vertex-set X and xy being an edge if y can be obtained from x by

one of the operations from O.
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• On a normed vector space (V, ||.||), the norm metric is ||x− y||.

• The lp-metric, 1 ≤ p ≤ ∞, is ||x− y||p norm metric on Rn (or on Cn),

where ||x||p = (
∑n

i=1 |xi|p)
1
p for p < ∞ and ||x||∞ = max1≤i≤n |xi|.

The Euclidean metric (or Pythagorean distance, as-crow-flies

distance, beeline distance) is l2-metric on R
n.

• Banach-Mazur distance between n-dim. normed spaces V and W

is ln infT {||T || · ||T−1||, where T : V → W is an isomorphism.

• Lipschitz distance between metric spaces (X, dX) and (Y, dY ) is

inff{||f ||Lip · ||f−1||Lip}, where infimum is over all bijective functions

f : X → Y and the Lipschitz norm is

||f ||Lip = sup{dY (f(x),f(y))
dX(x,y) : x, y ∈ X, x 6= y}.
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• Given a measure space (Ω,A, µ), the symmetric difference (or

measure) semi-metric on the set Aµ = {A ∈ A : µ(A) < ∞} is

µ(A△B) (where A△B = (A ∪B)\(A ∩B) is the symmetric

difference of the sets A,B ∈ Aµ) and 0 if µ(A△B) = 0.

Identifying A,B ∈ Aµ if µ(A△B) = 0, gives the measure metric.

If µ(A) = |A|, then |A△B| = 0 iff A = B and |A△B| is a metric.

• Given a measure space (Ω,A, µ), the Steinhaus semi-metric on

the set Aµ = {A ∈ A : µ(A) < ∞} is 0 if µ(A ∪B) = 0 and

µ(A△B)

µ(A ∪ B)
= 1− µ(A ∩B)

µ(A ∪B)
, otherwise.

The biotope (or Tanimoto) metric |A△B|
|A∪B| is the case µ(A) = |A|.
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The Hamming metric on Rn is dH = |{i : 1 ≤ i ≤ n, xi 6= yi}|.
On vertices of unit cube {0, 1}n it is l1-metric and squared l2-metric.

Eqv., for subsets A,B ⊂ X with |X | = n, it is measure metric

|A△B|.

The Bray-Curtis distance on R
n is

∑ |xi−yi|∑
(xi+yi)

.

The Canberra distance on Rn is
∑ |xi−yi|

|xi|+|yi| .

The Mahalonobis distance (or statistical distance) on R
n is

√

(detA)
1
n (x− y)A−1(x− y)T ,

where A is a positive-definite matrix.

The Hellinger distance on R
n
+ is

√

2
∑

(

√

xi

x −
√

yi

y

)2

.
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Popular metrics on real plane R
2

• The lift (or raspberry picker, jungle river, barbed wire) metric

on R
2 is |x1 − y1| if x2 = y2, and |x1|+ |x2 − y2|+ |y1| if x2 6= y2.

• Given a norm ||.|| on R2, the French Metro metric on R2 is

||x− y|| if x = cy for some c ∈ R, and ||x||+ ||y||, otherwise. For ||.||2,
it is called Paris (or hedgehog, radial, enhanced SNCF) metric.

In graph terms, this metric is similar to the path metric of the tree

consisting of a point from which radiate several disjoint paths. When

only one line radiates from the point, it is called train metric.

• For any metric space (X, d) and f ∈ X (a flower-shop), the

flower-shop metric is d(x, f) + d(f, y) for x 6= y, and 0, otherwise.

For (X, d) = (R2, ||x− y||) and f = (0, 0), it is called British Rail (or

SNCF, Post Office, caterpillar, shuttle) metric.
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• The Moscow metric (or Karlsruhe metric) between two points

x, y ∈ R
2 is the length of a shortest Euclidean (x, y)-path consisting

only of radial streets (segments of straight lines passing through the

origin) and circular avenues (segments of circles centered at the origin).

• The Central Park metric between two points x, y ∈ R
2, is the length

of a shortest Manhattan (x, y)-path at the presence of a given set of

areas which are traversed by a shortest Euclidean path (for example,

Central Park in Manhattan).

• Let O = {O1, . . . , Om} be a collection of pairwise disjoint polygons on

R2 representing a set of obstacles which are neither transparent, nor

traversable. The collision avoidance distance (or piano movers

distance) between two points x, y ∈ R
2\{O}, is the length of a

shortest continuous (x, y)-path that do not intersect obstacles Oi\∂Oi.
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Metrics on digital plane Z
2

A computer image is a subset of Zn (digital nD space). Usually,

n=2. The points of Z2 and Z
3 are pixels and voxels, respectively.

A digital metric is any integer-valued metric on a digital nD space.

Main digital metrics are: the l1-, l∞-metrics and (rounded to nearest,

upper or lower, integer) l2-metric.

A list of neighbors of a pixel can be seen as a list of permitted

one-step moves on Z2. Associate a positive weight to each type of

such move. Many digital metrics are the minimum, over all admissible

paths (sequences of permitted moves) of the sum of their weights.

• The rook metric is a metric on Z2, defined as the minimum number

of moves a chess rook need to travel from x to y ∈ Z2. It is

{0, 1, 2}-valued and coincides with the Hamming metric on Z
2.
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• The grid metric is the l1-metric on Z
n. It is the path metric of an

infinite graph: two points of Zn are adjacent if their l1-distance is 1.

For n = 2, this metric is restriction on Z2 of Manhattan metric and

it called 4-metric since each point has exactly 4 l1-neighbors in Z
2.

• The lattice metric is the l∞-metric on Z
n. It is the path metric of

an infinite graph: two points of Zn are adjacent if their l∞-distance is

1. For Z2, the adjacency corresponds to the king move in chessboard

terms, and this metric is called chessboard metric (or king metric,

8-metric since each point has exactly 8 l∞-neighbors in Z
2 ).

• The hexagonal metric is a metric on Z
2 with an unit sphere S1(x):

S1(x) = S1
l1
(x) ∪ {(x1 ± 1, x2 − 1), (x1 ± 1, x2 + 1)} if x2 is odd/even.

Since |S1(x)| = 6, the hexagonal metric is called also 6-metric. The

hexagonal metric is the path metric on the hexagonal grid of the

plane. It approximates l2-metric better than l1- or l∞-metric.
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• The knight metric is a metric on Z
2, defined as the minimum number

of moves a chess knight would take to travel from x to y ∈ Z
2.

• Let p, q ∈ N such that p+ q is odd, and (p, q) = 1.

A (p, q)-super-knight (or (p, q)-leaper) is a (variant) chess piece a

move of which consists of a leap p squares in one orthogonal direction

followed by a 90 degree direction change, and q squares leap to the

destination square. Chess-variant terms for an (p, 1)-leaper with

p=0, 1, 2, 3, 4: Wazir, Ferz, usual Knight, Camel, Giraffe and for

an (p, 2)-leaper with p = 0, 1, 2, 3: Dabbaba, Knight, Alfil, Zebra.

A super-knight metric on Z2 is the minimum number of moves a

(p, q)-super-knight would take to travel from x to y ∈ Z
2.

The knight metric is the (1, 2)-super-knight metric.

The l1-metric is (0, 1)-super-knight metric, i.e., the Wazir metric.

67



• Given α, β ≥ 0 with α ≤ β < 2α, consider (α, β)-weighted l∞-grid,

i.e., pixel graph (V = Z2, E) with (xy) ∈ E if |x− y|∞ = 1, and

horizontal/vertical and diagonal edges having weights α and β, resp.

Borgefors (α, β)-chamfer metric is the weighted path metric of

this graph. The main cases are (α, β)=(1, 0) (l1-metric), (3, 4), (1, 1)

(l∞-metric), (1,
√
2) (Montanari metric), (5, 7) (Verwer metric),

(2, 3) (Hilditch-Rutovitz metric).

• An (α, β, γ)-chamfer metric is the weighted path metric of voxel

graph (V = Z3, E) with (xy) ∈ E if |x− y|∞ = 1, and moves to 6 face,

12 edge, 8 corner neighbors having weights α, β, γ, respectively.

The cases (α, β, γ)=(1, 1, 1) (l∞-metric), (3, 4, 5), (1, 2, 3) are the most

used ones for digital 3D images.
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AUDIO DISTANCES

Sound: vibration of air particles causing pressure variations in eardrums.

Audio (speech, music, etc.) Signal Processing is the processing of analog

(continuous) or, mainly, digital representation of the air pressure waveform

of the sound. A sound spectrogram (or sonogram) is a visual 3D

representation of an acoustic signal. It is obtained either by series of

bandpass filters (an analog processing), or by application of the short-time

Fourier transform to the electronic analog of an acoustic wave.

Three axes represent time, frequency and intensity. Often this 3D curve is

reduced to 2D by indicating the intensity with, say, more thick lines.

Sound is called tone if it is periodic (the lowest fundamental frequency

plus its multiples, harmonics) and noise, otherwise. The frequency is

measured in cps (the number of complete cycles per second) or Hz (Herzs).

The range of audible sound frequencies to humans is 20Hz–18kHz.
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Decibel dB is the unit used to express relative strength of two signals.

Audio signal’s amplitude in dB is 20 log10
A(f)
A(f ′) = 10 log10

P (f)
P (f ′) , where f ′ is

a reference signal selected to correspond 0 dB (human hearing threshold).

The threshold of pain is about 120− 140 dB.

Pitch and loudness are psycho-acoustic (auditory subjective) terms for

frequency and amplitude.

Mel scale correspond to the auditory sensation of tone height and based

on mel, a unit of pitch (perceived frequency). It is conneccted to the

acoustic frequency f Hz scale by Mel(f) = 1127 ln(1 + f
700 ).

Psycho-acoustic Bark scale of loudness range from 1 to 24 corresponding

to the first 24 critical bands of hearing (0, 100, . . . , 12000, 15500 Hz).

Those bands correspond to spatial regions of the basilar membrane of the

inner ear, where oscillations produced by the sound activate the hair cells

and neurons. Bark(f) = 13 arctan(0.76f) + 3.5 arctan( f
0.75)

2 in f kHz scale.
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Human phonation (speech, song, laughter) is controlled usually by vocal

tract (the throat and mouth) shape. This shape, i.e., the cross-sectional

profile of the tube from the closure in the glottis (the space between the

vocal cords) to the opening (lips), is represented by the cross-sectional area

function Area(x), where x is the distance to glottis.

The vocal tract acts as a resonator during vowel phonation, because it is

kept relatively open. Those resonances reinforce the source sound (ongoing

flow of lung air) at particular resonant frequencies (or formants) of the

vocal tract, producing peaks in the spectrum of the sound.

Each vowel has two characteristic formants, depending of the vertical and

horizontal position of the tongue in the mouth.

The frequency of speech signal (3− 8 Hz) resonates with the theta rhythm

of neocortex. Speakers produce 3− 8 syllabes per second.
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The spectrum of a sound is the distribution of magnitude (dB) of the

components of the wave. The spectral envelope is a smooth contour

connecting spectral peaks. Estimation of the spectral envelopes is based on

either LPC (linear predictive coding), or FTT (fast Fourier transform).

FTT maps time-domain functions into frequency-domain. The cepstrum

of the signal f(t) is FT (ln(FT (f(t) + 2πmi))), where m is the integer

needed to unwrap the angle or imaginary part of the complex log function.

(The complex and real cepstrum use, respectively, complex and real log

function. The real cepstrum uses only the magnitude of the original signal

f(t), while the complex cepstrum uses also phase of f(t).)

FFT performs Fourier transform on the signal and sample the discrete

transform output at the desired frequencies in mel scale.
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Power spectral density PSD(f) of a wave is the power per Hz. It is the

Fouriet transform of the autocorrelation sequence. So, the power in the

band (−W,W ) is
∫W

−W
PSD(f)df . A power-law noise has PSD(f) ∼ fα.

The noise is called violet, blue, white, pink (or 1
f noise), red (or

brown(ian)), black (or silent) if α = 2, 1, 0,−1,−2, < −2, respectively.

PSD changes by 3α dB per octave (distance between a frequency and its

double); it decreases for α < 0.

Pink noise occurs in many physical, biological and economic systems. It

has equal power in proportionally wide frequency ranges.

Humans also process frequencies in a such logarithmic space (approximated

by the Bark scale). Every octave contains the same amount of energy, and

pink noise is used as a reference signal in audio engineering. Steady pink

noise (incl. light music) reduces brain wave complexity and improve sleep.
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Parameter-based distances used in recognition and processing of speech

data are usually derived by LPC, modeling speech spectrum as a linear

combination of the previous samples (as in autoregressive process).

Majority of distortion measures between sonograms are variations of

squared Euclidean distance (including Mahalanobis distance) and

probabilistic distances (f-divergence of Csizar, Chernoff distance,

generalized total variation metric).

The distances for sound processing below are between vectors x and y

representing two signals to compare.

For recognition, they are a template reference and input signal, while for

noise reduction, they are original (reference) and distorted signal.

Often distances are calculated for small segments, between vectors

representing short-time spectra, and then averaged.
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• Given a sound, let P and As denote its average power and RMS (root

mean square) amplitude. The signal-to-noise ratio in decibels is

10 log10(
Psignal

Pnoise
) = Psignal,dB − Pnoise,dB = 10 log10(

Asignal

Anoise
)2.

The dynamical range is such ratio between the strongest undistorted

and minimum discernable signals. The Shannon-Hartley theorem

express the capacity (maximal possible information rate) of a channel

with additive colored (frequency-dependent) Gaussian noise, on the

bandwidth B in Hz as
∫ B

0
log2(1 +

Psignal(f)
Pnoise(f)

)df .

The SNR distance between signals x = (xi) and y = (yi) with n

frames is 10 log10

∑
n
i=1

x2
i∑

n
i=1

(xi−yi)2
.

• The segmented SNR is 10
m

∑M−1
m=0

(

log10
∑nm+n

i=nm+1
x2
i

(xi−yi)2

)

.

• The Czekanovski-Dice distance is 1
n

∑n
i=1

(

1− 2min{xi,yi}
xi+yi

)

.
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• Spectral distances

Given two discrete spectra x = (xi) and y = (yi) with n channel filters,

their Euclidean metric EM , slope metric SM (Klatt, 1982) and

2nd differential metric 2DM (Assmann and Summerfield, 1989) are

defined, respectively, by
√

√

√

√

n
∑

i=1

(xi − yi)2,

√

√

√

√

n
∑

i=1

(x′
i − y′i)

2 and

√

√

√

√

n
∑

i=1

(x′′
i − y′′i )

2,

where z′i = zi+1 − zi and z′′i = max(2zi − zi+1 − zi−1, 0).

Comparing, say, the auditory excitation patterns of vowels, EM gives

equal weight to peaks and troughs although spectral peaks have more

perceptual weight. SM emphasizes the formant frequencies, while

2DM sets to zero the spectral properties other than the formants.
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The RMS log spectral distance (or root-mean-square distance,

mean quadratic distance) LSD(x, y) is defined by
√

1
n

∑n
i=1(lnxi − ln yi)2. The corresponding l1- and l∞-distances are

called mean absolute distance and maximum deviation. These

three distances are related to decibel variations in the log spectral

domain by the multiple 10
log 10 .

LSD2(x, y), via the cepstrum representation lnx(ω) =
∑∞

j=−∞ cje
−jωi

(where x(ω) is the power cepstrum |FT (ln(|FT (f(t)))|2)|2) becomes,

in the complex cepstral space, the cepstral distance.

The log area ratio distance LAR(x, y) between x and y is defined

by
√

1
n

∑n
i=1 10(log10 Area(xi)− log10 Area(yi))

2, where Area(zi) is

the cross-sectional area of the i-th segment of the vocal tract.

77



• The spectral magnitude-phase distortion between signals

x = x(ω) and y = y(ω) is
1
n

(

λ
∑n

i=1(|x(w)| − |y(w)|)2 + (1− λ)
∑n

i=1(∠x(w)− ∠y(w))2
)

, where

|x(w)|, |y(w)| are magnitude spectra, and ∠x(w), ∠y(w) are phase

spectra of x and y, resp, while parameter λ, 0 ≤ λ ≤ 1, is scaling factor

to attach commensurate weights to the magnitude and phase terms.

The case λ = 0 corresponds to the spectral phase distance.

Given a signal f(t) = ae−btu(t), a, b > 0, which has Fourier transform

x(w) = a
b+iw , its magnitude (or amplitude) spectrum is

|x| = a√
b2+w2

, and its phase spectrum (in radians) is α(x) = tan−1 w
b ,

i.e., x(w) = |x|eiα = |x|(cosα+ i sinα).
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• The Bark spectral distance is a perceptual distance

BSD(x, y) =
∑n

i=1(xi − yi)
2, i.e., is the squared Euclidean distance

between Bark spectra (xi) and (yi) of x and y, where i-th component

corresponds to i-th auditory critical band in Bark scale.

• The Itakura-Saito quasi-distance (or maximum likelihood

distance) IS(x, y) between LPC-derived spectral envelopes x = x(ω)

and y = y(ω) is 1
2π

∫ π

−π

(

ln x(w)
y(w) +

y(w)
x(w) − 1

)

dw.

The cosh distance is defined by IS(x, y) + IS(y, x).

• The log likelihood ratio quasi-distance (or Kullback-Leibler

distance) KL(x, y) between LPC-derived spectral envelopes x = x(ω)

and y = y(ω) is defined by 1
2π

∫ π

−π
x(w) ln x(w)

y(w)dw. The Jeffrey

divergence KL(x, y) +KL(y, x) is also used.
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“Quefrency”, “cepstrum”: anagrams of “frequency”, “spectrum”, resp.

• The RMS log spectral distance (or root-mean-square distance)

LSD(x, y) between discrete spectra x = (xi) and y = (yi) is Euclidean

distance
√

1
n

∑n
i=1(lnxi − ln yi)2. The square of it, via cepstrum

representation lnx(ω) =
∑∞

j=−∞ cje
−ijω is the cepstral distance.

• The cepstral distance (or squared Euclidean cepstrum metric)

CEP (x, y) between LPC-derived spectral envelopes x = x(ω) and

y = y(ω) is 1
2π

∫ π

−π
(lnx(w)− ln y(w))2 dw =

∑∞
j=−∞(cj(x)− cj(y))

2,

where cj(z) =
1
2π

∫ π

−π
eiwj ln |z(w)|dw is j-th cepstral (real) coefficient

of z derived by Fourier transform or LPC.

The quefrency-weighted cepstral distance (or weighted slope

distance) between x and y is
∑∞

i=−∞ i2(ci(x)− ci(y))
2.

The Martin cepstrum distance between two AR (autoregressive)

models is, in terms of their cepstrums, (
∑∞

i=0 i(ci(x)− ci(y))
2)

1
2 .
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• In Poetry, meter (or cadence) is a measure of rhythmic quality, the

regular linguistic sound patterns of verse. Qualitative meter indicate

syllables coming at regular intervals. Mono-, di-, trimeter, etc. indicate

the number of feet (specific sequences of syllable types).

• In Music, meter (or metre) is the regular rhythmic patterns of

musical line, the division of a composition into parts of equal time, and

the subdivision of them. It is derived from the poetic meter of song.

Different tonal preferences in music are closely related to the

differences in the tonal characteristics of voiced speech.

Isometre is the use of pulse (unbroken series of periodically occurring

short stimuli) without regular meter, and polymetre is the use of two or

more different meters simultaneously whereas multimetre is using them

in succession. A rhythmic pattern or unit is either intrametric

(confirming the pulses on the metric level), or contrametric

(syncopated, not following the meter), or extrametric (irregular).
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• A rhythm timeline (music pattern) is represented, besides standard

music notation, as binary vector, pitch vector, pitch difference vector,

chronotonic histogram or, for example as:

1. a inter-onset interval vector t = (t1, . . . , tn) of n time intervals

between consecutive onsets.

2. a rhythm difference vector r = (r1, . . . , rn−1), where ri =
ti+1

ti
.

Examples of general distances between rhythms are Hamming

distance, swap metric, Earth Mover distance between their given

vector representations. The Euclidean interval vector distance is

the Euclidean distance between two inter-onset interval vectors.

Coyle-Shmulevich interval-ratio distance is 1− n+
∑n−1

i=1
max{ri,r′i}
min{ri,r′i}

,

where r and r′ are rhythm difference vectors of two rhythms.
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• Pitch is a subjective correlate of the fundamental frequency A

musical scale is a linearly ordered collection of pitches (notes).

A pitch distance (or interval, musical distance) is the size of the

section of the linearly-perceived pitch-continuum bounded by those two

pitches, as modeled in a given scale. The pitch distance between two

successive notes in a scale is called a scale step.

In Western music now, the most used one is the chromatic scale

(octave of 12 notes) of equal temperament, i.e., divided into 12

equal steps with the ratio 12
√
2 between any two adjacent frequencies.

The scale step here is a semitone, i.e., the distance between two

adjacent keys (black and white) on a piano. The distance between

notes whose frequencies are f1 and f2 is 12 log2(
f1
f2
) semitones.

A MIDI (Musical Instrument Digital Interface) number of fundamental

frequency f is p(f) = 69 + 12 log2
f

440 . In terms of MIDI numbers, the

distance between notes is the natural metric |m(f1)−m(f2)|.
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• Spatial music is electroacoustic music and sound art in which the

location and movement of sound sources, in physical or virtual space, is

a primary compositional parameter and a central feature.

Space music is gentle, harmonious sound that facilitates the experience

of contemplative spaciousness. Generating serenity and imagination, it

is associated with ambient, New Age, and electronic music.

• Long-distance drumming (or drum telegraphy) is an early form of

long-distance communication which was used by cultures in Africa,

New Guinea and the tropical America living in deforested areas. A

rhythm could represent an signal or simply be subject to musical laws.

The message drums (or slit gongs) were developed from hollow tree

trunks. The sound could be understood at ≤ 8 km but usually it was

relayed to a next village.

Another oldest tools of audio telecommunication were horns.
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• Sonority distance effect

People in warm-climate cultures spend more time outdoors and engage,

on average, in more distal oral communication. Such populations have

greater sonority (audibility) of their phoneme inventory and speakers

use more simple consonant-vowel syllables, vowels and sonorant (say,

nasal “n”, “m” rather than obstruents as “t”, “g”) consonants.

Ember, 2007: more cold months and sparse vegetation predicts less

sonority. Larger mean distance of the baby from its caregivers and

higher frequency of premarital/extramarital sex predicts more sonority.

Lomax, 1968: sexual inhibition discourages speaking with a wide open

mouth and predicts, in folk song style: less vocal width (ranging from

singing with a very pinched, narrow, squeezed voice to the very wide

and open-throated singing tone of Swiss yodelers) and greater nasality

(when the sound is forced through the nose).
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• Acoustics distances

The wavelength is the distance the sound wave travels to complete one

cycle. This distance is measured perpendicular to the wavefront in the

direction of propagation between one peak of a sine wave (sinusoid)

and the next corresponding peak. The wavelength of any frequency

may be found by dividing the speed of sound (331.4 m/s at sea level)

in the medium by the fundamental frequency.

The near field is the part of a sound field (usually within about two

wavelengths from the source) where there is no simple relationship

between sound level and distance. The far field is the area beyond the

near field boundary. It is comprised of the reverberant field and free

field, where sound intensity decreases as 1
d2 with the distance d from

the source. This law corresponds to a reduction of ≈ 6 dB in the sound

level for each doubling of distance and to halving of loudness

(subjective response) for each reduction of ≈ 10 dB.
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• The critical distance (or room radius) is the distance from the source

at which the direct sound and reverberant sound (reflected echo

produced by the direct sound bouncing off, say, walls, floor, etc.) are

equal in amplitude.

The proximity effect (audio) is the anomaly of low frequencies being

enhanced when a directional microphone is very close to the source.

Auditory distance cues are based on differences in loodness,

spectrum, direct-to-reverb ratio and binaural ones.

The closer sound object is looder, has more bass, high-frequencies,

transient detail, dynamic contrast. Also, it appear wider, has more

direct sound level over its reflected sound and has greater time delay

between the direct sound and its reflections.
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• The acoustic metric is the term used occasionally for some distances

between vowels; for example, the Euclidean distance between vectors of

formant frequencies of pronounced and intended vowel.

In Acoustics and in Fluid Dynamics, the acoustic metric (or sonic

metric) is a characteristic of sound-carrying properties of a given

medium: air, water, etc.

In General Relativity and Quantum Gravity, it is a characteristic of

signal-carrying properties in a given analog model (with respect to

Condensed Matter Physics).

When the fluid’s speed becomes supersonic, the sound waves cannot

come back, i.e., there is a mute hole, the acoustic analog of a black hole.
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• The cosmic light horizon (or Hubble radius) is an increasing

distance DH = ctH that a light signal could have traveled since the Big

Bang. Now tH ≈ 13.7 billion years, and DH ≈ 13.7 billion light-years.

Baryon acoustic oscillations started at t=0 (post-inflation) and

stopped at t=tr (recombination). The cosmic sound horizon is the

distance sound waves have traveled. At r, it was ≈ cstr ∼ 100 kpc,

now: 120− 150 Mpc.

Cosmic background radiation (CMB) is thermal radiation filling

the Universe almost uniformly. It originated tr ≈ 379, 000 years after

the Big Bang at recombination, when the Universe (ionized plasma

of electrons and baryons, i.e., protons+neutrons) cooled to < 3000 K.

The electrons and protons start to form neutral hydrogen atoms,

allowing photons to travel freely. During next ≈ 100, 000 years

radiation decoupled from matter and the Universe became transparent.
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The plasma of photons and baryons can be seen as a single fluid. The

gravitational collapse around “seeds” (point overdensities produced

during inflation) into dark matter hierarchical halos was opposed by

outward heat radiation pressure from the photon-matter interactions.

This competition created longitudinal (acoustic) oscillations in the

photon-baryon fluid, analogic to sound waves, created in air by

pressure differences.

At recombination, the only remaining force on baryons is gravitation,

and the pattern of oscillations (configuration of baryons and, at the

centers of perturbations, dark matter) became frozen into the CMB.

Baryon cooling into gas and stars let this pattern to grow into

structure of the Universe.

More matter existed at the centers and edges of these waves, leading to

to more galaxies there eventually. We detect the sound waves (periodic

fluctuations in the density of the visible matter) via CMB anisotropies.
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• Sound attenuation with distance

Vibrations propagate through elastic solids and liquids, including the

Earth, and consist of elastic (or seismic, body) waves and surface

waves. Elastic waves are: primary (P) wave moving in the propagation

direction of the wave and secondary (S) wave moving in this direction

and perpendicular to it. Also, because the surface acts as an interface

between solid and gas, surface waves occur:

the Love wave moving perpendicular to the direction of the wave and

the Rayleigh (R) wave moving in the direction of the wave and

circularly within the vertical surface perpendicular to it.

The geometric attenuation of P- and S-waves is proportional to 1
d2 ,

when propagated by the surface of an infinite elastic body, and it is

proportional to 1
d , when propagated inside it.

For the R-wave, it is proportional to 1√
d
.
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Sound propagates through gas (say, air) as a P-wave. It attenuates

geometrically over a distance, normally at a rate of 1
d2 : the

inverse-square distance law relating the growing radius d of a wave to

its decreasing intensity. The far field is the part of a sound field in

which sound pressure decreases as 1
d but its intensity decreases as 1

d2 .

In natural media, further weakening occurs from attenuation, i.e.,

scattering (reflection of the sound in other directions) and absorption

(conversion of the sound energy to heat).

The sound extinction distance is the distance over which its

intensity falls to 1
e of its original value. For sonic boom intensities (say,

supersonic flights), the lateral extinction distance is the distance where

in 99% of cases the sound intensity is lower than 0.1− 0.2 mbar

(10− 20 pascals) of atmospheric pressure.
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Water is transparent to sound. Sound energy is absorbed (due to

viscosity) and ≈ 6% of it scattered (due to water inhomogeneities).

Sound attenuation by zoo-plankton is used in hydroacoustic

measurement of fish and zoo-plankton abundance.

Absorbed less in liquids and solids, low frequency sounds can

propagate in these media over much greater distances along lines of

minimum sound speed (SOFAR channel).

On the other hand, high frequency waves attenuate more rapidly. So,

low frequency waves are dominant further from the source (say, a

musical band or earthquake).

Attenuation of ultrasound waves with frequency f MHz at a given

distance r cm is αfr decibels, where α is the attenuation coefficient of

the medium. It is used in Ultrasound Biomicroscopy; in a homogeneous

medium (so, without scattering) α is 0.0022, 0.18, 0.85, 20, 41 for

water, blood, brain, bone, lung, respectively.
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• Animal long-distance communication

The main modes of animal communication are infrasound (< 20 Hz),

sound, ultrasound (> 20 kHz), vision (light), chemical (odor), tactile

and electrical. Infrasound, low-pitched sound (as territorial calls) and

light in air can be long-distance.

A blue whale infrasound can travel thousands of kilometers through

the ocean water using SOFAR channel (a layer where the speed of

sound is at a minimum, because water pressure, temperature, and

salinity cause a minimum of water density.

Janik, 2000, estimated that unmodulated dolphin whistles at 12 kHz in

a habitat having a uniform water depth of 10 m would be detectable by

conspecifics at distances of 1.5− 4 km.

Many animals hear infrasound of earthquakes, tsunami and hurricanes

before they strike. Elephants can hear storms 160− 240 km away.
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Most elephant communication is in the form of infrasonic rumbles

which may be heard by other elephants at 5 km away and, in optimum

atmospheric conditions, at 10 km. The resulting seismic waves can

travel 16− 32 km through the ground.

But non-fundamental harmonics of elephant calls are sonic.

McComb-Reby-Baker-Moss-Sayialel, 2003, found that, for female

African elephants, the peak of social call frequency is ≈ 115 Hz and the

social recognition distance (over which a contact call can be identified

as belonging to a family) is usually 1.5 km and at most 2.5 km.

High-frequency sounds attenuate more rapidly with distance; they are

more directional and vulnerable to scattering. But ultrasounds are

used by bats (echolocation) and antropods. Rodents use them to

communicate selectively to nearby receivers without alerting predators

and competitors. Some anurans shift to ultrasound signals in the

presence of continuous background noise (as waterfall, human traffic).
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• A phone is a sound segment that possess distinct acoustic properties,

the basis sound unit. A phoneme is a minimal distinctive feature/unit

(a set of phones perceived as equivalent in a given language).

The number of phonemes range, among about 6000 spoken now

languages, from 11 in Rotokas to 112 in Taa (languages spoken by

≈ 4000 people in Papua New Guinea and Botswana, respectively.)

Pirahã (Amazon’s tribe) require gender difference in pronunciation:

men use larger articulatory space and only men use the phoneme “s”.

Two main classes of phone distance between phones x and y are:

Spectrogram-based distances: physical-acoustic distortion

measures between the sound spectrograms of x and y;

Feature-based phone distances: usually Manhattan distance
∑

i |xi − yi| between vectors (xi) and (yi) representing phones x and y

with respect to given inventory of phonetic features (for example,

nasality, stricture, palatalization, rounding, sillability).
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• The Laver consonant distance refers, for 22 consonantal phonemes

of English, the improbability of confusing them, developed by Laver,

1994, from subjective auditory impressions.

The smallest distance, 15%, is between [p] and [k], the largest one,

95%, is, for example, between [p] and [z]. Laver also proposed a

quasi-distance based on the likehood that one consonant will be

misheard as another by an automatic speech-recognition system.

• Liljencrans and Lindlom, 1972, developed a vowel space of 14 vowels.

Each vowel, after a procedure maximizing contrast among them, is

represented by a pair (x, y) of resonant frequencies of the vocal tract

(1st and 2nd formants) in linear mel units with 350 ≤ x ≤ 850 and

800 ≤ y ≤ 1700). Higher x values correspond to lower vowels and

higher y values to less rounded or farther front vowels. For example,

[u], [a], [i] are represented by (350, 800), (850, 1150), (350, 1700), resp.
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• The phonetic word distance between two words x and y is the

cost-based editing metric (for phone sustitutions and indels).

A word is seen as a string of phones. Given a phone distance r(u, v)

on the International Phonetic Alphabet with additional phone 0 (the

silence), the cost of substitution of phone u by v is r(u, v), while r(u, 0)

is the cost of insertion or deletion of u.

• The linguistic distance (or dialectal distance) between language

varieties X and Y is the mean, for fixed sample S of notions, phonetic

word distance between cognate (i.e., having the same meaning)

words sX and sY , representing the same notion s ∈ S in X and Y ,

respectively. Cf. Dutch-German dialect continuum.

• Stover’s distance between phrases with the same key word is the

sum
∑

−n≤i≤+n aixi, where 0 < ai < 1 and xi is the proportion of

non-mathched words between the phrases within a moving window.
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• The main phonetic encoding algorithms are (based on English language

pronunciation) Soundex, Phonix and Phonex, converting words into

one-letter three-digits codes. The letter is the first one in the word and

the three digits are derived using an assignment of numbers to other

word letters. Soundex and Phonex assign:

0 to a, e, h, i, o, u, w, y; 1 to b, p, f, v; 2 to c, g, j, k, q, s, x, z;

3 to d, t; 4 to l; 5 to m, n; 6 to r.

The Editex distance (Zobel-Dart, 1996) between two words x and y

is a cost-based editing metric (i.e., the minimal cost of transforming

x into y by substitution, deletion and insertion of letters). The costs

for substitutions, are 0 if two letters are the same, 1 if they are in the

same letter group, and 2, otherwise.

The syllabic alignment distance (Gong-Chan, 2006) between two words

x and y is another cost-based editing metric. It is based on Phonix.
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IMAGE DISTANCES

Image Processing treat signals such as photographs, video, or

tomographic output. In particular, Computer Graphics consists of

image synthesis from some abstract models, while Computer Vision

extracts some abstract information. From ≈ 2000: mainly digitally.

Computer graphics (and our brains) deals with vector graphics

images, i.e., those represented geometrically by curves, polygons, etc.

A raster graphics image (or digital image) is a representation of

2D image as a finite set of digital values, pixels, on square (Z2) grid.

Video and tomographic (MRI) images are 3D (2D plus time).

A digital binary image corresponds to only two values 0,1 with 1

being interpreted as logical “true” and displayed as black. A binary

continuous image is a compact subset of Euclidean space E
n, n=2, 3
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The gray-scale images can be seen as point-weighted binary images.

In general, a fuzzy set is a point-weighted set with weights (degrees

of membership. Histogram of a a gray-scale image gives the

frequency of brightness values in it.

Humans can differ between ≈ 350000 colors but only 30 gray-levels.

For color images, (RGB)-representation is most known, where space

coordinates R, G, B indicate red, green and blue level.

Among other color models (spaces) are: (CMY) cube (Cyan, Magenta,

Yellow colors), (HSL) cone (Hue-color type given as angle, Saturation

in %, Luminosity in %), and (YUV), (YIQ) used in PAL, NTSC TV.

(RGB) converts into gray-level luminance by 0.299R+0.587G+0.114B
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A color space is a 3-parameter description of colors. Exactly 3 are

needed because 3 kinds of receptors (cells on the retina) exist in the

human eye: for short, middle, long wavelengths, i.e., blue, green, red.

The basic assumption of Colorimetry is that the perceptual color space

admits a metric, the true color distance. It is expected to be locally

Euclidean, i.e., a Riemannian metric. Another assumption: there is

a continuous mapping from this metric to the one of light stimuli.

Probability-distance hypothesis: the probability with which one

stimulus is discriminated from another is a (continuously increasing)

function of some subjective quasi-metric between these stimuli.

Such uniform color scale, where equal distances in the color space

correspond to equal differences in color, is not obtained yet and

existing color distances are various approximations of it.
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Images are often represented by feature vectors, including color

histograms, color moments, textures, shape descriptors, etc.

Examples of feature (parameter) spaces are:

raw intensity (pixel values), edges (contours, boundaries, surfaces),

salient features (corners, line intersections, points of high curvature),

and statistical features (moment invariants, centroids). Typical

video features are in terms of overlapping frames and motions.

Image Retrieval (similarity search) consists of (as for pattern

recognition with other data: audio, DNA/protein sequences, text

documents, time series etc.) finding images whose features values are

similar either between them, or to given query or in given range.

Distances are between, for Image Retrieval, feature vectors of a query

and reference, and, for Image Processing (as Audio Noise Reduction),

approximated and “true” digital images (to evaluate algorithms).
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There are two methods to compare images directly (without features):

intensity-based (color and texture histograms) and geometry-based

(shape representations as medial axis, skeletons).

Unprecise term shape is used for the extent (silhouette) of the object,

for its local geometry or geometrical pattern (conspicuous geometric

details, points, curves, etc.), or for that pattern modulo a similarity

transformation group (translations, rotations, and scalings).

Unprecise term texture means all what is left after color and shape

have been considered, or it is defined via structure and randomness.

The similarity between vector representations of images is measured

usually by lp-, weighted editing, probabilistic distances, etc.

The main distances used for compact subsets X and Y of Rn (usually,

n = 2, 3) or their digital versions are: Asplund, Shephard metrics,

vol(X∆Y ) and variations of the Hausdorff distance.
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Riemannian color space: the proposal to measure perceptual

dissimilarity of colors by a Riemannian metric on a convex cone

C ⊂ R3 comes from von Helmholtz, 1892, and Luneburg, 1947.

The only such GL-homogeneous cones C (i.e., the group of

orientation-preserving linear self-maps of R3 acts transitively on C) are

either C1 = R>0 × (R>0 × R>0), or C2 = R>0 × C ′, where C ′ is the set

of 2× 2 real symmetric matrices with determinant 1. The first factor

R>0 can be identified with variation of brightness and the other with

the set of lights of a fixed brightness. Let αi > 0 be some constants.

The Stiles color metric (Stiles, 1946) is the GL-invariant

Riemannian metric on C1 = {(x1, x2, x3) ∈ R
3 : xi > 0} given by the

line element ds2 =
∑3

i=1 αi(
dxi

xi
)2.

The Resnikoff color metric (Resnikoff, 1974) is the GL-invariant

Riemannian metric on C2 = {(x, u) : x ∈ R>0, u ∈ C ′} given by the line

element ds2 = α1(
dx
x )2 + α2ds

2
C′ , where ds2C′ , is the Poincaré metric
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• For a given 3D color space and a list of n colors, let (ci1, ci2, ci3) be the

representation of the i-th color of the list in this space.

For a color histogram x = (x1, . . . , xn), its average color is the vector

(x(1), x(2), x(3)), where x(j) =
∑n

i=1 xicij (for example, the average red,

blue and green values in (RGB)).

The average color distance between two color histograms is the

Euclidean distance of their average colors.

• Given an image (as a subset of R2), let pi be the area percentage of it

occupied by the color ci. A color component of the image is (ci, pi).

The Ma-Deng-Manjunath distance between color components

(ci, pi) and (cj , pj) is |pi − pj | · d(ci, cj), where d(ci, cj) is the distance

between colors ci and cj in a given color space.
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• Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn) (with

xi, yi representing number of pixels in the bin i), their Swain-Ballard’s

histogram intersection quasi-distance is 1−
∑

n
i=1

min{xi,yi}∑
n
i=1

xi
.

For normalized histograms (total sum is 1) above quasi-distance is the

usual l1-metric
∑n

i=1 |xi − yi|. Their Rosenfeld-Kak’s normalized

cross correlation is a similarity
∑n

i=1
xi,yi∑

n
i=1

x2
i

.

• Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn)

(usually, n = 256 or n = 64) representing the color percentages of two

images, their histogram quadratic distance is Mahalonobis

distance, defined by
√

(x− y)TA(x− y), where A = ((aij)) is a

symmetric positive-definite matrix, and weight aij is some,

perceptually justified, similarity between colors i and j.

For example, aij = 1− dij

max1≤p,q≤n dpq
, where dij is the Euclidean

distance between 3-vectors representing i and j in some color space.
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• Given two histogram-based descriptors x = (x1, . . . , xn) and

y = (y1, . . . , yn), their histogram diffusion distance (Ling-Okada,

2006) is defined by
∫ T

0

||u(t)||1dt,

where T is a constant, and u(t) is a heat diffusion process with initial

condition u(0) = x− y. In order to approximate the diffusion, the

initial condition is convoluted with a Gaussian window; then the sums

of l1-norms after each convolution approximate the integral.
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• Let f(x) and g(x) denote brightness values of two digital gray-scale

images f and g at the pixel x ∈ X , where X is a raster of pixels. Any

distance between point-weighted sets (X, f) and (X, g) can be applied

as gray-scale image distance between f and g. The main used ones:

RMS (root mean-square error)
(

1
|X|

∑

x∈X(f(x)− g(x))2
)

1
2

;

Signal-to-noise ratio SNR(f, g) =
( ∑

x∈X
g(x)2

∑
x∈X(f(x)−g(x))2

)

1
2

;

Pixel misclassification error rate 1
|X| |{x ∈ X : f(x) 6= g(x)}|;

Frequency RMS
(

1
|U |2

∑

u∈U (F (u)−G(u))2
)

1
2

, where F , G are the

discrete Fourier transforms of f , g, and U is the frequency domain;

Sobolev norm of order δ error
(

1
|U |2

∑

u∈U (1 + |ηu|2)δ(F (u)−G(u))2
)

1
2

, where 0 < δ < 1 is usually
1
2 ), and ηu is the 2D frequency vector associated in U with position u.
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• Given a number r, 0 ≤ r < 1, the image compression Lp-metric is

the usual Lp-metric on Rn2

≥0 (the set of gray-scale images seen as n× n

matrices) with p being a solution of the equation r = p−1
2p−1 · e

p

2p−1 . So,

p = 1, 2, ∞ for, respectively, r = 0, r = 1
3e

2
3 ≈ 0.65, r ≥

√
e
2 ≈ 0.82.

Here r estimates informative (i.e., filled with non-zeros) part of the

image. It is a quality metric to select a lossy compression scheme.

• The digital volume metric (a digital analog of the Nikodym

metric) on bounded subsets (images) of Zn) is vol(A△B), where

vol(A) = |A| (number of pixels in A), and A△B is the symmetric

difference of sets A and B.
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Hausdorff distance

http://en.wikipedia.org/wiki/User:Rocchini
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Consider two binary images, seen as non-empty subsets A and B of a

finite metric space (say, a raster of pixels) (X, d).

• Their Baddeley’s p-th order mean Hausdorff distance is
(

1
|X|

∑

x∈X |d(x,A)− d(x,B)|p
)

1
p

, where d(x,A) = miny∈A d(x, y). For

p = ∞, it is proportional to usual Hausdorff metric.

• Their Dubuisson-Jain’s modified Hausdorff distance is

max
{

1
|A|

∑

x∈A d(x,B), 1
|B|

∑

x∈B d(x,A)
}

.

• If |A| = |B| = m, minf maxx∈A d(x, f(x)), where f is any bijective

mapping between A and B, is their bottleneck distance.

Variations of above distance are: minimum weight matching

minf
∑

x∈A d(x, f(x)), uniform matching

minf (maxx∈A d(x, f(x))-minx∈A d(x, f(x)) and minimum deviation

matching minf (maxx∈A d(x, f(x))- 1
|A|

∑

x∈A d(x, f(x)).
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Consider two two images, seen as non-empty compact subsets A and B

of a metric space (X, d).

• Their non-linear Hausdorff metric (or wave distance) is the

Hausdorff distance dHaus(A ∩B, (A ∪B)∗), where (A ∪B)∗ is the

subset of A ∪B which forms a closed contiguous region with A ∩B,

and the distances between points are allowed to be measured only

along paths wholly in A ∪B.

• Their Hausdorff distance up to G, for given group (G, ·, id) acting
on the Euclidean space En, is ming∈G dHaus(A, g(B)). Usually, G is the

group of all isometries or all translations of En.
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• Their hyperbolic Hausdorff distance is the Hausdorff metric

between MAT (A) and MAT (BMAT(A)) of (X, dhyp), where the

hyperbolic distance dhyp(x, y) is max{0, dE(x′, y′)− (ry − rx)} for

elements x = (x′, rx) and y = (y′, ry) of X .

Here MAT (C) denotes, for any compact C ⊂ R
n, its Blum’s medial

axis transform, i.e., the subset of X = Rn × R≥0 of all pairs

x = (x′, rx) of the centers x′ and the radii rx of the maximal inscribed

(in C) l2-balls, in terms of the Euclidean distance dE in R
n.
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• Let (X, d) be a metric space, and let M ⊂ X .

The set MA(X) = {x ∈ X : |{m ∈ M : d(x,m) = d(x,M)}| ≥ 2} is the

medial axis of X . It consists of all points of boundaries of Voronoi

regions (zones of influence) of points of M .

The cut locus of X is its closure. The medial axis transform is the

point-weighted set MA(X) (the restriction of the distance transform

on MA(X)) with d(x,M) being the weight of x ∈ X .

If (as usual in applications) X ⊂ R
n and M is its boundary, then the

skeleton Skel(X) of X is the set of the centers of all d-balls inscribed

in X and not belonging to any other such ball; so, Skel(X)=MA(X).

For 2D binary images X , the skeleton is a curve, a single-pixel thin

one, in digital case.

The exoskeleton of X is the skeleton of the complement of X , i.e., of

the background of the image for which X is the foreground.
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• Given a metric space (X, d) (X = Z2 or R2) and a binary image

M ⊂ X , the distance transform (or distance field, distance map)

is a function fM : X → R≥0, where fM (x) = d(x,M) = infu∈M d(x, u).

So, it can be seen as a gray-scale image where pixel gray-level is labeled

by its distance to the nearest pixel of the background.

The Voronoi surface of M is {(x, d(x,M)) : x ∈ X = R2}.

• Let see two digital images as binary m× n matrices x = ((xij)) and

y = ((yij)), where a pixel xij is black or white if it is 1 or 0, resp.

For each pixel xij , the fringe distance map to the nearest pixel of

opposite color DBW (xij) is the number of fringes expanded from (i, j)

(where each fringe consists of pixels that are equi-distant of (i, j)) until

the first fringe with a pixel of opposite color is reached. Then
∑

1≤i≤m

∑

1≤j≤n |xij − yij |(DBW (xij) +DBW (yij)) is pixel distance.
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• In any metric space (X, d), the point-set distance d(x,M) between

x ∈ X and M ⊂ X is infy∈M d(x, y).

The function fM (x) = d(x,M) is a (general) distance map.

• The set-set distance between two subsets A,B ⊂ X is infx∈A, d(x,B).

The Hausdorff metric is max{ddHaus(A,B), ddHaus(B,A)}, where
ddHaus(A,B)=maxx∈A miny∈B d(x, y) (for compact subsets A,B ⊂ X).

• If the boundary B(M) of the set M is defined, then

the signed distance function gM is defined as − infu∈B(M) d(x, u)

for x ∈ M and infu∈B(M) d(x, u), otherwise.

If M is a (closed and orientable) manifold in Rn, then gM is the

solution of the eikonal equation |∇g| = 1 for its gradient ∇.
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• The shape can be represented by a parameterized simple plane curve.

Let X = X(x(t)), Y = Y (y(t)) be two parameterized curves, where

x(t), y(t) are continuous on [0, 1] and x(0) = y(0) = 0, x(1) = y(1) = 1.

The most used parameterized curves distance is the minimum,

over all monotone increasing x(t), y(t), of maxt dE(X(x(t)), Y (y(t))).

It is Euclidean case of the dogkeeper distance which is, in turn, the

Fréchet metric for the case of curves.

• Consider a digital representation of curves. Fix r ≥ 1 and let

A = {a1, . . . , am}, B = {b1, . . . , bn} be finite ordered sets of consecutive

points on two closed curves. For any order-preserving correspondence f

between all points of A and B, the stretch s(ai, bj) of (ai, f(ai) = bj)

is r if either f(ai−1) = bj or f(ai) = bj−1, or zero, otherwise.

The elastic matching distance is minf
∑

(s(ai, bj) + d(ai, bj)), where

d(ai, bj) is the difference between the tangent angles of ai and bj . It is

a near-metric for some r: all d(x, y) ≤ C(d(x, z) + d(z, y)) for C ≥ 1.
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• For a plane polygon P , its turning function TP (s) is the angle

between the counterclockwise tangent and the x-axis as the function of

the arc length s. This function increases with each left hand turn and

decreases with right hand turns.

Given two polygons of equal perimeters, their turning function

distance is the Lp-metric between their turning functions.

• For a plane graph G = (V,E) and a measuring function f on its

vertex-set V (say, the distance from v ∈ V to the center of mass of V ),

the size function SG(x, y) on the points (x, y) ∈ R
2 is the number of

connected components of the restriction of G on vertices

{v ∈ V : f(v) ≤ y} containing a point v′ with f(v′) ≤ x.

Given two plane graphs with vertex-sets belonging to a raster R ⊂ Z
2,

their Uras-Verri’s size function distance is the normalized l1-metric

between their size functions over raster pixels.
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• The time series video distances are objective wavelet-based

spatial-temporal video quality metrics.

A video stream x is processed into time series x(t) (seen as a curve on

coordinate plane) which then (piecewise linearly) approximated by a

set of n contiguous line segments that can be defined by n+ 1

endpoints (xi, x
′
i), 0 ≤ i ≤ n, on coordinate plane.

Wolf-Pinson’s distances between video streams x and y are:

1. Shape(x, y) =
∑n−1

i=0 |(x′
i+1 − x′

i)− (y′i+1 − y′i)|;

2. Offset(x, y) =
∑n−1

i=0 |x
′
i+1+x′

i

2 − y′
i+1+y′

i

2 |.
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Representation of distance in Painting

In Western Visual Arts, the distance is the part of a picture representing

objects which are the farthest away, such as a landscape; it is the illusion of

3D depth on a flat picture plane. The middle distance is the central part

of a scene between the foreground and the background (implied horizon).

Perspective projection draw distant objects as smaller to provide

additional realism by matching the decrease of their visual angle.

A vanishing point is a point at which parallel lines receding from an

observer seem to converge. Linear perspective is a drawing with 1− 3

such points; usually, they placed on horizon and equipartition it.

In a curvilinear perspective, there are ≥ 4 vanishing points; usually,

they mapped into and equipartition a distance circle. 0-point

perspective occurs if the vanishing points are placed outside the painting,

or if the scene (say, a mountain range) does not contain any parallel lines.
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Axonometric projection is parallel projection which is orthographic (i.e.,

the projection rays are perpendicular to the projection plane) and such that

the object is rotated along one or more of its axes relative to this plane.

The main case of it, used in engineering drawing, is isometric projection

in which the angles between three projection axes are the same, or 2π
3 .

In Chinese painting, the high-distance, deep-distance or

level-distance views correspond to picture planes dominated, respectively,

by vertical, horizontal elements or their combination.

Instead of the perspective projection of a “subject”, assuming a fixed

position by a viewer, Chinese classic hand scrolls (up to 10 m in length)

used axonometric one. It permitted to move along a continuous/seamless

visual scenario and to view elements from different angles.

It was less faithful to appearance and allowed to present only 3 (instead of

5) of 6 surfaces of a normal interior. But in Chinese painting, the focus is

rather on symbolic and expressionist representation.
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