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Introduction 2

Introduction

• Optimal transport with several marginals : Gangbo- Świȩch

(1996), and more recently a series of papers by Pass

• motivation (discretization of) Brenier’s Least-Action

formulation for the incompressible Euler equation,

• natural in so-called matching problems in economics

• related topic : nonlinear interpolation between more than

two probability measures (e.g. interpolation of textures in

image processing, Peyré, Delon, Bernot, Rabin);
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Outline

➀ Equilibria, matching and optimal transport

➁ Barycenters in the Wasserstein space : existence,

uniqueness and characterization

➂ Link with multi-marginals problems and regularity

➃ Examples

➄ Convexity along barycenters

➅ Concluding remarks
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Matching

Indivisible good that comes in different qualities. The quality

good z requires the formation of a team (say, one buyer, and a

set of producers that have to gather to make the quality good

available, a typical example is the market for houses). The

different populations that constitute the teams are

heterogeneous.
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The data of the model are:

• a compact metric space Z, the quality space Z,

• compact metric spaces Xj , j = 0, ..., N , for the different

populations, xj ∈ Xj : agent type affecting her cost

function, each Xj is equipped with a Borel probability µj
measure, distribution of type xj in population j,
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• continuous cost functions cj : Xj × Z → R, cj(xj , z) is the

cost of an agent of population j with type xj when

participating to a team that produces z ∈ Z,

• costs are all quasi-linear, which means that an agent of

population j with type xj who participates a team that

produces z and gets monetary transfer wj has total cost:

cj(xj , z) − wj .

Matching/3



Matching 7

One can think for instance that j = 0 corresponds to buyers and

j = 1, ..., N to producers (mason, plumber etc... in the case of

houses). In this case, for j ≥ 1, wj is the wage received by

member j of the team and w0 is minus the total price paid by

the consumer, at equilibrium we shall require that are

self-financing which will be expressed by the fact that the sum

of all transfers is 0.
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We are now looking for a sytem of (quality dependent)

monetary transfers that clears the market for the quality good.

A system of price transfers is a family of function ϕj : Z → R

that it is balanced i.e.

N
∑

j=0

ϕj(z) = 0, ∀z ∈ Z.

For given transfers, optimal qualities for type xj are determined

by

ϕ
cj

j (xj) := inf
z∈Z

{cj(xj , z) − ϕj(z))}. (1)

which is the least cost that type xj derives from the transfer ϕj .
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ϕ
cj

j is the cj-concave transform of the transfer function ϕj . For

every (xj , z) ∈ Xj × Z, one has the so-called Young’s inequality

ϕ
cj

j (xj) + ϕj(z) ≤ cj(xj , z)

and cost-minimizing qualities are characterized by

ϕ
cj

j (xj) + ϕj(z) = cj(xj , z). (2)

This induces for each j, couplings γj ∈ M+
1 (Xj × Z) such that

(2) holds γj a.e..
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The interpretation of γj(Aj ×B) is the probability that an

agent with type in Aj has an optimal quality choice in B (given

the transfer scheme ϕj). Of course, the first marginal of the

coupling γj , πXj #
γj should be µj . The last equilibrium

requirement is that the demand distribution for the quality

good should be the same for any population. In other words the

marginal on Z of the coupling γj should be independent of j

(this common distribution is an equilibrium quality line).
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Putting everything together, this leads to

Definition 1 A matching equilibrium consists of a family of

transfers ϕj ∈ C(Z,R), a family of probabilities

γj ∈ M+
1 (Xj × Z), j = 0, ...., N and a quality line ν ∈ M+

1 (Z)

such that:

1. For all z ∈ Z:
N
∑

j=0

ϕj(z) = 0, (3)

2. γj ∈ Π(µj , ν) for every j = 0, ...., N ,

3. for every j = 0, ..., N , one has:

ϕ
cj

j (xj) + ϕj(z) = cj(xj , z) γj-a.e. on Xj × Z.

Matching/8



Matching 12

Digression: a short reminder on the

Monge-Kantorovich problem

All this is very much related to the Monge-Kantorovich optimal

transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y)dγ(x, y)

where X and Z are compact metric spaces (say), c ∈ C(X × Z)

is the transport cost (per unit of mass), µ and ν are probability

measures on X and Z respectively and Π(µ, ν) is the set of

transport plans between µ and ν i.e. the set of probability

measures on X × Z having µ and ν as marginals.
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γ ∈ Π(µ, ν) thus means

γ(A× Z) = µ(A), γ(X ×B) = ν(B), ∀A,B Borel

or, put differently, ∀(ψ, ϕ) ∈ C(X) × C(Z):
∫

X×Z

(ψ(x) + ϕ(z))dγ(x, z) =

∫

X

ψdµ+

∫

Z

ϕdν.

Convenient to write the constraint γ ∈ Π(µ, ν) as γ ≥ 0 and

sup
(ψ,ϕ)

(

∫

X

ψdµ+

∫

Z

ϕdν −
∫

X×Z

(ψ(x) + ϕ(z))dγ(x, z)) = 0.
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Lagrangian form of Wc(µ, ν):

Wc(µ, ν) = inf
γ≥0

sup
(ψ,ϕ)

L(γ, ψ, ϕ)

with L(γ, ψ, ϕ) =
∫

X×Z
(c− (ψ ⊕ ϕ))dγ +

∫

X
ψdµ+

∫

Z
ϕdν. The

dual reads as

sup
(ψ,ϕ)

inf
γ≥0

L(γ, ψ, ϕ)

but obviously

inf
γ≥0

L(γ, ψ, ϕ) =







∫

X
ψdµ+

∫

Z
ϕdν if ψ ⊕ ϕ ≤ c

−∞ otherwise
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Applying a sutable minmax theorem gives

Wc(µ, ν) = sup{
∫

X

ψdµ+

∫

Z

ϕdν : ψ(x) + ϕ(z) ≤ c(x, z)}

the constraint can be rewritten as

ψ(x) ≤ min
z

{c(x, z) − ϕ(z)} := ϕc(x)

(ϕc is the so-called c-transform of ϕ) and since the criterion is

nondecreasing in ψ,

Wc(µ, ν) = sup
ϕ∈C(Z)

{
∫

X

ϕcdµ+

∫

Z

ϕdν}

this is the Kantorovich duality formula.
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Primal dual relations: let γ ∈ Π(µ, ν) and ϕ ∈ C(Z), γ solves

Wc(µ, ν) and ϕ solves its dual formulation if and only if

ϕc(x) + ϕ(z) = c(x, z) for γ-a.e. (x, z).
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Thanks to the Kantorovich duality formula

Wcj
(µj , ν) := inf

γj∈Π(µj ,ν)

∫

Xj×Z

cj(xj , z)dγj(x, z)

= sup
ϕj∈C(Z)

{

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdµj

}

we see that requirements 2 and 3 in the definition of an

equilibrium exactly mean that γj is an optimal plan for the

optimal transport problem Wcj
(µj , ν) and that ϕj solves its

dual.
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Let us assume now that (ϕj , γj , ν) is a matching equilibrium.

We thus have

Wcj
(µj , ν) =

∫

Xj×Z

cj(xj , z)dγj(xj , z) =

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdν.

Summing these equalities and using the balance condition (3)

then yields:
d
∑

j=0

Wcj
(µj , ν) =

d
∑

j=0

∫

Xj

ϕ
cj

j dµj (4)

Now let ψj ∈ C(Z,R) be another balanced family of transfers:

N
∑

j=0

ψj(z) = 0, ∀z ∈ Z. (5)
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The Monge-Kantorovich duality formula yields:

Wcj
(µj , ν) ≥

∫

Xj

ψ
cj

j dµj +

∫

Z

ψjdν (6)

summing these inequalities and using (5) we then get:

N
∑

j=0

Wcj
(µj , ν) ≥

d
∑

j=0

∫

Xj

ψ
cj

j dµj. (7)

With (4), we deduce that the transfers ϕj ’s solve the following

(concave) program:

(P) sup







N
∑

j=0

∫

Xj

ϕ
cj

j dµj :
d
∑

j=0

ϕj = 0







.
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Take now some η ∈ M+
1 (Z). With the Monge-Kantorovich

duality formula, the balance condition (3) and (4), we get

d
∑

j=0

Wcj
(µj , η) ≥

d
∑

j=0

(

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdη

)

=
d
∑

j=0

∫

Xj

ϕ
cj

j dµj =
d
∑

j=0

Wcj
(µj , ν)

So that ν solves

(P∗) inf







d
∑

j=0

Wcj
(µj , ν) : ν ∈ M+

1 (Z)







.
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At this point, we haven’t proven anything about the existence

of equilibria, but have discovered that if (ϕj , γj , ν) is a matching

equilibrium then: the transfers ϕj ’s solve (P), the quality line ν

solves (P∗), and for each j, γj solves Wcj
(µj , ν).
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It turns out that in fact, we have much more (simple convex

duality):

Theorem 1 The supremum in (P) and the infimum in (P∗)

are attained and the two values are equal. Moreover (ϕj , γj , ν)

is a matching equilibrium if and only if:

• the transfers ϕj’s solve (P),

• the quality line ν solves (P∗),

• for each j, γj solves Wcj
(µj , ν).

In particular matching equilibria exist.
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Key role played by the convex but nonlinear problem

(P∗) inf







d
∑

j=0

Wcj
(µj , ν) : ν ∈ M+

1 (Z)







.

there is a (linear) reformulation in terms of multi-marginal
optimal transport. Define the least cost

c(x) := c(x0, ..., xN ) := inf







N
∑

j=0

cj(xj , z), z ∈ Z







.

For the sake of simplicity, let us assume that for every
x = (x0, ...., xN ) ∈ X there is a unique cost-minimizing quality
z =: z(x):

c(x) =

N
∑

j=0

cj(xj , z(x)).
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Now let us consider the multi-marginal Monge-Kantorovich
problem

inf
γ∈Π(µ0,...,µN )

∫

X0×...×XN

c(x0, ...., xN)dγ(x0, ...., xN ) (8)

where Π(µ0, ..., µN) denotes the set of probability measures on
X0 × ...×XN having µ0, ..., µN as marginals. The connection
between the multi-marginal Monge-Kantorovich problem (8)
and (P∗) is:

Proposition 1 Under the previous assumptions, one has:

1. the infimum in (8) is attained and its value coincide with

inf(P∗),

2. if γ solves (8) then ν := z♯γ solves (P∗),

3. if ν solves (P∗) then there exists a solution of (8), γ, such

that ν := z♯γ.
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Barycenters in the Wasserstein space

Taking quadratic costs in the previous matching problem leads

to the a minimization problem of the form

inf
ν

p
∑

i=1

λiW
2
2 (νi, ν)

where W 2
2 is the squared 2-Wasserstein distance:

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫

Rd×Rd

|x− y|2dγ(x, y)

By analogy with the euclidean case, a minimizer will be called a

barycenter of the measures νi with weights λi.

Barycenters in the Wasserstein space/1
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The quadratic OT problem has received a considerable attention

since the seminal work of Brenier in the late 80’s/early 90’s:

• if µ and ν have second moments and µ is absolutely

continuous (or more generally does not charge Lipschitz

hypersurfaces), there is a unique optimal plan it is induced

by an optimal transport map that is the gradient of a

convex function : γ = (id,∇u)♯µ with u convex,

• Connection with the Monge-Ampère equation:

det(D2u)ν(∇u) = µ

for which a deep regularity theory was developed by

Caffarelli (see also the work of Urbas).
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The set of probability measures with second moments equipped

with the 2-Wasserste distance, viewed as a (complete) metric

space, is a nice geometric object:

• formal Riemannian structure (Otto) in which geodesics are

given by McCann’s interpolation, or Benamou-Brenier

dynamic formulation,

• natural notion of convexity, gradient flows of semi convex

functionals: for instance, the heat flow is the gradient flow

of the Boltzmann entropy for this Riemannian-like

structure, the GF theory was investigated in depth in the

book of Ambrosio, Gigli and Savaré,

• strong connections with functional and geometric

inequalities....
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Application : a four line proof of the isoperimetric

inequality

Let B be the unit ball of R
d and A be another (regular enough)

domain. Let T = ∇u be the Brenier transport between |A|−1χA
and |B|−1χB so that

det(DT ) = det(D2u) =
|B|
|A| .

Since by construction DT = D2u is diagonalizable with
nonnegative eigenvalues, the arithmetico-geometric inequality
gives

det(DT )1/d ≤ 1

d
div(T ) =

1

d
∆u

integrating, we obtain

|B|1/d|A|1−1/d ≤ 1

d

∫

A

∆u =
1

d

∫

∂A

∇u · n

Barycenters in the Wasserstein space/4
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and since T = ∇u ∈ B, we get

|B|1/d|A|1−1/d ≤ 1

d
Per(A) = |B|Per(A)

Per(B)

that is
|A|1−1/d

Per(A)
≤ |B|1−1/d

Per(B)
.
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The notion of a barycenter as a minimizer of an averaged

squared distance is not new and has already been investigated

in depth by Sturm in the framework of nonpositively curved

metric spaces. It turns out, however, that the Wasserstein space

is not nonpositively curved as illustrated by an example in the

book of Ambrosio, Gigli, and Savaré, and that much less is

known on the existence, uniqueness, and properties of

barycenters outside of the nonpositively curved case. See,

however, the recent article of Ohta for the case of Alexandrov

spaces of curvature bounded from below.
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Duality

Define Y := (1 + | . |2)Cb(Rd) and X := (1 + | . |2)C0(R
d),

given an integer p ≥ 2, p probability measures ν1, ..., νp in

X ′ ∩M1
+(Rd) and p real numbers λ1, ...λp such that λi > 0 and

∑p
i=1 λi = 1, we are thus interested in the following problem:

(P) inf
ν∈M1

+
(Rd)∩X′

J(ν) =

p
∑

i=1

λi
2
W 2

2 (νi, ν). (9)
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Duality

Dual of (P):

(P∗) sup

{

F (f1, ..., fp) =

p
∑

i=1

∫

Rd

Sλi
fidνi :

p
∑

i=1

fi = 0, fi ∈ Y

}

(10)

where

Sλf(x) := inf
y∈Rd

{

λ

2
|x− y|2 − f(y)

}

, ∀x ∈ R
d, f ∈ Y, λ > 0.

(11)

Both the infimum in (P) and the supremum in (P∗) are

attained and min(P) = max(P∗).

Barycenters in the Wasserstein space/8



Barycenters in the Wasserstein space 33

Optimality conditions

Let (f1, ..., fp) be a solution of (P∗) and define the convex

potentials:

λiφi(x) :=
λi
2
|x|2 − Sλi

fi(x), (12)

by duality, if ν solves (P) and γi is an optimal transport plan

between νi and ν then:

• the support of γi is included in ∂φi,

• ∑i φ
∗
i (y) ≤ 1

2 |y|2 for all y ∈ R
d with an inequality on the

support of ν.
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Uniqueness

We then deduce the following uniqueness result and

characterization of the barycenter:

Proposition 2 Assume that there is an index i ∈ {1, ...p} such

that νi vanishes on small sets. Then (P) admits a unique

solution ν which is given by ν = ∇φi♯νi where φi is the convex

potential defined by (12).

As soon as one of the νi’s vanishes on small sets , this therefore

enables one to define unambiguously the barycenter

(bar(νi, λi)i=1,...,p) of the νi’s with weights λi.

Barycenters in the Wasserstein space/10
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Characterization

Proposition 3 Assume that νi vanishes on small sets for every

i = 1, .., p, and let ν ∈ M1
+(Rd) ∩X ′. Then the following

conditions are equivalent:

1. ν solves (P).

2. ν = ∇φi♯νi for every i, where φi is defined by (12).

3. There exist convex potentials ψi such that ∇ψi is the

Brenier’s map transporting νi to ν, and a constant C such

that

p
∑

i=1

λiψ
∗
i (y) ≤ C +

|y|2
2

, ∀y ∈ R
d, with equality ν-a.e. (13)
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Ti := ∇ψ∗
i is the optimal transport between the unknown

barycenter ν and the vertex νi the previous characterization

implies
p
∑

i=1

λiTi = id ν-a.e.

and if the previous condition holds on the whole of R
d then ν is

the barycenter of the νi’s with weights λi.
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Link with multi-marginals problems

(P) is in fact equivalent to a problem of multi-marginal optimal

transportation type similar to the one solved by Gangbo and

Świȩch. For x := (x1, ..., xp) ∈ (Rd)p, define the euclidean

barycenter

T (x) :=

p
∑

i=1

λixi. (14)

Multi-marginal optimal transportation problem

inf

{

∫

Rd

(

p
∑

i=1

λi
2
|xi − T (x)|2

)

dγ(x1, ...xp), γ ∈ Π(ν1, ..., νp)

}

(15)

Π(ν1, ..., νp) : probab. on (Rd)p having ν1, ..., νp as marginals.
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Of course equivalent to

(Q) sup







∫

(

∑

1≤i<j≤p

λiλjxi · xj
)

dγ(x1, ...xp), γ ∈ Π(ν1, ..., νp)







.

(16)

that has been solved by Gangbo and Świȩch. As usual, a key

tool is the dual problem

(Q∗) inf







p
∑

i=1

∫

Rd

gidνi,

p
∑

i=1

gi(xi) ≥
∑

1≤i<j≤p

λiλjxi · xj , ∀x







.

(17)
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In (Q∗), one can restrict to potentials that satisfy

gi(xi) = sup
(xj)j 6=i

{1

2

∑

1≤k 6=j≤p

λkλjxk · xj −
∑

j 6=i

gj(xj)
}

(18)

hence are convex. Secondly, the duality relation between (Q)

and (Q∗) expresses that, γ solves (Q) and (g1, ..., gp) solves

(Q∗) if and only if

p
∑

i=1

gi(xi) =
1

2

∑

1≤i 6=j≤p

λiλjxi · xj , γ-a.e.. (19)
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so that, if, in addition the potentials gi’s are differentiable

γ-a.e., then one can deduce from (18) and (19) that for γ-a.e.

x = (x1, ..., xd), one has

∇gi(xi) = λi
∑

j 6=i

λjxj

which can be rewritten as

∇
(λi

2
| . |2 +

gi
λi

)

(xi) =

p
∑

j=1

λjxj = ∇
(λ1

2
| . |2 +

g1
λ1

)

(x1)

or in a more explicit way

xi = ∇
(λi

2
| . |2 +

gi
λi

)∗

◦ ∇
(λ1

2
| . |2 +

g1
λ1

)

(x1).

Link with multi-marginals problems/4
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This yields that the optimal γ is in fact supported by the graph

of a map of the form

x1 7→ (x1,∇u∗i (∇u1(x1)), ...,∇u∗p(∇u1(x1))) for some potentials

ui such that ui − λi| . |2/2 is convex (so that u∗i is C1,1).

Gangbo and Świȩch proved:

Theorem 2 Assume that νi vanishes on small sets for

i = 1, .., p. Then (Q) admits a unique solution γ ∈ Π(ν1, ..., νp).

Moreover, γ is of the form γ = (T 1
1 , ...., T

1
p )♯ν1 with

T 1
i = ∇u∗i ◦∇u1 for i = 1, ..., p where the ui’s are strictly convex

potentials defined by

ui(x) :=
λi
2
|x|2 +

gi(x)

λi
, ∀x ∈ R

d (20)

and (g1, ..., gp) are convex potentials that solve (Q∗).
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In the sequel, we will refer to the maps T 1
i of the previous

theorem as the Gangbo-Świȩch maps between ν1 and νi. Note

that the Gangbo-Świȩch maps a priori depend on the whole

collections of the νi’s and the weights λi’s. These maps are

transport maps in the sense that T 1
i ♯ν1 = νi. Of course, by

permuting the indices, one can similarly define the

Gangbo-Świȩch maps T ji := ∇u∗i ◦ ∇uj between a reference

measure νj and νi.

Link with multi-marginals problems/6
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Precise relationship between our initial barycenter problem (P)

and the multi-marginals problem (Q):

Proposition 4 Assume that νi vanishes on small sets for

i = 1, .., p. Then the solution of (P) is given by ν = T♯γ, where

T is defined by (14) and γ is the solution of (Q).

Combining Theorem 2 and Proposition 4 yields:

ν :=
(

p
∑

i=1

λiT
1
i

)

♯ν1 =
(

p
∑

i=1

λiT
j
i

)

♯νj (21)

where the T ji are the Gangbo-Świȩch maps between νj and νi
which are given by T ji = ∇u∗i ◦ ∇uj , where the uj ’s are strictly

convex potentials defined by (20). Immediate consequences :

support of bar((νi, λi)i) ⊂∑p
i=1 λisupp(νi) and the center of

mass of bar((νi, λi)i) is
∑p

i=1 λi
∫

Rd xdνi(x).
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Another consequence of this structure of the barycenter is that

the internal energy EΦ : ν 7→
∫

Φ(ν(x))dx (with Φ convex and

Φ(0) = 0) is convex along barycenters in the sense that

EΦ(bar((νi, λi)) ≤
∑

i λiEΦ(νi) as soon as Φ satisfies the

McCann displacement convexity condition that requires

λ 7→ λdΦ(λ−d) to be convex nonincreasing on (0,+∞). I’ll be

more precise later on and will recall what displacement

convexity means.
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This kind of convexity arguments implies in particular that if all

the νi’s are in Lq with q > 1, then so is their barycenter:

‖bar((νi, λi))‖qLq ≤
∑

λi‖νi‖qLq

(thus yielding the case p = ∞ by a limit argument). The next

result gives an L∞ bound on the barycenter as soon as one of

the measures has a bounded density with a direct proof.
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Finally, the relation between the barycenter and the

Gangbo-Świȩch maps easily enables us to obtain a regularity

result on the barycenter.

Theorem 3 Let (ν1, ..., νp) be probability measures with finite

second moments and let (λ1, ..., λp) be positive reals that sum to

1. If ν1 ∈ L∞, then ν := bar((νi, λi)) ∈ L∞ and more precisely:

‖ν‖L∞ ≤ 1

λd1
‖ν1‖L∞ . (22)
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Recall that ν = T♯ν1 where

T =

p
∑

i=1

λi∇u∗i ◦ ∇u1 = λ1 id +

p
∑

i=2

λi∇u∗i ◦ ∇u1

and the potentials ui satisfy

D2ui ≥ λi id, D
2u∗i ≤

1

λi
id . (23)

regularize u1 in the previous formula and get

DT
ε
(x) = λ1 id +

p
∑

i=2

λiD
2u∗i (∇uε1(x))D2uε1(x)

that is of the form λ1 id+AB where both matrices A and B are
symmetric and positive definite, thus, the eigenvalues of DT

ε

are all real and bounded from below by λ1, the desired estimate
easily follows.
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Examples

The case d = 1

When d = 1, the description of the barycenter is simple and this

is due to the fact that gradient of convex functions are simply

nondrecreasing functions, and this property is stable by

composition. Let ν1, ..., νp be nonatomic probability measures

on the real line that have finite second moments, and let

λ1, ..., λp be positive reals that sum to 1. From formula (21),

the barycenter ν := bar(νi, λi)i is given by

ν =
(

p
∑

i=1

λiT
1
i

)

♯ν1

where T 1
i is the Gangbo-Świȩch map between ν1 and νi.
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Therefore, T 1
i is a nondecreasing map that pushes ν1 forward to

νi, there is only one such map, which is given by the usual

rearrangement formula T 1
i := F−1

i ◦ F1, where Fi is the

cumulative function of Fi i.e. Fi(α) = νi((−∞, α]), and F−1
i

denotes the generalized inverse of Fi,

F−1
i (t) := inf{α : Fi(α) ≥ t}.

Therefore, bar(νi, λi)i is simply obtained as the image of ν1 by

the linearly interpolated transport map
∑

i λiT
1
i .
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Of course, one also has

ν =
(

p
∑

i=1

λiT
j
i

)

♯νj

where T ji is the Brenier’s map between νj and νi. The fact that

the resulting measure does not depend on j is very specific to

the unidimensional case and does not hold in general in higher

dimensions. Also specific to the one-dimensional case is the

associativity of barycenters.
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The case p = 2

In the case of two mesures ν0 and ν1 (regular say), and

t ∈ (0, 1), it is reasonable to expect that the barycenter of

(ν0, (1 − t)) and (ν1, t) is McCann’s interpolant:

νt := ((1 − t)id + t∇φ)♯ν0 = (tid + (1 − t)∇φ∗)♯ν1
where ∇φ is the Brenier’s map between ν0 and ν1. To see this,

it is enough to prove that

(1 − t)ft + tgt =
1

2
|.|2 (24)

where ∇ft and ∇gt are respectively the Brenier’s maps between

νt and ν0, and νt and ν1, i.e.,

ft =
( (1 − t)

2
|.|2 + tφ

)∗

, gt =
( t

2
|.|2 + (1 − t)φ∗

)∗

.
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To prove (24), we first write

−ft(p) = inf
x∈Rd

{(1 − t)
|x|2
2

− p · x+ tφ(x)}

with the Fenchel-Rockafellar duality theorem, this rewrittes

−ft(p) = sup
z∈Rd

{−tφ∗(−z/t) − 1

2(1 − t)
|p+ z|2}.

Therefore

−(1 − t)ft(p) = sup
y∈Rd

{−t(1 − t)φ∗(y) − 1

2
|p− ty|2}

= −1

2
|p|2 + t sup

y∈Rd

{p · y − (
t

2
|y|2 + (1 − t)φ∗(y))}

= −1

2
|p|2 + tgt(p).
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The gaussian case

Consider now the case where νi is a gaussian measure with

mean 0 and covariance matrix Si. We assume that each Si is

positive definite and, given weights λi > 0 that sum to 1, we

consider again the barycenter problem. This gaussian case was

already considered by Knott and Smith who suggested an

almost explicit construction for the barycenter but neither

existence nor uniqueness was proved in their paper.

Theorem 4 In the gaussian framework, there is a unique

solution ν to (9). Moreover, ν = N (0, S) where S is the unique

positive definite root of the matrix equation

p
∑

i=1

λi

(

S1/2SiS
1/2
)1/2

= S. (25)
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Step 1: existence of a solution to (25). Let αi and βi denote

respectively the smallest and largest eigenvalue of Si, and α and

β be such that

β ≥
(

p
∑

i=1

λi
√

βi

)2

≥
p
∑

i=1

(

λi
√
αi

)2

≥ α.

Let Kα,β be the (convex and compact) set of symmetric

matrices S such that βI ≥ S ≥ αI. For S ∈ Kα,β , define

F (S) :=

p
∑

i=1

λi

(

S1/2SiS
1/2
)1/2

.

Examples/7



Examples 55

It is easy to see that

βI ≥
p
∑

i=1

λi
√

ββiI ≥ F (S) ≥
p
∑

i=1

λi
√
ααiI ≥ αI, ∀S ∈ Kα,β .

Then F is a self-map of Kα,β . It is also continuous on Kα,β.

The existence of a solution to (25) in Kα,β then directly follows

from Brouwer’s fixed-point theorem.
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Step 2: sufficiency. Set ν := N (0, S) where S is a positive

definite solution of (25). The optimal transport between ν and

νi is then the linear map

Ti = S
1/2
i

(

S
1/2
i SS

1/2
i

)−1/2

S
1/2
i .

Let us now prove that
∑p

i=1 λiTi = I that we already know to

be a sufficient condition for ν be the barycenter.
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Set Ki = S
1/2
i and K := S

1/2
. Using the identity

(KK2
iK)1/2 = KKi(KiK

2
Ki)

−1/2KiK

we may rewrite F (S) = S as

p
∑

i=1

λiKKi(KiK
2
Ki)

−1/2KiK = K
2

and since K is invertible, this yields

p
∑

i=1

λiKi(KiK
2
Ki)

−1/2Ki =

p
∑

i=1

λiTi = I

which proves that ν is optimal.
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Step 3: We already know that the barycenter is unique and

from the previous step, we have that, for any positive definite

solution S of the matrix equation (25), N (0, S) solves a

sufficient optimality condition for the barycenter. This proves

that (25) has a unique positive definite solution.

Examples/11



Examples 59

We have used Brouwer’s fixed point. Can one prove existence

and uniqueness in a constructive way (Picard iterations)?

Numerical computations most of the time suggest convergence

of Picard iterations. Degenerate cases perhaps deserve to be

investigated as well.
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Convexity of functionals

Let E be a functional defined on the set of probability measures

on R
d our aim is to investigate various convexity properties of E

and in particular convexity along Wasserstein barycenters i.e. :

E(bar(νi, λi)) ≤
p
∑

i=1

λiE(νi)

for p, every weights in the simplex and every (ν1, ..., νp) (regular

say).
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Mc Cann’s displacement convexity

A functional E is called displacement convex if for every ν0 and

ν1, t ∈ [0, 1] 7→ E(νt) is convex where νt := ((1 − t) id+tT )♯ν0

and T denotes Brenier’s optimal transport between ν0 and ν1.

Convexity along Wasserstein barycenters is stronger than

McCann’s displacement convexity (which as seen before

corresponds to the case p = 2), it is a priori strictly stronger

because there is no associativity of the barycenters (except in

dimension 1 where the two notions therefore coincide).
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Three typical examples:

• potential energy:

E(ν) :=

∫

Rd

V (x)dν(x)

• interaction energy

E(ν) :=

∫

Rd×Rd

W (x− y)dν(x)dν(y)

• internal energy:

E(ν) :=

∫

Rd

Φ(ν(x))dx
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Potential energies

E(ν) :=

∫

Rd

V (x)dν(x)

if the potential V is convex then E is convex along Wasserstein

barycenters. Indeed, recall that

bar(νi, λi) = (

p
∑

i=1

λiT
1
i )♯ν1

where T 1
i is the Gangbo-Świȩch transport between ν1 and νi.
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We thus have

E(bar(νi, λi)) =

∫

Rd

V (

p
∑

i=1

λiT
1
i (x))dν1(x)

≤
∫

Rd

∑

i

λiV (T 1
i (x))dν1(x)

=
∑

i

λi

∫

Rd

V (x)dνi(x) =
∑

i

λiE(νi).
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Interaction energies

E(ν) :=

∫

Rd

W (x− y)dν(x)dν(y)

if the interaction potential W is convex then E is convex along

Wasserstein barycenters. Indeed, using again the expression of

the barycenter by the Gangbo-Świȩch transports, we have by

convexity of W :

E(bar(νi, λi)) =

∫

Rd×Rd

W (

p
∑

i=1

λi(T
1
i (x) − T 1

i (y)))dν1(x)dν1(y)

≤
∫

Rd×Rd

∑

i

λiW (T 1
i (x) − T 1

i (y))dν1(x)dν1(y)

=
∑

i

λi

∫

Rd×Rd

W (x− y)dνi(x)dνi(y) =
∑

i

λiE(νi).
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Internal energies

The case of the internal energy

E(ν) :=

∫

Rd

Φ(ν(x))dx

is more involved (note that in the previous examples we haven’t

any structural assumptions on the Gangbo-Świȩch transports).

Mc Cann proved that if Φ(0) = 0 and ν 7→ νdΦ(ν−d) is convex

nonincreasing on (0,+∞) then the corresponding internal

energy is displacement convex. Let us prove that this condition

is in fact also sufficicient for convexity along Wasserstein

barycenters.
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Set ν := bar(νi, λi) and write ν in the form

ν = (
∑

i

λi∇u∗i ◦ ∇u1)♯ν1 = (
∑

i

λi∇u∗i )♯µ

where µ := ∇u1♯ν1 and recall that each u∗i is convex and that

∇u∗i ♯µ = νi. Also define T :=
∑

i λi∇u∗i , T has a symmetric

and semi-definite positive Jacobian matrix and satisfies the

Jacobian equation

det(DT )ν(T ) = µ
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Performing the change of variables y = T (x), we thus have

E(ν) =

∫

Rd

Φ(ν(y))dy

=

∫

Rd

Φ(ν(T (x)) det(DT (x))dx

=

∫

Rd

Φ
( µ(x)

det(DT (x))

)

det(DT (x))dx

=

∫

Rd

Ψx((detDT (x))1/d)dx

where Ψx(α) := αdΦ(µ(x)α−d) (it is convex and nonincreasing

by McCann’s condition).

Convexity of functionals/9



Convexity of functionals 69

Next using DT =
∑

λiD
2u∗i and the concavity of

S 7→ det(S)1/d over the cone of symmetric positive semi-definite

matrices, we have

det(DT )1/d ≥
∑

λi det(D2u∗i )
1/d

and thus since Ψx is nonincreasing and convex

Ψx(detDT (x)1/d) ≤
∑

λiΨx((detD2u∗i (x))
1/d)

=
∑

λiΦ
( µ(x)

det(D2u∗i (x))

)

detD2u∗i (x).
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Using the fact that ∇u∗i ♯µ = νi, this finally gives

E(ν) ≤
∑

λi

∫

Rd

Φ
( µ(x)

det(D2u∗i (x))

)

detD2u∗i (x)dx

=
∑

λi

∫

Rd

Φ(νi(x))dx =
∑

λiE(νi)

which is the desired convexity estimate. McCann’s condition is

therefore sufficient for convexity along Wasserstein barycenters

of internal energy functionals.
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This is useful to obtain integrability estimates for the

barycenter. Since for q > 1, Φ(ν) = νq satisfy Mc Cann’s

condition we have
∫

Rd

(bar(νi, λi)
q ≤

∑

λi

∫

Rd

νqi

and taking the 1/q power and letting q → ∞, we get

‖(bar(νi, λi)‖L∞ ≤ max
i

(‖νi‖L∞).

Another relevant example is when Φ(ν) = ν log(ν) in this case if

all the νi’s have finite entropy then so does their barycenter

(with an estimate).
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It is mainly an open problem to find displacement convex

functionals that do not belong to the three classes considered

above (for instance functionals depending on derivatives of ν or

on solutions of PDE’s where ν is a parameter). We therefore do

not have here any explicit example of a functional that is

displacement convex but not convex along Wasserstein

barycenters. This seems difficult to find such an example but

this issue deserves in my opinion to be better investigated.
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Concluding remarks

Starting from an economic matching problem we have proposed

a notion of Wasserstein barycenter. We have established

existence, uniqueness and regularity of such barycenters and

related them with the quadratic multi marginals optimal

problem. We have also considered simple examples and

extended the notion of displacement convexity to barycenters

and shown that they roughly coincide on large classes of

functionals. Still, there remains a lot to do in the analysis of the

barycenters and more generally on optimal transport problems

with several marginals. Many open questions, let me list a few.
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Geometric and global approaches

Given finitely many probability measures, is there an intrinsic

characterization of their (Wasserstein) convex hull? Does it

solve an abstract minimal surface or harmonic extension

problem? This is maybe a starting point to investigate some

Sobolev spaces of measure valued maps or PDE’s for

measure-valued maps...

Similarly can one give a characterization of the potentials e.g.

in terms of multi-time Hamilton-Jacobi equations? Seems

difficult because of commutation properties.

What can be extended to the case of a Riemannian manifold?
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Regularity/qualitative properties

We have seen that the support of the barycenter is included in

the corresponding convex combination of the supports of the

vertices, when is the converse true? When is the support of the

barycenter convex?

This seems very likely that the barycenter of smooth and

positive measures is smooth and positive as well but not so

straightforward to prove....

Another regularity issues concerns the regularity of the

Gangbo-Świȩch transports: if we had estimates from below on

the density of the barycenter or information on the convexity of

its support then Caffarelli’s theory would apply. The picture is

however more complicated here since one has to solve a system

of Monge-Ampère equations.
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Numerical computation of the barycenter

I haven’t addressed this issue but this is probably what is really

missing. The LP approach seems inadequate because of the size

of the problem, interior points seem to be more promising but

still extremely costly, efficient methods probably have to

combine interior points and MCMC.
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