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Abstract

We present a canonical way to turn any smooth parametric family
of probability distributions on an arbitrary search space 𝑋 into a
continuous-time black-box optimization method on 𝑋, the information-
geometric optimization (IGO) method. Invariance as a major design
principle keeps the number of arbitrary choices to a minimum. The
resulting method conducts a natural gradient ascent using an adaptive,
time-dependent transformation of the objective function, and makes no
particular assumptions on the objective function to be optimized.

The IGO method produces explicit IGO algorithms through time
discretization. The cross-entropy method is recovered in a particular
case with a large time step, and can be extended into a smoothed,
parametrization-independent maximum likelihood update.

When applied to specific families of distributions on discrete or con-
tinuous spaces, the IGO framework allows to naturally recover versions
of known algorithms. From the family of Gaussian distributions on R𝑑,
we arrive at a version of the well-known CMA-ES algorithm. From
the family of Bernoulli distributions on {0, 1}𝑑, we recover the seminal
PBIL algorithm. From the distributions of restricted Boltzmann ma-
chines, we naturally obtain a novel algorithm for discrete optimization
on {0, 1}𝑑.

The IGO method achieves, thanks to its intrinsic formulation, max-
imal invariance properties: invariance under reparametrization of the
search space 𝑋, under a change of parameters of the probability dis-
tribution, and under increasing transformation of the function to be
optimized. The latter is achieved thanks to an adaptive formulation of
the objective.

Theoretical considerations strongly suggest that IGO algorithms
are characterized by a minimal change of the distribution. Therefore
they have minimal loss in diversity through the course of optimization,
provided the initial diversity is high. First experiments using restricted
Boltzmann machines confirm this insight. As a simple consequence,
IGO seems to provide, from information theory, an elegant way to
spontaneously explore several valleys of a fitness landscape in a single
run.
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Introduction
In this article, we consider an objective function 𝑓 : 𝑋 → R to be minimized
over a search space 𝑋. No particular assumption on 𝑋 is needed: it may
be discrete or continuous, finite or infinite. We adopt a standard scenario
where we consider 𝑓 as a black box that delivers values 𝑓(𝑥) for any desired
input 𝑥 ∈ 𝑋. The objective of black-box optimization is to find solutions
𝑥 ∈ 𝑋 with small value 𝑓(𝑥), using the least number of calls to the black
box. In this context, we design a stochastic optimization method from sound
theoretical principles.

We assume that we are given a family of probability distributions 𝑃𝜃

on 𝑋 depending on a continuous multicomponent parameter 𝜃 ∈ Θ. A
basic example is to take 𝑋 = R𝑑 and to consider the family of all Gaussian
distributions 𝑃𝜃 on R𝑑, with 𝜃 = (𝑚, 𝐶) the mean and covariance matrix.
Another simple example is 𝑋 = {0, 1}𝑑 equipped with the family of Bernoulli
measures, i.e. 𝜃 = (𝜃𝑖)16𝑖6𝑑 and 𝑃𝜃(𝑥) =

∏︀
𝜃𝑥𝑖

𝑖 (1− 𝜃𝑖)1−𝑥𝑖 for 𝑥 = (𝑥𝑖) ∈ 𝑋.
The parameters 𝜃 of the family 𝑃𝜃 belong to a space, Θ, assumed to be a
smooth manifold.
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From this setting, we build in a natural way an optimization method,
the information-geometric optimization (IGO). At each time 𝑡, we maintain
a value 𝜃𝑡 such that 𝑃𝜃𝑡 represents, loosely speaking, the current belief
about where the smallest values of the function 𝑓 may lie. Over time, 𝑃𝜃𝑡

evolves and is expected to concentrate around the minima of 𝑓 . This general
approach resembles the wide family of estimation of distribution algorithms
(EDA) [LL02, BC95, PGL02]. However, we deviate somewhat from the
common EDA reasoning, as explained in the following.

The IGO method takes the form of a gradient ascent on 𝜃𝑡 in the parameter
space Θ. We follow the gradient of a suitable transformation of 𝑓 , based
on the 𝑃𝜃𝑡-quantiles of 𝑓 . The gradient used for 𝜃 is the natural gradient
defined from the Fisher information metric [Rao45, Jef46, AN00], as is the
case in various other optimization strategies, for instance so-called natural
evolution strategies [WSPS08, SWSS09, GSS+10]. Thus, we extend the scope
of optimization strategies based on this gradient to arbitrary search spaces.

The IGO method also has an equivalent description as an infinitesimal
maximum likelihood update; this reveals a new property of the natural
gradient. This also relates IGO to the cross-entropy method [dBKMR05] in
some situations.

When we instantiate IGO using the family of Gaussian distributions
on R𝑑, we naturally obtain variants of the well-known covariance matrix
adaptation evolution strategy (CMA-ES) [HO01, HK04, JA06] and of natural
evolution strategies. With Bernoulli measures on the discrete cube {0, 1}𝑑,
we recover the well-known population based incremental learning (PBIL)
[BC95, Bal94]; this derivation of PBIL as a natural gradient ascent appears
to be new, and sheds some light on the common ground between continuous
and discrete optimization.

From the IGO framework, it is immediate to build new optimization
algorithms using more complex families of distributions than Gaussian or
Bernoulli. As an illustration, distributions associated with restricted Boltz-
mann machines (RBMs) provide a new but natural algorithm for discrete
optimization on {0, 1}𝑑, able to handle dependencies between the bits (see
also [Ber02]). The probability distributions associated with RBMs are mul-
timodal; combined with specific information-theoretic properties of IGO
that guarantee minimal loss of diversity over time, this allows IGO to reach
multiple optima at once very naturally, at least in a simple experimental
setup.

Our method is built to achieve maximal invariance properties. First, it
will be invariant under reparametrization of the family of distributions 𝑃𝜃,
that is, at least for infinitesimally small steps, it only depends on 𝑃𝜃 and not
on the way we write the parameter 𝜃. (For instance, for Gaussian measures
it should not matter whether we use the covariance matrix or its inverse or
a Cholesky factor as the parameter.) This limits the influence of encoding
choices on the behavior of the algorithm. Second, it will be invariant under
a change of coordinates in the search space 𝑋, provided that this change of
coordinates globally preserves our family of distributions 𝑃𝜃. (For Gaussian
distributions on R𝑑, this includes all affine changes of coordinates.) This
means that the algorithm, apart from initialization, does not depend on
the precise way the data is presented. Last, the algorithm will be invariant
under applying an increasing function to 𝑓 , so that it is indifferent whether
we minimize e.g. 𝑓 , 𝑓3 or 𝑓 × |𝑓 |−2/3. This way some non-convex or non-
smooth functions can be as “easily” optimised as convex ones. Contrary to
previous formulations using natural gradients [WSPS08, GSS+10, ANOK10],
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this invariance under increasing transformation of the objective function is
achieved from the start.

Invariance under 𝑋-reparametrization has been—we believe—one of
the keys to the success of the CMA-ES algorithm, which derives from a
particular case of ours. Invariance under 𝜃-reparametrization is the main idea
behind information geometry [AN00]. Invariance under 𝑓 -transformation
is not uncommon, e.g., for evolution strategies [Sch95] or pattern search
methods [HJ61, Tor97, NM65]; however it is not always recognized as an
attractive feature. Such invariance properties mean that we deal with intrinsic
properties of the objects themselves, and not with the way we encode them
as collections of numbers in R𝑑. It also means, most importantly, that we
make a minimal number of arbitrary choices.

In Section 1, we define the IGO flow and the IGO algorithm. We begin
with standard facts about the definition and basic properties of the natural
gradient, and its connection with Kullback–Leibler divergence and diversity.
We then proceed to the detailed description of our algorithm.

In Section 2, we state some first mathematical properties of IGO. These
include monotone improvement of the objective function, invariance proper-
ties, the form of IGO for exponential families of probability distributions,
and the case of noisy objective functions.

In Section 3 we explain the theoretical relationships between IGO, maxi-
mum likelihood estimates and the cross-entropy method. In particular, IGO
is uniquely characterized by a weighted log-likelihood maximization property.

In Section 4, we derive several well-known optimization algorithms from
the IGO framework. These include PBIL, versions of CMA-ES and other
Gaussian evolutionary algorithms such as EMNA. This also illustrates how
a large step size results in more and more differing algorithms w.r.t. the
continuous-time IGO flow.

In Section 5, we illustrate how IGO can be used to design new optimization
algorithms. As a proof of concept, we derive the IGO algorithm associated
with restricted Boltzmann machines for discrete optimization, allowing for
multimodal optimization. We perform a preliminary experimental study of
the specific influence of the Fisher information matrix on the performance of
the algorithm and on diversity of the optima obtained.

In Section 6, we discuss related work, and in particular, IGO’s relationship
with and differences from various other optimization algorithms such as
natural evolution strategies or the cross-entropy method. We also sum up
the main contributions of the paper and the design philosophy of IGO.

1 Algorithm description
We now present the outline of our algorithms. Each step is described in more
detail in the sections below.

Our method can be seen as an estimation of distribution algorithm: at
each time 𝑡, we maintain a probability distribution 𝑃𝜃𝑡 on the search space
𝑋, where 𝜃𝑡 ∈ Θ. The value of 𝜃𝑡 will evolve so that, over time, 𝑃𝜃𝑡 gives
more weight to points 𝑥 with better values of the function 𝑓(𝑥) to optimize.

A straightforward way to proceed is to transfer 𝑓 from 𝑥-space to 𝜃-space:
define a function 𝐹 (𝜃) as the 𝑃𝜃-average of 𝑓 and then to do a gradient
descent for 𝐹 (𝜃) in space Θ [Ber00]. This way, 𝜃 will converge to a point
such that 𝑃𝜃 yields a good average value of 𝑓 . We depart from this approach
in two ways:
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∙ At each time, we replace 𝑓 with an adaptive transformation of 𝑓 rep-
resenting how good or bad observed values of 𝑓 are relative to other
observations. This provides invariance under all monotone transforma-
tions of 𝑓 .

∙ Instead of the vanilla gradient for 𝜃, we use the so-called natural gradient
given by the Fisher information matrix. This reflects the intrinsic
geometry of the space of probability distributions, as introduced by
Rao and Jeffreys [Rao45, Jef46] and later elaborated upon by Amari
and others [AN00]. This provides invariance under reparametrization
of 𝜃 and, importantly, minimizes the change of diversity of 𝑃𝜃.

The algorithm is constructed in two steps: we first give an “ideal” version,
namely, a version in which time 𝑡 is continuous so that the evolution of 𝜃𝑡 is
given by an ordinary differential equation in Θ. Second, the actual algorithm
is a time discretization using a finite time step and Monte Carlo sampling
instead of exact 𝑃𝜃-averages.

1.1 The natural gradient on parameter space

About gradients and the shortest path uphill. Let 𝑔 be a smooth
function from R𝑑 to R, to be maximized. We first present the interpretation
of gradient ascent as “the shortest path uphill”.

Let 𝑦 ∈ R𝑑. Define the vector 𝑧 by

𝑧 = lim
𝜀→0

arg max
𝑧, ‖𝑧‖61

𝑔(𝑦 + 𝜀𝑧). (1)

Then one can check that 𝑧 is the normalized gradient of 𝑔 at 𝑦: 𝑧𝑖 = 𝜕𝑔/𝜕𝑦𝑖

‖𝜕𝑔/𝜕𝑦𝑘‖ .
(This holds only at points 𝑦 where the gradient of 𝑔 does not vanish.)

This shows that, for small 𝛿𝑡, the well-known gradient ascent of 𝑔 given
by

𝑦𝑡+𝛿𝑡
𝑖 = 𝑦𝑡

𝑖 + 𝛿𝑡 𝜕𝑔
𝜕𝑦𝑖

realizes the largest increase in the value of 𝑔, for a given step size ‖𝑦𝑡+𝛿𝑡−𝑦𝑡‖.
The relation (1) depends on the choice of a norm ‖·‖ (the gradient of

𝑔 is given by 𝜕𝑔/𝜕𝑦𝑖 only in an orthonormal basis). If we use, instead of
the standard metric ‖𝑦 − 𝑦′‖ =

√︁∑︀
(𝑦𝑖 − 𝑦′

𝑖)2 on R𝑑, a metric ‖𝑦 − 𝑦′‖𝐴 =√︁∑︀
𝐴𝑖𝑗(𝑦𝑖 − 𝑦′

𝑖)(𝑦𝑗 − 𝑦′
𝑗) defined by a positive definite matrix 𝐴𝑖𝑗 , then the

gradient of 𝑔 with respect to this metric is given by
∑︀

𝑗 𝐴−1
𝑖𝑗

𝜕𝑔
𝜕𝑦𝑖

. (This follows
from the textbook definition of gradients by 𝑔(𝑦 + 𝜀𝑧) = 𝑔(𝑦) + 𝜀⟨∇𝑔, 𝑧⟩𝐴 +
𝑂(𝜀2) with ⟨·, ·⟩𝐴 the scalar product associated with the matrix 𝐴𝑖𝑗 [Sch92].)

We can write the analogue of (1) using the 𝐴-norm. We get that the
gradient ascent associated with metric 𝐴, given by

𝑦𝑡+𝛿𝑡 = 𝑦𝑡 + 𝛿𝑡 𝐴−1 𝜕𝑔
𝜕𝑦𝑖

,

for small 𝛿𝑡, maximizes the increment of 𝑔 for a given 𝐴-distance ‖𝑦𝑡+𝛿𝑡 −
𝑦𝑡‖𝐴—it realizes the steepest 𝐴-ascent. Maybe this viewpoint clarifies the
relationship between gradient and metric: this steepest ascent property can
actually be used as a definition of gradients.

In our setting we want to use a gradient ascent in the parameter space Θ
of our distributions 𝑃𝜃. The metric ‖𝜃− 𝜃′‖ =

√︁∑︀
(𝜃𝑖 − 𝜃′

𝑖)2 clearly depends
on the choice of parametrization 𝜃, and thus is not intrinsic. Therefore, we
use a metric depending on 𝜃 only through the distributions 𝑃𝜃, as follows.
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Fisher information and the natural gradient on parameter space.
Let 𝜃, 𝜃′ ∈ Θ be two values of the distribution parameter. The Kullback–
Leibler divergence between 𝑃𝜃 and 𝑃𝜃′ is defined [Kul97] as

KL(𝑃𝜃′ ||𝑃𝜃) =
∫︁

𝑥
ln 𝑃𝜃′(𝑥)

𝑃𝜃(𝑥) 𝑃𝜃′(d𝑥).

When 𝜃′ = 𝜃 + 𝛿𝜃 is close to 𝜃, under mild smoothness assumptions we
can expand the Kullback–Leibler divergence at second order in 𝛿𝜃. This
expansion defines the Fisher information matrix 𝐼 at 𝜃 [Kul97]:

KL(𝑃𝜃+𝛿𝜃 ||𝑃𝜃) = 1
2
∑︁

𝐼𝑖𝑗(𝜃) 𝛿𝜃𝑖𝛿𝜃𝑗 + 𝑂(𝛿𝜃3).

An equivalent definition of the Fisher information matrix is by the usual
formulas [CT06]

𝐼𝑖𝑗(𝜃) =
∫︁

𝑥

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑗

d𝑃𝜃(𝑥) = −
∫︁

𝑥

𝜕2 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖 𝜕𝜃𝑗

d𝑃𝜃(𝑥).

The Fisher information matrix defines a (Riemannian) metric on Θ: the
distance, in this metric, between two very close values of 𝜃 is given by the
square root of twice the Kullback–Leibler divergence. Since the Kullback–
Leibler divergence depends only on 𝑃𝜃 and not on the parametrization of 𝜃,
this metric is intrinsic.

If 𝑔 : Θ → R is a smooth function on the parameter space, its natural
gradient at 𝜃 is defined in accordance with the Fisher metric as

( ̃︀∇𝜃 𝑔)𝑖 =
∑︁

𝑗

𝐼−1
𝑖𝑗 (𝜃) 𝜕𝑔(𝜃)

𝜕𝜃𝑗

or more synthetically ̃︀∇𝜃 𝑔 = 𝐼−1 𝜕𝑔

𝜕𝜃
.

From now on, we will use ̃︀∇𝜃 to denote the natural gradient and 𝜕
𝜕𝜃 to denote

the vanilla gradient.
By construction, the natural gradient descent is intrinsic: it does not

depend on the chosen parametrization 𝜃 of 𝑃𝜃, so that it makes sense to
speak of the natural gradient ascent of a function 𝑔(𝑃𝜃).

Given that the Fisher metric comes from the Kullback–Leibler divergence,
the “shortest path uphill” property of gradients mentioned above translates
as follows (see also [Ama98, Theorem 1]):

Proposition 1. The natural gradient ascent points in the direction 𝛿𝜃 achiev-
ing the largest change of the objective function, for a given distance between
𝑃𝜃 and 𝑃𝜃+𝛿𝜃 in Kullback–Leibler divergence. More precisely, let 𝑔 be a
smooth function on the parameter space Θ. Let 𝜃 ∈ Θ be a point where ̃︀∇𝑔(𝜃)
does not vanish. Then

̃︀∇𝑔(𝜃)
‖ ̃︀∇𝑔(𝜃)‖

= lim
𝜀→0

1
𝜀

arg max
𝛿𝜃 such that

KL(𝑃𝜃+𝛿𝜃 || 𝑃𝜃)6𝜀2/2

𝑔(𝜃 + 𝛿𝜃).

Here we have implicitly assumed that the parameter space Θ is non-
degenerate and proper (that is, no two points 𝜃 ∈ Θ define the same proba-
bility distribution, and the mapping 𝑃𝜃 ↦→ 𝜃 is continuous).

6



Why use the Fisher metric gradient for optimization? Relation-
ship to diversity. The first reason for using the natural gradient is its
reparametrization invariance, which makes it the only gradient available in
a general abstract setting [AN00]. Practically, this invariance also limits
the influence of encoding choices on the behavior of the algorithm. More
prosaically, the Fisher matrix can be also seen as an adaptive learning rate
for different components of the parameter vector 𝜃𝑖: components 𝑖 with a
high impact on 𝑃𝜃 will be updated more cautiously.

Another advantage comes from the relationship with Kullback–Leibler
distance in view of the “shortest path uphill” (see also [Ama98]). To minimize
the value of some function 𝑔(𝜃) defined on the parameter space Θ, the naive
approach follows a gradient descent for 𝑔 using the “vanilla” gradient

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡 𝜕𝑔
𝜕𝜃𝑖

and, as explained above, this maximizes the increment of 𝑔 for a given
increment ‖𝜃𝑡+𝛿𝑡 − 𝜃𝑡‖. On the other hand, the Fisher gradient

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡𝐼−1 𝜕𝑔
𝜕𝜃𝑖

maximizes the increment of 𝑔 for a given Kullback–Leibler distance KL(𝑃𝜃𝑡+𝛿𝑡 ||𝑃𝜃𝑡).
In particular, if we choose an initial value 𝜃0 such that 𝑃𝜃0 covers a wide

portion of the space 𝑋 uniformly, the Kullback–Leibler divergence between
𝑃𝜃𝑡 and 𝑃𝜃0 measures the loss of diversity of 𝑃𝜃𝑡 . So the natural gradient
descent is a way to optimize the function 𝑔 with minimal loss of diversity,
provided the initial diversity is large. On the other hand the vanilla gradient
descent optimizes 𝑔 with minimal change in the numerical values of the
parameter 𝜃, which is of little interest.

So arguably this method realizes the best trade-off between optimization
and loss of diversity. (Though, as can be seen from the detailed algorithm
description below, maximization of diversity occurs only greedily at each
step, and so there is no guarantee that after a given time, IGO will provide
the highest possible diversity for a given objective function value.)

An experimental confirmation of the positive influence of the Fisher
matrix on diversity is given in Section 5 below. This may also provide a
theoretical explanation to the good performance of CMA-ES.

1.2 IGO: Information-geometric optimization

Quantile rewriting of 𝑓 . Our original problem is to minimize a function
𝑓 : 𝑋 → R. A simple way to turn 𝑓 into a function on Θ is to use the
expected value −E𝑃𝜃

𝑓 [Ber00, WSPS08], but expected values can be unduly
influenced by extreme values and using them is rather unstable [Whi89];
moreover −E𝑃𝜃

𝑓 is not invariant under increasing transformation of 𝑓 (this
invariance implies we can only compare 𝑓 -values, not add them).

Instead, we take an adaptive, quantile-based approach by first replacing
the function 𝑓 with a monotone rewriting 𝑊 𝑓

𝜃 and then following the gradient
of E𝑃𝜃

𝑊 𝑓
𝜃 . A due choice of 𝑊 𝑓

𝜃 allows to control the range of the resulting
values and achieves the desired invariance. Because the rewriting 𝑊 𝑓

𝜃 depends
on 𝜃, it might be viewed as an adaptive 𝑓 -transformation.

The goal is that if 𝑓(𝑥) is “small” then 𝑊 𝑓
𝜃 (𝑥) ∈ R is “large” and vice

versa, and that 𝑊 𝑓
𝜃 remains invariant under monotone transformations of

𝑓 . The meaning of “small” or “large” depends on 𝜃 ∈ Θ and is taken with
respect to typical values of 𝑓 under the current distribution 𝑃𝜃. This is
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measured by the 𝑃𝜃-quantile in which the value of 𝑓(𝑥) lies. We write the
lower and upper 𝑃𝜃-𝑓 -quantiles of 𝑥 ∈ 𝑋 as

𝑞−
𝜃 (𝑥) = Pr𝑥′∼𝑃𝜃

(𝑓(𝑥′) < 𝑓(𝑥))
𝑞+

𝜃 (𝑥) = Pr𝑥′∼𝑃𝜃
(𝑓(𝑥′) 6 𝑓(𝑥)) .

(2)

These quantile functions reflect the probability to sample a better value than
𝑓(𝑥). They are monotone in 𝑓 (if 𝑓(𝑥1) 6 𝑓(𝑥2) then 𝑞±

𝜃 (𝑥1) 6 𝑞±
𝜃 (𝑥2)) and

invariant under increasing transformations of 𝑓 .
Given 𝑞 ∈ [0; 1], we now choose a non-increasing function 𝑤 : [0; 1]→ R

(fixed once and for all). A typical choice for 𝑤 is 𝑤(𝑞) = 1𝑞6𝑞0 for some
fixed value 𝑞0, the selection quantile. The transform 𝑊 𝑓

𝜃 (𝑥) is defined as a
function of the 𝑃𝜃-𝑓 -quantile of 𝑥 as

𝑊 𝑓
𝜃 (𝑥) =

⎧⎨⎩𝑤(𝑞+
𝜃 (𝑥)) if 𝑞+

𝜃 (𝑥) = 𝑞−
𝜃 (𝑥),

1
𝑞+

𝜃
(𝑥)−𝑞−

𝜃
(𝑥)
∫︀ 𝑞=𝑞+

𝜃
(𝑥)

𝑞=𝑞−
𝜃

(𝑥) 𝑤(𝑞) d𝑞 otherwise.
(3)

As desired, the definition of 𝑊 𝑓
𝜃 is invariant under an increasing transforma-

tion of 𝑓 . For instance, the 𝑃𝜃-median of 𝑓 gets remapped to 𝑤(1
2).

Note that E𝑃𝜃
𝑊 𝑓

𝜃 =
∫︀ 1

0 𝑤 is independent of 𝑓 and 𝜃: indeed, by definition,
the quantile of a random point under 𝑃𝜃 is uniformly distributed in [0; 1]. In
the following, our objective will be to maximize the expected value of 𝑊 𝑓

𝜃𝑡 in
𝜃, that is, to maximize

E𝑃𝜃
𝑊 𝑓

𝜃𝑡 =
∫︁

𝑊 𝑓
𝜃𝑡(𝑥) 𝑃𝜃(d𝑥) (4)

over 𝜃, where 𝜃𝑡 is fixed at a given step but will adapt over time.
Importantly, 𝑊 𝑓

𝜃 (𝑥) can be estimated in practice: indeed, the quantiles
Pr𝑥′∼𝑃𝜃

(𝑓(𝑥′) < 𝑓(𝑥)) can be estimated by taking samples of 𝑃𝜃 and ordering
the samples according to the value of 𝑓 (see below). The estimate remains
invariant under increasing 𝑓 -transformations.

The IGO gradient flow. At the most abstract level, IGO is a continuous-
time gradient flow in the parameter space Θ, which we define now. In
practice, discrete time steps (a.k.a. iterations) are used, and 𝑃𝜃-integrals are
approximated through sampling, as described in the next section.

Let 𝜃𝑡 be the current value of the parameter at time 𝑡, and let 𝛿𝑡 ≪ 1.
We define 𝜃𝑡+𝛿𝑡 in such a way as to increase the 𝑃𝜃-weight of points where 𝑓
is small, while not going too far from 𝑃𝜃𝑡 in Kullback–Leibler divergence. We
use the adaptive weights 𝑊 𝑓

𝜃𝑡 as a way to measure which points have large or
small values. In accordance with (4), this suggests taking the gradient ascent

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 ̃︀∇𝜃

∫︁
𝑊 𝑓

𝜃𝑡(𝑥) 𝑃𝜃(d𝑥) (5)

where the natural gradient is suggested by Proposition 1.
Note again that we use 𝑊 𝑓

𝜃𝑡 and not 𝑊 𝑓
𝜃 in the integral. So the gradient̃︀∇𝜃 does not act on the adaptive objective 𝑊 𝑓

𝜃𝑡 . If we used 𝑊 𝑓
𝜃 instead, we

would face a paradox: right after a move, previously good points do not
seem so good any more since the distribution has improved. More precisely,∫︀

𝑊 𝑓
𝜃 (𝑥) 𝑃𝜃(d𝑥) is constant and always equal to the average weight

∫︀ 1
0 𝑤,

and so the gradient would always vanish.
Using the log-likelihood trick ̃︀∇𝑃𝜃 = 𝑃𝜃

̃︀∇ln 𝑃𝜃 (assuming 𝑃𝜃 is smooth),
we get an equivalent expression of the update above as an integral under
the current distribution 𝑃𝜃𝑡 ; this is important for practical implementation.
This leads to the following definition.
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Definition 2 (IGO flow). The IGO flow is the set of continuous-time
trajectories in space Θ, defined by the differential equation

d𝜃𝑡

d𝑡
= ̃︀∇𝜃

∫︁
𝑊 𝑓

𝜃𝑡(𝑥) 𝑃𝜃(d𝑥) (6)

=
∫︁

𝑊 𝑓
𝜃𝑡(𝑥) ̃︀∇𝜃 ln 𝑃𝜃(𝑥) 𝑃𝜃𝑡(d𝑥) (7)

= 𝐼−1(𝜃𝑡)
∫︁

𝑊 𝑓
𝜃𝑡(𝑥) 𝜕 ln 𝑃𝜃(𝑥)

𝜕𝜃
𝑃𝜃𝑡(d𝑥). (8)

where the gradients are taken at point 𝜃 = 𝜃𝑡, and 𝐼 is the Fisher information
matrix.

Natural evolution strategies (NES, [WSPS08, GSS+10, SWSS09]) feature
a related gradient descent with 𝑓(𝑥) instead of 𝑊 𝑓

𝜃𝑡(𝑥). The associated flow
would read

d𝜃𝑡

d𝑡
= − ̃︀∇𝜃

∫︁
𝑓(𝑥) 𝑃𝜃(d𝑥) , (9)

where the gradient is taken at 𝜃𝑡 (in the sequel when not explicitly stated,
gradients in 𝜃 are taken at 𝜃 = 𝜃𝑡). However, in the end NESs always
implement algorithms using sample quantiles, as if derived from the gradient
ascent of 𝑊 𝑓

𝜃𝑡(𝑥).
The update (7) is a weighted average of “intrinsic moves” increasing the

log-likelihood of some points. We can slightly rearrange the update as

d𝜃𝑡

d𝑡
=
∫︁preference weight⏞  ⏟  

𝑊 𝑓
𝜃𝑡(𝑥) ̃︀∇𝜃 ln 𝑃𝜃(𝑥)⏟  ⏞  
intrinsic move to reinforce 𝑥

current sample distribution⏞  ⏟  
𝑃𝜃𝑡(d𝑥) (10)

= ̃︀∇𝜃

∫︁
𝑊 𝑓

𝜃𝑡(𝑥) ln 𝑃𝜃(𝑥)⏟  ⏞  
weighted log-likelihood

𝑃𝜃𝑡(d𝑥). (11)

which provides an interpretation for the IGO gradient flow as a gradient
ascent optimization of the weighted log-likelihood of the “good points” of
the current distribution. In a precise sense, IGO is in fact the “best” way to
increase this log-likelihood (Theorem 13).

For exponential families of probability distributions, we will see later that
the IGO flow rewrites as a nice derivative-free expression (18).

The IGO algorithm. Time discretization and sampling. The above
is a mathematically well-defined continuous-time flow in the parameter space.
Its practical implementation involves three approximations depending on
two parameters 𝑁 and 𝛿𝑡:

∙ the integral under 𝑃𝜃𝑡 is approximated using 𝑁 samples taken from
𝑃𝜃𝑡 ;

∙ the value 𝑊 𝑓
𝜃𝑡 is approximated for each sample taken from 𝑃𝜃𝑡 ;

∙ the time derivative d𝜃𝑡

d𝑡 is approximated by a 𝛿𝑡 time increment.

We also assume that the Fisher information matrix 𝐼(𝜃) and 𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃 can

be computed (see discussion below if 𝐼(𝜃) is unkown).
At each step, we pick 𝑁 samples 𝑥1, . . . , 𝑥𝑁 under 𝑃𝜃𝑡 . To approximate

the quantiles, we rank the samples according to the value of 𝑓 . Define
rk(𝑥𝑖) = #{𝑗, 𝑓(𝑥𝑗) < 𝑓(𝑥𝑖)} and let the estimated weight of sample 𝑥𝑖 be

̂︀𝑤𝑖 = 1
𝑁

𝑤

(︂rk(𝑥𝑖) + 1/2
𝑁

)︂
, (12)
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using the weighting scheme function 𝑤 introduced above. (This is assuming
there are no ties in our sample; in case several sample points have the same
value of 𝑓 , we define ̂︀𝑤𝑖 by averaging the above over all possible rankings of
the ties1.)

Then we can approximate the IGO flow as follows.

Definition 3 (IGO algorithm). The IGO algorithm with sample size 𝑁 and
step size 𝛿𝑡 is the following update rule for the parameter 𝜃𝑡. At each step,
𝑁 sample points 𝑥1, . . . , 𝑥𝑁 are picked according to the distribution 𝑃𝜃𝑡 . The
parameter is updated according to

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡
𝑁∑︁

𝑖=1
̂︀𝑤𝑖
̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖)

⃒⃒⃒
𝜃=𝜃𝑡

(13)

= 𝜃𝑡 + 𝛿𝑡 𝐼−1(𝜃𝑡)
𝑁∑︁

𝑖=1
̂︀𝑤𝑖

𝜕 ln 𝑃𝜃(𝑥𝑖)
𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡

(14)

where ̂︀𝑤𝑖 is the weight (12) obtained from the ranked values of the objective
function 𝑓 .

Equivalently one can fix the weights 𝑤𝑖 = 1
𝑁 𝑤

(︁
𝑖−1/2

𝑁

)︁
once and for all

and rewrite the update as

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 𝐼−1(𝜃𝑡)
𝑁∑︁

𝑖=1
𝑤𝑖

𝜕 ln 𝑃𝜃(𝑥𝑖:𝑁 )
𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡

(15)

where 𝑥𝑖:𝑁 denotes the 𝑖th sampled point ranked according to 𝑓 , i.e. 𝑓(𝑥1:𝑁 ) <
. . . < 𝑓(𝑥𝑁 :𝑁 ) (assuming again there are no ties). Note that {𝑥𝑖:𝑁} = {𝑥𝑖}
and {𝑤𝑖} = { ̂︀𝑤𝑖}.

As will be discussed in Section 4, this update applied to multivariate
normal distributions or Bernoulli measures allows to neatly recover versions of
some well-established algorithms, in particular CMA-ES and PBIL. Actually,
in the Gaussian context updates of the form (14) have already been introduced
[GSS+10, ANOK10], though not formally derived from a continuous-time
flow with quantiles.

When 𝑁 → ∞, the IGO algorithm using samples approximates the
continuous-time IGO gradient flow, see Theorem 4 below. Indeed, the IGO
algorithm, with 𝑁 =∞, is simply the Euler approximation scheme for the
ordinary differential equation defining the IGO flow (6). The latter result
thus provides a sound mathematical basis for currently used rank-based
updates.

IGO flow versus IGO algorithms. The IGO flow (6) is a well-defined
continuous-time set of trajectories in the space of probability distributions
𝑃𝜃, depending only on the objective function 𝑓 and the chosen family of
distributions. It does not depend on the chosen parametrization for 𝜃
(Proposition 8).

On the other hand, there are several IGO algorithms associated with this
flow. Each IGO algorithm approximates the IGO flow in a slightly different

1A mathematically neater but less intuitive version would be

̂︀𝑤𝑖 = 1
rk+(𝑥𝑖)− rk−(𝑥𝑖)

∫︁ 𝑢=rk+(𝑥𝑖)/𝑁

𝑢=rk−(𝑥𝑖)/𝑁

𝑤(𝑢)d𝑢

with rk−(𝑥𝑖) = #{𝑗, 𝑓(𝑥𝑗) < 𝑓(𝑥𝑖)} and rk+(𝑥𝑖) = #{𝑗, 𝑓(𝑥𝑗) 6 𝑓(𝑥𝑖)}.
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way. An IGO algorithm depends on three further choices: a sample size 𝑁 ,
a time discretization step size 𝛿𝑡, and a choice of parametrization for 𝜃 in
which to implement (14).

If 𝛿𝑡 is small enough, and 𝑁 large enough, the influence of the parametriza-
tion 𝜃 disappears and all IGO algorithms are approximations of the “ideal”
IGO flow trajectory. However, the larger 𝛿𝑡, the poorer the approximation
gets.

So for large 𝛿𝑡, different IGO algorithms for the same IGO flow may
exhibit different behaviors. We will see an instance of this phenomenon for
Gaussian distributions: both CMA-ES and the maximum likelihood update
(EMNA) can be seen as IGO algorithms, but the latter with 𝛿𝑡 = 1 is known
to exhibit premature loss of diversity (Section 4.2).

Still, two IGO algorithms for the same IGO flow will differ less from each
other than from a non-IGO algorithm: at each step the difference is only
𝑂(𝛿𝑡2) (Section 2.4). On the other hand, for instance, the difference between
an IGO algorithm and the vanilla gradient ascent is, generally, not smaller
than 𝑂(𝛿𝑡) at each step, i.e. roughly as big as the steps themselves.

Unknown Fisher matrix. The algorithm presented so far assumes that
the Fisher matrix 𝐼(𝜃) is known as a function of 𝜃. This is the case for
Gaussian distributions in CMA-ES and for Bernoulli distributions. How-
ever, for restricted Boltzmann machines as considered below, no analytical
form is known. Yet, provided the quantity 𝜕

𝜕𝜃 ln 𝑃𝜃(𝑥) can be computed or
approximated, it is possible to approximate the integral

𝐼𝑖𝑗(𝜃) =
∫︁

𝑥

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑗

𝑃𝜃(d𝑥)

using 𝑃𝜃-Monte Carlo samples for 𝑥. These samples may or may not be the
same as those used in the IGO update (14): in particular, it is possible to
use as many Monte Carlo samples as necessary to approximate 𝐼𝑖𝑗 , at no
additional cost in terms of the number of calls to the black-box function 𝑓
to optimize.

Note that each Monte Carlo sample 𝑥 will contribute 𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑗

to the Fisher matrix approximation. This is a rank-1 matrix. So, for the
approximated Fisher matrix to be invertible, the number of (distinct) samples
𝑥 needs to be at least equal to the number of components of the parameter
𝜃 i.e. 𝑁Fisher > dim Θ.

For exponential families of distributions, the IGO update has a particular
form (18) which simplifies this matter somewhat. More details are given
below (see Section 5) for the concrete situation of restricted Boltzmann
machines.

2 First properties of IGO

2.1 Consistency of sampling

The first property to check is that when 𝑁 →∞, the update rule using 𝑁
samples converges to the IGO update rule. This is not a straightforward
application of the law of large numbers, because the estimated weights ̂︀𝑤𝑖

depend (non-continuously) on the whole sample 𝑥1, . . . , 𝑥𝑁 , and not only on
𝑥𝑖.

11



Theorem 4 (Consistency). When 𝑁 →∞, the 𝑁 -sample IGO update rule
(14):

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 𝐼−1(𝜃𝑡)
𝑁∑︁

𝑖=1
̂︀𝑤𝑖

𝜕 ln 𝑃𝜃(𝑥𝑖)
𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡

converges with probability 1 to the update rule (5):

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 ̃︀∇𝜃

∫︁
𝑊 𝑓

𝜃𝑡(𝑥) 𝑃𝜃(d𝑥).

The proof is given in the Appendix, under mild regularity assumptions.
In particular we do not require that 𝑤 be continuous.

This theorem may clarify previous claims [WSPS08, ANOK10] where
rank-based updates similar to (5), such as in NES or CMA-ES, were derived
from optimizing the expected value −E𝑃𝜃

𝑓 . The rank-based weights ̂︀𝑤𝑖 were
then introduced somewhat arbitrarily. Theorem 4 shows that, for large 𝑁 ,
CMA-ES and NES actually follow the gradient flow of the quantity E𝑃𝜃

𝑊 𝑓
𝜃𝑡 :

the update can be rigorously derived from optimizing the expected value of
the quantile-rewriting 𝑊 𝑓

𝜃𝑡 .

2.2 Monotonicity: quantile improvement

Gradient descents come with a guarantee that the fitness value decreases over
time. Here, since we work with probability distributions on 𝑋, we need to
define the fitness of the distribution 𝑃𝜃𝑡 . An obvious choice is the expectation
E𝑃𝜃𝑡 𝑓 , but it is not invariant under 𝑓 -transformation and moreover may be
sensitive to extreme values.

It turns out that the monotonicity properties of the IGO gradient flow
depend on the choice of the weighting scheme 𝑤. For instance, if 𝑤(𝑢) =
1𝑢61/2, then the median of 𝑓 improves over time.

Proposition 5 (Quantile improvement). Consider the IGO flow given by (6),
with the weight 𝑤(𝑢) = 1𝑢6𝑞 where 0 < 𝑞 < 1 is fixed. Then the value of
the 𝑞-quantile of 𝑓 improves over time: if 𝑡1 6 𝑡2 then either 𝜃𝑡1 = 𝜃𝑡2 or
𝑄𝑞

𝑃
𝜃𝑡2

(𝑓) < 𝑄𝑞
𝑃

𝜃𝑡1
(𝑓).

Here the 𝑞-quantile 𝑄𝑞
𝑃 (𝑓) of 𝑓 under a probability distribution 𝑃 is

defined as any number 𝑚 such that Pr𝑥∼𝑃 (𝑓(𝑥) 6 𝑚) > 𝑞 and Pr𝑥∼𝑃 (𝑓(𝑥) >
𝑚) > 1− 𝑞.

The proof is given in the Appendix, together with the necessary regularity
assumptions.

Of course this holds only for the IGO gradient flow (6) with 𝑁 =∞ and
𝛿𝑡 → 0. For an IGO algorithm with finite 𝑁 , the dynamics is random and
one cannot expect monotonicity. Still, Theorem 4 ensures that, with high
probability, trajectories of a large enough finite population dynamics stay
close to the infinite-population limit trajectory.

2.3 The IGO flow for exponential families

The expressions for the IGO update simplify somewhat if the family 𝑃𝜃

happens to be an exponential family of probability distributions (see also
[MMS08]). Suppose that 𝑃𝜃 can be written as

𝑃𝜃(𝑥) = 1
𝑍(𝜃) exp

(︁∑︁
𝜃𝑖𝑇𝑖(𝑥)

)︁
𝐻(d𝑥)
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where 𝑇1, . . . , 𝑇𝑘 is a finite family of functions on 𝑋, 𝐻(d𝑥) is an arbitrary
reference measure on 𝑋, and 𝑍(𝜃) is the normalization constant. It is
well-known [AN00, (2.33)] that

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

= 𝑇𝑖(𝑥)− E𝑃𝜃
𝑇𝑖 (16)

so that [AN00, (3.59)]

𝐼𝑖𝑗(𝜃) = Cov𝑃𝜃
(𝑇𝑖, 𝑇𝑗). (17)

In the end we find:

Proposition 6. Let 𝑃𝜃 be an exponential family parametrized by the natural
parameters 𝜃 as above. Then the IGO flow is given by

d𝜃

d𝑡
= Cov𝑃𝜃

(𝑇, 𝑇 )−1 Cov𝑃𝜃
(𝑇, 𝑊 𝑓

𝜃 ) (18)

where Cov𝑃𝜃
(𝑇, 𝑊 𝑓

𝜃 ) denotes the vector (Cov𝑃𝜃
(𝑇𝑖, 𝑊 𝑓

𝜃 ))𝑖, and Cov𝑃𝜃
(𝑇, 𝑇 )

the matrix (Cov𝑃𝜃
(𝑇𝑖, 𝑇𝑗))𝑖𝑗.

Note that the right-hand side does not involve derivatives w.r.t. 𝜃 any
more. This result makes it easy to simulate the IGO flow using e.g. a Gibbs
sampler for 𝑃𝜃: both covariances in (18) may be approximated by sampling,
so that neither the Fisher matrix nor the gradient term need to be known in
advance, and no derivatives are involved.

The CMA-ES uses the family of all Gaussian distributions on R𝑑. Then,
the family 𝑇𝑖 is the family of all linear and quadratic functions of the
coordinates on R𝑑. The expression above is then a particularly concise
rewriting of a CMA-ES update, see also Section 4.2.

Moreover, the expected values 𝑇𝑖 = E𝑇𝑖 of 𝑇𝑖 satisfy the simple evolution
equation under the IGO flow

d𝑇𝑖

d𝑡
= Cov(𝑇𝑖, 𝑊 𝑓

𝜃 ) = E(𝑇𝑖 𝑊 𝑓
𝜃 )− 𝑇𝑖 E𝑊 𝑓

𝜃 . (19)

The proof is given in the Appendix, in the proof of Theorem 15.
The variables 𝑇𝑖 can sometimes be used as an alternative parametrization

for an exponential family (e.g. for a one-dimensional Gaussian, these are the
mean 𝜇 and the second moment 𝜇2 + 𝜎2). Then the IGO flow (7) may be
rewritten using the relation ̃︀∇𝜃𝑖

= 𝜕

𝜕𝑇𝑖

for the natural gradient of exponential
families (Appendix, Proposition 22), which sometimes results in simpler
expressions. We shall further exploit this fact in Section 3.

Exponential families with latent variables. Similar formulas hold
when the distribution 𝑃𝜃(𝑥) is the marginal of an exponential distribution
𝑃𝜃(𝑥, ℎ) over a “hidden” or “latent” variable ℎ, such as the restricted Boltz-
mann machines of Section 5.

Namely, with 𝑃𝜃(𝑥) = 1
𝑍(𝜃)

∑︀
ℎ exp(

∑︀
𝑖 𝜃𝑖𝑇𝑖(𝑥, ℎ)) 𝐻(d𝑥, dℎ) the Fisher

matrix is
𝐼𝑖𝑗(𝜃) = Cov𝑃𝜃

(𝑈𝑖, 𝑈𝑗) (20)

where 𝑈𝑖(𝑥) = E𝑃𝜃
(𝑇𝑖(𝑥, ℎ)|𝑥). Consequently, the IGO flow takes the form

d𝜃

d𝑡
= Cov𝑃𝜃

(𝑈, 𝑈)−1 Cov𝑃𝜃
(𝑈, 𝑊 𝑓

𝜃 ). (21)
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2.4 Invariance properties

Here we formally state the invariance properties of the IGO flow under various
reparametrizations. Since these results follow from the very construction of
the algorithm, the proofs are omitted.

Proposition 7 (𝑓 -invariance). Let 𝜙 : R → R be an increasing function.
Then the trajectories of the IGO flow when optimizing the functions 𝑓 and
𝜙(𝑓) are the same.

The same is true for the discretized algorithm with population size 𝑁 and
step size 𝛿𝑡 > 0.

Proposition 8 (𝜃-invariance). Let 𝜃′ = 𝜙(𝜃) be a one-to-one function of
𝜃 and let 𝑃 ′

𝜃′ = 𝑃𝜙−1(𝜃). Let 𝜃𝑡 be the trajectory of the IGO flow when
optimizing a function 𝑓 using the distributions 𝑃𝜃, initialized at 𝜃0. Then the
IGO flow trajectory (𝜃′)𝑡 obtained from the optimization of the function 𝑓
using the distributions 𝑃 ′

𝜃′, initialized at (𝜃′)0 = 𝜙(𝜃0), is the same, namely
(𝜃′)𝑡 = 𝜙(𝜃𝑡).

For the algorithm with finite 𝑁 and 𝛿𝑡 > 0, invariance under 𝜃-reparame-
trization is only true approximately, in the limit when 𝛿𝑡 → 0. As mentioned
above, the IGO update (14), with 𝑁 =∞, is simply the Euler approximation
scheme for the ordinary differential equation (6) defining the IGO flow. At
each step, the Euler scheme is known to make an error 𝑂(𝛿𝑡2) with respect
to the true flow. This error actually depends on the parametrization of 𝜃.

So the IGO updates for different parametrizations coincide at first order
in 𝛿𝑡, and may, in general, differ by 𝑂(𝛿𝑡2). For instance the difference
between the CMA-ES and xNES updates is indeed 𝑂(𝛿𝑡2), see Section 4.2.

For comparison, using the vanilla gradient results in a divergence of 𝑂(𝛿𝑡)
at each step between different parametrizations. So the divergence could be
of the same magnitude as the steps themselves.

In that sense, one can say that IGO algorithms are “more parametrization-
invariant” than other algorithms. This stems from their origin as a discretiza-
tion of the IGO flow.

The next proposition states that, for example, if one uses a family of
distributions on R𝑑 which is invariant under affine transformations, then
our algorithm optimizes equally well a function and its image under any
affine transformation (up to an obvious change in the initialization). This
proposition generalizes the well-known corresponding property of CMA-ES
[HO01].

Here, as usual, the image of a probability distribution 𝑃 by a transfor-
mation 𝜙 is defined as the probability distribution 𝑃 ′ such that 𝑃 ′(𝑌 ) =
𝑃 (𝜙−1(𝑌 )) for any subset 𝑌 ⊂ 𝑋. In the continuous domain, the density of
the new distribution 𝑃 ′ is obtained by the usual change of variable formula
involving the Jacobian of 𝜙.

Proposition 9 (𝑋-invariance). Let 𝜙 : 𝑋 → 𝑋 be a one-to-one transfor-
mation of the search space, and assume that 𝜙 globally preserves the family
of measures 𝑃𝜃. Let 𝜃𝑡 be the IGO flow trajectory for the optimization of
function 𝑓 , initialized at 𝑃𝜃0. Let (𝜃′)𝑡 be the IGO flow trajectory for opti-
mization of 𝑓 ∘ 𝜙−1, initialized at the image of 𝑃𝜃0 by 𝜙. Then 𝑃(𝜃′)𝑡 is the
image of 𝑃𝜃𝑡 by 𝜙.

For the discretized algorithm with population size 𝑁 and step size 𝛿𝑡 > 0,
the same is true up to an error of 𝑂(𝛿𝑡2) per iteration. This error disappears
if the map 𝜙 acts on Θ in an affine way.
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The latter case of affine transforms is well exemplified by CMA-ES:
here, using the variance and mean as the parametrization of Gaussians, the
new mean and variance after an affine transform of the search space are
an affine function of the old mean and variance; specifically, for the affine
transformation 𝐴 : 𝑥 ↦→ 𝐴𝑥 + 𝑏 we have (𝑚, 𝐶) ↦→ (𝐴𝑚 + 𝑏, 𝐴𝐶𝐴T).

2.5 Speed of the IGO flow

Proposition 10. The speed of the IGO flow, i.e. the norm of d𝜃𝑡

d𝑡 in the
Fisher metric, is at most

√︁∫︀ 1
0 𝑤2 − (

∫︀ 1
0 𝑤)2 where 𝑤 is the weighting scheme.

This speed can be tested in practice in at least two ways. The first is
just to compute the Fisher norm of the increment 𝜃𝑡+𝛿𝑡 − 𝜃𝑡 using the Fisher
matrix; for small 𝛿𝑡 this is close to 𝛿𝑡‖d𝜃

d𝑡 ‖ with ‖ · ‖ the Fisher metric. The
second is as follows: since the Fisher metric coincides with the Kullback–
Leibler divergence up to a factor 1/2, we have KL(𝑃𝜃𝑡+𝛿𝑡 ||𝑃𝜃𝑡) ≈ 1

2 𝛿𝑡2‖d𝜃
d𝑡 ‖

2

at least for small 𝛿𝑡. Since it is relatively easy to estimate KL(𝑃𝜃𝑡+𝛿𝑡 ||𝑃𝜃𝑡)
by comparing the new and old log-likelihoods of points in a Monte Carlo
sample, one can obtain an estimate of ‖d𝜃

d𝑡 ‖.

Corollary 11. Consider an IGO algorithm with weighting scheme 𝑤, step
size 𝛿𝑡 and sample size 𝑁 . Then, for small 𝛿𝑡 and large 𝑁 we have

KL(𝑃𝜃𝑡+𝛿𝑡 ||𝑃𝜃𝑡) 6 1
2 𝛿𝑡2 Var[0,1] 𝑤 + 𝑂(𝛿𝑡3) + 𝑂(1/

√
𝑁).

For instance, with 𝑤(𝑞) = 1𝑞6𝑞0 and neglecting the error terms, an IGO
algorithm introduces at most 1

2 𝛿𝑡2 𝑞0(1− 𝑞0) bits of information (in base 𝑒)
per iteration into the probability distribution 𝑃𝜃.

Thus, the time discretization parameter 𝛿𝑡 is not just an arbitrary variable:
it has an intrinsic interpretation related to a number of bits introduced at
each step of the algorithm. This kind of relationship suggests, more generally,
to use the Kullback–Leibler divergence as an external and objective way to
measure learning rates in those optimization algorithms which use probability
distributions.

The result above is only an upper bound. Maximal speed can be achieved
only if all “good” points point in the same direction. If the various good
points in the sample suggest moves in inconsistent directions, then the IGO
update will be much smaller. The latter may be a sign that the signal is
noisy, or that the family of distributions 𝑃𝜃 is not well suited to the problem
at hand and should be enriched.

As an example, using a family of Gaussian distributions with unkown
mean and fixed identity variance on R𝑑, one checks that for the optimization
of a linear function on R𝑑, with the weight 𝑤(𝑢) = −1𝑢>1/2 + 1𝑢<1/2, the
IGO flow moves at constant speed 1/

√
2𝜋 ≈ 0.4, whatever the dimension

𝑑. On a rapidly varying sinusoidal function, the moving speed will be much
slower because there are “good” and “bad” points in all directions.

This may suggest ways to design the weighting scheme 𝑤 to achieve
maximal speed in some instances. Indeed, looking at the proof of the
proposition, which involves a Cauchy–Schwarz inequality, one can see that
the maximal speed is achieved only if there is a linear relationship between
the weights 𝑊 𝑓

𝜃 (𝑥) and the gradient ∇𝜃 ln 𝑃𝜃(𝑥). For instance, for the
optimization of a linear function on R𝑑 using Gaussian measures of known
variance, the maximal speed will be achieved when the weighting scheme
𝑤(𝑢) is the inverse of the Gaussian cumulative distribution function. (In
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particular, 𝑤(𝑢) tends to +∞ when 𝑢→ 0 and to −∞ when 𝑢→ 1.) This
is in accordance with previously known results: the expected value of the
𝑖-th order statistic of 𝑁 standard Gaussian variates is the optimal ̂︀𝑤𝑖 value
in evolution strategies [Bey01, Arn06]. For 𝑁 → ∞, this order statistic
converges to the inverse Gaussian cumulative distribution function.

2.6 Noisy objective function

Suppose that the objective function 𝑓 is non-deterministic: each time we
ask for the value of 𝑓 at a point 𝑥 ∈ 𝑋, we get a random result. In this
setting we may write the random value 𝑓(𝑥) as 𝑓(𝑥) = 𝑓(𝑥, 𝜔) where 𝜔 is
an unseen random parameter, and 𝑓 is a deterministic function of 𝑥 and 𝜔.
Without loss of generality, up to a change of variables we can assume that 𝜔
is uniformly distributed in [0, 1].

We can still use the IGO algorithm without modification in this context.
One might wonder which properties (consistency of sampling, etc.) still apply
when 𝑓 is not deterministic. Actually, IGO algorithms for noisy functions
fit very nicely into the IGO framework: the following proposition allows to
transfer any property of IGO to the case of noisy functions.

Proposition 12 (Noisy IGO). Let 𝑓 be a random function of 𝑥 ∈ 𝑋, namely,
𝑓(𝑥) = 𝑓(𝑥, 𝜔) where 𝜔 is a random variable uniformly distributed in [0, 1],
and 𝑓 is a deterministic function of 𝑥 and 𝜔. Then the two following
algorithms coincide:

∙ The IGO algorithm (13), using a family of distributions 𝑃𝜃 on space
𝑋, applied to the noisy function 𝑓 , and where the samples are ranked
according to the random observed value of 𝑓 (here we assume that, for
each sample, the noise 𝜔 is independent from everything else);

∙ The IGO algorithm on space 𝑋× [0, 1], using the family of distributions
𝑃𝜃 = 𝑃𝜃 ⊗ 𝑈[0,1], applied to the deterministic function 𝑓 . Here 𝑈[0,1]
denotes the uniform law on [0, 1].

The (easy) proof is given in the Appendix.
This proposition states that noisy optimization is the same as ordinary

optimization using a family of distributions which cannot operate any selec-
tion or convergence over the parameter 𝜔. More generally, any component of
the search space in which a distribution-based evolutionary strategy cannot
perform selection or specialization will effectively act as a random noise on
the objective function.

As a consequence of this result, all properties of IGO can be transferred to
the noisy case. Consider, for instance, consistency of sampling (Theorem 4).
The 𝑁 -sample IGO update rule for the noisy case is identical to the non-noisy
case (14):

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 𝐼−1(𝜃𝑡)
𝑁∑︁

𝑖=1
̂︀𝑤𝑖

𝜕 ln 𝑃𝜃(𝑥𝑖)
𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡

where each weight ̂︀𝑤𝑖 computed from (12) now incorporates noise from the
objective function because the rank of 𝑥𝑖 is computed on the random function,
or equivalently on the deterministic function 𝑓 : rk(𝑥𝑖) = #{𝑗, 𝑓(𝑥𝑗 , 𝜔𝑗) <
𝑓(𝑥𝑖, 𝜔𝑖)}.

Consistency of sampling (Theorem 4) thus takes the following form:
When 𝑁 → ∞, the 𝑁 -sample IGO update rule on the noisy function 𝑓

16



converges with probability 1 to the update rule

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 ̃︀∇𝜃

∫︁ 1

0

∫︁
𝑊 𝑓

𝜃𝑡(𝑥, 𝜔) 𝑃𝜃(d𝑥) d𝜔.

= 𝜃𝑡 + 𝛿𝑡 ̃︀∇𝜃

∫︁
𝑊̄ 𝑓

𝜃𝑡(𝑥) 𝑃𝜃(d𝑥) (22)

where 𝑊̄ 𝑓
𝜃 (𝑥) = E𝜔𝑊 𝑓

𝜃 (𝑥, 𝜔). This entails, in particular, that when 𝑁 →∞,
the noise disappears asymptotically, as could be expected.

Consequently, the IGO flow in the noisy case should be defined by the
𝛿𝑡 → 0 limit of the update (22) using 𝑊̄ . Note that the quantiles 𝑞±(𝑥)
defined by (2) still make sense in the noisy case, and are deterministic
functions of 𝑥; thus 𝑊 𝑓

𝜃 (𝑥) can also be defined by (3) and is deterministic.
However, unless the weighting scheme 𝑤(𝑞) is affine, 𝑊̄ 𝑓

𝜃 (𝑥) is different from
𝑊 𝑓

𝜃 (𝑥) in general. Thus, unless 𝑤 is affine the flows defined by 𝑊 and 𝑊̄
do not coincide in the noisy case. The flow using 𝑊 would be the 𝑁 →∞
limit of a slightly more complex algorithm using several evaluations of 𝑓 for
each sample 𝑥𝑖 in order to compute noise-free ranks.

2.7 Implementation remarks

Influence of the weighting scheme 𝑤. The weighting scheme 𝑤 directly
affects the update rule (15).

A natural choice is 𝑤(𝑢) = 1𝑢6𝑞. This, as we have proved, results in
an improvement of the 𝑞-quantile over the course of optimization. Taking
𝑞 = 1/2 springs to mind; however, this is not selective enough, and both
theory and experiments confirm that for the Gaussian case (CMA-ES), most
efficient optimization requires 𝑞 < 1/2 (see Section 4.2). The optimal 𝑞 is
about 0.27 if 𝑁 is not larger than the search space dimension 𝑑 [Bey01] and
even smaller otherwise.

Second, replacing 𝑤 with 𝑤+𝑐 for some constant 𝑐 clearly has no influence
on the IGO continuous-time flow (5), since the gradient will cancel out the
constant. However, this is not the case for the update rule (15) with a finite
sample of size 𝑁 .

Indeed, adding a constant 𝑐 to 𝑤 adds a quantity 𝑐 1
𝑁

∑︀ ̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖) to the
update. Since we know that the 𝑃𝜃-expected value of ̃︀∇𝜃 ln 𝑃𝜃 is 0 (because∫︀

( ̃︀∇𝜃 ln 𝑃𝜃) 𝑃𝜃 =
∫︀ ̃︀∇𝑃𝜃 = ̃︀∇1 = 0), we have E 1

𝑁
̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖) = 0. So adding

a constant to 𝑤 does not change the expected value of the update, but it
may change e.g. its variance. The empirical average of ̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖) in the
sample will be 𝑂(1/

√
𝑁). So translating the weights results in a 𝑂(1/

√
𝑁)

change in the update. See also Section 4 in [SWSS09].
Determining an optimal value for 𝑐 to reduce the variance of the update is

difficult, though: the optimal value actually depends on possible correlations
between ̃︀∇𝜃 ln 𝑃𝜃 and the function 𝑓 . The only general result is that one
should shift 𝑤 so that 0 lies within its range. Assuming independence, or
dependence with enough symmetry, the optimal shift is when the weights
average to 0.

Adaptive learning rate. Comparing consecutive updates to evaluate a
learning rate or step size is an effective measure. For example, in back-
propagation, the update sign has been used to adapt the learning rate of each
single weight in an artificial neural network [SA90]. In CMA-ES, a step size
is adapted depending on whether recent steps tended to move in a consistent
direction or to backtrack. This is measured by considering the changes of
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the mean 𝑚 of the Gaussian distribution. For a probability distribution 𝑃𝜃

on an arbitrary search space, in general no notion of mean may be defined.
However, it is still possible to define “backtracking” in the evolution of 𝜃 as
follows.

Consider two successive updates 𝛿𝜃𝑡 = 𝜃𝑡 − 𝜃𝑡−𝛿𝑡 and 𝛿𝜃𝑡+𝛿𝑡 = 𝜃𝑡+𝛿𝑡 − 𝜃𝑡.
Their scalar product in the Fisher metric 𝐼(𝜃𝑡) is

⟨𝛿𝜃𝑡, 𝛿𝜃𝑡+𝛿𝑡⟩ =
∑︁
𝑖𝑗

𝐼𝑖𝑗(𝜃𝑡) 𝛿𝜃𝑡
𝑖 𝛿𝜃𝑡+𝛿𝑡

𝑗 .

Dividing by the associated norms will yield the cosine cos 𝛼 of the angle
between 𝛿𝜃𝑡 and 𝛿𝜃𝑡+𝛿𝑡 .

If this cosine is positive, the learning rate 𝛿𝑡 may be increased. If the
cosine is negative, the learning rate probably needs to be decreased. Various
schemes for the change of 𝛿𝑡 can be devised; for instance, inspired by CMA-
ES, one can multiply 𝛿𝑡 by exp(𝛽(cos 𝛼)/2) or exp(𝛽(1cos 𝛼>0 − 1cos 𝛼<0)/2),
where 𝛽 ≈ min(𝑁/ dim Θ, 1/2).

As before, this scheme is constructed to be robust w.r.t. reparametrization
of 𝜃, thanks to the use of the Fisher metric. However, for large learning rates
𝛿𝑡, in practice the parametrization might well become relevant.

A consistent direction of the updates does not necessarily mean that
the algorithm is performing well: for instance, when CEM/EMNA exhibits
premature convergence (see below), the parameters consistently move towards
a zero covariance matrix and the cosines above are positive.

Complexity. The complexity of the IGO algorithm depends much on the
computational cost model. In optimization, it is fairly common to assume
that the objective function 𝑓 is very costly compared to any other calculations
performed by the algorithm. Then the cost of IGO in terms of number of
𝑓 -calls is 𝑁 per iteration, and the cost of using quantiles and computing the
natural gradient is negligible.

Setting the cost of 𝑓 aside, the complexity of the IGO algorithm depends
mainly on the computation of the (inverse) Fisher matrix. Assume an
analytical expression for this matrix is known. Then, with 𝑝 = dim Θ the
number of parameters, the cost of storage of the Fisher matrix is 𝑂(𝑝2)
per iteration, and its inversion typically costs 𝑂(𝑝3) per iteration. However,
depending on the situation and on possible algebraic simplifications, strategies
exist to reduce this cost (e.g. [LRMB07] in a learning context). For instance,
for CMA-ES the cost is 𝑂(𝑁𝑝) [SHI09]. More generally, parametrization by
expectation parameters (see above), when available, may reduce the cost to
𝑂(𝑝) as well.

If no analytical form of the Fisher matrix is known and Monte Carlo
estimation is required, then complexity depends on the particular situation at
hand and is related to the best sampling strategies available for a particular
family of distributions. For Boltzmann machines, for instance, a host of such
strategies are available. Still, in such a situation, IGO can be competitive if
the objective function 𝑓 is costly.

Recycling samples. We might use samples not only from the last iter-
ation to compute the ranks in (12), see e.g. [SWSS09]. For 𝑁 = 1 this is
indispensable. In order to preserve sampling consistency (Theorem 4) the old
samples need to be reweighted (using the ratio of their new vs old likelihood,
as in importance sampling).
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Initialization. As with other optimization algorithms, it is probably a
good idea to initialize in such a way as to cover a wide portion of the search
space, i.e. 𝜃0 should be chosen so that 𝑃𝜃0 has maximal diversity. For IGO
algorithms this is particularly relevant, since, as explained above, the natural
gradient provides minimal change of diversity (greedily at each step) for a
given change in the objective function.

3 IGO, maximum likelihood and the cross-entropy
method

IGO as a smooth-time maximum likelihood estimate. The IGO
flow turns out to be the only way to maximize a weighted log-likelihood,
where points of the current distribution are slightly reweighted according to
𝑓 -preferences.

This relies on the following interpretation of the natural gradient as a
weighted maximum likelihood update with infinitesimal learning rate. This
result singles out, in yet another way, the natural gradient among all possible
gradients. The proof is given in the Appendix.

Theorem 13 (Natural gradient as ML with infinitesimal weights). Let 𝜀 > 0
and 𝜃0 ∈ Θ. Let 𝑊 (𝑥) be a function of 𝑥 and let 𝜃 be the solution of

𝜃 = arg max
𝜃

{︃
(1− 𝜀)

∫︁
log 𝑃𝜃(𝑥) 𝑃𝜃0(d𝑥)⏟  ⏞  
maximal for 𝜃 = 𝜃0

+ 𝜀

∫︁
log 𝑃𝜃(𝑥) 𝑊 (𝑥) 𝑃𝜃0(d𝑥)

}︃
.

Then, when 𝜀→ 0, up to 𝑂(𝜀2) we have

𝜃 = 𝜃0 + 𝜀

∫︁ ̃︀∇𝜃 ln 𝑃𝜃(𝑥) 𝑊 (𝑥) 𝑃𝜃0(d𝑥).

Likewise for discrete samples: with 𝑥1, . . . , 𝑥𝑁 ∈ 𝑋, let 𝜃 be the solution of

𝜃 = arg max
{︃

(1− 𝜀)
∫︁

log 𝑃𝜃(𝑥) 𝑃𝜃0(d𝑥) + 𝜀
∑︁

𝑖

𝑊 (𝑥𝑖) log 𝑃𝜃(𝑥𝑖)
}︃

.

Then when 𝜀→ 0, up to 𝑂(𝜀2) we have

𝜃 = 𝜃0 + 𝜀
∑︁

𝑖

𝑊 (𝑥𝑖) ̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖).

So if 𝑊 (𝑥) = 𝑊 𝑓
𝜃0

(𝑥) is the weight of the points according to quantilized
𝑓 -preferences, the weighted maximum log-likelihood necessarily is the IGO
flow (7) using the natural gradient—or the IGO update (14) when using
samples.

Thus the IGO flow is the unique flow that, continuously in time, slightly
changes the distribution to maximize the log-likelihood of points with good
values of 𝑓 . Moreover IGO continuously updates the weight 𝑊 𝑓

𝜃0
(𝑥) depending

on 𝑓 and on the current distribution, so that we keep optimizing.
This theorem suggests a way to approximate the IGO flow by enforcing

this interpretation for a given non-infinitesimal step size 𝛿𝑡, as follows.

Definition 14 (IGO-ML algorithm). The IGO-ML algorithm with step size
𝛿𝑡 updates the value of the parameter 𝜃𝑡 according to

𝜃𝑡+𝛿𝑡 = arg max
𝜃

{︃
(1− 𝛿𝑡

∑︀
𝑖
̂︀𝑤𝑖)
∫︁

log 𝑃𝜃(𝑥) 𝑃𝜃𝑡(d𝑥) + 𝛿𝑡
∑︁

𝑖

̂︀𝑤𝑖 log 𝑃𝜃(𝑥𝑖)
}︃

(23)
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where 𝑥1, . . . , 𝑥𝑁 are sample points picked according to the distribution 𝑃𝜃𝑡,
and ̂︀𝑤𝑖 is the weight (12) obtained from the ranked values of the objective
function 𝑓 .

As for the cross-entropy method below, this only makes algorithmic sense
if the argmax is tractable.

It turns out that IGO-ML is just the IGO algorithm in a particular
parametrization (see Theorem 15).

The cross-entropy method. Taking 𝛿𝑡 = 1 in (23) above corresponds
to a full maximum likelihood update, which is also related to the cross-
entropy method (CEM). The cross-entropy method can be defined as follows
[dBKMR05] in an optimization setting. Like IGO, it depends on a family of
probability distributions 𝑃𝜃 parametrized by 𝜃 ∈ Θ, and a number of samples
𝑁 at each iteration. Let also 𝑁𝑒 = ⌈𝑞𝑁⌉ (0 < 𝑞 < 1) be a number of elite
samples.

At each step, the cross-entropy method for optimization samples 𝑁 points
𝑥1, . . . , 𝑥𝑁 from the current distribution 𝑃𝜃𝑡 . Let ̂︀𝑤𝑖 be 1/𝑁𝑒 if 𝑥𝑖 belongs to
the 𝑁𝑒 samples with the best value of the objective function 𝑓 , and ̂︀𝑤𝑖 = 0
otherwise. Then the cross-entropy method or maximum likelihoood update
(CEM/ML) for optimization is

𝜃𝑡+1 = arg max
𝜃

∑︁ ̂︀𝑤𝑖 log 𝑃𝜃(𝑥𝑖) (24)

(assuming the argmax is tractable).
A version with a smoother update depends on a step size parameter

0 < 𝛼 6 1 and is given [dBKMR05] by

𝜃𝑡+1 = (1− 𝛼)𝜃𝑡 + 𝛼 arg max
𝜃

∑︁ ̂︀𝑤𝑖 log 𝑃𝜃(𝑥𝑖). (25)

The standard CEM/ML update corresponds to 𝛼 = 1.
For 𝛼 = 1 the standard cross-entropy method is independent of the

parametrization 𝜃, whereas for 𝛼 < 1 this is not the case.
Note the difference between the IGO-ML algorithm (23) and the smoothed

CEM update (25) with step size 𝛼 = 𝛿𝑡: the smoothed CEM update per-
forms a weighted average of the parameter value after taking the maximum
likelihood estimate, whereas IGO-ML uses a weighted average of current and
previous likelihoods, then takes a maximum likelihood estimate. In general,
these two rules can greatly differ, as they do for Gaussian distributions
(Section 4.2).

This interversion of averaging makes IGO-ML parametrization-independent
whereas the smoothed CEM update is not.

Yet, for exponential families of probability distributions, there exists one
particular parametrization 𝜃 in which the IGO algorithm and the smoothed
CEM update coincide. We now proceed to this construction.

IGO for expectation parameters and maximum likelihood. The
particular form of IGO for exponential families has an interesting conse-
quence if the parametrization chosen for the exponential family is the set of
expectation parameters. Let 𝑃𝜃(𝑥) = 1

𝑍(𝜃) exp (
∑︀

𝜃𝑗𝑇𝑗(𝑥)) 𝐻(d𝑥) be an expo-
nential family as above. The expectation parameters are 𝑇𝑗 = 𝑇𝑗(𝜃) = E𝑃𝜃

𝑇𝑗 ,
(denoted 𝜂𝑗 in [AN00, (3.56)]). The notation 𝑇 will denote the collection
(𝑇𝑗).
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It is well-known that, in this parametrization, the maximum likelihood
estimate for a sample of points 𝑥1, . . . , 𝑥𝑘 is just the empirical average of the
expectation parameters over that sample:

arg max
𝑇

1
𝑘

𝑘∑︁
𝑖=1

log 𝑃𝑇 (𝑥𝑖) = 1
𝑘

𝑘∑︁
𝑖=1

𝑇 (𝑥𝑖). (26)

In the discussion above, one main difference between IGO and smoothed
CEM was whether we took averages before or after taking the maximum
log-likelihood estimate. For the expectation parameters 𝑇𝑖, we see that
these operations commute. (One can say that these expectation parameters
“linearize maximum likelihood estimates”.) A little work brings us to the

Theorem 15 (IGO, CEM and maximum likelihood). Let

𝑃𝜃(𝑥) = 1
𝑍(𝜃) exp

(︁∑︁
𝜃𝑗𝑇𝑗(𝑥)

)︁
𝐻(d𝑥)

be an exponential family of probability distributions, where the 𝑇𝑗 are functions
of 𝑥 and 𝐻 is some reference measure. Let us parametrize this family by the
expected values 𝑇𝑗 = E𝑇𝑗.

Let us assume the chosen weights ̂︀𝑤𝑖 sum to 1. For a sample 𝑥1, . . . , 𝑥𝑁 ,
let

𝑇 *
𝑗 =

∑︁
𝑖

̂︀𝑤𝑖 𝑇𝑗(𝑥𝑖).

Then the IGO update (14) in this parametrization reads

𝑇 𝑡+𝛿𝑡
𝑗 = (1− 𝛿𝑡) 𝑇 𝑡

𝑗 + 𝛿𝑡 𝑇 *
𝑗 . (27)

Moreover these three algorithms coincide:

∙ The IGO-ML algorithm (23).

∙ The IGO algorithm written in the parametrization 𝑇𝑗.

∙ The smoothed CEM algorithm (25) written in the parametrization 𝑇𝑗,
with 𝛼 = 𝛿𝑡.

Corollary 16. The standard CEM/ML update (24) is the IGO algorithm
in parametrization 𝑇𝑗 with 𝛿𝑡 = 1.

Beware that the expectation parameters 𝑇𝑗 are not always the most
obvious parameters [AN00, Section 3.5]. For example, for 1-dimensional
Gaussian distributions, these expectation parameters are the mean 𝜇 and
the second moment 𝜇2 + 𝜎2. When expressed back in terms of mean and
variance, with the update (27) the new mean is (1 − 𝛿𝑡)𝜇 + 𝛿𝑡𝜇*, but the
new variance is (1− 𝛿𝑡)𝜎2 + 𝛿𝑡(𝜎*)2 + 𝛿𝑡(1− 𝛿𝑡)(𝜇* − 𝜇)2.

On the other hand, when using smoothed CEM with mean and variance as
parameters, the new variance is (1−𝛿𝑡)𝜎2+𝛿𝑡(𝜎*)2, which can be significantly
smaller for 𝛿𝑡 ∈ (0, 1). This proves, in passing, that the smoothed CEM
update in other parametrizations is generally not an IGO algorithm (because
it can differ at first order in 𝛿𝑡).

The case of Gaussian distributions is further exemplified in Section 4.2
below: in particular, smoothed CEM in the (𝜇, 𝜎) parametrization exhibits
premature reduction of variance, preventing good convergence.

For these reasons we think that the IGO-ML algorithm is the sensible
way to perform an interpolated ML estimate for 𝛿𝑡 < 1, in a parametrization-
independent way. In Section 6 we further discuss IGO and CEM and sum
up the differences and relative advantages.
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Taking 𝛿𝑡 = 1 is a bold approximation choice: the “ideal” continuous-time
IGO flow itself, after time 1, does not coincide with the maximum likelihood
update of the best points in the sample. Since the maximum likelihood
algorithm is known to converge prematurely in some instances (Section 4.2),
using the parametrization by expectation parameters with large 𝛿𝑡 may not
be desirable.

The considerable simplification of the IGO update in these coordinates
reflects the duality of coordinates 𝑇𝑖 and 𝜃𝑖. More precisely, the natural
gradient ascent w.r.t. the parameters 𝑇𝑖 is given by the vanilla gradient w.r.t.
the parameters 𝜃𝑖: ̃︀∇𝑇𝑖

= 𝜕

𝜕𝜃𝑖

(Proposition 22 in the Appendix).

4 CMA-ES, NES, EDAs and PBIL from the IGO
framework

In this section we investigate the IGO algorithm for Bernoulli measures and for
multivariate normal distributions and show the correspondence to well-known
algorithms. In addition, we discuss the influence of the parametrization of
the distributions.

4.1 IGO algorithm for Bernoulli measures and PBIL

We consider on 𝑋 = {0, 1}𝑑 a family of Bernoulli measures 𝑃𝜃(𝑥) = 𝑝𝜃1(𝑥1)×
. . . × 𝑝𝜃𝑑

(𝑥𝑑) with 𝑝𝜃𝑖
(𝑥𝑖) = 𝜃𝑥𝑖

𝑖 (1 − 𝜃𝑖)1−𝑥𝑖 . As this family is a product of
probability measures 𝑝𝜃𝑖

(𝑥𝑖), the different components of a random vector
𝑦 following 𝑃𝜃 are independent and all off-diagonal terms of the Fisher
information matrix (FIM) are zero. Diagonal terms are given by 1

𝜃𝑖(1−𝜃𝑖) .
Therefore the inverse of the FIM is a diagonal matrix with diagonal entries
equal to 𝜃𝑖(1 − 𝜃𝑖). In addition, the partial derivative of ln 𝑃𝜃(𝑥) w.r.t. 𝜃𝑖

can be computed in a straightforward manner resulting in

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

= 𝑥𝑖

𝜃𝑖
− 1− 𝑥𝑖

1− 𝜃𝑖
.

Let 𝑥1, . . . , 𝑥𝑁 be 𝑁 samples at step 𝑡 with distribution 𝑃𝜃𝑡 and let
𝑥1:𝑁 , . . . , 𝑥𝑁 :𝑁 be the ranked samples according to 𝑓 . The natural gradient
update (15) with Bernoulli measures is then given by

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡 𝜃𝑡
𝑖(1− 𝜃𝑡

𝑖)
𝑁∑︁

𝑗=1
𝑤𝑗

(︃
[𝑥𝑗:𝑁 ]𝑖

𝜃𝑡
𝑖

− 1− [𝑥𝑗:𝑁 ]𝑖
1− 𝜃𝑡

𝑖

)︃
(28)

where 𝑤𝑗 = 𝑤((𝑗 − 1/2)/𝑁)/𝑁 and [𝑦]𝑖 denotes the 𝑖th coordinate of 𝑦 ∈ 𝑋.
The previous equation simplifies to

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡
𝑁∑︁

𝑗=1
𝑤𝑗

(︁
[𝑥𝑗:𝑁 ]𝑖 − 𝜃𝑡

𝑖

)︁
,

or, denoting 𝑤̄ the sum of the weights
∑︀𝑁

𝑗=1 𝑤𝑗 ,

𝜃𝑡+𝛿𝑡
𝑖 = (1− 𝑤̄𝛿𝑡) 𝜃𝑡

𝑖 + 𝛿𝑡
𝑁∑︁

𝑗=1
𝑤𝑗 [𝑥𝑗:𝑁 ]𝑖 .
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If we set the IGO weights as 𝑤1 = 1, 𝑤𝑗 = 0 for 𝑗 = 2, . . . , 𝑁 , we recover
the PBIL/EGA algorithm with update rule towards the best solution only
(disregarding the mutation of the probability vector), with 𝛿𝑡 = LR where
LR is the so-called learning rate of the algorithm [Bal94, Figure 4]. The PBIL
update rule towards the 𝜇 best solutions, proposed in [BC95, Figure 4]2, can
be recovered as well using

𝛿𝑡 = LR
𝑤𝑗 = (1− LR)𝑗−1, for 𝑗 = 1, . . . , 𝜇

𝑤𝑗 = 0, for 𝑗 = 𝜇 + 1, . . . , 𝑁 .

Interestingly, the parameters 𝜃𝑖 are the expectation parameters described
in Section 3: indeed, the expectation of 𝑥𝑖 is 𝜃𝑖. So the formulas above are
particular cases of (27). Thus, by Theorem 15, PBIL is both a smoothed
CEM in these parameters and an IGO-ML algorithm.

Let us now consider another, so-called “logit” representation, given by
the logistic function 𝑃 (𝑥𝑖 = 1) = 1

1+exp(−𝜃𝑖)
. This 𝜃 is the exponential

parametrization of Section 2.3. We find that

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃𝑖

= (𝑥𝑖 − 1) + exp(−𝜃𝑖)
1 + exp(−𝜃𝑖)

= 𝑥𝑖 − E𝑥𝑖

(cf. (16)) and that the diagonal elements of the Fisher information matrix
are given by exp(−𝜃𝑖)/(1 + exp(−𝜃𝑖))2 = Var 𝑥𝑖 (compare with (17)). So the
natural gradient update (15) with Bernoulli measures now reads

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡(1 + exp(𝜃𝑡
𝑖))

⎛⎝−𝑤̄ + (1 + exp(−𝜃𝑡
𝑖))

𝑁∑︁
𝑗=1

𝑤𝑗 [𝑥𝑗:𝑁 ]𝑖

⎞⎠ .

To better compare the update with the previous representation, note
that 𝜃𝑖 = 1

1+exp(−𝜃𝑖)
and thus we can rewrite

𝜃𝑡+𝛿𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛿𝑡

𝜃𝑡
𝑖(1− 𝜃𝑡

𝑖)

𝑁∑︁
𝑗=1

𝑤𝑗

(︁
[𝑥𝑗:𝑁 ]𝑖 − 𝜃𝑡

𝑖

)︁
.

So the direction of the update is the same as before and is given by the
proportion of bits set to 0 or 1 in the sample, compared to its expected value
under the current distribution. The magnitude of the update is different
since the parameter 𝜃 ranges from −∞ to +∞ instead of from 0 to 1. We
did not find this algorithm in the literature.

These updates illustrate the influence of setting the sum of weights to
0 or not (Section 2.7). If, at some time, the first bit is set to 1 both for a
majority of good points and for a majority of bad points, then the original
PBIL will increase the probability of setting the first bit to 1, which is
counterintuitive. If the weights 𝑤𝑖 are chosen to sum to 0 this noise effect
disappears; otherwise, it disappears only on average.

2Note that the pseudocode for the algorithm in [BC95, Figure 4] is slightly erroneous
since it gives smaller weights to better individuals. The error can be fixed by updating
the probability in reversed order, looping from NUMBER_OF_VECTORS_TO_UPDATE_FROM to
1. This was confirmed by S. Baluja in personal communication. We consider here the
corrected version of the algorithm.
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4.2 Multivariate normal distributions (Gaussians)

Evolution strategies [Rec73, Sch95, BS02] are black-box optimization algo-
rithms for the continuous search domain, 𝑋 ⊆ R𝑑 (for simplicity we assume
𝑋 = R𝑑 in the following). They sample new solutions from a multivariate
normal distribution. In the context of continuous black-box optimization,
Natural Evolution Strategies (NES) introduced the idea of using a natural
gradient update of the distribution parameters [WSPS08, SWSS09, GSS+10].
Surprisingly, also the well-known Covariance Matrix Adaption Evolution
Strategy, CMA-ES [HO96, HO01, HMK03, HK04, JA06], turns out to conduct
a natural gradient update of distribution parameters [ANOK10, GSS+10].

Let 𝑥 ∈ R𝑑. As the most prominent example, we use mean vector
𝑚 = E𝑥 and covariance matrix 𝐶 = E(𝑥−𝑚)(𝑥−𝑚)T = E(𝑥𝑥T)−𝑚𝑚T to
parametrize the distribution via 𝜃 = (𝑚, 𝐶). The IGO update in (14) or (15)
depends on the chosen parametrization, but can now be entirely reformulated
without the (inverse) Fisher matrix, compare (18). The complexity of the
update is linear in the number of parameters (size of 𝜃 = (𝑚, 𝐶), where
(𝑑2 − 𝑑)/2 parameters are redundant). We discuss known algorithms that
implement variants of this update.

CMA-ES. The CMA-ES implements the equations3

𝑚𝑡+1 = 𝑚𝑡 + 𝜂m

𝑁∑︁
𝑖=1

̂︀𝑤𝑖(𝑥𝑖 −𝑚𝑡) (29)

𝐶𝑡+1 = 𝐶𝑡 + 𝜂c

𝑁∑︁
𝑖=1

̂︀𝑤𝑖((𝑥𝑖 −𝑚𝑡)(𝑥𝑖 −𝑚𝑡)𝑇 − 𝐶𝑡) (30)

where ̂︀𝑤𝑖 are the weights based on ranked 𝑓 -values, see (12) and (14).
When 𝜂c = 𝜂m, Equations (30) and (29) coincide with the IGO update

(14) expressed in the parametrization (𝑚, 𝐶) [ANOK10, GSS+10]4. Note,
however, that the learning rates 𝜂m and 𝜂c take essentially different values
in CMA-ES, if 𝑁 ≪ dim Θ5: this is in deviation from an IGO algorithm.
(Remark that the Fisher information matrix is block-diagonal in 𝑚 and 𝐶
[ANOK10], so that application of the different learning rates and of the
inverse Fisher matrix commute.)

Natural evolution strategies. Natural evolution strategies (NES) [WSPS08,
SWSS09] implement (29) as well, but use a Cholesky decomposition of 𝐶 as
parametrization for the update of the variance parameters. The resulting
update that replaces (30) is neither particularly elegant nor numerically
efficient. However, the most recent xNES [GSS+10] chooses an “exponential”
parametrization depending on the current parameters. This leads to an ele-
gant formulation where the additive update in exponential parametrization
becomes a multiplicative update for 𝐶 in (30). With 𝐶 = 𝐴𝐴T, the matrix

3The CMA-ES implements these equations given the parameter setting 𝑐1 = 0 and
𝑐𝜎 = 0 (or 𝑑𝜎 =∞, see e.g. [Han09]) that disengages the effect of both so-called evolution
paths.

4 In these articles the result has been derived for 𝜃 ← 𝜃 + 𝜂 ̃︀∇𝜃E𝑃𝜃 𝑓 , see (9), leading to
𝑓(𝑥𝑖) in place of ̂︀𝑤𝑖. No assumptions on 𝑓 have been used besides that it does not depend
on 𝜃. By replacing 𝑓 with 𝑊 𝑓

𝜃𝑡 , where 𝜃𝑡 is fixed, the derivation holds equally well for
𝜃 ← 𝜃 + 𝜂 ̃︀∇𝜃E𝑃𝜃 𝑊 𝑓

𝜃𝑡 .
5Specifically, let

∑︀
|̂︀𝑤𝑖| = 1, then 𝜂m = 1 and 𝜂c ≈ 1 ∧ 1/(𝑑2∑︀ ̂︀𝑤2

𝑖 ).
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update reads

𝐴← 𝐴× exp
(︃

𝜂c
2

𝑁∑︁
𝑖=1

̂︀𝑤𝑖(𝐴−1(𝑥𝑖 −𝑚)(𝐴−1(𝑥𝑖 −𝑚))𝑇 − I𝑑)
)︃

(31)

where I𝑑 is the identity matrix. (From (31) we get 𝐶 ← 𝐴× exp2(. . . )×𝐴T.)
Remark that in the representation 𝜃 = (𝐴−1𝑚, 𝐴−1𝐶𝐴T−1) = (𝐴−1𝑚, I𝑑),
the Fisher information matrix becomes diagonal.

The update has the advantage over (30) that even negative weights
always lead to feasible values. By default, 𝜂m ̸= 𝜂c in xNES in the same
circumstances as in CMA-ES (most parameter settings are borrowed from
CMA-ES), but contrary to CMA-ES the past evolution path is not taken
into account [GSS+10].

When 𝜂c = 𝜂m, xNES is consistent with the IGO flow (6), and im-
plements a slightly generalized IGO algorithm (14) using a 𝜃-dependent
parametrization.

Cross-entropy method and EMNA. Estimation of distribution algo-
rithms (EDA) and the cross-entropy method (CEM) [Rub99, RK04] estimate
a new distribution from a censored sample. Generally, the new parameter
value can be written as

𝜃maxLL = arg max
𝜃

𝑁∑︁
𝑖=1

̂︀𝑤𝑖 ln 𝑃𝜃(𝑥𝑖) (32)

−→𝑁→∞ arg max
𝜃

E𝑃𝜃𝑡 𝑊 𝑓
𝜃𝑡 ln 𝑃𝜃

For positive weights, 𝜃maxLL maximizes the weighted log-likelihood of 𝑥1 . . . 𝑥𝑁 .
The argument under the arg max in the RHS of (32) is the negative cross-
entropy between 𝑃𝜃 and the distribution of censored (elitist) samples 𝑃𝜃𝑡𝑊 𝑓

𝜃𝑡

or of 𝑁 realizations of such samples. The distribution 𝑃𝜃maxLL has therefore
minimal cross-entropy and minimal KL-divergence to the distribution of
the 𝜇 best samples.6 As said above, (32) recovers the cross-entropy method
(CEM) [Rub99, RK04].

For Gaussian distributions, equation (32) can be explicitly written in the
form

𝑚𝑡+1 = 𝑚* =
𝑁∑︁

𝑖=1
̂︀𝑤𝑖𝑥𝑖 (33)

𝐶𝑡+1 = 𝐶* =
𝑁∑︁

𝑖=1
̂︀𝑤𝑖(𝑥𝑖 −𝑚*)(𝑥𝑖 −𝑚*)T (34)

the empirical mean and variance of the elite sample. The weights 𝑤̂𝑖 are
equal to 1/𝜇 for the 𝜇 best points and 0 otherwise.

Equations (33) and (34) also define the most fundamental continuous
domain EDA, the estimation of multivariate normal algorithm (EMNAglobal,
[LL02]). It might be interesting to notice that (33) and (34) only differ from
(29) and (30) in that the new mean 𝑚𝑡+1 is used in the covariance matrix
update.

6Let 𝑃𝑤 denote the distribution of the weighted samples: Pr(𝑥 = 𝑥𝑖) = ̂︀𝑤𝑖 and∑︀
𝑖
̂︀𝑤𝑖 = 1. Then the cross-entropy between 𝑃𝑤 and 𝑃𝜃 reads

∑︀
𝑖
𝑃𝑤(𝑥𝑖) ln 1/𝑃𝜃(𝑥𝑖) and

the KL-divergence reads KL(𝑃𝑤 ||𝑃𝜃) =
∑︀

𝑖
𝑃𝑤(𝑥𝑖) ln 1/𝑃𝜃(𝑥𝑖) −

∑︀
𝑖
𝑃𝑤(𝑥𝑖) ln 1/𝑃𝑤(𝑥𝑖).

Minimization of both terms in 𝜃 result in 𝜃maxLL.
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Let us compare IGO-ML (23), CMA (29)–(30), and smoothed CEM (25)
in the parametrization with mean and covariance matrix. For learning rate
𝛿𝑡 = 1, IGO-ML and smoothed CEM/EMNA realize 𝜃maxLL from (32)–(34).
For 𝛿𝑡 < 1 these algorithms all update the distribution mean in the same
way; the update of mean and covariance matrix is computed to be

𝑚𝑡+1 = (1− 𝛿𝑡) 𝑚𝑡 + 𝛿𝑡 𝑚*

𝐶𝑡+1 = (1− 𝛿𝑡) 𝐶𝑡 + 𝛿𝑡 𝐶* + 𝛿𝑡(1− 𝛿𝑡)𝑗 (𝑚* −𝑚𝑡)(𝑚* −𝑚𝑡)T,
(35)

for different values of 𝑗, where 𝑚* and 𝐶* are the mean and covariance
matrix computed over the elite sample (with weights ̂︀𝑤𝑖) as above. For CMA
we have 𝑗 = 0, for IGO-ML we have 𝑗 = 1, and for smoothed CEM we
have 𝑗 =∞ (the rightmost term is absent). The case 𝑗 = 2 corresponds to
an update that uses 𝑚𝑡+1 instead of 𝑚𝑡 in (30) (compare [Han06b]). For
0 < 𝛿𝑡 < 1, the larger 𝑗, the smaller 𝐶𝑡+1.

The rightmost term of (35) resembles the so-called rank-one update in
CMA.

For 𝛿𝑡 → 0, the update is independent of 𝑗 at first order in 𝛿𝑡 if 𝑗 <∞:
this reflects compatibility with the IGO flow of CMA and of IGO-ML, but
not of smoothed CEM.

Critical 𝛿𝑡. Let us assume that the weights ̂︀𝑤𝑖 are non-negative, sum to
one, and 𝜇 < 𝑁 weights take a value of 1/𝜇, so that the selection quantile is
𝑞 = 𝜇/𝑁 .

There is a critical value of 𝛿𝑡 depending on this quantile 𝑞, such that
above the critical 𝛿𝑡 the algorithms given by IGO-ML and smoothed CEM
are prone to premature convergence. Indeed, let 𝑓 be a linear function on
R𝑑, and consider the variance in the direction of the gradient of 𝑓 . Assuming
further 𝑁 → ∞ and 𝑞 ≤ 1/2, then the variance 𝐶* of the elite sample is
smaller than the current variance 𝐶𝑡, by a constant factor. Depending on
the precise update for 𝐶𝑡+1, if 𝛿𝑡 is too large, the variance 𝐶𝑡+1 is going
to be smaller than 𝐶𝑡 by a constant factor as well. This implies that the
algorithm is going to stall. (On the other hand, the continuous-time IGO
flow corresponding to 𝛿𝑡 → 0 does not stall, see Section 4.3.)

We now study the critical 𝛿𝑡 under which the algorithm does not stall.
For IGO-ML, (𝑗 = 1 in (35), or equivalently for the smoothed CEM in the
expectation parameters (𝑚, 𝐶 + 𝑚𝑚T), see Section 3), the variance increases
if and only if 𝛿𝑡 is smaller than the critical value 𝛿𝑡crit = 𝑞𝑏

√
2𝜋𝑒𝑏2/2 where

𝑏 is the percentile function of 𝑞, i.e. 𝑏 is such that 𝑞 =
∫︀∞

𝑏 𝑒−𝑥2/2/
√

2𝜋. This
value 𝛿𝑡crit is plotted as solid line in Fig. 1. For 𝑗 = 2, 𝛿𝑡crit is smaller,
related to the above by 𝛿𝑡crit ←

√
1 + 𝛿𝑡crit − 1 and plotted as dashed line in

Fig. 1. For CEM (𝑗 =∞), the critical 𝛿𝑡 is zero. For CMA-ES (𝑗 = 0), the
critical 𝛿𝑡 is infinite for 𝑞 < 1/2. When the selection quantile 𝑞 is above 1/2,
for all algorithms the critical 𝛿𝑡 becomes zero.

We conclude that, despite the principled approach of ascending the
natural gradient, the choice of the weighting function 𝑤, the choice of 𝛿𝑡,
and possible choices in the update for 𝛿𝑡 > 0, need to be taken with great
care in relation to the choice of parametrization.

4.3 Computing the IGO flow for some simple examples

In this section we take a closer look at the IGO flow solutions of (6) for some
simple examples of fitness functions, for which it is possible to obtain exact
information about these IGO trajectories.
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Figure 1: Critical 𝛿𝑡 versus truncation quantile 𝑞. Above the critical 𝛿𝑡, the
variance decreases systematically when optimizing a linear function. For
CMA-ES/NES, the critical 𝛿𝑡 for 𝑞 < 0.5 is infinite.

We start with the discrete search space 𝑋 = {0, 1}𝑑 and linear functions
(to be minimized) defined as 𝑓(𝑥) = 𝑐−

∑︀𝑑
𝑖=1 𝛼𝑖𝑥𝑖 with 𝛼𝑖 > 0. Note that

the onemax function to be maximized 𝑓onemax(𝑥) =
∑︀𝑑

𝑖=1 𝑥𝑖 is covered by
setting 𝛼𝑖 = 1. The differential equation (6) for the Bernoulli measures
𝑃𝜃(𝑥) = 𝑝𝜃1(𝑥1) . . . 𝑝𝜃𝑑

(𝑥𝑑) defined on 𝑋 can be derived taking the limit of
the IGO-PBIL update given in (28):

d𝜃𝑡
𝑖

d𝑡
=
∫︁

𝑊 𝑓
𝜃𝑡(𝑥)(𝑥𝑖 − 𝜃𝑡

𝑖)𝑃𝜃𝑡(𝑑𝑥) =: 𝑔𝑖(𝜃𝑡) . (36)

Though finding the analytical solution of the differential equation (36) for
any initial condition seems a bit intricate we show that the equation admits
one critical stable point, (1, . . . , 1), and one critical unstable point (0, . . . , 0).
In addition we prove that the trajectory decreases along 𝑓 in the sense
d𝑓(𝜃𝑡)

d𝑡 6 0. To do so we establish the following result:

Lemma 17. On 𝑓(𝑥) = 𝑐−
∑︀𝑑

𝑖=1 𝛼𝑖𝑥𝑖 the solution of (36) satisfies
∑︀𝑑

𝑖=1 𝛼𝑖
d𝜃𝑖
d𝑡 >

0; moreover
∑︀

𝛼𝑖
d𝜃𝑖
d𝑡 = 0 if and only if 𝜃 = (0, . . . , 0) or 𝜃 = (1, . . . , 1).

Proof. We compute
∑︀𝑑

𝑖=1 𝛼𝑖𝑔𝑖(𝜃𝑡) and find that

𝑑∑︁
𝑖=1

𝛼𝑖
d𝜃𝑡

𝑖

d𝑡
=
∫︁

𝑊 𝑓
𝜃𝑡(𝑥)

(︃
𝑑∑︁

𝑖=1
𝛼𝑖𝑥𝑖 −

𝑑∑︁
𝑖=1

𝛼𝑖𝜃
𝑡
𝑖

)︃
𝑃𝜃𝑡(d𝑥)

=
∫︁

𝑊 𝑓
𝜃𝑡(𝑥)(𝑓(𝜃𝑡)− 𝑓(𝑥))𝑃𝜃𝑡(d𝑥)

= E[𝑊 𝑓
𝜃𝑡(𝑥)]E[𝑓(𝑥)]− E[𝑊 𝑓

𝜃𝑡(𝑥)𝑓(𝑥)]

In addition, −𝑊 𝑓
𝜃𝑡(𝑥) = −𝑤(Pr(𝑓(𝑥′) < 𝑓(𝑥))) is a nondecreasing bounded

function in the variable 𝑓(𝑥) such that −𝑊 𝑓
𝜃𝑡(𝑥) and 𝑓(𝑥) are positively

correlated (see [Tho00, Chapter 1] for a proof of this result), i.e.

E[−𝑊 𝑓
𝜃𝑡(𝑥)𝑓(𝑥)] > E[−𝑊 𝑓

𝜃𝑡(𝑥)]E[𝑓(𝑥)]

with equality if and only if 𝜃𝑡 = (0, . . . , 0) or 𝜃𝑡 = (1, . . . , 1). Thus∑︀𝑑
𝑖=1 𝛼𝑖

d𝜃𝑡
𝑖

d𝑡 > 0.
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The previous result implies that the positive definite function 𝑉 (𝜃) =∑︀𝑑
𝑖=1 𝛼𝑖 −

∑︀𝑑
𝑖=1 𝛼𝑖𝜃𝑖 in (1, . . . , 1) satisfies 𝑉 *(𝜃) = ∇𝑉 (𝜃) · 𝑔(𝜃) 6 0 (such a

function is called a Lyapunov function). Consequently (1, . . . , 1) is stable.
Similarly 𝑉 (𝜃) =

∑︀𝑑
𝑖=1 𝛼𝑖𝜃𝑖 is a Lyapunov function for (0, . . . , 0) such that

∇𝑉 (𝜃) · 𝑔(𝜃) > 0. Consequently (0, . . . , 0) is unstable [AO08].

We now consider on R𝑑 the family of multivariate normal distributions
𝑃𝜃 = 𝒩 (𝑚, 𝜎2𝐼𝑑) with covariance matrix equal to 𝜎2𝐼𝑑. The parameter 𝜃
thus has 𝑑+1 components 𝜃 = (𝑚, 𝜎) ∈ R𝑑×R. The natural gradient update
using this family was derived in [GSS+10]; from it we can derive the IGO
differential equation which reads:

d𝑚𝑡

d𝑡
=
∫︁
R𝑑

𝑊 𝑓
𝜃𝑡(𝑥)(𝑥−𝑚𝑡)𝑝𝒩 (𝑚𝑡,(𝜎𝑡)2𝐼𝑑)(𝑥)𝑑𝑥 (37)

d𝜎̃𝑡

d𝑡
=
∫︁
R𝑑

1
2𝑑

⎧⎨⎩
𝑑∑︁

𝑖=1

(︃
𝑥𝑖 −𝑚𝑡

𝑖

𝜎𝑡

)︃2

− 1

⎫⎬⎭𝑊 𝑓
𝜃𝑡(𝑥)𝑝𝒩 (𝑚𝑡,(𝜎𝑡)2𝐼𝑑)(𝑥)𝑑𝑥 (38)

where 𝜎𝑡 and 𝜎̃𝑡 are linked via 𝜎𝑡 = exp(𝜎̃𝑡) or 𝜎̃𝑡 = ln(𝜎𝑡). Denoting 𝒩 a
random vector following a centered multivariate normal distribution with
covariance matrix identity we write equivalently the gradient flow as

d𝑚𝑡

d𝑡
= 𝜎𝑡E

[︁
𝑊 𝑓

𝜃𝑡(𝑚𝑡 + 𝜎𝑡𝒩 )𝒩
]︁

(39)

d𝜎̃𝑡

d𝑡
= E

[︃
1
2

(︃
‖𝒩‖2

𝑑
− 1

)︃
𝑊 𝑓

𝜃𝑡(𝑚𝑡 + 𝜎𝑡𝒩 )
]︃

. (40)

Let us analyze the solution of the previous system on linear functions.
Without loss of generality (because of invariance) we can consider the linear
function 𝑓(𝑥) = 𝑥1. We have

𝑊 𝑓
𝜃𝑡(𝑥) = 𝑤(Pr(𝑚𝑡

1 + 𝜎𝑡𝑍1 < 𝑥1))

where 𝑍1 follows a standard normal distribution and thus

𝑊 𝑓
𝜃𝑡(𝑚𝑡 + 𝜎𝑡𝒩 ) = 𝑤( Pr

𝑍1∼𝒩 (0,1)
(𝑍1 < 𝒩1)) (41)

= 𝑤(ℱ(𝒩1)) (42)

with ℱ the cumulative distribution of a standard normal distribution, and
𝒩1 the first component of 𝒩 . The differential equation thus simplifies into

d𝑚𝑡

d𝑡
= 𝜎𝑡

⎛⎜⎜⎜⎜⎝
E [𝑤(ℱ(𝒩1))𝒩1]

0
...
0

⎞⎟⎟⎟⎟⎠ (43)

d𝜎̃𝑡

d𝑡
= 1

2𝑑
E
[︁
(|𝒩1|2 − 1)𝑤(ℱ(𝒩1))

]︁
. (44)

Consider, for example, the weight function associated with truncation
selection, i.e. 𝑤(𝑞) = 1𝑞6𝑞0 where 𝑞0 ∈]0, 1]—also called intermediate recom-
bination. We find that

d𝑚𝑡
1

d𝑡
= 𝜎𝑡E[𝒩11{𝒩16ℱ−1(𝑞0)}] =: 𝜎𝑡𝛽 (45)

d𝜎̃𝑡

d𝑡
= 1

2𝑑

(︂∫︁ 𝑞0

0
ℱ−1(𝑢)2𝑑𝑢− 𝑞0

)︂
=: 𝛼 . (46)
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The solution of the IGO flow for the linear function 𝑓(𝑥) = 𝑥1 is thus
given by

𝑚𝑡
1 = 𝑚𝑡

0 + 𝜎0𝛽

𝛼
exp(𝛼𝑡) (47)

𝜎𝑡 = 𝜎0 exp(𝛼𝑡) . (48)

The coefficient 𝛽 is strictly negative for any 𝑞0 < 1. The coefficient 𝛼 is
strictly positive if and only if 𝑞0 < 1/2 which corresponds to selecting less
than half of the sampled points in an ES. In this case the step-size 𝜎𝑡 grows
exponentially fast to infinity and the mean vectors moves along the gradient
direction towards minus ∞ at the same rate. If more than half of the points
are selected, 𝑞0 > 1/2, the step-size will decrease to zero exponentially fast
and the mean vector will get stuck (compare also [Han06a]).

5 Multimodal optimization using restricted Boltz-
mann machines

We now illustrate experimentally the influence of the natural gradient, versus
vanilla gradient, on diversity over the course of optimization. We consider a
very simple situation of a fitness function with two distant optima and test
whether different algorithms are able to reach both optima simultaneously or
only converge to one of them. This provides a practical test of Proposition 1
stating that the natural gradient minimizes loss of diversity.

The IGO method allows to build a natural search algorithm from an
arbitrary probability distribution on an arbitrary search space. In particular,
by choosing families of probability distributions that are richer than Gaussian
or Bernoulli, one may hope to be able to optimize functions with complex
shapes. Here we study how this might help optimize multimodal functions.

Both Gaussian distributions on R𝑑 and Bernoulli distributions on {0, 1}𝑑
are unimodal. So at any given time, a search algorithm using such distribu-
tions concentrates around a given point in the search space, looking around
that point (with some variance). It is an often-sought-after feature for an
optimization algorithm to handle multiple hypotheses simultaneously.

In this section we apply our method to a multimodal distribution on
{0, 1}𝑑: restricted Boltzmann machines (RBMs). Depending on the activation
state of the latent variables, values for various blocks of bits can be switched
on or off, hence multimodality. So the optimization algorithm derived from
these distributions will, hopefully, explore several distant zones of the search
space at any given time. A related model (Boltzmann machines) was used in
[Ber02] and was found to perform better than PBIL on some functions.

Our study of a bimodal RBM distribution for the optimization of a
bimodal function confirms that the natural gradient does indeed behave in
a more natural way than the vanilla gradient: when initialized properly,
the natural gradient is able to maintain diversity by fully using the RBM
distribution to learn the two modes, while the vanilla gradient only converges
to one of the two modes.

Although these experiments support using a natural gradient approach,
they also establish that complications can arise for estimating the inverse
Fisher matrix in the case of complex distributions such as RBMs: estimation
errors may lead to a singular or unreliable estimation of the Fisher matrix,
especially when the distribution becomes singular. Further research is needed
for a better understanding of this issue.
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Figure 2: The RBM architecture with the observed (x) and latent (h)
variables. In our experiments, a single hidden unit was used.

The experiments reported here, and the fitness function used, are ex-
tremely simple from the optimization viewpoint: both algorithms using the
natural and vanilla gradient find an optimum in only a few steps. The empha-
sis here is on the specific influence of replacing the vanilla gradient with the
natural gradient, and the resulting influence on diversity and multimodality,
in a simple situation.

5.1 IGO for restricted Boltzmann machines

Restricted Boltzmann machines. A restricted Boltzmann machine
(RBM) [Smo86, AHS85] is a kind of probability distribution belonging
to the family of undirected graphical models (also known as a Markov ran-
dom fields). A set of observed variables x ∈ {0, 1}𝑛𝑥 are given a probability
using their joint distribution with unobserved latent variables h ∈ {0, 1}𝑛ℎ

[Gha04]. The latent variables are then marginalized over. See Figure 2 for
the graph structure of a RBM.

The probability associated with an observation x and latent variable h is
given by

𝑃𝜃(x, h) = 𝑒−𝐸(x,h)∑︀
x′,h′ 𝑒−𝐸(x′,h′) , 𝑃𝜃(x) =

∑︁
h

𝑃𝜃(x, h). (49)

where 𝐸(x, h) is the so-called energy function and
∑︀

x′,h′ 𝑒−𝐸(x′,h′) is the
partition function denoted 𝑍 in Section 2.3. The energy 𝐸 is defined by

𝐸(x, h) = −
∑︁

𝑖

𝑎𝑖𝑥𝑖 −
∑︁

𝑗

𝑏𝑗ℎ𝑗 −
∑︁
𝑖,𝑗

𝑤𝑖𝑗𝑥𝑖ℎ𝑗 . (50)

The distribution is fully parametrized by the bias on the observed variables
a, the bias on the latent variables b and the weights W which account for
pairwise interactions between observed and latent variables: 𝜃 = (a, b, W).

RBM distributions are a special case of exponential family distributions
with latent variables (see (21) in Section 2.3). The RBM IGO equations
stem from Equations (16), (17) and (18) by identifying the statistics 𝑇 (𝑥)
with 𝑥𝑖, ℎ𝑗 or 𝑥𝑖ℎ𝑗 .

For these distributions, the gradient of the log-likelihood is well-known
[Hin02]. Although it is often considered intractable in the context of machine
learning where a lot of variables are required, it becomes tractable for smaller
RBMs. The gradient of the log-likelihood consists of the difference of two
expectations (compare (16)):

𝜕 ln 𝑃𝜃(𝑥)
𝜕𝑤𝑖𝑗

= E𝑃𝜃
[𝑥𝑖ℎ𝑗 |𝑥]− E𝑃𝜃

[𝑥𝑖ℎ𝑗 ] (51)

30



The Fisher information matrix is given by (20)

𝐼𝑤𝑎𝑏𝑤𝑐𝑑
(𝜃) = E[𝑥𝑎ℎ𝑏𝑥𝑐ℎ𝑑]− E[𝑥𝑎ℎ𝑏]E[𝑥𝑐ℎ𝑑] (52)

where 𝐼𝑤𝑎𝑏𝑤𝑐𝑑
denotes the entry of the Fisher matrix corresponding to the

components 𝑤𝑎𝑏 and 𝑤𝑐𝑑 of the parameter 𝜃. These equations are understood
to encompass the biases a and b by noticing that the bias can be replaced
in the model by adding two variables 𝑥𝑘 and ℎ𝑘 always equal to one.

Finally, the IGO update rule is taken from (14):

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡 𝐼−1(𝜃𝑡)
𝑁∑︁

𝑘=1
̂︀𝑤𝑘

𝜕 ln 𝑃𝜃(x𝑘)
𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡

(53)

Implementation. In this experimental study, the IGO algorithm for
RBMs is directly implemented from Equation (53). At each optimization
step, the algorithm consists in (1) finding a reliable estimate of the Fisher
matrix (see Eq. 52) which is then inverted using the QR-Algorithm if it is
invertible; (2) computing an estimate of the vanilla gradient which is then
weighted according to 𝑊 𝑓

𝜃 ; and (3) updating the parameters, taking into
account the gradient step size 𝛿𝑡. In order to estimate both the Fisher matrix
and the gradient, samples must be drawn from the model 𝑃𝜃. This is done
using Gibbs sampling (see for instance [Hin02]).

Fisher matrix imprecision. The imprecision incurred by the limited
sampling size may sometimes lead to a singular estimation of the Fisher matrix
(see p. 11 for a lower bound on the number of samples needed). Although
having a singular Fisher estimation happens rarely in normal conditions, it
occurs with certainty when the probabilities become too concentrated over
a few points. This situation arises naturally when the algorithm is allowed
to continue the optimization after the optimum has been reached. For this
reason, in our experiments, we stop the optimization as soon as both optima
have been sampled, thus preventing 𝑃𝜃 from becoming too concentrated.

In a variant of the same problem, the Fisher estimation can become
close to singular while still being numerically invertible. This situation leads
to unreliable estimates and should therefore be avoided. To evaluate the
reliability of the inverse Fisher matrix estimate, we use a cross-validation
method: (1) making two estimates 𝐹1 and 𝐹2 of the Fisher matrix on two
distinct sets of points generated from 𝑃𝜃, and (2) making sure that the
eigenvalues of 𝐹1 × 𝐹 −1

2 are close to 1. In practice, at all steps we check
that the average of the eigenvalues of 𝐹1 × 𝐹 −1

2 is between 1/2 and 2. If at
some point during the optimization the Fisher estimation becomes singular
or unreliable according to this criterion, the corresponding run is stopped
and considered to have failed.

When optimizing on a larger space helps. A restricted Boltzmann
machine defines naturally a distribution 𝑃𝜃 on both visible and hidden units
(x, h), whereas the function to optimize depends only on the visible units
x. Thus we are faced with a choice. A first possibility is to decide that the
objective function 𝑓(x) is really a function of (x, h) where h is a dummy
variable; then we can use the IGO algorithm to optimize over (x, h) using
the distributions 𝑃𝜃(x, h). A second possibility is to marginalize 𝑃𝜃(x, h)
over the hidden units h as in (49), to define the distribution 𝑃𝜃(x); then we
can use the IGO algorithm to optimize over x using 𝑃𝜃(x).
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These two approaches yield slightly different algorithms. Both were tested
and found to be viable. However the first approach is numerically more stable
and requires less samples to estimate the Fisher matrix. Indeed, if 𝐼1(𝜃) is
the Fisher matrix at 𝜃 in the first approach and 𝐼2(𝜃) in the second approach,
we always have 𝐼1(𝜃) > 𝐼2(𝜃) (in the sense of positive-definite matrices). This
is because probability distributions on the pair (x, h) carry more information
than their projections on x only, and so computed Kullback–Leibler distances
will be larger.

In particular, there are (isolated) values of 𝜃 for which the Fisher matrix
𝐼2 is not invertible whereas 𝐼1 is. For this reason, we selected the first
approach.

5.2 Experimental results

In our experiments, we look at the optimization of the two-min function
defined below with a bimodal RBM: an RBM with only one latent variable.
Such an RBM is bimodal because it has two possible configurations of the
latent variable: h = 0 or h = 1, and given h, the observed variables are
independent and distributed according to two Bernoulli distributions.

Set a parameter y ∈ {0, 1}𝑑. The two-min function is defined as follows:

𝑓y(x) = min
(︃∑︁

𝑖

|𝑥𝑖 − 𝑦𝑖| ,
∑︁

𝑖

|(1− 𝑥𝑖)− 𝑦𝑖)|
)︃

(54)

This function of x has two optima: one at y, the other at its binary comple-
ment ȳ.

For the quantile rewriting of 𝑓 (Section 1.2), we chose the function 𝑤 to
be 𝑤(𝑞) = 1𝑞61/2 so that points which are below the median are given the
weight 1, whereas other points are given the weight 0. Also, in accordance
with (3), if several points have the same fitness value, their weight 𝑊 𝑓

𝜃 is set
to the average of 𝑤 over all those points.

For initialization of the RBMs, the weights W are sampled from a normal
distribution centered around zero and of standard deviation 1/

√
𝑛𝑥 × 𝑛ℎ,

where 𝑛𝑥 is the number of observed variables (dimension 𝑑 of the problem)
and 𝑛ℎ is the number of latent variables (𝑛ℎ = 1 in our case), so that initially
the energies 𝐸 are not too large. Then the bias parameters are initialized as
𝑏𝑗 ← −

∑︀
𝑖

𝑤𝑖𝑗

2 and 𝑎𝑖 ← −
∑︀

𝑗
𝑤𝑖𝑗

2 +𝒩 (0.01
𝑛2

𝑥
) so that each variable (observed

or latent) has a probability of activation close to 1/2.
In the following experiments, we show the results of IGO optimization

and vanilla gradient optimization for the two-min function in dimension 40,
for various values of the step size 𝛿𝑡. For each 𝛿𝑡, we present the median of the
quantity of interest over 100 runs. Error bars indicate the 16th percentile and
the 84th percentile (this is the same as mean±stddev for a Gaussian variable,
but is invariant by 𝑓 -reparametrization). For each run, the parameter y
of the two-max function is sampled randomly in order to ensure that the
presented results are not dependent on a particular choice of optima.

The number of sample points used for estimating the Fisher matrix is
set to 10, 000: large enough (by far) to ensure the stability of the estimates.
The same points are used for estimating the integral of (14), therefore there
are 10, 000 calls to the fitness function at each gradient step. These rather
comfortable settings allow for a good illustration of the theoretical properties
of the 𝑁 =∞ IGO flow limit.

The numbers of runs that fail after the occurrence of a singular matrix
or an unreliable estimate amount for less than 10% for 𝛿𝑡 6 2 (as little as
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3% for the smallest learning rate), but can increase up to 30% for higher
learning rates.

5.2.1 Convergence

We first check that both vanilla and natural gradient are able to converge to
an optimum.

Figures 3 and 4 show the fitness of the best sampled point for the
IGO algorithm and for the vanilla gradient at each step. Predictably, both
algorithms are able to optimize the two-min function in a few steps.

The two-min function is extremely simple from an optimization viewpoint;
thus, convergence speed is not the main focus here, all the more since we use
a large number of 𝑓 -calls at each step.

Note that the values of the parameter 𝛿𝑡 for the two gradients used are
not directly comparable from a theoretical viewpoint (they correspond to
parametrizations of different trajectories in Θ-space, and identifying vanilla
𝛿𝑡 with natural 𝛿𝑡 is meaningless). We selected larger values of 𝛿𝑡 for the
vanilla gradient, in order to obtain roughly comparable convergence speeds
in practice.

5.2.2 Diversity

As we have seen, the two-min function is equally well optimized by the IGO
and vanilla gradient optimization. However, the methods fare very differently
when we look at the distance from the sample points to both optima. From
(54), the fitness gives the distance of sample points to the closest optimum.
We now study how close sample points come to the other, opposite optimum.
The distance of sample points to the second optimum is shown in Figure 5
for IGO, and in Figure 6 for the vanilla gradient.

Figure 5 shows that IGO also reaches the second optimum most of the
time, and is often able to find it only a few steps after the first. This property
of IGO is of course dependent on the initialization of the RBM with enough
diversity. When initialized properly so that each variable (observed and
latent) has a probability 1/2 of being equal to 1, the initial RBM distribution
has maximal diversity over the search space and is at equal distance from the
two optima of the function. From this starting position, the natural gradient
is then able to increase the likelihood of the two optima at the same time.

By stark contrast, the vanilla gradient is not able to go towards both
optima at the same time as shown in Fig. 6. In fact, the vanilla gradient
only converges to one optimum at the expense of the other. For all values of
𝛿𝑡, the distance to the second optimum increases gradually and approaches
the maximum possible distance.

As mentioned earlier, each state of the latent variable h corresponds to a
mode of the distribution. In Figures 7 and 8, we look at the average value
of h for each gradient step. An average value close to 1/2 means that the
distribution samples from both modes: h = 0 or h = 1 with a comparable
probability. Conversely, average values close to 0 or 1 indicate that the
distribution gives most probability to one mode at the expense of the other.
In Figure 7, we can see that with IGO, the average value of h is close to 1/2
during the whole optimization procedure for most runs: the distribution is
initialized with two modes and stays bimodal7. As for the vanilla gradient,

7In Fig. 7, we use the following adverse setting: runs are interrupted once they reach
both optima, therefore the statistics are taken only over those runs which have not yet
converged and reached both optima, which results in higher variation around 1/2. The
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Figure 3: Fitness of sampled points during IGO optimization.

0 10 20 30 40 50
gradient steps

0

2

4

6

8

10

12

δt=32.

δt=16.

δt=8.

δt=4.

δt=2.

δt=1.

Figure 4: Fitness of sampled points during vanilla gradient optimization.
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Figure 5: Distance to the second optimum during IGO optimization.

0 10 20 30 40 50
gradient steps

0

5

10

15

20

25

30

35

40

δt=32.

δt=16.

δt=8.

δt=4.

δt=2.

δt=1.

Figure 6: Distance to second optimum during vanilla gradient optimization.
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statistics for h are depicted in Figure 8 and we can see that they converge to
1: one of the two modes of the distribution has been lost during optimization.

Hidden breach of symmetry by the vanilla gradient. The experi-
ments reveal a curious phenomenon: the vanilla gradient loses multimodality
by always setting the hidden variable ℎ to 1, not to 0. (We detected no
obvious asymmetry on the visible units 𝑥, though.)

Of course, exchanging the values 0 and 1 for the hidden variables in a
restricted Boltzmann machine still gives a distribution of another Boltzmann
machine. More precisely, changing ℎ𝑗 into 1− ℎ𝑗 is equivalent to resetting
𝑎𝑖 ← 𝑎𝑖 + 𝑤𝑖𝑗 , 𝑏𝑗 ← −𝑏𝑗 , and 𝑤𝑖𝑗 ← −𝑤𝑖𝑗 . IGO and the natural gradient are
impervious to such a change by Proposition 9.

The vanilla gradient implicitly relies on the Euclidean norm on parameter
space, as explained in Section 1.1. For this norm, the distance between
the RBM distributions (𝑎𝑖, 𝑏𝑗 , 𝑤𝑖𝑗) and (𝑎′

𝑖, 𝑏′
𝑗 , 𝑤′

𝑖𝑗) is simply
∑︀

𝑖 |𝑎𝑖 − 𝑎′
𝑖|

2 +∑︀
𝑗

⃒⃒⃒
𝑏𝑗 − 𝑏′

𝑗

⃒⃒⃒2
+
∑︀

𝑖𝑗

⃒⃒⃒
𝑤𝑖𝑗 − 𝑤′

𝑖𝑗

⃒⃒⃒2
. However, the change of variables 𝑎𝑖 ←

𝑎𝑖 + 𝑤𝑖𝑗 , 𝑏𝑗 ← −𝑏𝑗 , 𝑤𝑖𝑗 ← −𝑤𝑖𝑗 does not preserve this Euclidean metric.
Thus, exchanging 0 and 1 for the hidden variables will result in two different
vanilla gradient ascents. The observed asymmetry on ℎ is a consequence of
this implicit asymmetry.

The same asymmetry exists for the visible variables 𝑥𝑖; but this does
not prevent convergence to an optimum in our situation, since any gradient
descent eventually reaches some local optimum.

Of course it is possible to cook up parametrizations for which the vanilla
gradient will be more symmetric: for instance, using −1/1 instead of 0/1 for
the variables, or defining the energy by

𝐸(x, h) = −
∑︀

𝑖𝐴𝑖(𝑥𝑖 − 1
2)−

∑︀
𝑗𝐵𝑗(ℎ𝑗 − 1

2)−
∑︀

𝑖,𝑗𝑊𝑖𝑗(𝑥𝑖 − 1
2)(ℎ𝑗 − 1

2) (55)

with “bias-free” parameters 𝐴𝑖, 𝐵𝑗 , 𝑊𝑖𝑗 related to the usual parametrization
by 𝑤𝑖𝑗 = 𝑊𝑖𝑗 , 𝑎𝑖 = 𝐴𝑖 − 1

2
∑︀

𝑗 𝑤𝑖𝑗 𝑏𝑗 = 𝐵𝑗 − 1
2
∑︀

𝑖 𝑤𝑖𝑗 . The vanilla gradient
might perform better in these parametrizations.

However, we chose a naive approach: we used a family of probability
distributions found in the literature, with the parametrization found in the
literature. We then use the vanilla gradient and the natural gradient on these
distributions. This directly illustrates the specific influence of the chosen
gradient (the two implementations only differ by the inclusion of the Fisher
matrix). It is remarkable, we think, that the natural gradient is able to
recover symmetry where there was none.

5.3 Convergence to the continuous-time limit

In the previous figures, it looks like changing the parameter 𝛿𝑡 only results
in a time speedup of the plots.

Update rules of the type 𝜃 ← 𝜃 + 𝛿𝑡∇𝜃𝑔 (for either gradient) are Euler
approximations of the continuous-time ordinary differential equation d𝜃

d𝑡 =
∇𝜃𝑔, with each iteration corresponding to an increment 𝛿𝑡 of the time 𝑡.
Thus, it is expected that for small enough 𝛿𝑡, the algorithm after 𝑘 steps
approximates the IGO flow or vanilla gradient flow at time 𝑡 = 𝑘.𝛿𝑡.

Figures 9 and 10 illustrate this convergence: we show the fitness w.r.t to
𝛿𝑡 times the number of gradient steps. An asymptotic trajectory seems to

plot has been stopped when less than half the runs remain. The error bars are relative
only to the remaining runs.
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Figure 7: Average value of h during IGO optimization.
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Figure 8: Average value of h during vanilla gradient optimization.
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emerge when 𝛿𝑡 decreases. For the natural gradient, it can be interpreted as
the fitness of samples of the continuous-time IGO flow.

Thus, for this kind of optimization algorithms, it makes theoretical
sense to plot the results according to the “intrinsic time” of the underlying
continuous-time object, to illustrate properties that do not depend on the
setting of the parameter 𝛿𝑡. (Still, the raw number of steps is more directly
related to algorithmic cost.)

6 Further discussion
A single framework for optimization on arbitrary spaces. A strength
of the IGO viewpoint is to automatically provide optimization algorithms
using any family of probability distributions on any given space, discrete or
continuous. This has been illustrated with restricted Boltzmann machines.
IGO algorithms also feature good invariance properties and make a least
number of arbitrary choices.

In particular, IGO unifies several well-known optimization algorithms
into a single framework. For instance, to the best of our knowledge, PBIL
has never been described as a natural gradient ascent in the literature8.

For Gaussian measures, algorithms of the same form (14) had been
developed previously [HO01, WSPS08] and their close relationship with a
natural gradient ascent had been recognized [ANOK10, GSS+10].

The wide applicability of natural gradient approaches seems not to be
widely known in the optimization community, though see [MMS08].

About quantiles. The IGO flow, to the best of our knowledge, has not
been defined before. The introduction of the quantile-rewriting (3) of the
objective function provides the first rigorous derivation of quantile- or rank-
based natural optimization from a gradient ascent in 𝜃-space.

Indeed, NES and CMA-ES have been claimed to maximize −E𝑃𝜃
𝑓 via

natural gradient ascent [WSPS08, ANOK10]. However, we have proved that
when the number of samples is large and the step size is small, the NES
and CMA-ES updates converge to the IGO flow, not to the similar flow
with the gradient of E𝑃𝜃

𝑓 (Theorem 4). So we find that in reality these
algorithms maximize E𝑃𝜃

𝑊 𝑓
𝜃𝑡 , where 𝑊 𝑓

𝜃𝑡 is a decreasing transformation of
the 𝑓 -quantiles under the current sample distribution.

Also in practice, maximizing −E𝑃𝜃
𝑓 is a rather unstable procedure and

has been discouraged, see for example [Whi89].

About choice of 𝑃𝜃: learning a model of good points. The choice of
the family of probability distributions 𝑃𝜃 plays a double role.

First, it is analogous to a mutation operator as seen in evolutionary
algorithms: indeed, 𝑃𝜃 encodes possible moves according to which new
sample points are explored.

Second, optimization algorithms using distributions can be interpreted as
learning a probabilistic model of where the points with good values lie in the
search space. With this point of view, 𝑃𝜃 describes richness of this model:
for instance, restricted Boltzmann machines with ℎ hidden units can describe
distributions with up to 2ℎ modes, whereas the Bernoulli distribution used
in PBIL is unimodal. This influences, for instance, the ability to explore
several valleys and optimize multimodal functions in a single run.

8Thanks to Jonathan Shapiro for an early argument confirming this property (personal
communication).
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Figure 9: Fitness of sampled points w.r.t. “intrinsic time” during IGO
optimization.
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Figure 10: Fitness of sampled points w.r.t. “intrinsic time” during vanilla
gradient optimization.
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Natural gradient and parametrization invariance. Central to IGO
is the use of natural gradient, which follows from 𝜃-invariance and makes
sense on any search space, discrete or continuous.

While the IGO flow is exactly 𝜃-invariant, for any practical implementa-
tion of an IGO algorithm, a parametrization choice has to be made. Still,
since all IGO algorithms approximate the IGO flow, two parametrizations of
IGO will differ less than two parametrizations of another algorithm (such as
the vanilla gradient or the smoothed CEM method)—at least if the learning
rate 𝛿𝑡 is not too large.

On the other hand, natural evolution strategies have never strived for
𝜃-invariance: the chosen parametrization (Cholesky, exponential) has been
deemed a relevant feature. In the IGO framework, the chosen parametrization
becomes more relevant as the step size 𝛿𝑡 increases.

IGO, maximum likelihood and cross-entropy. The cross-entropy method
(CEM) [dBKMR05] can be used to produce optimization algorithms given a
family of probability distributions on an arbitrary space, by performing a
jump to a maximum likelihood estimate of the parameters.

We have seen (Corollary 16) that the standard CEM is an IGO algorithm
in a particular parametrization, with a learning rate 𝛿𝑡 equal to 1. However,
it is well-known, both theoretically and experimentally [BLS07, Han06b,
WAS04], that standard CEM loses diversity too fast in many situations. The
usual solution [dBKMR05] is to reduce the learning rate (smoothed CEM,
(25)), but this breaks the reparametrization invariance.

On the other hand, the IGO flow can be seen as a maximum likelihood
update with infinitesimal learning rate (Theorem 13). This interpretation
allows to define a particular IGO algorithm, the IGO-ML (Definition 14): it
performs a maximum likelihood update with an arbitrary learning rate, and
keeps the reparametrization invariance. It coincides with CEM when the
learning rate is set to 1, but it differs from smoothed CEM by the exchange
of the order of argmax and averaging (compare (23) and (25)). We argue
that this new algorithm may be a better way to reduce the learning rate and
achieve smoothing in CEM.

Standard CEM can lose diversity, yet is a particular case of an IGO
algorithm: this illustrates the fact that reasonable values of the learning
rate 𝛿𝑡 depend on the parametrization. We have studied this phenomenon
in detail for various Gaussian IGO algorithms (Section 4.2).

Why would a smaller learning rate perform better than a large one in
an optimization setting? It might seem more efficient to jump directly to
the maximum likelihood estimate of currently known good points, instead of
performing a slow gradient ascent towards this maximum.

However, optimization faces a “moving target”, contrary to a learning
setting in which the example distribution is often stationary. Currently known
good points are likely not to indicate the position at which the optimum lies,
but, rather, the direction in which the optimum is to be found. After an
update, the next elite sample points are going to be located somewhere new.
So the goal is certainly not to settle down around these currently known
points, as a maximum likelihood update does: by design, CEM only tries to
reflect status-quo (even for 𝑁 =∞), whereas IGO tries to move somewhere.
When the target moves over time, a progressive gradient ascent is more
reasonable than an immediate jump to a temporary optimum, and realizes a
kind of time smoothing.

This phenomenon is most clear when the number of sample points is small.
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Then, a full maximum likelihood update risks losing a lot of diversity; it may
even produce a degenerate distribution if the number of sample points is
smaller than the number of parameters of the distribution. On the other hand,
for smaller 𝛿𝑡, the IGO algorithms do, by design, try to maintain diversity
by moving as little as possible from the current distribution 𝑃𝜃 in Kullback–
Leibler divergence. A full ML update disregards the current distribution
and tries to move as close as possible to the elite sample in Kullback–Leibler
divergence [dBKMR05], thus realizing maximal diversity loss. This makes
sense in a non-iterated scenario but is unsuited for optimization.

Diversity and multiple optima. The IGO framework emphasizes the
relation of natural gradient and diversity: we argued that IGO provides
minimal diversity change for a given objective function increment. In partic-
ular, provided the initial diversity is large, diversity is kept at a maximum.
This theoretical relationship has been confirmed experimentally for restricted
Boltzmann machines.

On the other hand, using the vanilla gradient does not lead to a balanced
distribution between the two optima in our experiments. Using the vanilla
gradient introduces hidden arbitrary choices between those points (more
exactly between moves in Θ-space). This results in loss of diversity, and
might also be detrimental at later stages in the optimization. This may reflect
the fact that the Euclidean metric on the space of parameters, implicitly
used in the vanilla gradient, becomes less and less meaningful for gradient
descent on complex distributions.

IGO and the natural gradient are certainly relevant to the well-known
problem of exploration-exploitation balance: as we have seen, arguably the
natural gradient realizes the best increment of the objective function with
the least possible change of diversity in the population.

More generally, IGO tries to learn a model of where the good points
are, representing all good points seen so far rather than focusing only on
some good points; this is typical of machine learning, one of the contexts for
which the natural gradient was studied. The conceptual relationship of IGO
and IGO-like optimization algorithms with machine learning is still to be
explored and exploited.

Summary and conclusion
We sum up:

∙ The information-geometric optimization (IGO) framework derives from
invariance principles and allows to build optimization algorithms from
any family of distributions on any search space. In some instances
(Gaussian distributions on R𝑑 or Bernoulli distributions on {0, 1}𝑑) it
recovers versions of known algorithms (CMA-ES or PBIL); in other
instances (restricted Boltzmann machine distributions) it produces
new, hopefully efficient optimization algorithms.

∙ The use of a quantile-based, time-dependent transform of the objective
function (Equation (3)) provides a rigorous derivation of rank-based
update rules currently used in optimization algorithms. Theorem 4
uniquely identifies the infinite-population limit of these update rules.

∙ The IGO flow is singled out by its equivalent description as an in-
finitesimal weighted maximal log-likelihood update (Theorem 13). In
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a particular parametrization and with a step size of 1, it recovers the
cross-entropy method (Corollary 16).

∙ Theoretical arguments suggest that the IGO flow minimizes the change
of diversity in the course of optimization. In particular, starting
with high diversity and using multimodal distributions may allow
simultaneous exploration of multiple optima of the objective function.
Preliminary experiments with restricted Boltzmann machines confirm
this effect in a simple situation.

Thus, the IGO framework is an attempt to provide sound theoretical
foundations to optimization algorithms based on probability distributions.
In particular, this viewpoint helps to bridge the gap between continuous and
discrete optimization.

The invariance properties, which reduce the number of arbitrary choices,
together with the relationship between natural gradient and diversity, may
contribute to a theoretical explanation of the good practical performance of
those currently used algorithms, such as CMA-ES, which can be interpreted
as instantiations of IGO.

We hope that invariance properties will acquire in computer science
the importance they have in mathematics, where intrinsic thinking is the
first step for abstract linear algebra or differential geometry, and in modern
physics, where the notions of invariance w.r.t. the coordinate system and
so-called gauge invariance play central roles.
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Appendix: Proofs

Proof of Theorem 4 (Convergence of empirical means and
quantiles)

Let us give a more precise statement including the necessary regularity
conditions.

Proposition 18. Let 𝜃 ∈ Θ. Assume that the derivative 𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃 exists

for 𝑃𝜃-almost all 𝑥 ∈ 𝑋 and that E𝑃𝜃

⃒⃒⃒
𝜕 ln 𝑃𝜃(𝑥)

𝜕𝜃

⃒⃒⃒2
< +∞. Assume that the

function 𝑤 is non-decreasing and bounded.
Let (𝑥𝑖)𝑖∈N be a sequence of independent samples of 𝑃𝜃. Then with

probability 1, as 𝑁 →∞ we have

1
𝑁

𝑁∑︁
𝑖=1

̂︁𝑊 𝑓 (𝑥𝑖)
𝜕 ln 𝑃𝜃(𝑥𝑖)

𝜕𝜃
→
∫︁

𝑊 𝑓
𝜃 (𝑥) 𝜕 ln 𝑃𝜃(𝑥)

𝜕𝜃
𝑃𝜃(d𝑥)
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where ̂︁𝑊 𝑓 (𝑥𝑖) = 𝑤

(︂rk𝑁 (𝑥𝑖) + 1/2
𝑁

)︂
with rk𝑁 (𝑥𝑖) = #{1 6 𝑗 6 𝑁, 𝑓(𝑥𝑗) < 𝑓(𝑥𝑖)}. (When there are 𝑓 -ties in the
sample, 𝑊 𝑓 (𝑥𝑖) is defined as the average of 𝑤((𝑟 + 1/2)/𝑁) over the possible
rankings 𝑟 of 𝑥𝑖.)

Proof. Let 𝑔 : 𝑋 → R be any function with E𝑃𝜃
𝑔2 <∞. We will show that

1
𝑁

∑︀̂︁𝑊 𝑓 (𝑥𝑖)𝑔(𝑥𝑖)→
∫︀

𝑊 𝑓
𝜃 (𝑥)𝑔(𝑥) 𝑃𝜃(d𝑥). Applying this with 𝑔 equal to the

components of 𝜕 ln 𝑃𝜃(𝑥)
𝜕𝜃 will yield the result.

Let us decompose

1
𝑁

∑︁̂︁𝑊 𝑓 (𝑥𝑖)𝑔(𝑥𝑖) = 1
𝑁

∑︁
𝑊 𝑓

𝜃 (𝑥𝑖)𝑔(𝑥𝑖) + 1
𝑁

∑︁
(̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓

𝜃 (𝑥𝑖))𝑔(𝑥𝑖).

Each summand in the first term involves only one sample 𝑥𝑖 (contrary tô︁𝑊 𝑓 (𝑥𝑖) which depends on the whole sample). So by the strong law of large
numbers, almost surely 1

𝑁

∑︀
𝑊 𝑓

𝜃 (𝑥𝑖)𝑔(𝑥𝑖) converges to
∫︀

𝑊 𝑓
𝜃 (𝑥)𝑔(𝑥) 𝑃𝜃(d𝑥).

So we have to show that the second term converges to 0 almost surely.
By the Cauchy–Schwarz inequality, we have⃒⃒⃒⃒ 1

𝑁

∑︁
(̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓

𝜃 (𝑥𝑖))𝑔(𝑥𝑖)
⃒⃒⃒⃒2

6
(︂ 1

𝑁

∑︁
(̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓

𝜃 (𝑥𝑖))2
)︂(︂ 1

𝑁

∑︁
𝑔(𝑥𝑖)2

)︂
By the strong law of large numbers, the second term 1

𝑁

∑︀
𝑔(𝑥𝑖)2 converges to

𝐸𝑃𝜃
𝑔2 almost surely. So we have to prove that the first term 1

𝑁

∑︀
(̂︁𝑊 𝑓 (𝑥𝑖)−

𝑊 𝑓
𝜃 (𝑥𝑖))2 converges to 0 almost surely.

Since 𝑤 is bounded by assumption, we can write

(̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓
𝜃 (𝑥𝑖))2 6 2𝐵

⃒⃒⃒̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓
𝜃 (𝑥𝑖)

⃒⃒⃒
= 2𝐵

⃒⃒⃒̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓
𝜃 (𝑥𝑖)

⃒⃒⃒
+

+ 2𝐵
⃒⃒⃒̂︁𝑊 𝑓 (𝑥𝑖)−𝑊 𝑓

𝜃 (𝑥𝑖)
⃒⃒⃒
−

where 𝐵 is the bound on |𝑤|. We will bound each of these terms.
Let us abbreviate 𝑞−

𝑖 = Pr𝑥′∼𝑃𝜃
(𝑓(𝑥′) < 𝑓(𝑥𝑖)), 𝑞+

𝑖 = Pr𝑥′∼𝑃𝜃
(𝑓(𝑥′) 6

𝑓(𝑥𝑖)), 𝑟−
𝑖 = #{𝑗6𝑁, 𝑓(𝑥𝑗) < 𝑓(𝑥𝑖)}, 𝑟+

𝑖 = #{𝑗6𝑁, 𝑓(𝑥𝑗) 6 𝑓(𝑥𝑖)}.
By definition of ̂︁𝑊 𝑓 we have

̂︁𝑊 𝑓 (𝑥𝑖) = 1
𝑟+

𝑖 − 𝑟−
𝑖

𝑟+
𝑖 −1∑︁

𝑘=𝑟−
𝑖

𝑤((𝑘 + 1/2)/𝑁)

and moreover 𝑊 𝑓
𝜃 (𝑥𝑖) = 𝑤(𝑞−

𝑖 ) if 𝑞−
𝑖 = 𝑞+

𝑖 or 𝑊 𝑓
𝜃 (𝑥𝑖) = 1

𝑞+
𝑖 −𝑞−

𝑖

∫︀ 𝑞+
𝑖

𝑞−
𝑖

𝑤 other-
wise.

The Glivenko–Cantelli theorem states that sup𝑖

⃒⃒⃒
𝑞+

𝑖 − 𝑟+
𝑖 /𝑁

⃒⃒⃒
tends to 0

almost surely, and likewise for sup𝑖

⃒⃒⃒
𝑞−

𝑖 − 𝑟−
𝑖 /𝑁

⃒⃒⃒
. So let 𝑁 be large enough

so that these errors are bounded by 𝜀.
Since 𝑤 is non-increasing, we have 𝑤(𝑞−

𝑖 ) 6 𝑤(𝑟−
𝑖 /𝑁 − 𝜀). In the case

𝑞−
𝑖 ̸= 𝑞+

𝑖 , we decompose the interval [𝑞−
𝑖 ; 𝑞+

𝑖 ] into (𝑟+
𝑖 − 𝑟−

𝑖 ) subintervals.
The average of 𝑤 over each such subinterval is compared to a term in the
sum defining 𝑤𝑁 (𝑥𝑖): since 𝑤 is non-increasing, the average of 𝑤 over the
𝑘th subinterval is at most 𝑤((𝑟−

𝑖 + 𝑘)/𝑁 − 𝜀). So we get

𝑊 𝑓
𝜃 (𝑥𝑖) 6

1
𝑟+

𝑖 − 𝑟−
𝑖

𝑟+
𝑖 −1∑︁

𝑘=𝑟−
𝑖

𝑤(𝑘/𝑁 − 𝜀)
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so that

𝑊 𝑓
𝜃 (𝑥𝑖)− ̂︁𝑊 𝑓 (𝑥𝑖) 6

1
𝑟+

𝑖 − 𝑟−
𝑖

𝑟+
𝑖 −1∑︁

𝑘=𝑟−
𝑖

(𝑤(𝑘/𝑁 − 𝜀)− 𝑤((𝑘 + 1/2)/𝑁)).

Let us sum over 𝑖, remembering that there are (𝑟+
𝑖 − 𝑟−

𝑖 ) values of 𝑗 for
which 𝑓(𝑥𝑗) = 𝑓(𝑥𝑖). Taking the positive part, we get

1
𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑊 𝑓

𝜃 (𝑥𝑖)− ̂︁𝑊 𝑓 (𝑥𝑖)
⃒⃒⃒
+
6

1
𝑁

𝑁−1∑︁
𝑘=0

(𝑤(𝑘/𝑁 − 𝜀)− 𝑤((𝑘 + 1/2)/𝑁)).

Since 𝑤 is non-increasing we have

1
𝑁

𝑁−1∑︁
𝑘=0

𝑤(𝑘/𝑁 − 𝜀) 6
∫︁ 1−𝜀−1/𝑁

−𝜀−1/𝑁
𝑤

and
1
𝑁

𝑁−1∑︁
𝑘=0

𝑤((𝑘 + 1/2)/𝑁) >
∫︁ 1+1/2𝑁

1/2𝑁
𝑤

(we implicitly extend the range of 𝑤 so that 𝑤(𝑞) = 𝑤(0) for 𝑞 < 0). So we
have

1
𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑊 𝑓

𝜃 (𝑥𝑖)− ̂︁𝑊 𝑓 (𝑥𝑖)
⃒⃒⃒
+
6
∫︁ 1/2𝑁

−𝜀−1/𝑁
𝑤 −

∫︁ 1+1/2𝑁

1−𝜀−1/𝑁
𝑤 6 (2𝜀 + 3/𝑁)𝐵

where 𝐵 is the bound on |𝑤|.
Reasoning symmetrically with 𝑤(𝑘/𝑁 + 𝜀) and the inequalities reversed,

we get a similar bound for 1
𝑁

∑︀ ⃒⃒⃒
𝑊 𝑓

𝜃 (𝑥𝑖)− ̂︁𝑊 𝑓 (𝑥𝑖)
⃒⃒⃒
−

. This ends the proof.

Proof of Proposition 5 (Quantile improvement)

Let us use the weight 𝑤(𝑢) = 1𝑢6𝑞. Let 𝑚 be the value of the 𝑞-quantile of 𝑓
under 𝑃𝜃𝑡 . We want to show that the value of the 𝑞-quantile of 𝑓 under 𝑃𝜃𝑡+𝛿𝑡

is less than 𝑚, unless the gradient vanishes and the IGO flow is stationary.
Let 𝑝− = Pr𝑥∼𝑃𝜃𝑡 (𝑓(𝑥) < 𝑚), 𝑝𝑚 = Pr𝑥∼𝑃𝜃𝑡 (𝑓(𝑥) = 𝑚) and 𝑝+ =

Pr𝑥∼𝑃𝜃𝑡 (𝑓(𝑥) > 𝑚). By definition of the quantile value we have 𝑝− + 𝑝𝑚 > 𝑞
and 𝑝+ + 𝑝𝑚 > 1− 𝑞. Let us assume that we are in the more complicated
case 𝑝𝑚 ̸= 0 (for the case 𝑝𝑚 = 0, simply remove the corresponding terms).

We have 𝑊 𝑓
𝜃𝑡

(𝑥) = 1 if 𝑓(𝑥) < 𝑚, 𝑊 𝑓
𝜃𝑡

(𝑥) = 0 if 𝑓(𝑥) > 𝑚 and 𝑊 𝑓
𝜃𝑡

(𝑥) =
1

𝑝𝑚

∫︀ 𝑝−+𝑝𝑚
𝑝−

𝑤(𝑢)d𝑢 = 𝑞−𝑝−
𝑝𝑚

if 𝑓(𝑥) = 𝑚.
Using the same notation as above, let 𝑔𝑡(𝜃) =

∫︀
𝑊 𝑓

𝜃𝑡(𝑥) 𝑃𝜃(d𝑥). Decom-
posing this integral on the three sets 𝑓(𝑥) < 𝑚, 𝑓(𝑥) = 𝑚 and 𝑓(𝑥) > 𝑚, we
get that 𝑔𝑡(𝜃) = Pr𝑥∼𝑃𝜃

(𝑓(𝑥) < 𝑚) + Pr𝑥∼𝑃𝜃
(𝑓(𝑥) = 𝑚) 𝑞−𝑝−

𝑝𝑚
. In particular,

𝑔𝑡(𝜃𝑡) = 𝑞.
Since we follow a gradient ascent of 𝑔𝑡, for 𝛿𝑡 small enough we have

𝑔𝑡(𝜃𝑡+𝛿𝑡) > 𝑔𝑡(𝜃𝑡) unless the gradient vanishes. If the gradient vanishes
we have 𝜃𝑡+𝛿𝑡 = 𝜃𝑡 and the quantiles are the same. Otherwise we get
𝑔𝑡(𝜃𝑡+𝛿𝑡) > 𝑔𝑡(𝜃𝑡) = 𝑞.

Since 𝑞−𝑝−
𝑝𝑚

6 (𝑝−+𝑝𝑚)−𝑝−
𝑝𝑚

= 1, we have 𝑔𝑡(𝜃) 6 Pr𝑥∼𝑃𝜃
(𝑓(𝑥) < 𝑚) +

Pr𝑥∼𝑃𝜃
(𝑓(𝑥) = 𝑚) = Pr𝑥∼𝑃𝜃

(𝑓(𝑥) 6 𝑚).
So Pr𝑥∼𝑃

𝜃𝑡+𝛿𝑡
(𝑓(𝑥) 6 𝑚) > 𝑔𝑡(𝜃𝑡+𝛿𝑡) > 𝑞. This implies that, by definition,

the 𝑞-quantile value of 𝑃𝜃𝑡+𝛿𝑡 is smaller than 𝑚.
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Proof of Proposition 10 (Speed of the IGO flow)

Lemma 19. Let 𝑋 be a centered 𝐿2 random variable with values in R𝑑 and
let 𝐴 be a real-valued 𝐿2 random variable. Then

‖E(𝐴𝑋)‖ 6
√

𝜆 Var 𝐴

where 𝜆 is the largest eigenvalue of the covariance matrix of 𝑋 expressed in
an orthonormal basis.

Proof of the lemma. Let 𝑣 be any vector in R𝑑; its norm satisfies

‖𝑣‖ = sup
𝑤, ‖𝑤‖61

(𝑣 · 𝑤)

and in particular

‖E(𝐴𝑋)‖ = sup
𝑤, ‖𝑤‖61

(𝑤 · E(𝐴𝑋))

= sup
𝑤, ‖𝑤‖61

E(𝐴 (𝑤 ·𝑋))

= sup
𝑤, ‖𝑤‖61

E((𝐴− E𝐴) (𝑤 ·𝑋)) since (𝑤 ·𝑋) is centered

6 sup
𝑤, ‖𝑤‖61

√
Var 𝐴

√︁
E((𝑤 ·𝑋)2)

by the Cauchy–Schwarz inequality and using the fact that 𝐴 is centered.
Now, in an orthonormal basis we have

(𝑤 ·𝑋) =
∑︁

𝑖

𝑤𝑖𝑋𝑖

so that

E((𝑤 ·𝑋)2) = E
(︁
(
∑︀

𝑖𝑤𝑖𝑋𝑖)(
∑︀

𝑗𝑤𝑗𝑋𝑗)
)︁

=
∑︀

𝑖

∑︀
𝑗E(𝑤𝑖𝑋𝑖𝑤𝑗𝑋𝑗)

=
∑︀

𝑖

∑︀
𝑗𝑤𝑖𝑤𝑗E(𝑋𝑖𝑋𝑗)

=
∑︀

𝑖

∑︀
𝑗𝑤𝑖𝑤𝑗𝐶𝑖𝑗

with 𝐶𝑖𝑗 the covariance matrix of 𝑋. The latter expression is the scalar
product (𝑤 · 𝐶𝑤). Since 𝐶 is a symmetric positive-semidefinite matrix,
(𝑤 · 𝐶𝑤) is at most 𝜆‖𝑤‖2 with 𝜆 the largest eigenvalue of 𝐶.

For the IGO flow we have d𝜃𝑡

d𝑡 = E𝑥∼𝑃𝜃
𝑊 𝑓

𝜃 (𝑥)∇̃𝜃 ln 𝑃𝜃(𝑥).
So applying the lemma, we get that the norm of d𝜃

d𝑡 is at most
√︁

𝜆 Var𝑥∼𝑃𝜃
𝑊 𝑓

𝜃 (𝑥)
where 𝜆 is the largest eivengalue of the covariance matrix of ∇̃𝜃 ln 𝑃𝜃(𝑥) (ex-
pressed in a coordinate system where the Fisher matrix at the current point
𝜃 is the identity).

By construction of the quantiles, we have Var𝑥∼𝑃𝜃
𝑊 𝑓

𝜃 (𝑥) 6 Var[0,1] 𝑤
(with equality unless there are ties). Indeed, for a given 𝑥, let 𝒰 be a uniform
random variable in [0, 1] independent from 𝑥 and define the random variable
𝑄 = 𝑞−(𝑥) + (𝑞+(𝑥)− 𝑞−(𝑥))𝒰 . Then 𝑄 is uniformly distributed between the
upper and lower quantiles 𝑞+(𝑥) and 𝑞−(𝑥) and thus we can rewrite 𝑊 𝑓

𝜃 (𝑥) as
E(𝑤(𝑄)|𝑥). By the Jensen inequality we have Var 𝑊 𝑓

𝜃 (𝑥) = VarE(𝑤(𝑄)|𝑥) 6
Var 𝑤(𝑄). In addition when 𝑥 is taken under 𝑃𝜃, 𝑄 is uniformly distributed
in [0, 1] and thus Var 𝑤(𝑄) = Var[0,1] 𝑤, i.e. Var𝑥∼𝑃𝜃

𝑊 𝑓
𝜃 (𝑥) 6 Var[0,1] 𝑤.
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Besides, consider the tangent space in Θ-space at point 𝜃𝑡, and let us
choose an orthonormal basis in this tangent space for the Fisher metric.
Then, in this basis we have ∇̃𝑖 ln 𝑃𝜃(𝑥) = 𝜕𝑖 ln 𝑃𝜃(𝑥). So the covariance
matrix of ∇̃ ln 𝑃𝜃(𝑥) is E𝑥∼𝑃𝜃

(𝜕𝑖 ln 𝑃𝜃(𝑥)𝜕𝑗 ln 𝑃𝜃(𝑥)), which is equal to the
Fisher matrix by definition. So this covariance matrix is the identity, whose
largest eigenvalue is 1.

Proof of Proposition 12 (Noisy IGO)

On the one hand, let 𝑃𝜃 be a family of distributions on 𝑋. The IGO
algorithm (13) applied to a random function 𝑓(𝑥) = 𝑓(𝑥, 𝜔) where 𝜔 is a
random variable uniformly distributed in [0, 1] reads

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 + 𝛿𝑡
𝑁∑︁

𝑖=1
𝑤𝑖
̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖) (56)

where 𝑥𝑖 ∼ 𝑃𝜃 and 𝑤𝑖 is according to (12) where ranking is applied to the
values 𝑓(𝑥𝑖, 𝜔𝑖), with 𝜔𝑖 uniform variables in [0, 1] independent from 𝑥𝑖 and
from each other.

On the other hand, for the IGO algorithm using 𝑃𝜃 ⊗ 𝑈[0,1] and applied
to the deterministic function 𝑓 , 𝑤𝑖 is computed using the ranking according
to the 𝑓 values of the sampled points 𝑥̃𝑖 = (𝑥𝑖, 𝜔𝑖), and thus coincides with
the one in (56).

Besides,

̃︀∇𝜃 ln 𝑃𝜃⊗𝑈[0,1](𝑥̃𝑖) = ̃︀∇𝜃 ln 𝑃𝜃(𝑥𝑖) + ̃︀∇𝜃 ln 𝑈[0,1](𝜔𝑖)⏟  ⏞  
=0

and thus the IGO algorithm update on space 𝑋 × [0, 1], using the family
of distributions 𝑃𝜃 = 𝑃𝜃 ⊗ 𝑈[0,1], applied to the deterministic function 𝑓 ,
coincides with (56).

Proof of Theorem 13 (Natural gradient as ML with infinitesi-
mal weights)

We begin with a calculus lemma (proof omitted).

Lemma 20. Let 𝑓 be real-valued function on a finite-dimensional vector
space 𝐸 equipped with a definite positive quadratic form ‖ · ‖2. Assume 𝑓 is
smooth and has at most quadratic growth at infinity. Then, for any 𝑥 ∈ 𝐸,
we have

∇𝑓(𝑥) = lim
𝜀→0

1
𝜀

arg max
ℎ

{︂
𝑓(𝑥 + ℎ)− 1

2𝜀
‖ℎ‖2

}︂
where ∇ is the gradient associated with the norm ‖ · ‖. Equivalently,

arg max
𝑦

{︂
𝑓(𝑦)− 1

2𝜀
‖𝑦 − 𝑥‖2

}︂
= 𝑥 + 𝜀∇𝑓(𝑥) + 𝑂(𝜀2)

when 𝜀→ 0.

We are now ready to prove Theorem 13. Let 𝑊 be a function of 𝑥, and
fix some 𝜃0 in Θ.

We need some regularity assumptions: we assume that the parameter
space Θ is non-degenerate (no two points 𝜃 ∈ Θ define the same probability
distribution) and proper (the map 𝑃𝜃 ↦→ 𝜃 is continuous). We also assume
that the map 𝜃 ↦→ 𝑃𝜃 is smooth enough, so that

∫︀
log 𝑃𝜃(𝑥) 𝑊 (𝑥) 𝑃𝜃0(d𝑥) is
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a smooth function of 𝜃. (These are restrictions on 𝜃-regularity: this does not
mean that 𝑊 has to be continuous as a function of 𝑥.)

The two statements of Theorem 13 using a sum and an integral have
similar proofs, so we only include the first. For 𝜀 > 0, let 𝜃 be the solution of

𝜃 = arg max
{︃

(1− 𝜀)
∫︁

log 𝑃𝜃(𝑥) 𝑃𝜃0(d𝑥) + 𝜀

∫︁
log 𝑃𝜃(𝑥) 𝑊 (𝑥) 𝑃𝜃0(d𝑥)

}︃
.

Then we have

𝜃 = arg max
{︃∫︁

log 𝑃𝜃(𝑥) 𝑃𝜃0(d𝑥) + 𝜀

∫︁
log 𝑃𝜃(𝑥) (𝑊 (𝑥)− 1) 𝑃𝜃0(d𝑥)

}︃

= arg max
{︃∫︁

log 𝑃𝜃(𝑥) 𝑃𝜃0(d𝑥)−
∫︁

log 𝑃𝜃0(𝑥) 𝑃𝜃0(d𝑥) + 𝜀

∫︁
log 𝑃𝜃(𝑥) (𝑊 (𝑥)− 1) 𝑃𝜃0(d𝑥)

}︃

(because the added term does not depend on 𝜃)

= arg max
{︃
−KL(𝑃𝜃0 ||𝑃𝜃) + 𝜀

∫︁
log 𝑃𝜃(𝑥) (𝑊 (𝑥)− 1) 𝑃𝜃0(d𝑥)

}︃

= arg max
{︃
− 1

𝜀
KL(𝑃𝜃0 ||𝑃𝜃) +

∫︁
log 𝑃𝜃(𝑥) (𝑊 (𝑥)− 1) 𝑃𝜃0(d𝑥)

}︃

When 𝜀→ 0, the first term exceeds the second one if KL(𝑃𝜃0 ||𝑃𝜃) is too
large (because 𝑊 is bounded), and so KL(𝑃𝜃0 ||𝑃𝜃) tends to 0. So we can
assume that 𝜃 is close to 𝜃0.

When 𝜃 = 𝜃0 + 𝛿𝜃 is close to 𝜃0, we have

KL(𝑃𝜃0 ||𝑃𝜃) = 1
2
∑︁

𝐼𝑖𝑗(𝜃0) 𝛿𝜃𝑖 𝛿𝜃𝑗 + 𝑂(𝛿𝜃3)

with 𝐼𝑖𝑗(𝜃0) the Fisher matrix at 𝜃0. (This actually holds both for KL(𝑃𝜃0 ||𝑃𝜃)
and KL(𝑃𝜃 ||𝑃𝜃0).)

Thus, we can apply the lemma above using the Fisher metric
∑︀

𝐼𝑖𝑗(𝜃0) 𝛿𝜃𝑖 𝛿𝜃𝑗 ,
and working on a small neighborhood of 𝜃0 in 𝜃-space (which can be identified
with Rdim Θ). The lemma states that the argmax above is attained at

𝜃 = 𝜃0 + 𝜀 ̃︀∇𝜃

∫︁
log 𝑃𝜃(𝑥) (𝑊 (𝑥)− 1) 𝑃𝜃0(d𝑥)

up to 𝑂(𝜀2), with ̃︀∇ the natural gradient.
Finally, the gradient cancels the constant −1 because

∫︀
( ̃︀∇ log 𝑃𝜃) 𝑃𝜃0 = 0

at 𝜃 = 𝜃0. This proves Theorem 13.

Proof of Theorem 15 (IGO, CEM and IGO-ML)

Let 𝑃𝜃 be a family of probability distributions of the form

𝑃𝜃(𝑥) = 1
𝑍(𝜃) exp

(︁∑︁
𝜃𝑖𝑇𝑖(𝑥)

)︁
𝐻(d𝑥)

where 𝑇1, . . . , 𝑇𝑘 is a finite family of functions on 𝑋 and 𝐻(d𝑥) is some
reference measure on 𝑋. We assume that the family of functions (𝑇𝑖)𝑖

together with the constant function 𝑇0(𝑥) = 1, are linearly independent.
This prevents redundant parametrizations where two values of 𝜃 describe
the same distribution; this also ensures that the Fisher matrix Cov(𝑇𝑖, 𝑇𝑗) is
invertible.
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The IGO update (14) in the parametrization 𝑇𝑖 is a sum of terms of the
form ̃︀∇𝑇𝑖

ln 𝑃 (𝑥).

So we will compute the natural gradient ̃︀∇𝑇𝑖
in those coordinates. We first

need some general results about the Fisher metric for exponential families.
The next proposition gives the expression of the Fisher scalar product be-

tween two tangent vectors 𝛿𝑃 and 𝛿′𝑃 of a statistical manifold of exponential
distributions. It is one way to express the duality between the coordinates
𝜃𝑖 and 𝑇𝑖 (compare [AN00, (3.30) and Section 3.5]).

Proposition 21. Let 𝛿𝜃𝑖 and 𝛿′𝜃𝑖 be two small variations of the parameters
𝜃𝑖. Let 𝛿𝑃 (𝑥) and 𝛿′𝑃 (𝑥) be the resulting variations of the probability distri-
bution 𝑃 , and 𝛿𝑇𝑖 and 𝛿′𝑇𝑖 the resulting variations of 𝑇𝑖. Then the scalar
product, in Fisher information metric, between the tangent vectors 𝛿𝑃 and
𝛿′𝑃 , is

⟨𝛿𝑃, 𝛿′𝑃 ⟩ =
∑︁

𝑖

𝛿𝜃𝑖 𝛿′𝑇𝑖 =
∑︁

𝑖

𝛿′𝜃𝑖 𝛿𝑇𝑖.

Proof. By definition of the Fisher metric:

⟨𝛿𝑃, 𝛿′𝑃 ⟩ =
∑︁
𝑖,𝑗

𝐼𝑖𝑗 𝛿𝜃𝑖 𝛿′𝜃𝑗

=
∑︁
𝑖,𝑗

𝛿𝜃𝑖 𝛿′𝜃𝑗

∫︁
𝑥

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑖

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑗

𝑃 (𝑥)

=
∫︁

𝑥

∑︁
𝑖

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑖

𝛿𝜃𝑖

∑︁
𝑗

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑗

𝛿′𝜃𝑗 𝑃 (𝑥)

=
∫︁

𝑥

∑︁
𝑖

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑖

𝛿𝜃𝑖 𝛿′(ln 𝑃 (𝑥)) 𝑃 (𝑥)

=
∫︁

𝑥

∑︁
𝑖

𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑖

𝛿𝜃𝑖 𝛿′𝑃 (𝑥)

=
∫︁

𝑥

∑︁
𝑖

(𝑇𝑖(𝑥)− 𝑇𝑖)𝛿𝜃𝑖 𝛿′𝑃 (𝑥) by (16)

=
∑︁

𝑖

𝛿𝜃𝑖

(︂∫︁
𝑥

𝑇𝑖(𝑥) 𝛿′𝑃 (𝑥)
)︂
−
∑︁

𝑖

𝛿𝜃𝑖𝑇𝑖

∫︁
𝑥

𝛿′𝑃 (𝑥)

=
∑︁

𝑖

𝛿𝜃𝑖 𝛿′𝑇𝑖

because
∫︀

𝑥 𝛿′𝑃 (𝑥) = 0 since the total mass of 𝑃 is 1, and
∫︀

𝑥 𝑇𝑖(𝑥) 𝛿′𝑃 (𝑥) =
𝛿′𝑇𝑖 by definition of 𝑇𝑖.

Proposition 22. Let 𝑓 be a function on the statistical manifold of an
exponential family as above. Then the components of the natural gradient
w.r.t. the expectation parameters are given by the vanilla gradient w.r.t. the
natural parameters: ̃︀∇𝑇𝑖

𝑓 = 𝜕𝑓

𝜕𝜃𝑖

and conversely ̃︀∇𝜃𝑖
𝑓 = 𝜕𝑓

𝜕𝑇𝑖
.

(Beware this does not mean that the gradient ascent in any of those
parametrizations is the vanilla gradient ascent.)

We could not find a reference for this result, though we think it known.
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Proof. By definition, the natural gradient ̃︀∇𝑓 of a function 𝑓 is the unique
tangent vector 𝛿𝑃 such that that, for any other tangent vector 𝛿′𝑃 , we have

𝛿′𝑓 = ⟨𝛿𝑃, 𝛿′𝑃 ⟩

with ⟨·, ·⟩ the scalar product associated with the Fisher metric. We want to
compute this natural gradient in coordinates 𝑇𝑖, so we are interested in the
variations 𝛿𝑇𝑖 associated with 𝛿𝑃 .

By Proposition 21, the scalar product above is

⟨𝛿𝑃, 𝛿′𝑃 ⟩ =
∑︁

𝛿𝑇𝑖 𝛿′𝜃𝑖

where 𝛿𝑇𝑖 is the variation of 𝑇𝑖 associated with 𝛿𝑃 , and 𝛿′𝜃𝑖 the variation of
𝜃𝑖 associated with 𝛿′𝑃 .

On the other hand we have 𝛿′𝑓 =
∑︀

𝑖
𝜕𝑓
𝜕𝜃𝑖

𝛿′𝜃𝑖. So we must have

∑︁
𝑖

𝛿𝑇𝑖 𝛿′𝜃𝑖 =
∑︁

𝑖

𝜕𝑓

𝜕𝜃𝑖
𝛿′𝜃𝑖

for any 𝛿′𝑃 , which leads to
𝛿𝑇𝑖 = 𝜕𝑓

𝜕𝜃𝑖

as needed. The converse relation is proved mutatis mutandis.

Back to the proof of Theorem 15. We can now compute the desired
terms: ̃︀∇𝑇𝑖

ln 𝑃 (𝑥) = 𝜕 ln 𝑃 (𝑥)
𝜕𝜃𝑖

= 𝑇𝑖(𝑥)− 𝑇𝑖

by (16). This proves the first statement (27) in Theorem 15 about the form
of the IGO update in these parameters.

The other statements follow easily from this together with the additional
fact (26) that, for any set of weights 𝑎𝑖 with

∑︀
𝑎𝑖 = 1, the value 𝑇 * =∑︀

𝑖 𝑎(𝑖)𝑇 (𝑥𝑖) is the maximum likelihood estimate of
∑︀

𝑖 𝑎(𝑖) log 𝑃 (𝑥𝑖).
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