

Lévy 000 0000 Decompounding 0000000 0000

Processus de Poisson sur les groupes de Lie : diffusion multiple et phase géométrique des ondes polarisées

Nicolas Le Bihan

CNRS, Gipsa-Lab

Nicolas.Le-Bihan@gipsa-lab.grenoble-inp.fr

Collaborateurs : V. Rossetto, J. Boulanger, J.H. Manton et S. Said

Séminaire Léon Brillouin, 18/09/2012

Problématique

NC 00000 00000 Decompounding 00000000 0000

Codas en sismologie

$\underline{Mod\acute{e}lisation}$:

- Description déterministe inadaptée
- Diffusion multiple, transfert radiatif
- Processus stochastique?

Problématique	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000

Dépolarisation

 $\acute{E}volution$ de l'état de polarisation sur la sphère de Poincaré

Propagation de la lumière polarisée à travers une fibre optique avec biréfringence.

-		
Prob	lématique	
1 100	remanque	

HNC 000000 000000 Decompounding 00000000 0000

Diffusion multiple et polarisation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - つへぐ

Problématique	AHNC		Decompounding	
	0000000	000 0000 0000	0000000 0000	00000000 000000000000000000000000000000

Modélisation stochastique

- Diffusion multiple des ondes et processus sur SO(3)
- Estimation sur les groupes de Lie compacts
- Prise en compte de la polarisation
- Diffusion polarisée et transport parallèle
- Processus stochastiques avec phase géométrique

Problématique	AHNC		Decompounding	
	0000000	000 0000 0000	0000000	00000000 000000000000000000000000000000

1 Problématique

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

5 Phase géométrique

Le pendule de Foucault

AHNC		Decompounding	
0000000	000 0000 0000	0000000	000000000000000000000000000000000000000

1 Problématique

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

	AHNC		Decompounding	
	000000 0000000	000 0000 0000	0000000	000000000000000000000000000000000000000
Cas général				

1 Problématique

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général

Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

	AHNC 0●00000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 00000000000000000000
Cas général				

Représentation

Notations

- G : groupe de Lie compact connexe.
- μ : mesure de Haar (normalisée) bi
invariante sur G
- $L^2(G,\mathbb{R}):$ Espace de Hilbert des fonctions L^2 sur G
- Représentation $\pi: G \to GL(V)$, avec V espace vectoriel
- Irr(G) : ensemble (dénombrable) des classes d'équivalence des représentations irréductibles de G.
- \exists représentation unitaire U^{δ} ($\delta \in Irr(G)$), telle que :

$$U^{\delta}: G \to SU(\mathbb{C}^{d_{\delta}})$$

avec d_{δ} la dimension de la rep. de la classe δ .

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Cas général				

Théorème de Peter-Weyl

Base orthonormale

Les fonctions $d_{\delta}^{1/2}U_{ij}^{\delta}$ avec $\delta \in Irr(G)$ et $i, j = 1, \ldots, d_{\delta}$ forment une base orthonormale de $L^2(G, \mathbb{C})$

Série de Fourier

Toute fonction $f\in L^2(G,\mathbb{C})$ admet la décomposition en série de Fourier suivante :

$$f(g) = \sum_{\delta \in Irr(G)} d_{\delta} Tr(A_{\delta} U^{\delta^{\dagger}}(g))$$

avec

$$A_{\delta} = \int f(g) U^{\delta}(g) d\mu(g)$$

Pro	Ы	lema	at i	aı	

AHNC 0000000 0000000 Decompou: 00000000 0000

Cas général

Variable aléatoire sur G

Soit X une v.a. sur G, définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On note sa densité $p_X \in L^2(G, \mathbb{R})$ (*w.r.t.* mesure μ).

Fonction caractéristique

Soit X une v.a. sur G. La fonction caractéristique ϕ_X de X est :

$$\phi_X(\delta) = \mathbb{E}\left[U^{\delta}(X)\right]$$

Coefficients de Fourier

Si la variable aléatoire X à valeurs dans G admet une densité p_X , sa fonction caracéristique donne les coeff. de Fourier de p_X :

$$\phi_X(\delta) = \int p_X(g) U^{\delta}(g) d\mu(g)$$

	AHNC		Decompounding	
	0000000	000 0000 0000	0000000 0000	00000000 000000000000000000000000000000
Cas général				

Propriétés de ϕ_X

Convergence

Une séquence $(X_n)_{n\geq 1}$ de variables aléatoires sur G converge en distribution vers X si $\forall \delta \in Irr(G)$:

$$\lim_{n \to \infty} \phi_{X_n}(\delta) = \phi_X(\delta)$$

Produit de variables

Soient X et Y deux variables aléatoires à valeurs sur G et Z = XY. Alors, pour tout $\delta \in Irr(\delta)$:

$$\phi_Z(\delta) = \phi_X(\delta)\phi_Y(\delta)$$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000
Cas général				

Propriétés de ϕ_X : Symétries

Invariance par inversion

Une v.a. X sur G est invariante par inversion si $X \stackrel{d}{=} X^{-1}$

Produit de variables

Soit X une v.a. sur G invariante par inversion. Soit X_1, X_2, \ldots, X_n des copies indépendantes de X. Alors le produit $X_1X_2\ldots X_n$ est invariant par inversion.

Fonction caractéristique

X, une v.a. sur G, est invariante par inversion ssi :

 $\phi_X(\delta)$ est Hermitienne $\forall \delta \in Irr(G)$

	AHNC 000000● 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Cas général				

Propriétés de ϕ_X : Symétries

Invariance par conjugaison

Une v.a. X sur G est invariante par conjugaison si :

$$X \stackrel{d}{=} k X k^{-1} \; \forall k \in G$$

Produit

Si X et Y sont indépendantes et *invariantes par conjugaison*, alors XY est *invariante par conjugaison*.

Fonction caractéristique

X, une v.a. sur G, est invariante par conjugaison ssi :

$$\phi_X(\delta) = a_\delta I_\delta \ \forall \delta \in Irr(G)$$

	AHNC ○○○○○○○ ●○○○○○○	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 00000000000000000000
Cas particulier : $SO(3)$				

1 Problématique

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

	AHNC		Decompounding	
	000000	000 0000 0000	0000000 0000	00000000 000000000000000000000000000000
Cas particulier : $SO(3)$				

Cas particulier
$$G = SO(3)$$

$\overline{SO(3)}$: groupe des rotations

Pour une matrice $R \in \mathbb{R}^{3 \times 3}$:

$$R \in SO(3) \Rightarrow \begin{cases} RR^T = I\\ det(R) = 1 \end{cases}$$

Angles d'Euler

$$R(\psi, \theta, \varphi) = R_Z(\psi) R_Y(\theta) R_Z(\varphi)$$

avec $-\pi < \psi, \varphi \leq \pi$ et $0 \leq \theta \leq \pi$

Problématique	AHNC		Decompounding	Phase géométrique
	000000	000 0000 0000	0000000	000000000000000000000000000000000000000
Cas particulier : $SO(3)$				

Cas particulier
$$G = SO(3)$$

Mesure de Haar

Pour une fonction $h:SO(3)\to \mathbb{C},$ paramétrée par les angles d'Euler, on a :

$$\int_{SO(3)} h \, d\mu = \frac{1}{8\pi^2} \int_{-\pi}^{\pi} \int_0^{\pi} \int_{-\pi}^{\pi} h(\psi, \theta, \varphi) \sin \theta d\theta d\psi d\varphi$$

(日) 《母》 《母》 《日》 (日)

	AHNC		Decompounding	
	0000000	000 0000 0000	0000000	00000000 000000000000000000000000000000
Cas particulier : $SO(3)$				

Cas particuler
$$G = SO(3)$$

Peter-Weyl

Une fonction $h \in L^2(SO(3), \mu)$ possède une série de Fourier telle que :

$$h = \sum_{\delta \ge 0} d_{\delta} Tr(\tilde{h}^{\delta} U^{\delta^{\dagger}}) \qquad \tilde{h}^{\delta} = \int_{SO(3)} h U^{\delta} d\mu$$

avec

$$U_{mn}^{\delta}(\psi,\theta,\varphi) = e^{-im\psi} P_{mn}^{\delta}(\cos\theta) e^{-in\varphi}$$

 $\text{avec } \delta \geq 0 \text{ et } -\delta \leq m,n \leq \delta.$

 \Rightarrow les coeff. de Fourier \tilde{h}^{δ} sont de taille $(2\delta + 1) \times (2\delta + 1)$

	AHNC	Lévy	Decompounding	Phase géométrique
	0000000	000	00000000	ooooooooo
	0000000	0000	0000	oooooooooooooooooooo
C_{25} particulier $\cdot SO(3)$		0000		

Variables aléatoires sur SO(3)

Définition

Une v.a. de rotation est une matrice aléatoire 3×3 à valeurs sur SO(3)

Fonction caractéristique

La fonction caractéristique de X, donnée par :

$$\phi_X(\delta) = \mathbb{E}\left[U^{\delta}(X)\right]$$

est une séquence, pour $\delta \ge 0$, de matrices $(2\delta + 1) \times (2\delta + 1)$.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 0000000 0000	Phase géométrique 00000000 0000000000000000000
Cas particulier : $SO(3)$				

Propriétés

Égalité en distribution

$$X \stackrel{d}{=} Y \Leftrightarrow \phi_X(\delta) = \phi_Y(\delta) \ \forall \delta \ge 0$$

Convergence en distribution

$$X_n \xrightarrow{d} X \Leftrightarrow \phi_{X_n}(\delta) \xrightarrow{d} \phi_X(\delta) \ \forall \delta \ge 0$$

Convolution

Si X et Y inépendantes et Z = XY:

$$\phi_Z(\delta) = \phi_X(\delta)\phi_Y(\delta) \ \forall \delta \ge 0$$

	AHNC 0000000 000000	Lévy 000 0000 0000	Decompounding 0000000 0000	Phase géométrique 00000000 0000000000000000000
Cas particulier : $SO(3)$				

Propriétés : Symétries

Invariance par inversion

Si
$$X \stackrel{d}{=} X^T$$
, alors $\phi_X(\delta) = [\phi_X(\delta)]^{\dagger} \ \forall \delta \ge 0$ (Matrices Hermitiennes)

Invariance par conjugaison

Si $X \stackrel{d}{=} RXR^T$, pour $R \in SO(3)$, alors $\phi_X(\delta) = a_{\delta}I_{\delta} \ \forall \delta \ge 0$ (Multiples de l'identité I_{δ})

Invariance zonale

Autre type de symétrie sur $SO(3) : X \stackrel{d}{=} R_Z(\varphi) X R_Z(\psi)$

Coeff. de Fourier *scalaires* et $U^{\delta} = P_{00}^{\delta}(\cos \theta)$

	AHNC 0000000 0000000	Lévy ●00 0000 0000	Decompounding 0000000 0000	Phase géométrique 00000000 0000000000000000000
Processus de Poisson co	mposé de rotation			

1 Problématique

Ponctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation

Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000
Processus de Poisson	composé de rotatio			

PPC de rotation

Soient $(X_n)_{n\geq 0}$ des variables *i.d.d.* de rotation, et N(t) un processus de Poisson de paramètre $\lambda > 0$. Le processus Y(t), avec $t \geq 0$ et $X_0 = I$, tel que :

$$Y(t) = \prod_{n=0}^{N(t)} X_n$$

est un Processus de Poisson composé de rotation.

Asymptotique

Soit U une variable aléatoire de rotation *uniforme*. Si X_1 n'appartient pas à un sous-groupe propre de SO(3), alors $Y(t) \xrightarrow{d} U$ quand $t \uparrow \infty$

	AHNC 0000000 0000000	Lévy 00● 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000
Processus de Poisson	composé de rotation			

Fonction caractéristique

Soit Y(t) un PPC de rotation. Sa fonction caractéristique $\phi_{Y(t)} \equiv \phi_t$ est donnée pour $t \ge 0$ par :

$$\phi_t(\delta) = \exp\left[\lambda t \left(\phi_{X_1}(\delta) - I_{\delta}\right)\right]$$

avec $\delta \ge 0$ et ϕ_{X_1} la fonction caractéristique de X_1 .

Symétrie

Pour $t \ge 0$, si X_1 est invariant par inversion (*resp.* conjugaison) alors Y(t) est invariant par inversion (*resp.* conjugaison).

	AHNC 0000000 0000000	Lévy ○○○ ●○○○ ○○○○	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000
Mouvement Brownier	de rotation			

1 Problématique

Ponctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation

Mouvement Brownien de rotation

Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

	AHNC 0000000 0000000	Lévy 000 0 00 0000	Decompounding 00000000 0000	Phase géométrique 00000000 000000000000000000
Mouvement Brownie	n de rotation			

Equation d'Euler-Langevin

Eq. diff. Stochastique

Soit $B = [B^1, B^2, B^3]^T$ un mouvement Brownien sur \mathcal{R}^3 . L'équation matricielle d'Euler-Langevin est donnée par :

dY(t) = Y(t)dJ(t)

avec Y(t) le processus inconnu. J est un "plongement" de B dans l'espace des matrices 3×3 anti-symmétriques :

$$J(t) = B^{1}(t)J_{1} + B^{2}(t)J_{2} + B^{3}(t)J_{3}$$
$$J_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, J_{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, J_{3} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Mouvement Brownie	n de rotation			

Mouvement Brownien de rotation

Système d'EDS

Euler-Langevin comme un système d'EDS :

$$dY^{ij}(t) = \sum_{l=1}^{3} \left[\sum_{k=1}^{3} Y^{ik} J_l^{kj} \right] dB^l(t)$$

C'est un mouvement Brownien de rotation gauche.

Symétrie

La solution de l'équation d'Euler-Langevin est invariante par inversion. De plus, si la matrice de covariance de B est de la forme a^2I ($a \in \mathbb{R}$), alors Y(t) est invariante par conjugaison.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000
Mouvement Brownie	n de rotation			

Fonction caractéristique

ϕ_t pour le mouvement Brownien de rotation

Soit Y la solution de l'équation d'Euler-Langevin et supposant que la matrice de covariance de B est de la forme a^2I , alors :

$$\phi_t(\delta) = e^{-\frac{a^2}{2}\delta(\delta+1)t}I_\delta$$

pour $\delta \ge 0$ et $\phi_t \equiv \phi_{Y(t)}$

Asymptotique

Soit U une variable aléatoire de rotation *uniforme*. Soit Y(t) la solution de l'équation d'Euler-Langevin avec matrice de covariance a^2I pour B. Alors on a $Y(t) \xrightarrow{d} U$ pour $t \uparrow \infty$.

	AHNC	Lévy	Decompounding	
	0000000	000 0000 0000	0000000 0000	00000000 0000000000000000000000
Entrelacement				

1 Problématique

Ponctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation

Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000		0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0} \ (c \grave{a} d l \grave{a} g)$ est un processus de Lévy sur SO(3) si :

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000		0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0}$ (càdlàg) est un processus de Lévy sur SO(3) si :

• $Z_0 = I$

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000		0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0} \; (c \grave{a} d l \grave{a} g)$ est un processus de Lévy sur SO(3) si :

- $Z_0 = I$
- Ses accroissements $Z_{t_1}^{-1} Z_{t_0}, Z_{t_2}^{-1} Z_{t_1}, \dots$ sont indépendants $(t_0 < t_1 < t_2 \dots).$

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000		0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0}$ (càdlàg) est un processus de Lévy sur SO(3) si :

- $Z_0 = I$
- Ses accroissements $Z_{t_1}^{-1} Z_{t_0}, Z_{t_2}^{-1} Z_{t_1}, \dots$ sont indépendants $(t_0 < t_1 < t_2 \dots).$
- Ses accroissements sont stationnaires : $Z_{t+\tau}^{-1}Z_t \stackrel{d}{=} Z_{\tau}, \forall t$

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000	000 0000 0000	0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0}$ (càdlàg) est un processus de Lévy sur SO(3) si :

- $Z_0 = I$
- Ses accroissements $Z_{t_1}^{-1}Z_{t_0}, Z_{t_2}^{-1}Z_{t_1}, \ldots$ sont indépendants $(t_0 < t_1 < t_2 \ldots).$
- Ses accroissements sont stationnaires : $Z_{t+\tau}^{-1} Z_t \stackrel{d}{=} Z_{\tau}, \forall t$
- Continuité stochastique : $Z_t \xrightarrow{d} I$ quand $t \downarrow 0$

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000		0000000	000000000000000000000000000000000000000
Entrelacement				

Définition

 $(Z_t)_{t\geq 0} \; (c \grave{a} d l \grave{a} g)$ est un processus de Lévy sur SO(3) si :

- $Z_0 = I$
- Ses accroissements $Z_{t_1}^{-1}Z_{t_0}, Z_{t_2}^{-1}Z_{t_1}, \ldots$ sont indépendants $(t_0 < t_1 < t_2 \ldots).$
- Ses accroissements sont stationnaires : $Z_{t+\tau}^{-1} Z_t \stackrel{d}{=} Z_{\tau}, \forall t$
- Continuité stochastique : $Z_t \xrightarrow{d} I$ quand $t \downarrow 0$

Entrelacement

Un processus de Lévy $(Z_t)_{t\geq 0}$ sur SO(3) est l'entrelacement d'un mouvement Brownien $(W_t)_{t\geq 0}$ et d'un processus de Poisson composé (PPC) $(Y_t)_{t\geq 0}$.

	AHNC 0000000 0000000	Lévy 000 0000 00●0	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Entrelacement				

Lévy (gauche) sur SO(3)

Construction par entrelacement

Soit $(Y_t)_{t\geq 0}$ un PPC et $(W_t)_{t\geq 0}$ un Brownien. Soit N(t) et $(W_n)_{n\geq 0}$ le processus de Poisson et les variables *i.i.d.* sur SO(3) de Y. Soit $T_0 = 0$ et posons $(T_N)_{N\geq 1}$ les instants de saut de N. Le processus Z construit par **entrelacement** est donné par :

$$Z_t = Z_{T_{n-1}} W_{T_{n-1}}^{-1} W_t \text{ pour } T_{n-1} \le t < T_n$$

avec, pour tout temps T_n :

$$Z_{T_n} = Z_{T_n^-} X_n$$

où $Z_{T_n^-}$ est la limite à gauche au temps T_n .
	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Entrelacement				

Lévy sur
$$SO(3)$$

Fonction caractéristique

Soit λ le paramètre du processus de Poisson N et supposons que W est un Brownien invariant par conjugaison. Alors, la fonction caractéristique de Z est donnée par :

$$\phi_t(\delta) = \exp\left[\lambda t \phi(\delta) - t I_\delta\left(\lambda + \frac{\delta(\delta+1)a^2}{2}\right)\right]$$

avec $\phi_t \equiv \phi_{Z_t}$ et $\phi \equiv \phi_{X_1}$

AHNC 0000000 0000000	Lévy 000 0000 0000	$\begin{array}{c} \mathbf{Decompounding} \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \circ \end{array}$	Phase géométrique 00000000 000000000000000000

1 Problématique

Ponctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

5 Phase géométrique

Le pendule de Foucault Ondes polarisées et phase géométrique

Problématique	AHNC 0000000 0000000	Lêvy 000 0000 0000	Decompounding •ooooooo •ooo	Phase géométrique 00000000 00000000000000000000
Cas des groupes de L	ie compacts			
1 Problém				

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

5 Phase géométrique

Le pendule de Foucault Ondes polarisées et phase géométrique

Problématique	AHNC	Lévy	Decompounding	Phase géométrique
	0000000	000	o●oooooo	00000000
	0000000	0000	oooo	000000000000000000
Cas des groupes de L	ie compacts	0000		

Modèle

Observations *i.i.d.* $(Z_n)_{n\geq 1}$, à un temps $T\geq 0$ connu, du processus Y(T) corrompu par un bruit multiplicatif M:

Z = MY(T)

avec Y CPP et M Brownien sur G. Y et M sont indépendants.

Hypothèses sur le bruit

M est invariant par conjugaison et de fonction caractéristique :

$$\phi_M(\delta) = \exp\left(-\lambda_\delta \frac{\sigma^2}{2}\right) I_\delta$$

avec σ^2 la variance et λ_{δ} les valeurs propres de l'opérateur de Laplace-Beltrami sur G ($\lambda_{\delta_0} = 0$ et $\lambda_{\delta} > 0$ pour $\delta \neq \delta_0$).

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oo⊕ooooo oooo	Phase géométrique 00000000 0000000000000000000
Cas des groupes de I	ie compacts			

Decompounding

Principe

Estimer la densité p des variables *i.i.d.* X_n d'un CPP Y à partir d'observations (bruitées) de celui-ci, en connaissant λ (et σ^2).

Fonction caractéristique de l'observation

Supposant λ et σ^2 connus, on a :

$$\phi_Z(\delta) = \exp\left(T\lambda\phi_X(\delta) - T\bar{\lambda}I_{d_\delta}\right)$$

avec $\bar{\lambda}$ fonction de λ et σ^2 .

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding ooo∙oooo oooo	Phase géométrique 00000000 0000000000000000000
Cas des groupes de Li	e compacts			

Decompounding

Hypothèse

X_1 est invariant par inversion

 $\Rightarrow \phi_Z(\delta)$ est Hermitienne définie positive

Formule de decompounding bruité

$$\phi_X(\delta) = \frac{1}{T\lambda} Log \left[\phi_Z(\delta)\right] + \frac{\bar{\lambda}}{\lambda} I_{d_{\delta}}$$

(日) 《聞》 《言》 《言》 三日 うんの

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooo●ooo oooo	Phase géométrique 00000000 0000000000000000000
Cas des groupes de Li	ie compacts			

Decompounding

Hypothèse

X_1 est invariant par inversion

 $\Rightarrow \phi_Z(\delta)$ est Hermitienne définie positive

Formule de decompounding Non bruité

$$\phi_X(\delta) = \frac{1}{T\lambda} Log \left[\phi_Z(\delta)\right] + I_{d_\delta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 三 のへで

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 0000000000000000000
Cas des groupes de Li	e compacts			

Estimation

Estimation de ϕ_Z (cas non bruité)

Étant donné un échantillon de taille $n, (Z_n)$, l'estimateur empirique :

$$\hat{\phi}_Z^n(\delta) = \frac{1}{2n} \sum_{m=1}^n \left(U^\delta(Z_m) + U^\delta(Z_m)^\dagger \right)$$

garantit l'Hermitianité de $\hat{\phi}_Z^n(\delta)$.

Estimateur non-biaisé et consistant : $\hat{\phi}_Z^n(\delta) \xrightarrow{p.s.} \phi_Z(\delta)$

(日) (中) (中) (日) (日) (日) (日)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Cas des groupes de L	ie compacts			

Estimation

Estimation de ϕ_X (cas non bruité)

$$\begin{cases} \hat{\phi}_X^n(\delta) &= \frac{1}{T\lambda} Log\left[\hat{\phi}_Z^n(\delta)\right] + I_\delta \quad \text{sur} \quad R_\delta^n\\ \hat{\phi}_X^n(\delta) &= 0 \qquad \qquad \text{sur} \quad \Omega - R_\delta^n \end{cases}$$

avec :

 $-\eta(C) \text{ le spectre le matrice Hermitienne } C$ $-R^n_{\delta} = \left\{ \eta(\hat{\phi}^n_Z(\delta)) \subset]0, \infty[\right\}$

Estimateur consistant : $\hat{\phi}_X^n(\delta) \stackrel{p.s.}{\to} \phi_X(\delta)$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding ooooooo● oooo	Phase géométrique 00000000 000000000000000000000000000
Cas des groupes de L	ie compacts			

Estimation

Estimation de p_X

On a un estimate ur "plug-in" dans la série de Fourier de $p_{\boldsymbol{X}}$:

$$\hat{p}_X(g) = 1 + \sum_{\delta=1}^{L} f_\delta \operatorname{Tr}\left(\hat{\phi}_X^n(\delta)U^{\delta^{\dagger}}(g)\right) \quad pour \quad g \in G$$

avec

$$\left\{ \begin{array}{ll} L & : \ cutoff \\ f_{\delta} = d_{\delta} e^{-K\delta(\delta+1)} & : \ lissage \end{array} \right.$$

et si K > 0, les f_{δ} forment un masque de convolution et \hat{p}_X converge vers une densité "smooth".

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding ○○○○○○○ ●○○○	Phase géométrique 00000000 0000000000000000000
Cas $SO(3)$ et diffusion	multiple			

Plan

1 Problématique

2 Fonctions caractéristiques sur les groupes de Lie compacts Cas général Cas particulier : SO(3)

3 Processus de Lévy

Processus de Poisson composé de rotation Mouvement Brownien de rotation Entrelacement

4 Decompounding

Cas des groupes de Lie compacts Cas SO(3) et diffusion multiple

6 Phase géométrique

Le pendule de Foucault

Ondes polarisées et phase géométrique

PPC et diffusion multiple : modèle pour $\mu(t) \in S^2$

$$\mu(t) = \mathbf{R}(t)\mu_0$$

イロト イヨト イヨト イヨト

PPC et diffusion multiple : modèle pour $\mu(t) \in S^2$

$$\mu(t) = \mathbf{R}(t)\mu_0$$
$$= \prod_{n=0}^{N(t)} \mathbf{r}_n \mu_0$$

イロト イヨト イヨト イヨト

PPC et diffusion multiple : modèle pour $\mu(t) \in S^2$

$$\mu(t) = \mathbf{R}(t)\mu_0$$
$$= \prod_{n=0}^{N(t)} \mathbf{r}_n \mu_0$$

$$=$$
 $\mathbf{r}_{N(t)} \dots \mathbf{r}_1 \mathbf{r}_0 \mu_0$

イロト イヨト イヨト イヨト

 $= \prod_{n=0}^{N(t)} \mathbf{r}_n \mu_0$

《曰》 《卽》 《臣》 《臣

	AHNC 0000000 0000000	Lévy 000 0000 0000	$\begin{array}{c} \mathbf{Decompounding}\\ \circ\circ\circ\circ\circ\circ\circ\circ\circ\\ \circ\circ\circ\circ\circ\end{array}$	Phase géométrique oooooooooooooooooooooooooooooooooooo
Cas $SO(3)$ et diffusi	on multiple			

Decompounding sur SO(3)

À partir d'observations $[\mu_1, \mu_2, \ldots, \mu_M]$ à un temps T et connaissant λ , obtenir la *d.d.p.* de r_n .

Estimation

	AHNC 0000000 0000000	Lévy 000 0000	$\begin{array}{c} \mathbf{Decompounding} \\ \circ \circ \circ \circ \circ \circ \circ \circ \\ 0 \circ \bullet \circ \end{array}$	Phase géométrique 00000000 000000000000000000000000000
G GO(0) + 11G -				

Decompounding sur SO(3)

À partir d'observations $[\mu_1, \mu_2, \ldots, \mu_M]$ à un temps T et connaissant λ , obtenir la *d.d.p.* de r_n .

Estimation

• Hypothèse : p_r fonction de phase H-G (zonale). $U_{mn}^{\delta}(\varphi, \theta, \psi) \longrightarrow P^{\delta}(\cos \theta)$

《曰》 《聞》 《臣》 《臣》

	AHNC		Decompounding	
	0000000	000 0000 0000	0000000 0000	00000000 000000000000000000000000000000
a aa(a)				

· (四) (三) (三)

Decompounding sur SO(3)

À partir d'observations $[\mu_1, \mu_2, \ldots, \mu_M]$ à un temps T et connaissant λ , obtenir la *d.d.p.* de r_n .

Estimation

• Hypothèse : p_r fonction de phase H-G (zonale). $U_{mn}^{\delta}(\varphi, \theta, \psi) \longrightarrow P^{\delta}(\cos \theta)$ <u>Estimateur</u> : $\hat{\Phi}_{\mu}(\delta) = \frac{1}{M} \sum_{m=1}^{M} P^{\delta}(\mu_m)$

	AHNC	Lévy 000	Decompounding	Phase géométrique
	0000000	0000	0000	000000000000000000000000000000000000000
G GO(0) + 110 -				

Decompounding sur SO(3)

À partir d'observations $[\mu_1, \mu_2, \ldots, \mu_M]$ à un temps T et connaissant λ , obtenir la *d.d.p.* de r_n .

Estimation

• Hypothèse : p_r fonction de phase H-G (zonale). $U_{mn}^{\delta}(\varphi, \theta, \psi) \longrightarrow P^{\delta}(\cos \theta)$ <u>Estimateur</u> : $\hat{\Phi}_{\mu}(\delta) = \frac{1}{M} \sum_{m=1}^{M} P^{\delta}(\mu_m)$ <u>Anisotropie H-G</u> : $\hat{g} = \left(\frac{1}{\lambda T} \log\left(\frac{1}{M} \sum_{m=1}^{M} P^{\delta}(\mu_m)\right)\right)^{1/\delta}$

《曰》 《圖》 《臣》 《耳》

\star Estimation : exemples

Taille de l'échantillon : 5.10^2 points, 5.10^3 points et 5.10^4 points

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique ●0000000 0000000000000000000000000000
Le pendule de Fouca	ult			
1 Problém				
Fonction Cas g Cas g	ns <mark>caractérist</mark> ;énéral particulier : <i>S</i>	iques sur l $SO(3)$		
Process Proce Mouv Entre	us de Lévy essus de Poiss vement Brown elacement	son compo nien de rot	sé de rotation ation	
(1) Decomp Cas of Cas S	bounding les groupes d $SO(3)$ et diffu	e Lie com ision mult	pacts	
Phase g Le pe Onde	éométrique endule de Fou s polarisées é	ıcault et phase gé	éométrique	
			< □ > < 🗗 >	 ■ < ■ < ■ < < ■ < <

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 0000000 0000	Phase géométrique 0000000 0000000000000000000000000000
Le pendule de Foucault				

Pendule de Foucault

Panthéon, Paris $(l = 48^{\circ}52')$.

L. Foucault (1819-1868)

* Après 23h56min : $\varphi_{Foucault} = -2\pi \sin(l) = -271^{\circ}$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 0000000 0000000000000000000000000000
Le pendule de Foucault				

Modèle

$$\star \underline{\mathcal{S}^2 \text{ et } T_{\gamma(t)} \mathcal{S}^2}$$

- S^2 : Sphère unité dans \mathbb{R}^3
- $\gamma(t)$: Chemin sur S^2
- $v(t) \in T_{\gamma(t)}S^2$: Vecteur tangent

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 0000000 0000000000000000000000000000
Le pendule de Foucault				

Connexion de Levi-Civita

\star Transport parallèle

$$P_{\gamma(t)}\frac{dv(t)}{dt} = \frac{Dv(t)}{dt} = 0$$

- $\frac{D}{dt}$: dérivée covariante.
- $\gamma(t)$: chemin sur S^2 .
- $P_x : \mathbb{R}^3 \to T_x \mathcal{S}^2 :$ projecteur.
- v(t) suit la connexion de Levi-Civita.

	AHNC		Decompounding	Phase géométrique
	0000000 0000000	000 0000 0000	0000000	000000000000000000000000000000000000000
Le pendule de Foucault				

Holonomie

Chemin fermé $\gamma : [0, 1] \to S^2$; v(0) transporté parallèlement le long de γ et v(1) dans $T_{\gamma(0)}S^2$. L'holonomie de γ est

$$h(\gamma) = \left(v(\widehat{0), v(1)}\right)$$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Le pendule de Foucault				

Holonomie

Chemin fermé $\gamma : [0, 1] \to S^2$; v(0) transporté parallèlement le long de γ et v(1) dans $T_{\gamma(0)}S^2$. L'holonomie de γ est

$$h(\gamma) = \left(v(\widehat{0), v(1)}\right)$$

Thèorème de Gauss-Bonnet local sur \mathcal{S}^2

 γ un chemin fermé sur $\mathcal{S}^2,\,h(\gamma)$ est l'intégrale de courbure :

$$h(\gamma) = \int \int_{\mathcal{C}} k ds^2 = 2\pi (1 - \sin(l))$$

avec C la calotte de S^2 délimitée par $\partial C = \gamma$, et avec k la courbure de Gauss de la sphère.

Prob	léma	tique
		uque

.HNC 000000 000000 Decompounding 00000000 0000 Le pendule de Foucault

Théorème de Gauss-Bonnet

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ の Q @

Pro	h	lema	t_{1C}	

HNC 000000 000000 Decompounding 00000000 0000 Le pendule de Foucault

Pendule de Foucault et holonomie

Pro	Ы	lema	t101	

HNC 000000 000000 Lévy 000 0000 $\begin{array}{c} Decompounding \\ \circ \circ \circ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

Le pendule de Foucault

 $\mathcal{C} = \mathrm{Calotte}$

 $\varphi_{Foucault} = h(\gamma) - 2\pi = -2\pi \sin(l)$

	AHNC		Decompounding	Phase géométrique
	0000000	000 0000 0000	0000000	0000000 000000000000000000000000000000
Ondes polarisées et	phase géométrique			

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 00000000000000000000
Ondes polarisées et j	ohase géométrique			

\star Dans le plan de polarisation :

Polarisation linéaire

Polarisation elliptique

Polarisation circulaire

avec :
$$\vec{E} = \begin{bmatrix} E_{0x} cos(\Omega t) \\ E_{0y} cos(\Omega t + \psi) \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 0000000 00000000000000000000
Ondes polarisées et p	hase géométrique			

Phase géométrique des ondes polarisées

- \star Phase géométrique pour la lumière :
 - Fibre optique : Tomita & Chiao, PRL 1986.
 - Milieux aléatoires : Maggs & Rossetto, PRL, 2001.

- \star Phase géométrique pour les ondes élastiques :
 - Guide d'onde : Boulanger et al., Ann. of Phys., 2012.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et	phase géométrique			

 \star Modèle pour les ondes S :

- Dir. de propagation : k ∈ S² (Espace de base)
- Polarisation : $\mathbf{p} \in TS^2$ (Fibré tangent)

Les ondes polarisées peuvent acquérir une **phase géométrique** lors d'une propagation 3D

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000000
Ondes polarisées et pha	se géométrique			

Ondes polarisées et phase géométrique : trajectoire 3D

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000000
Ondes polarisées et pha	se géométrique			

Dispositif expérimental

- Rayon : $R = 75 \pm 1mm$
- Élévation : $P = 91.5 \pm 1mm$
- Fréquence d'échantillonnage : 50kHz
- Réponse capteurs : 0.5Hz 20kHz
- Source : marteau

[Équivalent élastique de l'expérience de Tomita & Chiao, 1986]

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et ph	ase géométrique			

Signaux observés

- ロ ト 4回 ト 4回 ト 4回 ト 一回 - つくぐ
| | AHNC
0000000
0000000 | Lévy
000
0000
0000 | Decompounding
oooooooo
oooo | Phase géométrique
00000000
000000000000000000000000000 |
|-------------------------|----------------------------|-----------------------------|-----------------------------------|--|
| Ondes polarisées et pha | se géométrique | | | |

Modes et polarisation

Spectre des ondes S directes.

Polarisations à 0.36m et 1m.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et pl	ase géométrique			

Phase géométrique mesurée

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et	phase géométrique			

Phase géométrique $\Phi(s)$:

 $\Phi(s) = \Phi(0) + \tau s + \sin \Phi(s) (\eta \cos \Phi(s) - \epsilon \sin \Phi(s))$

- $\bullet \ s$: abscisse curviligne
- η et ϵ : paramètres d'erreur

Mesures de $\Phi(s)$:

ν (kHz)	$c(m.s^{-1})$	wavelength (m)	$\tau ~(\mathrm{rad.m^{-1}})$	η	ϵ (rad)
1.4	210^{3}	1.4	2.53	0.31	-0.03
2.5	310^{3}	1.2	2.35	0.45	0.03
4.0	410^{3}	1.0	2.45	0.39	0.05
5.8	3.510^{3}	0.6	2.50	0.38	0.07

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et p	hase géométrique			

<u>Conclusion</u> :

- Valeur théorique de $\tau: 2.49 \pm 0.1 \ \rm rad.m^{-1}$
- Indépendance avec la fréquence
- Observation en régime non-adiabatique

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et p	phase géométrique			

- \star Modèle pour les ondes S :
- Dir. de propagation : $\mathbf{k} \in S^2$ (Espace de base)
- Polarisation : $\mathbf{p} \in TS^2$ (Fibré tangent)
- Repère : $\mathcal{F} \in SO(3)$ $\mathcal{F} = [\mathbf{p}, \mathbf{k} \times \mathbf{p}, \mathbf{k}]$ (Espace total)

Onde polarisée \Leftrightarrow Repère \mathcal{F}

 \Leftrightarrow

Pro	h	lema	tique

HNC 000000 000000 Decompounding 00000000 0000 Phase géométrique

Ondes polarisées et phase géométrique

Diffusion multiple des ondes polarisées

Propagation 3D

Transport parallèle dans $T\mathcal{S}^2$

イロト イヨト イヨト イ

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et ph	ase géométrique			

• Modèle : Repère $\mathcal{F} \in SO(3)$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et p	hase géométrique			

- Modèle : Repère $\mathcal{F} \in SO(3)$
- Diffusion \Leftrightarrow rotation aléatoire ${\bf r}$
 - Convention $ZYZ : \mathbf{r}(\psi, \theta, \varphi)$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et p	hase géométrique			

- Modèle : Repère $\mathcal{F} \in SO(3)$
- - Convention ZYZ : $\mathbf{r}(\psi, \theta, \varphi)$
- Transport parallèle : $\psi = -\varphi$

Rotation avec TP \Rightarrow **r**(θ, ψ)

	AHNC 0000000 0000000	Lévy 000	Decompounding 00000000 0000	Phase géométrique $000000000000000000000000000000000000$
Ondes polarisées et pha		0000		
Ondes polarisees et j	phase geometrique			

- Modèle : Repère $\mathcal{F} \in SO(3)$
- Diffusion \Leftrightarrow rotation aléatoire ${\bf r}$
 - Convention $ZYZ : \mathbf{r}(\psi, \theta, \varphi)$
- Transport parallèle : $\psi = -\varphi$

Rotation avec TP \Rightarrow **r**(θ , ψ)

Diffusion multiple + Transort parallèle \updownarrow Processus de Poisson à droite sur SO(3)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 0000000 0000	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et pha	se géométrique			

PPC à droite sur SO(3)

 \star Après un temps de propagation t, le repère \mathcal{F}_t est donné par :

$$\mathcal{F}_t = \mathcal{F}_0 \prod_{i=1}^{N(t)} \mathbf{r}(\psi_i, \theta_i)$$

avec $N(t) \sim Poi(\lambda t)$ et $\mathbf{r}_{\psi_i,\theta_i}$ l'action **aléatoire** des diffuseurs

 \Rightarrow PPC à droite sur SO(3)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 0000000 0000	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et pha	se géométrique			

PPC à droite sur SO(3)

* Après un temps de propagation t, le repère \mathcal{F}_t est donné par :

$$\mathcal{F}_t = \mathcal{F}_0 \prod_{i=1}^{N(t)} \mathbf{r}(\psi_i, \theta_i)$$

avec $N(t) \sim Poi(\lambda t)$ et $\mathbf{r}_{\psi_i,\theta_i}$ l'action **aléatoire** des diffuseurs

 \Rightarrow PPC à droite sur SO(3)

 \star Distribution pour N(t)=n et diffuseurs i.i.d. :

$$p_{\mathcal{F}_n} = p_{\mathcal{F}_0} * p_{\mathbf{r}_1} * \dots * p_{\mathbf{r}_n} = p_{\mathbf{r}}^{*[n]}$$

avec $p_{\mathcal{F}_0} = \delta(I - \mathcal{F}_0)$ et $p_{\mathbf{r}}$ la densité commune des r_n

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et phas	e géométrique			

AHNC

* Au temps t, la densité de
$$\mathcal{F}_t$$
 est : $p_{\mathcal{F}_t} = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} p_{\mathcal{F}_n}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 0000000000000000000000
Ondes polarisées et phase	e géométrique			

AHNC

- * <u>Au temps t, la densité de \mathcal{F}_t est</u> : $p_{\mathcal{F}_t} = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} p_{\mathcal{F}_n}$
- \star Décomposition de Fourier de $p_{\mathbf{r}}$:

$$\Phi_{\mathbf{r}}^{\delta} = \frac{1}{8\pi^2} \int_0^{\pi} \int_0^{2\pi} \int_0^{\pi} p_{\mathbf{r}}(\psi, \theta, \varphi) U^{\delta}(\psi, \theta, \varphi) \sin \theta d\theta d\psi d\varphi$$

avec les coeff. de Fourier $\Phi^{\delta}_{\mathbf{r}}$ de dimension $(2\delta + 1) \times (2\delta + 1)$.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 0000000000000000000000
Ondes polarisées et phase	e géométrique			

AHNC

- * <u>Au temps t, la densité de \mathcal{F}_t est</u> : $p_{\mathcal{F}_t} = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} p_{\mathcal{F}_n}$
- \star Décomposition de Fourier de $p_{\mathbf{r}}$:

$$\Phi_{\mathbf{r}}^{\delta} = \frac{1}{8\pi^2} \int_0^{\pi} \int_0^{2\pi} \int_0^{\pi} p_{\mathbf{r}}(\psi, \theta, \varphi) U^{\delta}(\psi, \theta, \varphi) \sin \theta d\theta d\psi d\varphi$$

avec les *coeff. de Fourier* $\Phi^{\delta}_{\mathbf{r}}$ de dimension $(2\delta + 1) \times (2\delta + 1)$. * Les coeff. de Fourier de $p_{\mathcal{F}_t}$ deviennent :

$$\Phi_{\mathcal{F}_t}^{\delta} = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} \left(\Phi_{\mathbf{r}}^{\delta}\right)^n$$

ロト (日) (日) (日) (日) (日) (日)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 00000000000000000000000
Ondes polarisées et ph	ase géométrique			

Distribution de la phase géométrique

- \star Sachant que :
 - Transport parallèle $\Rightarrow \Phi_{\mathbf{r}}^{\delta}$ diagonales
 - Phase géométrique : $\beta=\psi+\varphi$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 0000000000000000000000
Ondes polarisées et p	ohase géométrique			

Distribution de la phase géométrique

- \star Sachant que :
 - Transport parallèle $\Rightarrow \Phi_{\mathbf{r}}^{\delta}$ diagonales
 - Phase géométrique : $\beta = \psi + \varphi$
- \star Distribution de la phase géometrique β :

$$p_t(\theta, \beta) = W_0(\lambda t, \theta) + 2\sum_{m \ge 1} \cos(m\beta) W_m(\lambda t, \theta)$$

avec

$$W_m(\lambda t, \theta) = \frac{1}{2\pi} \sum_{\delta \ge m} (2\delta + 1) e^{\lambda (\Phi_{\mathbf{r},m,m}^{\delta} - 1)t} d_{m,m}^{\delta}(\theta)$$

ロト (日) (日) (日) (日) (日) (日)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000
Ondes polarisées et pha	ase géométrique			

Distribution de phase géométrique $p(\theta, \beta)$

Évolution de la densité de phase géométrique $p_t(\theta, \beta)$ au cours du temps

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● の Q (2)

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding 00000000 0000	Phase géométrique 00000000 00000000000000000000
Ondes polarisées et pl	nase géométrique			

Distribution de phase géométrique $p_t(\beta)$

Henyey-Greenstein : Évolution de $p_t(\beta)$ au cours du temps pour $\theta = 0, g = 0.8$ et $\lambda t \in [0, 40]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 三 ∽��?

Distribution de phase géométrique $p_{Dt}(\beta)$

Gaussien : Évolution de $p_{Dt}(\beta)$ au cours du temps pour $\theta = 0$, $D = 1rad^2 \cdot s^{-1}$ et $\nu = 20$.

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et ph	ase géométrique			

Estimation : principe

À partir d'observations $[\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_M]$ à un temps T et connaissant les paramètres de la distribution des \mathbf{r}_n , obtenir une estimation de λ .

Estimation

Estimateur du ML :

$$\hat{\lambda} = \frac{1}{T} \arg \max_{\lambda} \left(\sum_{m=1}^{M} \log p_{\lambda}(\mathcal{F}_m) \right)$$

L'estimée à l'itération $i \mbox{ est}$:

$$\hat{\lambda}_{i+1} = \frac{1}{T} \frac{1}{M} \sum_{m=1}^{M} \frac{1}{p_{\hat{\lambda}_i T}(\mathcal{F}_m)} \sum_{n=0}^{\infty} n \, p_{\mathbf{r}}(\mathcal{F}_m) \, \mathrm{e}^{-\hat{\lambda}_i T} \, \frac{(\hat{\lambda}_i T)^n}{n!}$$

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000
Ondes polarisées et phase	e géométrique			

Estimation et distribution de phase géométrique

 \star Convergence de l'EM pour l'estimation de $\hat{\lambda}$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

	AHNC	Lévy	Decompounding	Phase géométrique
	0000000	000	00000000	00000000
	0000000	0000	0000	0000000000000000000
Ondes polarisées et p	hase géométrique	0000		

Conclusions & Perspectives

- Estimation sur les groupes de Lie compacts
- Processus stochastiques sur SO(3)
- Problème inverse en diffusion multiple
- Phase géométrique des ondes polarisées en milieu aléatoire

- Processus à mémoire : modèlisation et estimation
- Estimation paramétrique
- Mise en évidence expérimentale

	AHNC	Lévy	Decompounding	Phase géométrique
	0000000	000	00000000	00000000
	0000000	0000	0000	00000000000000000000
Ondes polarisées et p	hase géométrique			

...

	AHNC 0000000 0000000	Lévy 000 0000 0000	Decompounding oooooooo oooo	Phase géométrique 00000000 000000000000000000000000000
Ondes polarisées et p	hase géométrique			

Henyey-Greenstein

La fonction de phase H-G, p_{HG} est donnée par :

$$p_{HG}(\theta, g) = \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$$

avec $g \in [0, 1]$ le paramètre d'anisotropie.

En série de Fourier, la multi-convolution de p_{HG} est :

$$p_{HG}^{*[n]}(\theta,g) = \sum_{\delta \ge 0} (2\delta + 1)g^n P_{00}^{\delta}(\cos \theta)$$