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Other applications:
Texture synthesis
Texture segmentation
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Generate f perceptually similar to some input f0

f0
f f

ff



−→ Design and manipulate statistical constraints.
−→ Use statistical constraints for other imaging problems.
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Overview

• Wasserstein Distance

• Sliced Wasserstein Distance

• Color Transfer

• Regularized Color Transfer

• Texture Synthesis

• Wasserstein Barycenter for Texture Mixing

• Gaussian Texture Models
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Discretized image f ∈ RN×d

N = #pixels, d = #colors.
fi ∈ Rd = R3
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Computing Transport Distances

Xi

Yi

Explicit solution for 1D distribution (e.g. grayscale images):

−→ sorting the values, O(N log(N)) operations.



Higher dimensions: combinatorial optimization methods

Hungarian algorithm, auctions algorithm, etc.
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−→ intractable for imaging problems.



Higher dimensions: combinatorial optimization methods

Hungarian algorithm, auctions algorithm, etc.
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−→ Wp(µ, ν)p solution of a linear program.

Arbitrary distributions:
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Probabilistic coupling:

Linear programming (Kantorovitch):

−→ O(N5/2 log(N)) operations.

Permutation matrices: P = Pσ = (δi−σ(j))i,j

Theorem: P � = Pσ�

P �

Faster methods: Hungarian algorithm, auctions algorithm, etc.

If pi = qi = 1/N , extremal points:

−→ intractable for imaging.
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Discrete optimal transport:

Linear program:

→ Interior points: slow.

Block search pivoting strategy [Kelly and O’Neill 1991]

→ Network simplex.
→ Transportation simplex.

Optimization Codes

P � ∈ argmin
P∈Πµ,ν

�P, C� =
�

i,j

Ci,jPi,j

also reveal that the network simplex behaves in O(n2) in our con-
text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
2000; Kanters et al. 2003; Morovic and Sun 2003].
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2) algorithm in practice
whereas the transport simplex runs in O(n3).

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140×140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for α = 1/4, α = 1/2, and α = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley

[Bonneel et al. 2011]



π ∈ Πµ,ν

∀A ⊂ Rd,π(A× Rd) = µ(A)
∀B ⊂ Rd,π(Rd ×B) = ν(B)

Couplings:

Continuous Wasserstein Distance

π

µ

ν

x
y



Wp(µ, ν)p = min
π∈Πµ,ν

�

Rd×Rd

c(x, y)dπ(x, y)

π ∈ Πµ,ν

∀A ⊂ Rd,π(A× Rd) = µ(A)
∀B ⊂ Rd,π(Rd ×B) = ν(B)

Transportation cost:

Couplings:

Continuous Wasserstein Distance

π

µ

ν

x
y



Wp(µ, ν)p = min
π∈Πµ,ν

�

Rd×Rd

c(x, y)dπ(x, y)

π ∈ Πµ,ν

∀A ⊂ Rd,π(A× Rd) = µ(A)
∀B ⊂ Rd,π(Rd ×B) = ν(B)

Transportation cost:

Couplings:

Continuous Wasserstein Distance

π

µ

ν

x
y



µ

ν

x
y

(x, T (x))
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Distributions µ, ν on R.

For all p > 1:

T is non-decreasing (“change of contrast”)

Cumulative functions:

T = C−1
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T is non-decreasing (“change of contrast”)

Explicit formulas:
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Input images: fi : [0, 1]2 → [0, 1], i = 0, 1.

Gray-value distributions: µi defined on [0, 1].
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Discretized grayscale images f0, f1 ∈ RN .
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Discretized grayscale images f0, f1 ∈ RN .

Discrete distributions µi = µfi = N−1
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Discretized grayscale images f0, f1 ∈ RN .

Discrete distributions µi = µfi = N−1
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k δfi(k).

Sorting the values : σi ∈ ΣN s.t. fi(σi(k)) � fi(σi(k + 1)).

Optimal transport: T : f0(σ0(k)) �→ f1(σ1(k))

Matlab code: [a,I] = sort(f0(:));
f0(I) = sort(f1(:));
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µi = ρi(x)dxSmooth distributions:

T �µ0 = µ1 ⇐⇒ ρ1(T (x))|det ∂T (x)| = ρ0(x)

PDE Formulations
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Related works of [Tannenbaum et al.].
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[ur Rehman et al, 2009]

Image Registration

3.4. Orthogonal projection into the mass preserving constraint

Assume that we have computed a mass preserving mapping
ûn, and that we have updated it to obtain vn ¼ ûn þ adû. It should
be noted that an infinitesimal dû does not guarantee mass
preservation. Furthermore, we aim to take large steps in dû, and
therefore the MP constraint is likely to be invalid. To correct for
this we use orthogonal projection. The goal is to compute a vector
field dv such that cðvþ dvÞ ¼ 0. Obviously, dv is non-unique and
therefore we seek a minimum norm solution that is we seek dv
such that

min
v

1
2
kdvk2l0

subject to

cðdvÞ ¼ l0ðvþ dvÞdetðrðvþ dvÞÞ % l1 ¼ 0:

It is easy to verify that a correction for dv can be obtained by solving
the system dv & c>v ðcvc>v Þ

%1cðvÞ (Nocedal and Wright, 1999) The sys-
tem cvc>c can be thought as an elliptic system of equations. The sys-
tem is solved using preconditioned conjugate gradient with an
incomplete Cholesky preconditioner.

3.5. 3D multigrid Laplacian inversion

We inverted the Laplacian (a key component of the OMT algo-
rithm) using a 3D multigrid solver. The multigrid idea is very fun-
damental. It takes advantage of the smoothing properties of the
classical iteration methods at high frequencies (Jacobi, Gauss Sie-
del, SOR, etc.) and the error smoothing at low frequencies by
restriction to coarse grids. The essential multigrid principle is to
approximate the smooth (low frequency) part of the error on coar-
ser grids. The non-smooth or rough part is reduced with a small
number of iterations with a basic iterative method on the fine grid.

The basic components of multigrid algorithm are discretization,
intergrid transfer operators (interpolation and restriction), a relax-
ation scheme and the iterative cycling structure. We used an expli-
cit finite difference scheme for approximating the 3D Poisson
equation. This approach uses a 19-point formula on the uniform
cubic grid. Relaxation was performed using a parallelizable four-
color Gauss-Seidel relaxation scheme. This increases robustness
and efficiency and is especially suited for the implementation on
the GPU. We used a trilinear interpolation operator for transferring
the coarse grid correction to fine grids. The residual restriction
operator for projecting residual from the fine to coarse grids is

Fig. 6. OMT Results viewed on an axial slice. The top row shows corresponding slices from Pre-op(Left) and Post-op(Right) MRI data. The deformation is clearly visible in the
anterior part of the brain.
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Assume that we have computed a mass preserving mapping
ûn, and that we have updated it to obtain vn ¼ ûn þ adû. It should
be noted that an infinitesimal dû does not guarantee mass
preservation. Furthermore, we aim to take large steps in dû, and
therefore the MP constraint is likely to be invalid. To correct for
this we use orthogonal projection. The goal is to compute a vector
field dv such that cðvþ dvÞ ¼ 0. Obviously, dv is non-unique and
therefore we seek a minimum norm solution that is we seek dv
such that

min
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subject to

cðdvÞ ¼ l0ðvþ dvÞdetðrðvþ dvÞÞ % l1 ¼ 0:

It is easy to verify that a correction for dv can be obtained by solving
the system dv & c>v ðcvc>v Þ

%1cðvÞ (Nocedal and Wright, 1999) The sys-
tem cvc>c can be thought as an elliptic system of equations. The sys-
tem is solved using preconditioned conjugate gradient with an
incomplete Cholesky preconditioner.

3.5. 3D multigrid Laplacian inversion

We inverted the Laplacian (a key component of the OMT algo-
rithm) using a 3D multigrid solver. The multigrid idea is very fun-
damental. It takes advantage of the smoothing properties of the
classical iteration methods at high frequencies (Jacobi, Gauss Sie-
del, SOR, etc.) and the error smoothing at low frequencies by
restriction to coarse grids. The essential multigrid principle is to
approximate the smooth (low frequency) part of the error on coar-
ser grids. The non-smooth or rough part is reduced with a small
number of iterations with a basic iterative method on the fine grid.

The basic components of multigrid algorithm are discretization,
intergrid transfer operators (interpolation and restriction), a relax-
ation scheme and the iterative cycling structure. We used an expli-
cit finite difference scheme for approximating the 3D Poisson
equation. This approach uses a 19-point formula on the uniform
cubic grid. Relaxation was performed using a parallelizable four-
color Gauss-Seidel relaxation scheme. This increases robustness
and efficiency and is especially suited for the implementation on
the GPU. We used a trilinear interpolation operator for transferring
the coarse grid correction to fine grids. The residual restriction
operator for projecting residual from the fine to coarse grids is
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Approximate Sliced Distance

Key idea: replace transport in Rd by series of 1D transport. Xi

�Xi, θ�
Projected point cloud: Xθ = {�Xi, θ�}i.

[Rabin, Peyré, Delon & Bernot 2010]
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where σθ ∈ ΣN are 1-D optimal assignents of Xθ and Yθ.
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Approximate Sliced Distance

Key idea: replace transport in Rd by series of 1D transport. Xi

�Xi, θ�
Sliced Wasserstein distance:

Projected point cloud: Xθ = {�Xi, θ�}i.

[Rabin, Peyré, Delon & Bernot 2010]

where σθ ∈ ΣN are 1-D optimal assignents of Xθ and Yθ.

−→ Possible to use SW in variational imaging problems.
−→ Fast numerical scheme : use a few random θ.



Sliced Assignment

X is a local minima of E(X) = SW (µX , µY )2

⇐⇒ ∃σ ∈ ΣN , X = Y ◦ σ

Theorem:



Stochastic gradient descent of E(X):
EΘ(X) =
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W (Xθ, Yθ)2Step 1: choose Θ at random.

Step 2: X(�+1) = X(�) − τ∇EΘ(X(�))
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Step 2:

X(�) converges to C = {X \ µX = µY }.
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Sliced Assignment

X is a local minima of E(X) = SW (µX , µY )2

⇐⇒ ∃σ ∈ ΣN , X = Y ◦ σ

Theorem:

X(∞) ≈ ProjC(X
(0))Numerical observation:
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Solving is computationally untractable.

f̃0 solves min
f

E(f) = SW (µf , µf0)

and is close to f0

Sliced Wasserstein Transfert

Approximate Wasserstein projection:

min
σ∈ΣN

||f0 − f1 ◦ σ||



Solving is computationally untractable.

f̃0 solves min
f

E(f) = SW (µf , µf0)

and is close to f0

f (0) = f0

(Stochastic) gradient descent:

At convergence: µf̃0
= µf1

f (�+1) = f (�) − τ�∇E(f (�))
f (�) → f̃1

Sliced Wasserstein Transfert

Approximate Wasserstein projection:

min
σ∈ΣN

||f0 − f1 ◦ σ||
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where
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Here µf1 is uniform.
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Fixed histograms:

Textures Ensembles

Fixed energy: Ci = {f \ ||f || = 1}.– Spacial constraints.
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Sets of constraints {Ci}i. Texture ensemble: T =
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i Ci

Ci = {f \ µf = ν}
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Ci =
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f \ ∀ω, |f̂(ω)| = cω
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Fixed histograms:

Ci = {f \ µΨf = ν}

Textures Ensembles

Fixed energy: Ci = {f \ ||f || = 1}.– Spacial constraints.

C1
C2

T

Ci = {f \
�

|�f, ψm�| � τ}

– Transformed domain constraints on Ψf = {�f, ψm�}m

Ci = {f \ Curtosis(Ψf) � τ}.

Ci =
�
f \

�
||∇f ||2 � τ

�
– Smoothness constraints.

TV: Ci =
�
f \

�
||∇f || � τ

�Sobolev:

Correlations, pairwise histograms, etc.

– Higher order statistical constraints on Ψf

Sets of constraints {Ci}i. Texture ensemble: T =
�

i Ci

(see the work of Bruno Galerne)

Ci = {f \ µf = ν}



Distribution in T with maximal entropy: uniform distribution.

Synthesis: draw f ∈ T uniformly at random.
→ computationaly untractable, needs Gibbs sampler.

[Zhu,Mumford]
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Approximation #1: project noise on T .

[Portilla, Simoncelli]
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Distribution in T with maximal entropy: uniform distribution.

Synthesis: draw f ∈ T uniformly at random.
→ computationaly untractable, needs Gibbs sampler.

[Zhu,Mumford]

Approximation #1: project noise on T .

[Portilla, Simoncelli]

Synthesis Using Iterative Projections

Approximation #2: use iterative projections.

f (k+1) = ProjCik
(f (k))

f (0)

f (1)

C1
C2

[Lewis, Malick, Luke]

Local convergence under conditions on Ci.
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t �→ µt is the geodesic path.

µt ∈ argmin
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[Bonneel et al. 2011]
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Weighted Discrete Case

also reveal that the network simplex behaves in O(n2) in our con-
text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
2000; Kanters et al. 2003; Morovic and Sun 2003].
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2) algorithm in practice
whereas the transport simplex runs in O(n3).

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140×140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for α = 1/4, α = 1/2, and α = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley

Theorem: [Folklore]
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Discrete 1-D point clouds:

Ordering the points:

→ O(N log(N)) operations.

Barycenter:

where
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→ µ� is a weighted cloud.
→ up to NL points.
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Point clouds of fixed size: µ =
N�

k=1

δX(k) ∈ ΘN

Restricted barycenter:

Numerical issues:

Pσ
k1,...,kL

=
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1 if ∃a, ∀ i, ki = σi(a),
0 otherwise.

min
P∈P̃L

�

k1,...,kL

Pk1,...,kLC(k1, . . . , kL)

→ PL is not the convex hull of P̃L.

⇐⇒

P̃L =
�
Pσ \ σ = (σ1, . . . ,σL) ∈ (ΣN )L

�

min
µ∈ΘN

�
i ρiW2(µi, µ)2

L-ways Assignments

→ µ� is a weighted cloud.
→ up to NL points.

→ L-way assignment is NP-hard.
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Overview

• Wasserstein Distance

• Sliced Wasserstein Distance

• Color Transfer

• Regularized Color Transfer

• Texture Synthesis

• Wasserstein Barycenter for Texture Mixing

• Gaussian Texture Models
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Input exemplar:
d = 1 (grayscale), d = 3 (color)

N1

N2

N3

Images Videos

Gaussian model:

m ∈ RN×d,Σ ∈ RNd×Nd

X ∼ µ = N (m,Σ)

Texture synthesis:
given (m,Σ), draw a realization f = X(ω).

→ highly under-determined problem.

→ Factorize Σ = AA∗ (e.g. Cholesky).
→ Compute f = m + Aw where w drawn from N (0, Id).

Texture analysis: from f0 ∈ RN×d, learn (m,Σ).

f0 ∈ RN×d

Gaussian Texture Model

N1

N2



Stationarity hypothesis: X(· + τ) ∼ X(periodic BC)

Spot Noise Model [Galerne et al.]
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Block-diagonal Fourier covariance:
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Stationarity hypothesis: X(· + τ) ∼ X(periodic BC)

Block-diagonal Fourier covariance:
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Stationarity hypothesis: X(· + τ) ∼ X(periodic BC)

Block-diagonal Fourier covariance:

Σi,j =
1
N

�

x

f0(i + x)∗f0(j + x) ∈ Rd×d

ŷ(ω) = Σ̂(ω)f̂(ω)y = Σf computed as

where f̂(ω) =
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x

f(x)e
2ix1ω1π

N1
+

2ix2ω2π
N2

⇐⇒ ∀ω �= 0, Σ̂(ω) = f̂0(ω)f̂0(ω)∗ ∈ Cd×d

Σ is a spot noise ⇐⇒ ∀ω �= 0, Σ̂(ω) is rank-1.

MLE of Σ:

Maximum likelihood estimate (MLE) of m from f0:

∀ i, mi =
1
N

�

x

f0(x) ∈ Rd

Spot Noise Model [Galerne et al.]



∈ Cd ∈ C

Input f0 ∈ RN×3 Realizations f

Example of Synthesis

Synthesizing f = X(ω), X ∼ N (m,Σ):

∀ω �= 0, f̂(ω) = f̂0(ω)ŵ(ω)

→ Convolve each channel with the same white noise.

w ∼ N (N−1, N−1/2IdN )



Ellipses: Ei =
�
u \ (mi − x)∗Σ−1
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Input distributions (µ0, µ1) with µi = N (mi,Σi).

E0 E1

Gaussian Wasserstein Distance
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One has T �µ0 = µ1 and T = ∇ϕ where ϕ is convex.
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→ the set of Gaussians is geodesically convex.

Gaussian Wasserstein Geodesics

OT geodesic:

∀ t ∈ [0, 1], Tt = (1− t)Id + tT

µt = Tt�µ0 = N (mt,Σt)
mt = (1− t)m0 + tm1

Σt = [(1− t)Id + tT ]Σ0[(1− t)Id + tT ]

t
0 1



(W2 is a geodesic distance)

→ the set of Gaussians is geodesically convex.

µt = argmin
µ

(1− t)W2(µ0, µ)2 + tW2(µ1, µ)2

Gaussian Wasserstein Geodesics

OT geodesic:

∀ t ∈ [0, 1], Tt = (1− t)Id + tT

µt = Tt�µ0 = N (mt,Σt)
mt = (1− t)m0 + tm1

Variational caracterization:

Σt = [(1− t)Id + tT ]Σ0[(1− t)Id + tT ]

t
0 1



Geodesic of Spot Noises
Theorem:
i.e. Σ̂i(ω) = f̂ [i](ω)f̂ [i](ω)∗.

f [t] = (1− t)f [0] + tg[1]

ĝ[1](ω) = f̂ [1](ω)
f̂ [1](ω)∗f̂ [0](ω)
|f̂ [1](ω)∗f̂ [0](ω)|

Then ∀ t ∈ [0, 1], µt = µ(f [t])
Let for i = 0, 1, µi = µ(f [i]) be spot noises,



tf [0]
f [1]

Geodesic of Spot Noises

0 1

Theorem:
i.e. Σ̂i(ω) = f̂ [i](ω)f̂ [i](ω)∗.

f [t] = (1− t)f [0] + tg[1]
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→ Rao’s distance requires full rank covariances.
→ Case mi �= 0?

Information Geometry Barycenters

Σ0,1 = (Σ1/2
1 Σ0Σ

1/2
1 )1/2

Rao Wasserstein

Σt = TtΣ0Tt

Input distributions: µi = N (0,Σi)
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Optimal transportEuclidean Rao

2-D Gaussian Barycenters
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Rank-1 barycenter uu∗:
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−→ Find suitable (εi)i∈I ∈ {+1,−1}|I| sucht that
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−→ Fast sliced approximation.
Wasserstein distance approach

Extension to a wide range
of imaging problems.

in out
−→ Color transfert, segmentation, . . .

Conclusion

14 Anonymous

P (χΣ) P (χΓ ) P (χΓ c) P (χΣ) P (χΓ ) P (χΓ c)

P (χΣ) P (χΓ ) P (χΓ c) P (χΣ) P (χΓ ) P (χΓ c)

Fig. 4. Left: example of natural image segmentation. Below each image is displayed the 2-
D histogram of the image (in the space of the two dominant color eigenvectors as provided
by a PCA) for the whole domain Σ (which is P (χΣ)) and over the inside and outside the
segmented region.
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