Optimal Transport in Imaging Sciences

Gabriel Peyré

<u>www.numerical-tours.com</u>

Statistical Image Models

Colors distribution: each pixel \Leftrightarrow point in \mathbb{R}^3

Statistical Image Models

Colors distribution: each pixel \Leftrightarrow point in \mathbb{R}^3

Input image

Modified image

Statistical Image Models

Colors distribution: each pixel \Leftrightarrow point in \mathbb{R}^3

Texture Synthesis

Generate f perceptually similar to some input f_0

 $\begin{array}{c} \text{Input} \\ \text{exemplar} \end{array}$

Texture Synthesis

Generate f perceptually similar to some input f_0

Input exemplar

 \longrightarrow Design and manipulate statistical constraints.

 \rightarrow Use statistical constraints for other imaging problems.

Wasserstein Distance

- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

Discrete Distributions

Discrete measure:
$$\mu = \sum_{i=0}^{N-1} p_i \delta_{X_i}$$
 $X_i \in \mathbb{R}^d$ $\sum_i p_i = 1$

Point cloud

Constant weights: $p_i = 1/N$.

Quotient space: $\mathbb{R}^{N \times d} / \Sigma_N$

Discrete Distributions

N-1

Discrete measure:
$$\mu = \sum_{i=0}^{N-1} p_i \delta_{X_i}$$
 $X_i \in \mathbb{R}^d$ $\sum_i p_i = 1$
Point cloud Histogram

Histogram

Constant weights: $p_i = 1/N$. Fixed positions X_i (e.g. grid)

Quotient space: $\mathbb{R}^{N \times d} / \Sigma_N$

Affine space: $\{(p_i)_i \setminus \sum_i p_i = 1\}$

Discretized image $f \in \mathbb{R}^{N \times d}$

$$N = \#$$
pixels, $d = \#$ colors.

 $f_i \in \mathbb{R}^d = \mathbb{R}^3$

Discretized image $f \in \mathbb{R}^{N \times d}$

N = #pixels, d = #colors.

 $f_i \in \mathbb{R}^d = \mathbb{R}^3$

Disclamers: images are **not** distributions.

- \rightarrow Needs an estimator: $f \longrightarrow \mu_f$
- \rightarrow Modify f by controlling μ_f .

Discretized image $f \in \mathbb{R}^{N \times d}$

N = #pixels, d = #colors.

$$f_i \in \mathbb{R}^d = \mathbb{R}^3$$

Disclamers: images are **not** distributions.

- \rightarrow Needs an estimator: $f \longrightarrow \mu_f$
- \rightarrow Modify f by controlling μ_f .

Point cloud discretization: $\mu_f = \sum \delta_{f_i}$

Discretized image $f \in \mathbb{R}^{N \times d}$

N = #pixels, d = #colors.

Disclamers: images are **not** distributions.

- \rightarrow Needs an estimator: $f \longrightarrow \mu_f$
- \rightarrow Modify f by controlling μ_f .

Point cloud discretization: $\mu_f = \sum \delta_{f_i}$

Histogram discretization:

stogram discretization:
$$\mu_f = \sum_i p_i \delta_{X_i}$$

Parzen windows: $p_i = \frac{1}{Z_f} \sum_i \psi(x_i - f_j)$

Discretized image $f \in \mathbb{R}^{N \times d}$

N = #pixels, d = #colors.

Disclamers: images are **not** distributions.

- \rightarrow Needs an estimator: $f \longrightarrow \mu_f$
- \rightarrow Modify f by controlling μ_f .

Point cloud discretization: $\mu_f = \sum \delta_{f_i}$ **Today's focus**

Histogram discretization: $\mu_f = \sum p_i \delta_{X_i}$ Parzen windows: $p_i = \frac{1}{Z_f} \sum_{i} \psi(x_i - f_j)$

Vector
$$X \in \mathbb{R}^{N \times d} \longrightarrow \mu_X = \sum_i \delta_{X_i}$$

(image, coefficients, ...)

Vector
$$X \in \mathbb{R}^{N \times d} \longrightarrow \mu_X = \sum_i \delta_{X_i}$$

(image, coefficients, ...)

Optimal assignment:

$$\sigma^{\star} \in \underset{\sigma \in \Sigma_{N}}{\operatorname{argmin}} \sum_{i} \|X_{i} - Y_{\sigma(i)}\|^{p}$$

Vector
$$X \in \mathbb{R}^{N \times d} \longrightarrow \mu_X = \sum_i \delta_{X_i}$$

(image, coefficients, ...)

Optimal assignment:

$$\sigma^{\star} \in \underset{\sigma \in \Sigma_{N}}{\operatorname{argmin}} \sum_{i} \|X_{i} - Y_{\sigma(i)}\|^{p}$$

Grayscale: 1-D

Wasserstein distance: $W_p(\mu_X, \mu_Y)^p = \sum_i ||X_i - Y_{\sigma^*(i)}||^p$

 \longrightarrow Metric on the space of distributions.

Vector
$$X \in \mathbb{R}^{N \times d} \longrightarrow \mu_X = \sum_i \delta_{X_i}$$

(image, coefficients, ...)

Optimal assignment:

$$\sigma^{\star} \in \underset{\sigma \in \Sigma_{N}}{\operatorname{argmin}} \sum_{i} \|X_{i} - Y_{\sigma(i)}\|^{p}$$

Grayscale: 1-D

Wasserstein distance: $W_p(\mu_X, \mu_Y)^p = \sum_i ||X_i - Y_{\sigma^*(i)}||^p$

 \longrightarrow Metric on the space of distributions.

Projection on statistical constraints: $C = \{f \setminus \mu_f = \mu_Y\}$ $\operatorname{Proj}_{\mathcal{C}}(f) = Y \circ \sigma^*$

Computing Transport Distances

Explicit solution for 1D distribution (e.g. grayscale images):

 \longrightarrow sorting the values, $O(N \log(N))$ operations.

Computing Transport Distances

Explicit solution for 1D distribution (e.g. grayscale images):

 \longrightarrow sorting the values, $O(N \log(N))$ operations.

Higher dimensions: combinatorial optimization methods Hungarian algorithm, auctions algorithm, etc.

$$\longrightarrow O(N^{5/2}\log(N))$$
 operations.

 \longrightarrow intractable for imaging problems.

Computing Transport Distances

Explicit solution for 1D distribution (e.g. grayscale images):

 \longrightarrow sorting the values, $O(N \log(N))$ operations.

Higher dimensions: combinatorial optimization methods Hungarian algorithm, auctions algorithm, etc.

 $\longrightarrow O(N^{5/2} \log(N))$ operations.

 \longrightarrow intractable for imaging problems.

Arbitrary distributions: $\mu = \sum_{i} p_i \delta_{X_i}$ $\nu = \sum_{i} q_i \delta_{Y_i}$ $\longrightarrow W_p(\mu, \nu)^p$ solution of a linear program. **Convex Formulation**

Probabilistic coupling: $\mu = \sum_{i} p_i \delta_{X_i}$ $\nu = \sum_{i} q_i \delta_{Y_i}$

$$\Pi_{\mu,\nu} = \left\{ P \in \mathbb{R}^{N \times N} \setminus P \ge 0, \ P1 = p, \ P'1 = q \right\}$$

Linear programming (Kantorovitch):

$$P^{\star} \in \underset{P \in \Pi_{\mu,\nu}}{\operatorname{argmin}} \langle P, C \rangle = \sum_{i,j} C_{i,j} P_{i,j}$$
$$C_{i,j} = \|X_i - Y_j\|^p$$
$$W(\mu,\nu)^p = \langle P^{\star}, C \rangle$$

Convex Formulation

Probabilistic coupling:
$$\mu = \sum_{i} p_i \delta_{X_i}$$
 $\nu = \sum_{i} q_i \delta_{Y_i}$

$$\Pi_{\mu,\nu} = \left\{ P \in \mathbb{R}^{N \times N} \setminus P \ge 0, \ P1 = p, \ P'1 = q \right\}$$

Linear programming (Kantorovitch):

$$P^{\star} \in \underset{P \in \Pi_{\mu,\nu}}{\operatorname{argmin}} \langle P, C \rangle = \sum_{i,j} C_{i,j} P_{i,j}$$
$$C_{i,j} = \|X_i - Y_j\|^p$$
$$W(\mu,\nu)^p = \langle P^{\star}, C \rangle$$

If $p_i = q_i = 1/N$, extremal points:

Permutation matrices: $P = P_{\sigma} = (\delta_{i-\sigma(j)})_{i,j}$

Theorem: $P^* = P_{\sigma^*}$

Convex Formulation

Probabilistic coupling:
$$\mu = \sum_{i} p_i \delta_{X_i}$$
 $\nu = \sum_{i} q_i \delta_{Y_i}$

$$\Pi_{\mu,\nu} = \left\{ P \in \mathbb{R}^{N \times N} \setminus P \ge 0, \ P1 = p, \ P'1 = q \right\}$$

Linear programming (Kantorovitch):

$$P^{\star} \in \underset{P \in \Pi_{\mu,\nu}}{\operatorname{argmin}} \langle P, C \rangle = \sum_{i,j} C_{i,j} P_{i,j}$$
$$C_{i,j} = \|X_i - Y_j\|^p$$
$$W(\mu,\nu)^p = \langle P^{\star}, C \rangle$$

If $p_i = q_i = 1/N$, extremal points:

Permutation matrices: $P = P_{\sigma} = (\delta_{i-\sigma(j)})_{i,j}$

Theorem:
$$P^{\star} = P_{\sigma^{\star}}$$

Faster methods: Hungarian algorithm, auctions algorithm, etc. $\longrightarrow O(N^{5/2} \log(N))$ operations. \longrightarrow intractable for imaging. **Optimization Codes**

Discrete optimal transport: $P^{\star} \in \underset{P \in \Pi_{\mu,\nu}}{\operatorname{argmin}} \langle P, C \rangle = \sum_{i,j} C_{i,j} P_{i,j}$

Linear program:

- \rightarrow Interior points: slow.
- \rightarrow Network simplex.
- \rightarrow Transportation simplex.

Block search pivoting strategy [Kelly and O'Neill 1991]

Continuous Wasserstein Distance

Input measures μ, ν on \mathbb{R}^d .

Couplings: $\pi \in \Pi_{\mu,\nu}$

$$\begin{array}{l} \forall A \subset \mathbb{R}^d, \pi(A \times \mathbb{R}^d) = \mu(A) \\ \forall B \subset \mathbb{R}^d, \pi(\mathbb{R}^d \times B) = \nu(B) \end{array} \end{array}$$

Continuous Wasserstein Distance

Input measures μ, ν on \mathbb{R}^d .

Couplings: $\pi \in \Pi_{\mu,\nu}$

$$\begin{array}{l} \forall A \subset \mathbb{R}^d, \pi(A \times \mathbb{R}^d) = \mu(A) \\ \forall B \subset \mathbb{R}^d, \pi(\mathbb{R}^d \times B) = \nu(B) \end{array} \end{array}$$

Transportation cost:

$$c(x,y) = \|x - y\|^p$$

$$L^p$$
 Wasserstein distance:
 $W_p(\mu, \nu)^p = \min_{\pi \in \Pi_{\mu, \nu}} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) d\pi(x, y)$

		\sum_{μ}^{μ}
y	x	
		π

Continuous Wasserstein Distance

Input measures μ, ν on \mathbb{R}^d .

Couplings: $\pi \in \Pi_{\mu,\nu}$

$$\begin{array}{l} \forall A \subset \mathbb{R}^d, \pi(A \times \mathbb{R}^d) = \mu(A) \\ \forall B \subset \mathbb{R}^d, \pi(\mathbb{R}^d \times B) = \nu(B) \end{array} \end{array}$$

Transportation cost:

$$c(x,y) = \|x - y\|^p$$

$$L^p$$
 Wasserstein distance:
 $W_p(\mu, \nu)^p = \min_{\pi \in \Pi_{\mu, \nu}} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) d\pi(x, y)$

Uniqueness: (μ does not vanish on small sets)

If p > 1, $\exists! \pi$ optimal.

Continuous Optimal Transport

Let p > 1 and μ does not vanish on small sets.

Unique $\pi \in \Pi_{\mu,\nu}$ s.t. $W_p(\mu,\nu)^p = \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x,y) d\pi(x,y)$

Optimal transport $T : \mathbb{R}^d \to \mathbb{R}^d$:

 π is supported on the graph of $x \mapsto y = T(x)$.

 $d\pi(x,y) = d\mu(x)\delta(y = T(x))$

Continuous Optimal Transport

Let p > 1 and μ does not vanish on small sets.

Unique $\pi \in \Pi_{\mu,\nu}$ s.t. $W_p(\mu,\nu)^p = \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x,y) d\pi(x,y)$

Optimal transport $T : \mathbb{R}^d \to \mathbb{R}^d$: π is supported on the graph of $x \mapsto y = T(x)$. $d\pi(x, y) = d\mu(x)\delta(y = T(x))$

 $p = 2: T = \nabla \varphi \text{ unique solution of} \\ \begin{cases} \varphi \text{ is convex l.s.c.} \\ (\nabla \varphi) \sharp \mu = \nu \end{cases}$

1-D Continuous Wasserstein

Distributions μ, ν on \mathbb{R} .

Cumulative functions:
$$C_{\mu}(t) = \int_{-\infty}^{t} d\mu(x)$$

For all p > 1: $T = C_{\nu}^{-1} \circ C_{\mu}$

T is non-decreasing ("change of contrast")

1-D Continuous Wasserstein

Distributions μ, ν on \mathbb{R} .

Cumulative functions:
$$C_{\mu}(t) = \int_{-\infty}^{t} d\mu(x)$$

For all p > 1: $T = C_{\nu}^{-1} \circ C_{\mu}$

T is non-decreasing ("change of contrast")

Explicit formulas:

$$W_{p}(\mu,\nu)^{p} = \int_{0}^{1} |C_{\mu}^{-1} - C_{\nu}^{-1}|^{p}$$

$$W_{1}(\mu,\nu) = \int_{\mathbb{R}} |C_{\mu} - C_{\nu}| = \|(C_{\mu} - C_{\nu}) \star H\|_{1}$$

Continuous Histogram Transfer

Input images: $f_i : [0, 1]^2 \to [0, 1], i = 0, 1.$

Continuous Histogram Transfer

Input images: $f_i : [0, 1]^2 \to [0, 1], i = 0, 1.$

Gray-value distributions: μ_i defined on [0, 1].

$$\mu_i([a,b]) = \int_{[0,1]^2} \mathbf{1}_{\{a \le f \le b\}}(x) \mathrm{d}x$$

Continuous Histogram Transfer

Input images:
$$f_i : [0, 1]^2 \to [0, 1], i = 0, 1.$$

Gray-value distributions: μ_i defined on [0, 1].

$$\mu_i([a,b]) = \int_{[0,1]^2} 1_{\{a \leqslant f \leqslant b\}}(x) dx$$

Optimal transport: $T = C_{\mu_1}^{-1} \circ C_{\mu_0}$.

 C_{μ_0}

 μ_0

 f_0

Discretized grayscale images $f_0, f_1 \in \mathbb{R}^N$.

Discretized grayscale images $f_0, f_1 \in \mathbb{R}^N$.

Discrete distributions $\mu_i = \mu_{f_i} = N^{-1} \sum_k \delta_{f_i(k)}$.

Discretized grayscale images $f_0, f_1 \in \mathbb{R}^N$. Discrete distributions $\mu_i = \mu_{f_i} = N^{-1} \sum_k \delta_{f_i(k)}$. Sorting the values : $\sigma_i \in \Sigma_N$ s.t. $f_i(\sigma_i(k)) \leq f_i(\sigma_i(k+1))$. Optimal transport: $T : f_0(\sigma_0(k)) \mapsto f_1(\sigma_1(k))$

Discretized grayscale images $f_0, f_1 \in \mathbb{R}^N$. Discrete distributions $\mu_i = \mu_{f_i} = N^{-1} \sum_k \delta_{f_i(k)}$. Sorting the values : $\sigma_i \in \Sigma_N$ s.t. $f_i(\sigma_i(k)) \leq f_i(\sigma_i(k+1))$. Optimal transport: $T : f_0(\sigma_0(k)) \mapsto f_1(\sigma_1(k))$

Discretized grayscale images $f_0, f_1 \in \mathbb{R}^N$. Discrete distributions $\mu_i = \mu_{f_i} = N^{-1} \sum_k \delta_{f_i(k)}$. Sorting the values : $\sigma_i \in \Sigma_N$ s.t. $f_i(\sigma_i(k)) \leq f_i(\sigma_i(k+1))$. Optimal transport: $T : f_0(\sigma_0(k)) \mapsto f_1(\sigma_1(k))$ Matlab code: $\begin{bmatrix} a, I \end{bmatrix} = \operatorname{sort}(f0(:));$ $f_0(I) = \operatorname{sort}(f1(:));$

Smooth distributions: $\mu_i = \rho_i(x) dx$

 $T \sharp \mu_0 = \mu_1 \quad \Longleftrightarrow \quad \rho_1(T(x)) |\det \partial T(x)| = \rho_0(x)$

 L^2 optimal transport map $T = \nabla \psi$: $\rho_1(\nabla \psi(x)) \det(H\psi) = \rho_0(x)$ (Monge-Ampère) **PDE Formulations**Smooth distributions: $\mu_i = \rho_i(x) dx$ $T \sharp \mu_0 = \mu_1 \iff \rho_1(T(x)) |\det \partial T(x)| = \rho_0(x)$ L^2 optimal transport map $T = \nabla \psi$: $\rho_1(\nabla \psi(x)) \det(H\psi) = \rho_0(x)$ (Monge-Ampère)

Fluid dynamic formulation: find $\rho(x,t) \ge 0, m(x,t) \in \mathbb{R}^d$

$$W(\mu_0, \mu_1)^2 = \min_{\rho, m} \int_{\mathbb{R}^d} \int_0^1 \frac{\|m\|^2}{\rho} \quad \text{s.t.} \quad \frac{\partial_t \rho + \nabla \cdot m = 0}{\rho(0, \cdot) = \rho_0, \ \rho(1, \cdot) = \rho_1}$$

 \rightarrow Finite element discretization [Benamou-Brenier]

PDE FormulationsSmooth distributions: $\mu_i = \rho_i(x) dx$ $T \sharp \mu_0 = \mu_1 \iff \rho_1(T(x)) |\det \partial T(x)| = \rho_0(x)$ L^2 optimal transport map $T = \nabla \psi$: $\rho_1(\nabla \psi(x)) \det(H\psi) = \rho_0(x)$ (Monge-Ampère)

Fluid dynamic formulation: find $\rho(x,t) \ge 0, m(x,t) \in \mathbb{R}^d$

$$W(\mu_0, \mu_1)^2 = \min_{\rho, m} \int_{\mathbb{R}^d} \int_0^1 \frac{\|m\|^2}{\rho} \quad \text{s.t.} \quad \frac{\partial_t \rho + \nabla \cdot m = 0}{\rho(0, \cdot) = \rho_0, \ \rho(1, \cdot) = \rho_1}$$

 \rightarrow Finite element discretization [Benamou-Brenier]

Related works of [Tannenbaum et al.].

Image Registration

[ur Rehman et al, 2009]

<u>i de</u>

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

Key idea: replace transport in \mathbb{R}^d by series of 1D transport. [Rabin, Peyré, Delon & Bernot 2010]

Projected point cloud: $X_{\theta} = \{ \langle X_i, \theta \rangle \}_i$.

Key idea: replace transport in \mathbb{R}^d by series of 1D transport. [Rabin, Peyré, Delon & Bernot 2010] Projected point cloud: $X_{\theta} = \{\langle X_i, \theta \rangle\}_i$. Sliced Wasserstein distance: (p = 2) $SW(\mu_X, \mu_Y)^2 = \int_{\|\theta\|=1} W(\mu_{X_{\theta}}, \mu_{Y_{\theta}})^2 d\theta$

Key idea: replace transport in \mathbb{R}^d by series of 1D transport. [Rabin, Peyré, Delon & Bernot 2010] Projected point cloud: $X_{\theta} = \{\langle X_i, \theta \rangle\}_i$. Sliced Wasserstein distance: (p = 2) $SW(\mu_X, \mu_Y)^2 = \int_{\|\theta\|=1} W(\mu_{X_{\theta}}, \mu_{Y_{\theta}})^2 d\theta$

Theorem:
$$E(X) = SW(\mu_X, \mu_Y)^2$$
 is of class C^1 and
 $\nabla E(X) = \int_{\theta} \langle X_i - Y_{\sigma_{\theta}(i)}, \theta \rangle \theta \, d\theta.$
where $\sigma_{\theta} \in \Sigma_N$ are 1-D optimal assignents of X_{θ} and Y_{θ} .

Key idea: replace transport in \mathbb{R}^d by series of 1D transport. [Rabin, Peyré, Delon & Bernot 2010] Projected point cloud: $X_{\theta} = \{\langle X_i, \theta \rangle\}_i$. Sliced Wasserstein distance: (p = 2) $SW(\mu_X, \mu_Y)^2 = \int_{\|\theta\|=1} W(\mu_{X_{\theta}}, \mu_{Y_{\theta}})^2 d\theta$

Theorem:
$$E(X) = SW(\mu_X, \mu_Y)^2$$
 is of class C^1 and
 $\nabla E(X) = \int_{\theta} \langle X_i - Y_{\sigma_{\theta}(i)}, \theta \rangle \theta \, d\theta.$
where $\sigma_{\theta} \in \Sigma_N$ are 1-D optimal assignents of X_{θ} and Y_{θ} .

 \longrightarrow Possible to use SW in variational imaging problems. \longrightarrow Fast numerical scheme : use a few random θ .

Sliced AssignmentTheorem: X is a local minima of $E(X) = SW(\mu_X, \mu_Y)^2$ $\iff \exists \sigma \in \Sigma_N, X = Y \circ \sigma$

Sliced Assignment

Theorem: X is a local minima of
$$E(X) = SW(\mu_X, \mu_Y)^2$$

 $\iff \exists \sigma \in \Sigma_N, \ X = Y \circ \sigma$

Stochastic gradient descent of E(X):

→ Step 1: choose Θ at random. $E_{\Theta}(X) = \sum_{\theta \in \Theta} W(X_{\theta}, Y_{\theta})^2$ - Step 2: $X^{(\ell+1)} = X^{(\ell)} - \tau \nabla E_{\Theta}(X^{(\ell)})$ **Sliced** Assignment

Theorem: X is a local minima of $E(X) = SW(\mu_X, \mu_Y)^2$ $\iff \exists \sigma \in \Sigma_N, \ X = Y \circ \sigma$

Stochastic gradient descent of E(X):

 $X^{(\ell)}$ converges to $\mathcal{C} = \{X \setminus \mu_X = \mu_Y\}.$

Sliced Assignment

Theorem: X is a local minima of $E(X) = SW(\mu_X, \mu_Y)^2$ $\iff \exists \sigma \in \Sigma_N, \ X = Y \circ \sigma$

Stochastic gradient descent of E(X):

Final assignment

 $X^{(\ell)}$ converges to $\mathcal{C} = \{X \setminus \mu_X = \mu_Y\}.$

Numerical observation: $X^{(\infty)} \approx \operatorname{Proj}_{\mathcal{C}}(X^{(0)})$

. iste

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

Input color images: $f_i \in \mathbb{R}^{N \times 3}$.

 $\nu_i = \frac{1}{N} \sum \delta_{f_i(x)}$

Input color images: $f_i \in \mathbb{R}^{N \times 3}$. $\nu_i = \frac{1}{N} \sum_x \delta_{f_i(x)}$ Optimal assignment: $\min_{\sigma \in \Sigma_N} \|f_0 - f_1 \circ \sigma\|$ Transport: $T: f_0(x) \in \mathbb{R}^3 \mapsto f_1(\sigma(i)) \in \mathbb{R}^3$

Input color images: $f_i \in \mathbb{R}^{N \times 3}$. $\nu_i = \frac{1}{N} \sum_x \delta_{f_i(x)}$ Optimal assignment: $\min_{\sigma \in \Sigma_N} \|f_0 - f_1 \circ \sigma\|$ Transport: $T : f_0(x) \in \mathbb{R}^3 \mapsto f_1(\sigma(i)) \in \mathbb{R}^3$ Equalization: $\tilde{f}_0 = T(f_0) \iff \tilde{f}_0 = f_1 \circ \sigma$

Sliced Wasserstein Transfert

Solving $\min_{\sigma \in \Sigma_N} \|f_0 - f_1 \circ \sigma\|$ is computationally untractable.

Approximate Wasserstein projection:

$$\tilde{f}_0$$
 solves $\min_f E(f) = SW(\mu_f, \mu_{f_0})$
and is close to f_0

Sliced Wasserstein Transfert

Solving $\min_{\sigma \in \Sigma_N} \|f_0 - f_1 \circ \sigma\|$ is computationally untractable.

Approximate Wasserstein projection:

$$\tilde{f}_0$$
 solves $\min_f E(f) = SW(\mu_f, \mu_{f_0})$
and is close to f_0

(Stochastic) gradient descent: $f^{(0)} = f_0$ $f^{(\ell+1)} = f^{(\ell)} - \tau_\ell \nabla E(f^{(\ell)})$ $f^{(\ell)} \to \tilde{f}_1$

At convergence: $\mu_{\tilde{f}_0} = \mu_{f_1}$

Input image f_0

Target image f_1

Transferred image \tilde{f}_0

Color Exchange

Input image f_0

Transferred image f_0

Target image f_1

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

Color Transfer Artifacts

Input image f_0

Target image f_1

Transfert: $\tilde{f}_0 = T(f_0)$. $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ not regular. $\longrightarrow T$ amplifies noise.

Transferred image f_0

Variational regularization:

$$E(f) = SW_{2}(\mu_{f}, \nu)^{2}$$

$$\lim_{f} \frac{1}{2} \|f - f_{0}\|^{2} + \lambda R(f) + \mu E(f) \quad (\star) \quad \begin{array}{c} 1 \\ \text{target} \\ \text{distribution} \end{array}$$
Data fidelity Regularization Histogram

$$F(f) \quad Histogram$$

Total variation regularization: $R(f) = \sum \|\nabla f(x)\|$

x

Wasserstein Fidelity in Imaging

Variational regularization:

$$E(f) = SW_{2}(\mu_{f}, \nu)^{2}$$

$$\lim_{f} \frac{1}{2} \|f - f_{0}\|^{2} + \lambda R(f) + \mu E(f) \quad (\star) \quad \underset{\text{distribution}}{\text{target}}$$

$$Data \text{ fidelity Regularization Histogram}_{F(f) \quad \text{forward}}$$

$$F(f) \quad \text{Non-smooth Non-convex}$$
Total variation regularization:

$$R(f) = \sum_{x} \|\nabla f(x)\|$$
Forward-backward proximal algorithm:

$$f^{(\ell+1)} = \operatorname{Prox}_{\tau\lambda R} \left(f^{(\ell)} - \tau (\nabla F(f) + \mu \nabla E(f^{(\ell)})) \right)$$
where $\operatorname{Prox}_{\eta R}(f) = \operatorname{argmin}_{g} \frac{1}{2} \|f - g\|^{2} + \eta R(g)$

 \longrightarrow converges to a local minimum of (\star)

Regularized Equalization

Here μ_{f_1} is uniform.

No regularization

With regularization

Regularized Color Transfer

No regularization

Here $\nu = \mu_{f_1}$

Original images

Regularized Color Transfer

Here $\nu = \mu_{f_1}$

Original images

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models
Sets of constraints $\{C_i\}_i$. Texture ensemble: $\mathcal{T} = \bigcap_i C_i$

– Spacial constraints.

Fixed energy: $C_i = \{f \setminus ||f|| = 1\}.$ Fixed histograms: $C_i = \{f \setminus \mu_f = \nu\}$

Sets of constraints $\{C_i\}_i$. Texture ensemble: $\mathcal{T} = \bigcap_i C_i$

– Spacial constraints.

Fixed energy: $C_i = \{f \setminus ||f|| = 1\}.$ Fixed histograms: $C_i = \{f \setminus \mu_f = \nu\}$

- Smoothness constraints. Sobolev: $C_i = \{f \setminus \int \|\nabla f\|^2 \leq \tau\}$ TV: $C_i = \{f \setminus \int \|\nabla f\| \leq \tau\}$

Synthesis Using Iterative Projections-

Distribution in \mathcal{T} with maximal entropy: uniform distribution.

Synthesis: draw $f \in \mathcal{T}$ uniformly at random. [Zhu,Mumford] \rightarrow computationaly untractable, needs Gibbs sampler.

Synthesis Using Iterative Projections

Distribution in \mathcal{T} with maximal entropy: uniform distribution.

Synthesis: draw $f \in \mathcal{T}$ uniformly at random. [Zhu,Mumford] \rightarrow computationaly untractable, needs Gibbs sampler. f(0)

Approximation #1: project noise on \mathcal{T} . [Portilla, Simoncelli]

Synthesis Using Iterative Projections

Distribution in \mathcal{T} with maximal entropy: uniform distribution.

Synthesis: draw $f \in \mathcal{T}$ uniformly at random. [Zhu,Mumford] \rightarrow computationaly untractable, needs Gibbs sampler. f(0)

Approximation #1: project noise on \mathcal{T} . [Portilla, Simoncelli]

Approximation #2: use iterative projections.

 $f^{(k+1)} = \operatorname{Proj}_{\mathcal{C}_{i_k}}(f^{(k)})$

Local convergence under conditions on C_i . [Lewis, Malick, Luke]

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$. (gray d = 1, color d = 3)

Exemplar f_0

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$. (gray d = 1, color d = 3)

Oriented multiscale transform: $T_0(f) = f$ $\forall i = 1, \dots, I, \quad T_i(f) = f \star \psi_i$

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$. (gray d = 1, color d = 3)

Oriented multiscale transform: $T_0(f) = f$ $\forall i = 1, ..., I, \quad T_i(f) = f \star \psi_i$

Learning the model: $\nu_i = \mu_{T_i(f_0)}$

Synthesis Method

Synthesized texture: stationary point of $\mathcal{E}(f) = \sum_{i=0}^{K} W_2(\mu_{T_i(f)}, \nu_i)^2$

Synthesis Method

Synthesized texture: stationary point of K $\mathcal{E}(f) = \sum W_2(\mu_{T_i(f)}, \nu_i)^2$ i=0Randomized sampling of stationary point: $f^{(0)} \sim \mathcal{N}(0, \mathrm{Id}) \qquad f^{(\ell+1)} = f^{(\ell)} - \tau_{\ell} \nabla \mathcal{E}(f^{(\ell)})$ $\nabla \mathcal{E}(f) = \sum T_i^* \circ \nabla E_i \circ T_i(f)$ i=0where $E_i(u) = W_2(\mu_u, \nu_i)^2$

Synthesis Method

Synthesized texture: stationary point of $\mathcal{E}(f) = \sum W_2(\mu_{T_i(f)}, \nu_i)^2$ i=0Randomized sampling of stationary point: $f^{(0)} \sim \mathcal{N}(0, \mathrm{Id}) \qquad f^{(\ell+1)} = f^{(\ell)} - \tau_{\ell} \nabla \mathcal{E}(f^{(\ell)})$ $\nabla \mathcal{E}(f) = \sum T_i^* \circ \nabla E_i \circ T_i(f)$ i=0where $E_{i}(u) = W_{2}(\mu_{u}, \nu_{i})^{2}$

Color Texture Synthesis

Pairwise Statistics

Local neighborood \mathcal{N} : ••• Higher-dimensional transforms: $\tilde{T}_i : \mathbb{R}^{N \times d} \to \mathbb{R}^{N \times d |\mathcal{N}|}$ where $y = T_i(f)$ $\tilde{y} = \tilde{T}_i(f)$

 $\tilde{y}(x) = (y(x+k))_{k \in \mathcal{N}}$

 $\{T_i\}_i$

.10

Pairwise Statistics

Local neighborood \mathcal{N} : ••• Higher-dimensional transforms: $\tilde{T}_i : \mathbb{R}^{N \times d} \to \mathbb{R}^{N \times d |\mathcal{N}|}$ where $y = T_i(f)$ $\tilde{y} = \tilde{T}_i(f)$ $\tilde{y}(x) = (y(x+k))_{k \in \mathcal{N}}$

 $\{T_i\}_i$

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

 \longrightarrow Generalizes Euclidean barycenter.

 $X^{\star} = \sum \rho_i X_i$

 $\sum \rho_i = 1$ Barycenter of $\{(\mu_i, \rho_i)\}_{i=1}^L$: (h2, k+) $\mu^{\star} \in \underset{\mu}{\operatorname{argmin}} \sum_{i=1} \rho_i W_2(\mu_i, \mu)^2$ μ_1 $W_2(\mu_1, \mu^*)$ W2(H3, H If $\mu_i = \delta_{X_i}$, then $\mu^* = \delta_{X^*}$ $X^{\star} = \sum \rho_i X_i$ \rightarrow Generalizes Euclidean barycenter.

> Theorem: [Agueh, Carlier, 2010] if μ_0 does not vanish on small sets, μ^* exists and is unique.

Special Case: 2 Distributions

Case L = 2:

$$\mu_t \in \underset{\mu}{\operatorname{argmin}} (1-t) W_2(\mu_0, \mu)^2 + t W_2(\mu_1, \mu)^2$$

 $t \mapsto \mu_t$ is the geodesic path.

Special Case: 2 Distributions

Case L = 2: $\mu_t \in \operatorname{argmin} (1-t) W_2(\mu_0, \mu)^2 + t W_2(\mu_1, \mu)^2$ μ μ_1 $t \mapsto \mu_t$ is the geodesic path. Discrete point clouds: $\mu = \sum_{k=1}^{N} \delta_{X_{i}(k)},$ NAssignment: $\sigma^* \in \underset{\sigma \in \Sigma_N}{\operatorname{argmin}} \sum_{k=1} \|X_1(k) - X_2(\sigma(k))\|^2$ $\mu^{\star} = \sum_{k=1}^{N} \delta_{X^{\star}(k)},$ where $X^{\star} = (1-t)X_1(k) + tX_2(\sigma^{\star}(k))$

Weighted Discrete Case

Linear program: $\mu_i = \sum_{k=1}^{N_i} p_i(k) \delta_{X_i(k)}$ $P^* \in \underset{P \in \Pi_{\mu_0,\mu_1}}{\operatorname{argmin}} \sum_{k,\ell} P_{k,\ell} \|X_0(k) - Y_1(\ell)\|^2$

Weighted Discrete Case Linear program: $\mu_i = \sum_{k=1}^{N_i} p_i(k) \delta_{X_i(k)}$

$$P^{\star} \in \underset{P \in \Pi_{\mu_0, \mu_1}}{\operatorname{argmin}} \sum_{k, \ell} P_{k, \ell} \| X_0(k) - Y_1(\ell) \|^2$$

Theorem: [Folklore] $|\{(k,\ell) \setminus P_{k,\ell}^{\star}\} \neq 0| \leq N_0 + N_1 - 1.$

Weighted Discrete CaseLinear program: $\mu_i = \sum_{k=1}^{N_i} p_i(k) \delta_{X_i(k)}$

$$P^{\star} \in \underset{P \in \Pi_{\mu_0, \mu_1}}{\operatorname{argmin}} \sum_{k, \ell} P_{k, \ell} \| X_0(k) - Y_1(\ell) \|^2$$

Theorem: [Folklore] $|\{(k,\ell) \setminus P_{k,\ell}^{\star}\} \neq 0| \leq N_0 + N_1 - 1.$

Weighted Discrete Case Linear program: $\mu_i = \sum_{k=1}^{N_i} p_i(k) \delta_{X_i(k)}$

$$P^{\star} \in \underset{P \in \Pi_{\mu_0, \mu_1}}{\operatorname{argmin}} \sum_{k, \ell} P_{k, \ell} \| X_0(k) - Y_1(\ell) \|^2$$

Theorem: [Folklore] $|\{(k,\ell) \setminus P_{k,\ell}^{\star}\} \neq 0| \leq N_0 + N_1 - 1.$

Special Case : 1-D Distributions

Discrete 1-D point clouds:

$$\mu_i = \sum_{k=1}^N \delta_{X_i(k)},$$

Ordering the points: $X_i(k) \leq X_i(k+1)$

 $\rightarrow O(N \log(N))$ operations.

Special Case : 1-D Distributions Discrete 1-D point clouds: $\mu_i = \sum_{k=1}^N \delta_{X_i(k)},$ Ordering the points: $X_i(k) \leq X_i(k+1)$ $\rightarrow O(N \log(N))$ operations.

 $\rightarrow \mu^{\star}$

 $C_{\mu^{\star}}^{-1} = \sum \rho_i C_{\mu_i}^{-1}$ Continuous distributions: \rightarrow averaging the inverse cumulatives.

Discrete setting: $\forall i = 1, ..., L, \quad \mu_i = \sum_k \delta_{X_i(k)}$

Discrete setting: $\forall i = 1, ..., L, \quad \mu_i = \sum_k \delta_{X_i(k)}$

L-way interaction cost:

$$C(k_1, \dots, k_L) = \sum_{i,j} \rho_i \rho_j \|X_i(k_i) - X_j(k_j)\|^2$$

Discrete setting: $\forall i = 1, ..., L, \quad \mu_i = \sum_k \delta_{X_i(k)}$

L-way interaction cost:

 $C(k_1, \dots, k_L) = \sum_{i,j} \rho_i \rho_j \|X_i(k_i) - X_j(k_j)\|^2$

L-way coupling matrices: $P \in \mathcal{P}_L$

Discrete setting: $\forall i = 1, ..., L, \quad \mu_i = \sum_k \delta_{X_i(k)}$

L-way interaction cost:

 $C(k_1, \dots, k_L) = \sum_{i,j} \rho_i \rho_j \|X_i(k_i) - X_j(k_j)\|^2$

L-way coupling matrices: $P \in \mathcal{P}_L$

Linear program:

$$\min_{P \in \mathcal{P}_L} \sum_{k_1, \dots, k_L} P_{k_1, \dots, k_L} C(k_1, \dots, k_L)$$

Discrete setting: $\forall i = 1, ..., L, \quad \mu_i = \sum_k \delta_{X_i(k)}$

L-way interaction cost:

 $C(k_1, \dots, k_L) = \sum_{i,j} \rho_i \rho_j \|X_i(k_i) - X_j(k_j)\|^2$

L-way coupling matrices: $P \in \mathcal{P}_L$

Linear program:

$$\min_{P \in \mathcal{P}_L} \sum_{k_1, \dots, k_L} P_{k_1, \dots, k_L} C(k_1, \dots, k_L)$$

Barycenter:

$$\mu^{\star} = \sum_{k_1, \dots, k_L} P_{k_1, \dots, k_L} \delta_{X^{\star}(k_1, \dots, k_L)}$$
$$X^{\star}(k_1, \dots, k_L) = \sum_{i=1}^L \rho_i X_i(k_i)$$

) μ_2
L-ways Assignments

Numerical issues: $\rightarrow \mu^*$ is a weighted cloud. \rightarrow up to N^L points. Point clouds of fixed size: $\mu = \sum_{k=1}^N \delta_{X(k)} \in \Theta_N$ L-ways Assignments

Numerical issues: $\rightarrow \mu^*$ is a weighted cloud. \rightarrow up to N^L points. Point clouds of fixed size: $\mu = \sum \delta_{X(k)} \in \Theta_N$ k=1Restricted barycenter: $\min_{\mu \in \Theta_N} \sum_i \rho_i W_2(\mu_i, \mu)^2$ $\iff \min_{P \in \tilde{\mathcal{P}}_L} \sum_{k_1, \dots, k_L} P_{k_1, \dots, k_L} C(k_1, \dots, k_L)$ $\tilde{\mathcal{P}}_L = \left\{ P^{\sigma} \setminus \sigma = (\sigma_1, \dots, \sigma_L) \in (\Sigma_N)^L \right\}$ $P_{k_1,\ldots,k_L}^{\sigma} = \begin{cases} 1 & \text{if } \exists a, \forall i, k_i = \sigma_i(a), \\ 0 & \text{otherwise.} \end{cases}$

L-ways Assignments

Numerical issues: $\rightarrow \mu^*$ is a weighted cloud. \rightarrow up to N^L points. Point clouds of fixed size: $\mu = \sum \delta_{X(k)} \in \Theta_N$ k=1Restricted barycenter: $\min_{\mu \in \Theta_N} \sum_i \rho_i W_2(\mu_i, \mu)^2$ $\iff \min_{P \in \tilde{\mathcal{P}}_L} \sum_{k_1, \dots, k_L} P_{k_1, \dots, k_L} C(k_1, \dots, k_L)$ $\tilde{\mathcal{P}}_L = \left\{ P^{\sigma} \setminus \sigma = (\sigma_1, \dots, \sigma_L) \in (\Sigma_N)^L \right\}$ $P_{k_1,\ldots,k_L}^{\sigma} = \begin{cases} 1 & \text{if } \exists a, \forall i, k_i = \sigma_i(a), \\ 0 & \text{otherwise.} \end{cases}$ $\rightarrow \mathcal{P}_L$ is not the convex hull of \mathcal{P}_L . \rightarrow L-way assignment is NP-hard.

Sliced-barycenter: μ_X that solves

 $\min_{X} \sum_{i} \rho_i \, SW(\mu_X, \mu_{X_i})^2$

Sliced-barycenter: μ_X that solves

$$\min_{X} \sum_{i} \rho_{i} SW(\mu_{X}, \mu_{X_{i}})^{2}$$

Gradient descent:
$$E_{i}(X) = SW(\mu_{X}, \mu_{X_{i}})^{2}$$
$$X^{(\ell+1)} = X^{(\ell)} - \tau_{\ell} \sum_{i=1}^{L} \rho_{i} \nabla E_{i}(X^{(\ell)})$$

 μ_X that solves Sliced-barycenter:

$$\min_{X} \sum_{i} \rho_i \, SW(\mu_X, \mu_{X_i})^2$$

Gradient descent:

dient descent:
$$E_i(X) = SW(\mu_X, \mu_{X_i})^2$$
$$X^{(\ell+1)} = X^{(\ell)} - \tau_\ell \sum_{i=1}^L \rho_i \nabla E_i(X^{(\ell)})$$

Advantages:

 μ_X is a sum of N Diracs.

Smooth optimization problem.

Disadvantage:

Non-convex problem \rightarrow local minima.

 $E_i(X) = SW(\mu_X, \mu_{X_i})^2$

 μ_2

Sliced-barycenter: μ_X that solves

$$\min_{X} \sum_{i} \rho_i \, SW(\mu_X, \mu_{X_i})^2$$

Gradient descent:

$$X^{(\ell+1)} = X^{(\ell)} - \tau_{\ell} \sum_{i=1}^{L} \rho_i \nabla E_i(X^{(\ell)})$$

Advantages:

 μ_X is a sum of N Diracs.

Smooth optimization problem.

Disadvantage:

Non-convex problem \rightarrow local minima.

Barycenters of 2 Textures

Barycenters of 3 Textures

Higher-order Synthesis

- Wasserstein Distance
- Sliced Wasserstein Distance
- Color Transfer
- Regularized Color Transfer
- Texture Synthesis
- Wasserstein Barycenter for Texture Mixing
- Gaussian Texture Models

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$ d = 1 (grayscale), d = 3 (color)

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$ d = 1 (grayscale), d = 3 (color)

Gaussian model:

 $X \sim \mu = \mathcal{N}(m, \Sigma)$ $m \in \mathbb{R}^{N \times d}, \Sigma \in \mathbb{R}^{Nd \times Nd}$

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$ d = 1 (grayscale), d = 3 (color)

Gaussian model:

 $X \sim \mu = \mathcal{N}(m, \Sigma)$ $m \in \mathbb{R}^{N \times d}, \Sigma \in \mathbb{R}^{Nd \times Nd}$

Texture analysis: from $f_0 \in \mathbb{R}^{N \times d}$, learn (m, Σ) . \rightarrow highly under-determined problem.

Input exemplar: $f_0 \in \mathbb{R}^{N \times d}$ d = 1 (grayscale), d = 3 (color)

Gaussian model:

 $X \sim \mu = \mathcal{N}(m, \Sigma)$ $m \in \mathbb{R}^{N \times d}, \Sigma \in \mathbb{R}^{Nd \times Nd}$

Texture analysis: from $f_0 \in \mathbb{R}^{N \times d}$, learn (m, Σ) . \rightarrow highly under-determined problem.

Texture synthesis: given (m, Σ) , draw a realization $f = X(\omega)$. \rightarrow Factorize $\Sigma = AA^*$ (e.g. Cholesky). \rightarrow Compute f = m + Aw where w drawn from $\mathcal{N}(0, \mathrm{Id})$.

Stationarity hypothesis: (periodic BC) $X(\cdot + \tau) \sim X$

Stationarity hypothesis: (periodic BC) $X(\cdot + \tau) \sim X$ Block-diagonal Fourier covariance: $y = \Sigma f$ computed as $\hat{y}(\omega) = \hat{\Sigma}(\omega)\hat{f}(\omega)$ where $\hat{f}(\omega) = \sum_{x} f(x)e^{\frac{2ix_1\omega_1\pi}{N_1} + \frac{2ix_2\omega_2\pi}{N_2}}$

Stationarity hypothesis: (periodic BC) $X(\cdot + \tau) \sim X$ Block-diagonal Fourier covariance: $y = \Sigma f$ computed as $\hat{y}(\omega) = \Sigma(\omega) f(\omega)$ where $\hat{f}(\omega) = \sum f(x)e^{\frac{2ix_1\omega_1\pi}{N_1} + \frac{2ix_2\omega_2\pi}{N_2}}$ \mathcal{T} Maximum likelihood estimate (MLE) of m from f_0 : $\forall i, \quad m_i = \frac{1}{N} \sum f_0(x) \in \mathbb{R}^d$

Stationarity hypothesis: (periodic BC) $X(\cdot + \tau) \sim X$ Block-diagonal Fourier covariance: $y = \Sigma f$ computed as $\hat{y}(\omega) = \Sigma(\omega) f(\omega)$ where $\hat{f}(\omega) = \sum f(x) e^{\frac{2ix_1\omega_1\pi}{N_1} + \frac{2ix_2\omega_2\pi}{N_2}}$ \mathcal{X} Maximum likelihood estimate (MLE) of m from f_0 : $\forall i, \quad m_i = \frac{1}{N} \sum f_0(x) \in \mathbb{R}^d$ MLE of Σ : $\Sigma_{i,j} = \frac{1}{N} \sum f_0(i+x)^* f_0(j+x) \in \mathbb{R}^{d \times d}$

Stationarity hypothesis: (periodic BC) $X(\cdot + \tau) \sim X$ Block-diagonal Fourier covariance: $y = \Sigma f$ computed as $\hat{y}(\omega) = \hat{\Sigma}(\omega)\hat{f}(\omega)$ where $\hat{f}(\omega) = \sum f(x) e^{\frac{2ix_1\omega_1\pi}{N_1} + \frac{2ix_2\omega_2\pi}{N_2}}$ \mathcal{X} Maximum likelihood estimate (MLE) of m from f_0 : $\forall i, \quad m_i = \frac{1}{N} \sum f_0(x) \in \mathbb{R}^d$ MLE of Σ : $\Sigma_{i,j} = \frac{1}{N} \sum f_0(i+x)^* f_0(j+x) \in \mathbb{R}^{d \times d}$ $\iff \forall \, \omega \neq 0, \quad \hat{\Sigma}(\omega) = \hat{f}_0(\omega) \hat{f}_0(\omega)^* \in \mathbb{C}^{d \times d}$ Σ is a spot noise $\iff \forall \omega \neq 0, \hat{\Sigma}(\omega)$ is rank-1.

Example of Synthesis

Synthesizing $f = X(\omega), X \sim \mathcal{N}(m, \Sigma)$:

$$\forall \omega \neq 0, \quad \hat{f}(\omega) = \hat{f}_0(\omega) \hat{w}(\omega) \qquad w \sim \mathcal{N}(N^{-1}, N^{-1/2} \mathrm{Id}_N)$$
$$\in \mathbb{C}^d \qquad \in \mathbb{C}$$

 \rightarrow Convolve each channel with the **same** white noise.

Input $f_0 \in \mathbb{R}^{N \times 3}$

Realizations f

Input distributions (μ_0, μ_1) with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$. Ellipses: $\mathcal{E}_i = \{ u \setminus (m_i - x)^* \Sigma_i^{-1} (m_i - x) \leq c \}$

Input distributions (μ_0, μ_1) with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

Ellipses: $\mathcal{E}_i = \left\{ u \setminus (m_i - x)^* \Sigma_i^{-1} (m_i - x) \leqslant c \right\}$

Unique transport: $\ker(\Sigma_0) \cap \operatorname{Im}(\Sigma_1) = \{0\}$

 L^2 optimal transport: affine map

$$\mathcal{T} : u \mapsto Tu + m_1 - m_0$$

$$T = \Sigma_1^{1/2} \Sigma_{0,1}^+ \Sigma_1^{1/2} \qquad \Sigma_{0,1} = (\Sigma_1^{1/2} \Sigma_0 \Sigma_1^{1/2})^{1/2}$$

Input distributions (μ_0, μ_1) with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

Ellipses: $\mathcal{E}_i = \left\{ u \setminus (m_i - x)^* \Sigma_i^{-1} (m_i - x) \leqslant c \right\}$

Unique transport: $\ker(\Sigma_0) \cap \operatorname{Im}(\Sigma_1) = \{0\}$

 L^2 optimal transport: affine map

$$\mathcal{T}: u \mapsto Tu + m_1 - m_0$$

$$T = \Sigma_1^{1/2} \Sigma_{0,1}^+ \Sigma_1^{1/2} \qquad \Sigma_{0,1} = (\Sigma_1^{1/2} \Sigma_0 \Sigma_1^{1/2})^{1/2}$$

One has $\mathcal{T} \sharp \mu_0 = \mu_1$ and $\mathcal{T} = \nabla \varphi$ where φ is convex.

Input distributions (μ_0, μ_1) with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

Ellipses: $\mathcal{E}_i = \left\{ u \setminus (m_i - x)^* \Sigma_i^{-1} (m_i - x) \leqslant c \right\}$

Unique transport: $\ker(\Sigma_0) \cap \operatorname{Im}(\Sigma_1) = \{0\}$

 L^2 optimal transport: affine map

$$\mathcal{T} : u \mapsto Tu + m_1 - m_0$$

$$T = \Sigma_1^{1/2} \Sigma_{0,1}^+ \Sigma_1^{1/2} \qquad \Sigma_{0,1} = (\Sigma_1^{1/2} \Sigma_0 \Sigma_1^{1/2})^{1/2}$$

One has $\mathcal{T} \sharp \mu_0 = \mu_1$ and $\mathcal{T} = \nabla \varphi$ where φ is convex.

Wasserstein L² distance: $W_2(\mu_0, \mu_1)^2 = \operatorname{tr} (\Sigma_0 + \Sigma_1 - 2\Sigma_{0,1}) + ||m_0 - m_1||^2,$

Gaussian Wasserstein Geodesics

OT geodesic: $\mu_t = \mathcal{T}_t \sharp \mu_0 = \mathcal{N}(m_t, \Sigma_t)$ $m_t = (1-t)m_0 + tm_1$ $\Sigma_t = [(1-t)\mathrm{Id} + tT]\Sigma_0[(1-t)\mathrm{Id} + tT]$

 \rightarrow the set of Gaussians is geodesically convex.

Gaussian Wasserstein Geodesics

OT geodesic: $\mu_t = \mathcal{T}_t \sharp \mu_0 = \mathcal{N}(m_t, \Sigma_t)$ $m_t = (1-t)m_0 + tm_1$ $\Sigma_t = [(1-t)\mathrm{Id} + tT]\Sigma_0[(1-t)\mathrm{Id} + tT]$

 \rightarrow the set of Gaussians is geodesically convex.

Variational caracterization: $(W_2 \text{ is a geodesic distance})$ $\mu_t = \underset{\mu}{\operatorname{argmin}} (1-t) W_2(\mu_0, \mu)^2 + t W_2(\mu_1, \mu)^2$ Geodesic of Spot Noises

Theorem: Let for $i = 0, 1, \mu_i = \mu(f^{[i]})$ be spot noises, i.e. $\hat{\Sigma}_i(\omega) = \hat{f}^{[i]}(\omega)\hat{f}^{[i]}(\omega)^*$. Then $\forall t \in [0, 1], \mu_t = \mu(f^{[t]})$ $f^{[t]} = (1 - t)f^{[0]} + tg^{[1]}$ $\hat{g}^{[1]}(\omega) = \hat{f}^{[1]}(\omega)\frac{\hat{f}^{[1]}(\omega)^*\hat{f}^{[0]}(\omega)}{|\hat{f}^{[1]}(\omega)^*\hat{f}^{[0]}(\omega)|}$ Geodesic of Spot Noises

Theorem: Let for
$$i = 0, 1, \mu_i = \mu(f^{[i]})$$
 be spot noises,
i.e. $\hat{\Sigma}_i(\omega) = \hat{f}^{[i]}(\omega)\hat{f}^{[i]}(\omega)^*$. Then $\forall t \in [0, 1], \mu_t = \mu(f^{[t]})$
 $f^{[t]} = (1 - t)f^{[0]} + tg^{[1]}$
 $\hat{g}^{[1]}(\omega) = \hat{f}^{[1]}(\omega)\frac{\hat{f}^{[1]}(\omega)^*\hat{f}^{[0]}(\omega)}{|\hat{f}^{[1]}(\omega)^*\hat{f}^{[0]}(\omega)|}$

Information Geometry Barycenters

Input distributions: $\mu_i = \mathcal{N}(0, \Sigma_i)$

Rao	Wasserstein
$d(\mu_0, \mu_1)^2 = \\ \ \log(\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})\ ^2$	$\operatorname{tr} \left(\Sigma_0 + \Sigma_1 - 2\Sigma_{0,1} \right) \\ \Sigma_{0,1} = \left(\Sigma_1^{1/2} \Sigma_0 \Sigma_1^{1/2} \right)^{1/2}$
Diagonal $\Sigma_i = \text{diag}(\lambda_k^i)_k$ $d(\mu_0, \mu_1)^2 = \sum_k \log(\lambda_k^0/\lambda_k^1)^2$	$\sum_k \left(\sqrt{\lambda_k^0} - \sqrt{\lambda_k^1}\right)^2$

 \rightarrow Rao's distance requires full rank covariances. \rightarrow Case $m_i \neq 0$? Information Geometry Barycenters

Input distributions: $\mu_i = \mathcal{N}(0, \Sigma_i)$

Rao	Wasserstein
$d(\mu_0, \mu_1)^2 = \\\ \log(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})\ ^2$	$\operatorname{tr} \left(\Sigma_0 + \Sigma_1 - 2\Sigma_{0,1} \right) \\ \Sigma_{0,1} = \left(\Sigma_1^{1/2} \Sigma_0 \Sigma_1^{1/2} \right)^{1/2}$
Barycenter $\mu_t = \mathcal{N}(0, \Sigma_t)$ $\Sigma_t = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}$	$\Sigma_t = \mathcal{T}_t \Sigma_0 \mathcal{T}_t$ $\mathcal{T}_t = (1-t) \mathrm{Id} + t \Sigma_1^{1/2} \Sigma_{0,1}^+ \Sigma_1^{1/2}$
Diagonal $\Sigma_i = \text{diag}(\lambda_k^i)_k$ $d(\mu_0, \mu_1)^2 = \sum_k \log(\lambda_k^0/\lambda_k^1)^2$ $\lambda_k^t = (\lambda_k^0)^{1-t} (\lambda_k^1)^t$	$\sum_{k} \left(\sqrt{\lambda_k^0} - \sqrt{\lambda_k^1} \right)^2$ $\sqrt{\lambda_k^t} = (1-t)\sqrt{\lambda_k^0} + t\sqrt{\lambda_k^1}$

 \rightarrow Rao's distance requires full rank covariances. \rightarrow Case $m_i \neq 0$?

<u>. 1986</u>

Input distributions $(\mu_i)_{i \in I}$ with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

$$\mu^{\star} = \underset{\mu}{\operatorname{argmin}} \sum_{i \in I} \rho_i W_2(\mu_i, \mu)^2$$

OT Barycenters

Input distributions $(\mu_i)_{i \in I}$ with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

$$\mu^{\star} = \underset{\mu}{\operatorname{argmin}} \sum_{i \in I} \rho_i W_2(\mu_i, \mu)^2$$

Theorem: [Carlier, Agueh] If Σ_0 has full rank, μ^* is unique and $\mu^* = \mathcal{N}(m^*, \Sigma^*)$ where $m^* = \sum_{i \in I} \rho_i m_i$ $\Sigma^* = \Phi(\Sigma^*)$ where $\Phi(\Sigma) = \sum_{i \in I} \rho_i \left(\Sigma^{1/2} \Sigma_i \Sigma^{1/2}\right)^{1/2}$ OT Barycenters

Input distributions $(\mu_i)_{i \in I}$ with $\mu_i = \mathcal{N}(m_i, \Sigma_i)$.

$$\mu^{\star} = \underset{\mu}{\operatorname{argmin}} \sum_{i \in I} \rho_i W_2(\mu_i, \mu)^2$$

Theorem: [Carlier, Agueh] If Σ_0 has full rank, μ^* is unique and $\mu^* = \mathcal{N}(m^*, \Sigma^*)$ where $m^* = \sum_{i \in I} \rho_i m_i$ $\Sigma^* = \Phi(\Sigma^*)$ where $\Phi(\Sigma) = \sum_{i \in I} \rho_i \left(\Sigma^{1/2} \Sigma_i \Sigma^{1/2}\right)^{1/2}$

Numerical scheme: $\Sigma^{(\ell+1)} = \Phi(\Sigma^{(\ell)})$ Conjecture: $\Sigma^{(\ell)} \to \Sigma^{\star}$.

2-D Gaussian Barycenters

Euclidean

Optimal transport

Rao

Rank-1 Wasserstein Barycenters

Rank-1 barycenter uu^* : $u = \sum_i \rho_i \varepsilon_i u_i$ \longrightarrow Find suitable $(\varepsilon_i)_{i \in I} \in \{+1, -1\}^{|I|}$ such that $\forall i, \sum \rho_j \langle \varepsilon_i u_i, \varepsilon_j u_j \rangle \ge 0$
Spot Noise Barycenters

Barycenter Σ^* : $\hat{\Sigma}^*(\omega) = \Phi(\hat{\Sigma}^*(\omega))$ $\Phi_{\omega}(\Sigma) = \sum_i \rho_i \left(\Sigma^{1/2} \hat{f}^{[i]}(\omega) \hat{f}^{[i]}(\omega)^* \Sigma^{1/2} \right)^{1/2}$

Image modeling with statistical constraints \longrightarrow Colorization, synthesis, mixing, ...

Conclusion

Image modeling with statistical constraints \longrightarrow Colorization, synthesis, mixing, ...

Wasserstein distance approach \longrightarrow Fast sliced approximation.

Conclusion

Image modeling with statistical constraints \longrightarrow Colorization, synthesis, mixing, ...

Wasserstein distance approach \longrightarrow Fast sliced approximation.

1n

out

Extension to a wide range of imaging problems.

 \rightarrow Color transfert, segmentation, ...