Statistical Anatomical Models: how to compute with phenotypes?

Stanley Durrleman

INRIA - ICM joint project ARAMIS Brain and Spine Institute (ICM) Pitié Salpêtrière Hospital, Paris

Séminaire Brillouin

・ 同 ト ・ ヨ ト ・ ヨ ト

Adven				
Ro. Parte Journales Ro.	Star .			
100 Paral	par mais			
1033 Visites in				
2503 031 3740	and the second second	Ter		
2230 334		Vinte any monor		
2145/ 203/ 200/ 5300	302156/	Pase Pas	oly	
1988 672 379 3869	474440	8998	Ficht	
314 foto 192/ 3900/	5325 date 100	13202 151.	18	111
732 353 0000	1729000	063. 2410	3919	otona
472 438 438	2010118	1960	79.49	5
200 2314	3006/	342 300	1 152-	11
3654	129561 10	970 40848	00202	0
335/ 4/0/ 6100/ 2.	1377- 131	25486	06539	
077 207 20 20		2100+1	61642	97
250 40.50	2204/ 298	2 1000	60.4	91
2 5676 313	14100	14682	09442	1.00
354 001 000	005/ 640	25554	47393	1.29
240 0184 3975	34 0437	10004	0120	83
5075 2236	100201	10405	-1373	1.00
-10/ -003	2/ 10 0/	1201	293121	137
492500	10628	10819		42-
3600	1 1070-	18060	38906	atolia
totolia 008118c	fotolia	200	6571-	7080
-00	1301	40116		1.
	10 2		0.000	1143

Vector data in \mathbb{R}^N :

- Hilbert space: $||x y||^2$
- Gaussian variables: $y_i = \bar{x} + \varepsilon_i$, with $\varepsilon_i \sim \mathcal{N}(0, \Sigma)$

Anatomical data lie on a manifold:

- which manifold? which metric?
- how to compute first and second moment (mean and variance)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Comparison of 2 anatomies

• "shape space" embedding [Kendall 1984]:

 $d(\mathcal{O}_1, \mathcal{O}_2)$ (or $\mathcal{O}_2 = \mathcal{O}_1 + \varepsilon$)

- invariance of the metric? shape 'alignment'?
- deformation = nuisance factor
- measure of deformation [Grenander 1993]:

 $\hat{\phi} = \operatorname{argmin} d(\mathcal{O}_2, \phi.\mathcal{O}_1) \quad (\text{or } \mathcal{O}_2 = \hat{\phi}.\mathcal{O}_1 + \varepsilon)$

- metric on objects derived from metric on deformations
- which deformations?

neo factor: ovorfitting(여) · · (리) · · 로 · · 로 · · 로

Comparison of 2 anatomies

• "shape space" embedding [Kendall 1984]:

 $d(\mathcal{O}_1, \mathcal{O}_2)$ (or $\mathcal{O}_2 = \mathcal{O}_1 + \varepsilon$)

- invariance of the metric? shape 'alignment'?
- deformation = nuisance factor
- measure of deformation [Grenander 1993]:

 $\hat{\phi} = \operatorname{argmin} d(\mathcal{O}_2, \phi.\mathcal{O}_1) \quad \text{(or } \mathcal{O}_2 = \hat{\phi}.\mathcal{O}_1 + \varepsilon)$

- metric on objects derived from metric on deformations
- which deformations?

Comparison of 2 anatomies

Combined model:

$$\mathcal{O}_2 = \phi.\mathcal{O}_1 + \varepsilon$$

- decomposition into geometry + residual
- all information taken into account
- which trade-off?

[For images, see Glasbey & Mardia JRSS'01, Allassonniere et al. JRSS'07]

イロト イポト イヨト イヨト 三日

Stanley Durrleman Statistical Anatomical Models

 $\mathcal{O}_i = \phi_i . \bar{\mathcal{O}} + \varepsilon_i$

$$\mathcal{O}_i = \phi_i . \bar{\mathcal{O}} + \varepsilon_i$$

- deterministic template ($\bar{\mathcal{O}}$): anatomical invariants
- random deformations (ϕ): geometrical variability
- random residuals (ε): "texture" variability

ъ

イロト 不得 とくほ とくほとう

$$\mathcal{O}_i = \phi_i . \bar{\mathcal{O}} + \varepsilon_i$$

- deterministic template (\overline{O}) : anatomical invariants
- random deformations (φ): geometrical variability
- random residuals (ε): "texture" variability

Formal MAP derivation:

$$E(\bar{\mathcal{O}},\phi_1,\ldots,\phi_N) = \sum_{s=1}^N \frac{1}{2\sigma^2} \left\| \phi_s.\bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id},\phi_s)^2$$

- Fréchet mean $\bar{\mathcal{O}}$ with the metric derived from diffeos
- Variance given by the distribution of
 - deformation parameters $\{\phi_s\}$

• residuals
$$\varepsilon_{s} = \left\| \phi_{s}. \bar{\mathcal{O}} - \mathcal{O}_{s} \right\|$$

$$E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \sum_{i=s}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\}$$

Need to define:

- parameterization of diffeos (φ_s) + metric d
- deformation of anatomical objects $\phi_s.\bar{\mathcal{O}}$
- norm between objects $\|\mathcal{O}_1 \mathcal{O}_2\|$

• Then:

- differentiate E w.r.t. deformation parameters and template
- derive statistics on deformation parameters and residuals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \sum_{i=s}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\}$$

Need to define:

- parameterization of diffeos (φ_s) + metric d
- deformation of anatomical objects $\phi_s.\bar{\mathcal{O}}$
- norm between objects $\|\mathcal{O}_1 \mathcal{O}_2\|^2$

• Then:

- differentiate E w.r.t. deformation parameters and template
- derive statistics on deformation parameters and residuals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \\ \sum_{i=s}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\}$$

- Need to define:
 - parameterization of diffeos (ϕ_s) + metric d
 - deformation of anatomical objects $\phi_s.\overline{O}$ norm between objects $\|O_1 O_2\|^2$

• Then:

$$E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \sum_{i=s}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\}$$

- Need to define:
 - parameterization of diffeos (φ_s) + metric d
 - deformation of anatomical objects $\phi_s.\bar{\mathcal{O}}$
 - norm between objects $\left\|\mathcal{O}_1 \mathcal{O}_2\right\|^2$
 - ... for any kind of data (image, surface mesh, curve, etc..)!
- Then:
 - differentiate E w.r.t. deformation parameters and template
 - derive statistics on deformation parameters and residuals

3

ヘロン 人間 とくほ とくほ とう

$$E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \sum_{i=s}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\}$$

- Need to define:
 - parameterization of diffeos (φ_s) + metric d
 - deformation of anatomical objects $\phi_s.\bar{\mathcal{O}}$
 - norm between objects $\left\|\mathcal{O}_1 \mathcal{O}_2\right\|^2$
 - ... for any kind of data (image, surface mesh, curve, etc..)!
- Then:
 - differentiate E w.r.t. deformation parameters and template
 - derive statistics on deformation parameters and residuals

ъ

ヘロン 人間 とくほ とくほ とう

Outline

Sparse adaptive parameterization of diffeomorphisms

Atlas construction with landmark points

- 3 Atlas construction with currents
- 4 Atlas construction with images

・ 同 ト ・ ヨ ト ・ ヨ ト

System of N self-interacting particles:

- control points {c_k} with momenta {α_k}
- Hamiltonian (kinetic energy):

• Equations of motion: $\dot{c}_k = \partial H / \partial \alpha_k$, $\dot{\alpha}_k = -\partial H / \partial c_k$ $\begin{cases} \frac{dc_k(t)}{dt} = \sum_{q=1}^N K(c_k(t), c_q(t)) \alpha_q(t) \\ \frac{d\alpha_k(t)}{dt} = -\sum_{q=1}^N \nabla K(c_k, c_q) \alpha_q(t)^T \alpha_k(t) \end{cases}$

• Defines a dense diffeomorphic deformation:

$$v_t(x) = \sum_k K(x, c_k(t))\alpha_k(t)$$

$$\frac{\phi_t(x)}{dt} = v_t(\phi_t(x)) \qquad \phi_0(x) = x$$

System of N self-interacting particles:

- control points {c_k} with momenta {α_k}
- Hamiltonian (kinetic energy):

$$H(\mathbf{c}, oldsymbol{lpha}) = \sum_{eta=1}^{N_{\mathrm{op}}} \sum_{q=1}^{N_{\mathrm{op}}} lpha_k^t K(\mathbf{c}_k, \mathbf{c}_{eta}) lpha_{eta}$$

• Equations of motion: $\dot{c}_k = \partial H / \partial \alpha_k$, $\dot{\alpha}_k = -\partial H / \partial c_k$ $\begin{cases} \frac{dc_k(t)}{dt} = \sum_{q=1}^N K(c_k(t), c_q(t)) \alpha_q(t) \\ \frac{d\alpha_k(t)}{dt} = -\sum_{q=1}^N \nabla K(c_k, c_q) \alpha_q(t)^T \alpha_k(t) \end{cases}$

• Defines a dense diffeomorphic deformation:

$$\begin{aligned} v_t(x) &= \sum_k K(x, c_k(t)) \alpha_k(t) \\ \frac{\phi_t(x)}{dt} &= v_t(\phi_t(x)) \qquad \phi_0(x) = x \end{aligned}$$

System of N self-interacting particles:

- control points {c_k} with momenta {α_k}
- Hamiltonian (kinetic energy):

$$H(\mathbf{c}, oldsymbol{lpha}) = \sum_{eta=1}^{N_{\mathrm{cp}}} \sum_{q=1}^{N_{\mathrm{cp}}} lpha_k^t \mathcal{K}(\mathbf{c}_k, \mathbf{c}_{eta}) lpha_{eta}$$

• Equations of motion: $\dot{c}_k = \partial H / \partial \alpha_k$, $\dot{\alpha}_k = -\partial H / \partial c_k$ $\begin{cases} \frac{dc_k(t)}{dt} = \sum_{q=1}^N K(c_k(t), c_q(t)) \alpha_q(t) \\ \frac{d\alpha_k(t)}{dt} = -\sum_{q=1}^N \nabla K(c_k, c_q) \alpha_q(t)^T \alpha_k(t) \end{cases}$

• Defines a dense diffeomorphic deformation: $V_t(x) = \sum_k K(x, c_k(t))\alpha_k(t)$

System of N self-interacting particles:

- control points {c_k} with momenta {α_k}
- Hamiltonian (kinetic energy):

$$H(\mathbf{c}, oldsymbol{lpha}) = \sum_{eta=1}^{N_{
m cp}} \sum_{q=1}^{N_{
m cp}} lpha_k^t \mathcal{K}(\mathbf{c}_k, \mathbf{c}_{eta}) lpha_{eta}$$

• Equations of motion: $\dot{c}_k = \partial H / \partial \alpha_k$, $\dot{\alpha}_k = -\partial H / \partial c_k$

$$\frac{\frac{d\alpha_k(t)}{dt}}{\frac{d\alpha_k(t)}{dt}} = \sum_{q=1}^N K(c_k(t), c_q(t)) \alpha_q(t)$$

• Defines a dense diffeomorphic deformation:

$$v_t(x) = \sum_k K(x, c_k(t))\alpha_k(t)$$

$$\frac{\phi_t(x)}{dt} = v_t(\phi_t(x)) \qquad \phi_0(x) = x$$

Definition

The group of diffeomorphisms for a RKHS *V*: $\mathcal{G}_{V} = \left\{ \phi_{1}; \frac{\partial \phi_{t}}{\partial t} = v_{t} \circ \phi_{t}, \phi_{0} = \mathrm{id}, \text{ and } v_{t} \in V \right\}$ is provided with the metric: $d(\mathrm{id}, \phi_{1}) = \int_{0}^{1} \|v_{t}\|^{2} dt$ [Trouvé'95, Dupuis et al.'98]

Theorem

The geodesics connecting two N-uples of distinct points c_0 and c_1 are such that:

• $v_t(x) = \sum_k K(x, c_k(t)) \alpha_k(t)$ (discrete support of velocity)

• $\|v_t\|_V^2$ constant along the geodesic (energy conservation) Since $\|v_t\|_V^2 = H(\mathbf{c}, \alpha) = \sum_{p,q=1}^{N_{cp}} \alpha_p(t)^T K(c_p(t), c_q(t)) \alpha_q(t)$, control points and momenta are optimally transported along the geodesics according the Hamiltonian equations: $\dot{c}_k(t) = \partial H/\partial \alpha_k$ and $\dot{\alpha}_k(t) = -\partial H/\partial c_k$

• for a *fixed* set of *N* control points:

- diffeomorphisms parameterized by initial momenta $\{\alpha_k(0)\}$
- geodesics: Log-map $\phi_1 \rightarrow \{\alpha_k(0)\}$
- metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$

• optimization of the position of control points:

- optimize the choice of a deformation model of size 3N
- selection in a infinite-dimensional dictionary of deformation models
- optimization of *the number* of control points:
 - selection of the model complexity

Control-point parameterization of deformations not a new idea (diffeo B-spline (Rueckert et al.), GRID (Grenander et al.), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

• for a *fixed* set of *N* control points:

- diffeomorphisms parameterized by initial momenta $\{\alpha_k(0)\}$
- geodesics: Log-map $\phi_1 \rightarrow \{\alpha_k(0)\}$

• metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$

• optimization of the position of control points:

- optimize the choice of a deformation model of size 3N
- selection in a infinite-dimensional dictionary of deformation models
- optimization of *the number* of control points:
 - selection of the model complexity

Control-point parameterization of deformations not a new idea (diffeo B-spline (Rueckert et al.), GRID (Grenander et al.), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

- for a *fixed* set of *N* control points:
 - diffeomorphisms parameterized by initial momenta $\{\alpha_k(0)\}$
 - geodesics: Log-map $\phi_1 \rightarrow \{\alpha_k(0)\}$
 - metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$
- optimization of the position of control points:
 - optimize the choice of a deformation model of size 3N
 selection in a infinite-dimensional dictionary of deformation models
- optimization of *the number* of control points:
 - selection of the model complexity

Control-point parameterization of deformations not a new idea (diffeo B-spline [Rueckert et al.], GRID [Grenander et al.]), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

- for a *fixed* set of *N* control points:
 - diffeomorphisms parameterized by initial momenta {α_k(0)}
 - geodesics: Log-map $\phi_1 \rightarrow \{\alpha_k(0)\}$
 - metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$
- optimization of the position of control points:
 - optimize the choice of a deformation model of size 3N
 - selection in a infinite-dimensional dictionary of deformation models
- optimization of the number of control points:

• selection of the model complexity

Control-point parameterization of deformations not a new idea (diffeo B-spline [Rueckert et al.], GRID [Grenander et al.]), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへの
- for a *fixed* set of *N* control points:
 - diffeomorphisms parameterized by initial momenta {α_k(0)}
 - geodesics: Log-map φ₁ → {α_k(0)}
 - metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$
- optimization of the position of control points:
 - optimize the choice of a deformation model of size 3N
 - selection in a infinite-dimensional dictionary of deformation models
- optimization of *the number* of control points:
 - selection of the model complexity

Control-point parameterization of deformations not a new idea (diffeo B-spline [Rueckert et al.], GRID [Grenander et al.]), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- for a *fixed* set of *N* control points:
 - diffeomorphisms parameterized by initial momenta {α_k(0)}
 - geodesics: Log-map $\phi_1 \rightarrow \{\alpha_k(0)\}$
 - metric on the tangent-space at Id V: $\|v_0\|_V^2 = \alpha_0^T \mathbf{K}(\mathbf{c}_0, \mathbf{c}_0) \alpha_0$
- optimization of the position of control points:
 - optimize the choice of a deformation model of size 3N
 - selection in a infinite-dimensional dictionary of deformation models
- optimization of *the number* of control points:
 - selection of the model complexity

Control-point parameterization of deformations not a new idea

(diffeo B-spline [Rueckert et al.], GRID [Grenander et al.]), however here:

- adaptive parameterization (number and position of CPs)
- buit-in metric on deformations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Importance of optimizing Control-Points positions:

Fixed Positions

Updated Positions

< 🗇 🕨

Optimizing positions of CP enables more compact encoding of the deformation

프 🕨 🗉 프

< ∃ > <

$$\begin{aligned} & E(\bar{\mathcal{O}}, \phi_1, \dots, \phi_N) = \\ & \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \left\| \phi_s . \bar{\mathcal{O}} - \mathcal{O}_s \right\|^2 + \mathsf{d}(\mathrm{Id}, \phi_s)^2 \right\} \end{aligned}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- The initial state of the system of subject s: $\mathbf{S}_{0}^{s} = \{c_{0,k}, \alpha_{0,k}^{s}\}$
- Control Points shared among subjects
- Hamiltonian equations: $\dot{S}^{s}(t) = F(S^{s}(t))$ with $S^{s}(0) = S_{0}^{s}$
- Geodesic distance: $d(Id, \phi_s)^2 = \alpha_0^{sT} K(\mathbf{c}_0, \mathbf{c}_0) \alpha_0^s = L(\mathbf{S}_0)$

イロン 不得 とくほど 不良 とうほう

- The initial state of the system of subject s: $S_0^s = \{c_{0,k}, \alpha_{0,k}^s\}$
- Control Points shared among subjects
- Hamiltonian equations: $\dot{S}^{s}(t) = F(S^{s}(t))$ with $S^{s}(0) = S_{0}^{s}$
- Geodesic distance: $d(Id, \phi_s)^2 = \alpha_0^{sT} K(\mathbf{c}_0, \mathbf{c}_0) \alpha_0^s = L(\mathbf{S}_0)$

イロン 不得 とくほど 不良 とうほう

- The initial state of the system of subject s: $S_0^s = \{c_{0,k}, \alpha_{0,k}^s\}$
- Control Points shared among subjects
- Hamiltonian equations: $\dot{S}^{s}(t) = F(S^{s}(t))$ with $S^{s}(0) = S_{0}^{s}$
- Geodesic distance: $d(Id, \phi_s)^2 = \alpha_0^{sT} K(\mathbf{c}_0, \mathbf{c}_0) \alpha_0^s = L(\mathbf{S}_0)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

- The initial state of the system of subject s: $S_0^s = \{c_{0,k}, \alpha_{0,k}^s\}$
- Control Points shared among subjects
- Hamiltonian equations: $\dot{S}^{s}(t) = F(S^{s}(t))$ with $S^{s}(0) = S_{0}^{s}$
- Geodesic distance: $d(Id, \phi_s)^2 = \alpha_0^{sT} K(\mathbf{c}_0, \mathbf{c}_0) \alpha_0^s = L(\mathbf{S}_0)$

イロト イポト イヨト イヨト 三日

- The initial state of the system of subject s: $S_0^s = \{c_{0,k}, \alpha_{0,k}^s\}$
- Control Points shared among subjects
- Hamiltonian equations: $\dot{S}^{s}(t) = F(S^{s}(t))$ with $S^{s}(0) = S_{0}^{s}$
- Geodesic distance: $d(Id, \phi_s)^2 = \alpha_0^{sT} K(\mathbf{c}_0, \mathbf{c}_0) \alpha_0^s = L(\mathbf{S}_0)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

Sparse adaptive parameterization of diffeomorphisms

2 Atlas construction with landmark points

- 3 Atlas construction with currents
- 4 Atlas construction with images

・ 回 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} E(\bar{\mathcal{O}}, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \|\phi_s.\bar{\mathcal{O}} - \frac{\mathcal{O}_s}{|\mathbf{S}||^2} + L(\mathbf{S}_0^s) \right\} \end{split}$$

<ロ> (四) (四) (三) (三) (三)

$$E(\bar{\mathcal{O}}, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \|\phi_s.\bar{\mathcal{O}} - \frac{\mathcal{O}_s}{2}\|^2 + L(\mathbf{S}_0^s) \right\}$$

• Landmark case:
$$\mathcal{O}_s = Y_s = \{y_{s,k}\}$$

• Template of the form:
$$\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$$

•
$$\phi.X_0 = \{\phi(x_{0,k})\}$$
 solution of:

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$E(\bar{\mathcal{O}}, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \|\phi_s.\bar{\mathcal{O}} - \mathbf{Y}_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

• Landmark case:
$$\mathcal{O}_s = Y_s = \{y_{s,k}\}$$

• Template of the form:
$$\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$$

•
$$\phi.X_0 = \{\phi(x_{0,k})\}$$
 solution of:

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

• Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

$$\begin{split} & E(\bar{\mathcal{O}}, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ & \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \| \phi_s . \bar{\mathcal{O}} - Y_s \|^2 + L(\mathbf{S}_0^s) \right\} \end{split}$$

- Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$
 - Template of the form: $\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$

$$\dot{x}_{k}(t) = v_{t}(x_{k}(t)) = \sum_{k=1}^{N_{cp}} K(x_{k}(t), c_{k}(t)) \alpha_{k}(t) = G(\mathbf{S}(t), x_{k}(t))$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$$E(\boldsymbol{X}_{0}, \boldsymbol{S}_{0}^{1}, \dots, \boldsymbol{S}_{0}^{N}) = \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^{2}} \| \phi_{s}.\boldsymbol{X}_{0} - \boldsymbol{Y}_{s} \|^{2} + L(\boldsymbol{S}_{0}^{s}) \right\}$$

- Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$
 - Template of the form: $\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$ • $\phi, X_0 = \{\phi(x_0, k)\}$ solution of:

$$\dot{x}_{k}(t) = v_{t}(x_{k}(t)) = \sum_{k=1}^{N_{op}} K(x_{k}(t), c_{k}(t)) \alpha_{k}(t) = G(\mathbf{S}(t), x_{k}(t))$$

• Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \| \boldsymbol{\phi}_s. \boldsymbol{X}_0 - \boldsymbol{Y}_s \|^2 + L(\mathbf{S}_0^s) \right\}$$

• Landmark case:
$$\mathcal{O}_s = Y_s = \{y_{s,k}\}$$

• Template of the form:
$$\bar{\mathcal{O}} = X_0 = \{x_{0,k}\}$$

•
$$\phi.X_0 = \{\phi(x_{0,k})\}$$
 solution of:
 $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$

• Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

$$\begin{split} & E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ & \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \| \boldsymbol{\phi}_s. \boldsymbol{X}_0 - \boldsymbol{Y}_s \|^2 + L(\mathbf{S}_0^s) \right\} \end{split}$$

• Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$

• Template of the form: $\bar{\mathcal{O}} = X_0 = \{x_{0,k}\}$

$$\phi.X_0 = \{\phi(x_{0,k})\} \text{ solution of:}$$

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

・ロト ・ 同ト ・ ヨト ・ ヨ・

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \| \boldsymbol{X}_s(1) - Y_s \|^2 + L(\mathbf{S}_0^s) \right\}$$

• Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$

• Template of the form: $\bar{\mathcal{O}} = X_0 = \{x_{0,k}\}$

$$\phi.X_0 = \{\phi(x_{0,k})\} \text{ solution of:}$$

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

• Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

・ロト ・ 同ト ・ ヨト ・ ヨ・

 $E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \| X_s(1) - Y_s \|^2 + L(\mathbf{S}_0^s) \right\}$

- Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$
 - Template of the form: $\bar{\mathcal{O}} = X_0 = \{x_{0,k}\}$

$$\phi.X_0 = \{\phi(x_{0,k})\} \text{ solution of:}$$

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

イロン 不良 とくほう 不良 とうほ

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{S=1\\ \phi_i, O + \varepsilon_i}}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

₹ 990

• Chain rule:

$$\nabla_{\mathbf{S}_0^s} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s) + \nabla_{\mathbf{S}_0^s} L$$
$$\nabla_{\mathbf{X}_0} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s)$$

These gradients can be solved using linearized ODEs!!!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Chain rule:

$$\nabla_{\mathbf{S}_0^s} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s) + \nabla_{\mathbf{S}_0^s} L$$
$$\nabla_{\mathbf{X}_0} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s)$$

These gradients can be solved using linearized ODEs!!!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{S=1\\ \phi_i, \phi_i + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

s.t.
$$\begin{cases} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{cases} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

• Chain rule:

$$\nabla_{\mathbf{S}_0^s} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s) + \nabla_{\mathbf{S}_0^s} L$$
$$\nabla_{\mathbf{X}_0} E = \frac{1}{\sigma^2} \nabla_{\mathbf{S}_0^s} X_s(1)^T (X_s(1) - Y_s)$$

These gradients can be solved using linearized ODEs!!!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Atlas with images

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i \in \mathcal{O}_i}^{N} & \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\} \\ \\ \xrightarrow{\mathcal{O}_i = \\ \phi_i \cdot \mathcal{O} + \varepsilon_i}^{\mathcal{O}_i = } & s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right. \end{array}$$

₹ 990

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_s}^{N} \int_{\sigma_s} \int_{\sigma_s}$$

,

₹ 990

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i \in \mathcal{O}_i \in \sigma_i}^{\mathcal{O}_i} & \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\} \\ \\ \vdots \\ \mathbf{S}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \\ \end{array} \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \end{array}$$

,

₹ 990

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{\sigma_s \\ \sigma_s \\ \sigma_s$$

,

₹ 990

,

æ

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i \to \sigma_i}^{N} \int_{\sigma_i}^{\infty} \int_{\sigma_i}^{\infty} \int_{\sigma_i}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\} \\ \stackrel{\mathcal{O}_i = }{\underset{\phi_i, \mathcal{O} + \varepsilon_i}{\sigma_i = \sigma_i}} \\ s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{\mathbf{X}}_s(t) = G(\mathbf{S}_s(t), \mathbf{X}_s(t)) \\ \mathbf{X}_s(0) = X_0 \end{array} \right.$$

,

₹ 990

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{\sigma_s \\ \sigma_s \\ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

s.t.
$$\begin{cases} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{cases} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\theta(1) = \frac{1}{\sigma^2}(X(1) - Y)$$

ヘロト 人間 とくほとくほとう

,

₹ 990

.

ヘロト 人間 とくほとくほとう

Group-wise statistics

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{\sigma_s \\ \sigma_s \\ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

s.t.
$$\begin{cases} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{cases} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{\mathcal{S}(t)} G^{\mathsf{T}} \theta(t), \quad \theta(1) = \frac{1}{\sigma^2} (X(1) - Y)$$

₹ 990

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \\ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

s.t.
$$\begin{cases} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{cases} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$

ヘロト 人間 とくほとく ほとう

₹ 990

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1\\ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

s.t.
$$\begin{cases} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{cases} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{\mathcal{S}(t)} G^T \theta(t), \quad \theta(1) = \frac{1}{\sigma^2} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^T \theta(t) + dF^T \xi(t), \quad \xi(1) = 0$$

$$abla_{S_0}E = \xi(0) \qquad
abla_{X_0}E = \theta(0)$$

- Simultaneous optimization of template shape *and* registrations!
- at no additional cost! < _ > < _ >

э

demo

Stanley Durrleman Statistical Anatomical Models

2 missing pieces:

- selection of control points
- currents

æ
$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \\ \phi_i, \mathcal{O} + \varepsilon_i}}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^T \theta(t), \quad \theta(1) = \frac{1}{\sigma^2} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^T \theta(t) + dF^T \xi(t), \quad \xi(1) = 0$$
$$\boxed{\nabla_{S_0} E = \xi(0) \qquad \nabla_{X_0} E = \theta(0)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$E(X_{0}, \mathbf{S}_{0}^{1}, \dots, \mathbf{S}_{0}^{N}) = \sum_{\substack{s=1 \\ \phi_{i}, \vec{O} + \varepsilon_{i}}}^{N} \left\{ \frac{1}{2\sigma^{2}} \|X_{s}(1) - Y_{s}\|^{2} + L(\mathbf{S}_{0}^{s}) + \gamma \sum_{k=1}^{N_{cp}} \|\alpha_{0,k}^{s}\| \right\}$$

$$S.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{array} \right\}$$

$$abla_{\mathcal{S}_0}E = \xi(0) \qquad
abla_{X_0}E = \theta(0)$$

L^1 norm as a surrogate to model selection

• Optimized using FISTA [Beck&Teboulle'09]

zero-out momenta small in magnitude

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$abla_{\mathbf{c}_0} E = \xi^c(\mathbf{0}) \quad
abla_{\mathbf{\alpha}_0} E = \xi^{\alpha}(\mathbf{0}) \qquad
abla_{X_0} E = \theta(\mathbf{0})$$

 L^1 norm as a surrogate to model selection

• Optimized using FISTA [Beck&Teboulle'09]

$$\alpha_{\mathbf{0}}^{\textit{new}} \leftarrow \left(\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})\right) ST_{\gamma\tau} \left(\frac{\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})}{\left\|\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})\right\|}\right)$$

zero-out momenta small in magnitude

< D > < P</p>

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \ \phi_i, \mathcal{O} + \varepsilon_i}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$abla_{\mathbf{c}_0} E = \xi^c(\mathbf{0}) \quad
abla_{\mathbf{\alpha}_0} E = \xi^{\alpha}(\mathbf{0}) \qquad
abla_{X_0} E = \theta(\mathbf{0})$$

- L^1 norm as a surrogate to model selection
 - Optimized using FISTA [Beck&Teboulle'09]

$$\alpha_{\mathbf{0}}^{\textit{new}} \leftarrow \left(\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})\right) ST_{\gamma\tau} \left(\frac{\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})}{\left\|\alpha_{\mathbf{0}}^{\textit{old}} - \tau\xi^{\alpha}(\mathbf{0})\right\|}\right)$$

• zero-out momenta small in magnitude

Outline

Sparse adaptive parameterization of diffeomorphisms

- 2 Atlas construction with landmark points
- 3 Atlas construction with currents
 - 4 Atlas construction with images

・ 回 ト ・ ヨ ト ・ ヨ ト

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\}$$

$$S.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

Landmark case:

- discrepancy measure: $||X_s(1) Y_s||^2$
- driving force: $\nabla_{X_s(1)} \|X_s(1) Y_s\|^2 = 2(X_s(1) Y_s)$
- Needs point correspondence: hard to find (fiber bundles)
- Currents: an alternative for both curves and surfaces!

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\}$$

$$S.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

Landmark case:

- discrepancy measure: $||X_s(1) Y_s||^2$
- driving force: $\nabla_{X_{s}(1)} \|X_{s}(1) Y_{s}\|^{2} = 2(X_{s}(1) Y_{s})$
- Needs point correspondence: hard to find (fiber bundles)

Currents: an alternative for both curves and surfaces!

・ロン・(理)・・ヨン・ヨン 三臣

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

- Landmark case:
 - discrepancy measure: $||X_s(1) Y_s||^2$
 - driving force: $\nabla_{X_{s}(1)} \|X_{s}(1) Y_{s}\|^{2} = 2(X_{s}(1) Y_{s})$
- Needs point correspondence: hard to find (fiber bundles)
- Currents: an alternative for both curves and surfaces!

1

ヘロト ヘ団ト ヘヨト ヘヨト

Shapes as currents: an object that integrates vector fields

 $F(\omega) = \sum_{i} \int_{F_{i}} \omega(x)^{t} \tau_{i}(x) dx \qquad S(\omega) = \int_{S} \omega(x)^{t} n(x) d\sigma(x)$

- Currents integrate vector fields: W (*test* space) $\longrightarrow \mathbb{R}$
- Vector space: addition = union, sign = orientation
- Distance without point correspondence:

-
$$d(\mathcal{O},\mathcal{O}') = \sup_{\|\omega\|_W \le 1} |\mathcal{O}(\omega) - \mathcal{O}'(\omega)|$$

- no point, no line correspondence
- robust to line interruption

[Vaillant and Glaunès IPMI'05, Glaunès PhD'06]

э

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$T = \sum_{i=1}^{\infty} \delta_{x_n}^{\tau n} \quad ||T||^2 = \int_T \int_T \tau(x)^t K(x,y) \tau(y) dx dy$$

Atlas with landmarks

Atlas with currents

Atlas with images

Numerical tools for currents

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

<ロ> (四) (四) (三) (三) (三)

Atlas with landmarks

Atlas with currents

Atlas with images

Numerical tools for currents

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=<

Atlas with landmarks

Atlas with currents

Numerical tools for currents

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

ヘロト 人間 とくほとくほとう

	$T = \sum_{i=1}^{\infty} \delta_{x_n}^{\tau_n} \ T\ $	$^{2}=\int_{T}\int_{T} au(x)^{t}K(x,y) au(y)dxdy$	
	$T \sim \sum_{i=1}^{N} \delta_{x_n}^{\tau_n} T $	$^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} \tau_{i}^{t} \mathcal{K}(\mathbf{x}_{i}, \mathbf{x}_{j}) \tau_{j}$	
$T \sim \sum_{i \in \Lambda} \delta_{x_{n}}^{\tau_{n}} \ T\ ^{2} = \tau^{t}(\mathbf{K} * \tau)$			
	double sum	grid	
complexity	$\mathcal{O}(N^2)$	$\mathcal{O}(N + N_{grid} \log(N_{grid}))$	
approx. error	$\mathcal{O}(\max \tau_i)$	${\cal O}(\Delta^2/\lambda_W^2)$	

æ

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

• discrepancy measure: $\|T_1 - T_2\|^2 = \|T_1\|^2 + \|T_2\|^2 - 2\langle T_1, T_2 \rangle$ • driving force needs $\nabla_{x_k} \|T\|^2 = 2\left(\sum_{i=1}^N \nabla_{x_k} K(x_k, x_i) \tau_i^T\right) \tau_k$ • all computed with FFTs!

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

• discrepancy measure: $\|T_1 - T_2\|^2 = \|T_1\|^2 + \|T_2\|^2 - 2\langle T_1, T_2 \rangle$

• driving force needs $\nabla_{x_k} \|T\|^2 = 2 \left(\sum_{i=1}^N \nabla_{x_k} \mathcal{K}(x_k, x_i) \tau_i^T \right) \tau_k$

all computed with FFTs!

"Regularized"
$$L^2$$
-metric: $W = L^2 * K$
K Gaussian

• discrepancy measure: $\|T_1 - T_2\|^2 = \|T_1\|^2 + \|T_2\|^2 - 2\langle T_1, T_2 \rangle$

• driving force needs $\nabla_{x_k} \|T\|^2 = 2\left(\sum_{i=1}^N \nabla_{x_k} K(x_k, x_i) \tau_i^T\right) \tau_k$

all computed with FFTs!

Approximation of currents at different resolutions

 $W = L^2 * K$, K Gaussian, Kernel bandwidth = resolution

3

・ロト ・ 理 ト ・ ヨ ト ・

(日)

Approximation of currents at different resolutions

 $W = L^2 * K$, K Gaussian, Kernel bandwidth = resolution

 $\lambda_{\text{W}}=3\text{mm},$ compression ratio: 85%, approx. error <5% variance

- Adjust the shape decomposition to the resolution
- via the search of adapted basis
- Iterative algorithm: matching pursuit
- proven to converge to the original currents

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \ \phi_j, O + \varepsilon_j}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\|\alpha_{0,k}^s\right\| \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$
$$\boxed{\nabla_{S_{0}} E = \xi(0) \quad \nabla_{X_{0}} E = \theta(0)}$$

• Metric on currents to drive the atlas construction

Only the positions of the vertices of the mesh are optimized

The topology of the mesh is preserved during optimization!

$$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{\substack{s=1 \ \phi_j, O + \varepsilon_j}}^N \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\|\alpha_{0,k}^s\right\| \right\}$$

$$s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} (X(1) - Y)$$
$$\dot{\xi}(t) = \partial_{X(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$
$$\boxed{\nabla_{S_{0}} E = \xi(0) \qquad \nabla_{X_{0}} E = \theta(0)}$$

• Metric on currents to drive the atlas construction

Only the positions of the vertices of the mesh are optimized

The topology of the mesh is preserved during optimization!

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i \in \sigma_i}^{N} \left\{ \frac{1}{2\sigma^2} \| X_s(1) - Y_s \|_{W^*}^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\} \\ \xrightarrow{\sigma_i = \\ \phi_i \cdot O + \varepsilon_i}^{\mathcal{O}_i = } s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} \nabla_{X_{s}(1)} \|X_{s}(1) - Y_{s}\|_{W^{*}}^{2}$$
$$\dot{\xi}(t) = \partial_{X(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$
$$\boxed{\nabla_{S_{0}} E = \xi(0) \quad \nabla_{X_{0}} E = \theta(0)}$$

• Metric on currents to drive the atlas construction

Only the positions of the vertices of the mesh are optimized

The topology of the mesh is preserved during optimization!

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i \in \sigma_i}^{N} \left\{ \frac{1}{2\sigma^2} \| X_s(1) - Y_s \|_{W^*}^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\} \\ \xrightarrow{\mathcal{O}_i = \\ \phi_i, \mathcal{O} + \varepsilon_i}^{\mathcal{O}_i = } S.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

$$\dot{\theta}(t) = \partial_{S(t)} G^{T} \theta(t), \quad \theta(1) = \frac{1}{\sigma^{2}} \nabla_{X_{s}(1)} \|X_{s}(1) - Y_{s}\|_{W^{*}}^{2}$$
$$\dot{\xi}(t) = \partial_{x(t)} G^{T} \theta(t) + dF^{T} \xi(t), \quad \xi(1) = 0$$
$$\nabla_{S_{0}} E = \xi(0) \quad \nabla_{X_{0}} E = \theta(0)$$

- Metric on currents to drive the atlas construction
- Only the positions of the vertices of the mesh are optimized
- The topology of the mesh is preserved during optimization!

ъ

ヘロト 人間 とくほとくほとう

Down's syndrome study

8 controls + 8 Down's syndrome patients

Deformation momenta to 2 Down's syndrome patients

Deformation momenta to 2 control subjects

Stanley Durrleman

Statistical Anatomical Models

Down's syndrome study

8 controls + 8 Down's syndrome patients

프 🕨 🗆 프

Down's syndrome study

8 controls + 8 Down's syndrome patients Comparison with Hypertemplate [Ma et al., 2010]

- constrained to be in the orbit of a given shape
- bias by the choice of the initial subject
- alternated minimization

Statistics on deformations

- Output of the atlas:
 - control points: $\mathbf{c} = \{c_k\}$
 - momenta for each subject: $\alpha^1, \ldots, \alpha^N$ ($\alpha^i = \{\alpha^i_k\}$)
- Finite-dimensional RKHS with metric $\mathbf{K} = (K(c_i, c_j))_{i,j}$:
 - $\langle \alpha^s, \alpha^u \rangle = \alpha^s \mathbf{K} \alpha^u$
- Fit a Gaussian distribution on the momenta set.
- Enables:
 - Principal Component Analysis (eigenmodes of $(\langle \alpha^i, \alpha^j \rangle)_{i,i}$)
 - Maximum-Likelihood Classification
 - Cross-validation

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

Down's syndrome study

8 controls + 8 Down's syndrome patients

1 template for all, momenta pooled in 2 groups

8 controls + 8 Down's syndrome patients

Down's syndrome study

8 controls + 8 Down's syndrome patients

Classification based on initial momenta (leave-2-out):

- False Positive Ratio: 3.1%
- True Positive Ratio: 87.5%

Statistical analysis of fiber tracts

6 subjects - 5 tracts per subjects

Statistical analysis of fiber tracts

(a) One subject among 6

(b) template

(b) template (occipital view)

(c) template (lateral view)

Statistical analysis of fiber tracts

texture mode at $-\sigma$ $\bar{B} - m_{\varepsilon}$ template *B* texture mode at $+\sigma$ $\bar{B} + m_{\varepsilon}$
Statistical analysis of fiber tracts

Outline

Sparse adaptive parameterization of diffeomorphisms

- 2 Atlas construction with landmark points
- 3 Atlas construction with currents
- 4 Atlas construction with images

・ 回 ト ・ ヨ ト ・ ヨ ト

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_s}^{N} \int_{\sigma_s} \sum_{\sigma_s}^{N} \int_{\sigma_s} \left\{ \frac{1}{2\sigma^2} \|X_s(1) - Y_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\| \alpha_{0,k}^s \right\| \right\} \\ \xrightarrow{\sigma_i = \\ \phi_i, \mathcal{O} + \varepsilon_i} \\ \mathbf{S}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \\ \end{array} \left\{ \begin{array}{l} \dot{X}_s(t) = G(\mathbf{S}_s(t), X_s(t)) \\ X_s(0) = X_0 \end{array} \right\}$$

æ

ヘロト 人間 とくほとくほとう

	$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - Y_s\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{\text{cp}}} \left\ \alpha_{0,k}^s \right\ \right\}$
$ \begin{array}{c} \mathcal{O}_{3} & \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

• Landmark case:
$$\mathcal{O}_s = Y_s = \{y_{s,k}\}$$

• Template of the form:
$$\mathcal{O} = X_0 = \{x_{0,k}\}$$

• $\phi X_0 = \{\phi(x_0, j)\}$ solution of:

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} \mathcal{K}(x_k(t), c_k(t)) \alpha_k(t) = \mathcal{G}(\mathbf{S}(t), x_k(t))$$

$$\phi \cdot X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = \mathcal{G}(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

$$\begin{array}{l} E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_s}^{N} \int_{\sigma_s} \mathbf{v}_{\sigma_s} \mathbf{v}$$

- Landmark case: $\mathcal{O}_s = Y_s = \{y_{s,k}\}$
 - Template of the form: $\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$
 - $\phi.X_0 = \{\phi(x_{0,k})\}$ solution of: $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$ $\phi.X_0 = X(1)$ with $\begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$
 - Sum of squared differences: $||X_{s}(1) Y_{s}||_{\mathbb{R}^{N}}^{2}$, $\nabla_{X(1)} ||X(1) - Y||^{2} = 2(X(1) - Y)$

३ । ≣ • १९०

	$E(X_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - \mathbf{I}_s\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\ \alpha_{0,k}^s\right\ \right\}$
$ \begin{array}{c} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $O_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$
 - $\phi.X_0 = \{\phi(x_{0,k})\}$ solution of: $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$ $\phi.X_0 = X(1)$ with $\begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$
 - Sum of squared differences: $||X_s(1) Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

⇒ ≥ <000</p>

	$E(\boldsymbol{X}_{0}, \boldsymbol{S}_{0}^{1}, \dots, \boldsymbol{S}_{0}^{N}) = \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^{2}} \ \boldsymbol{X}_{s}(1) - \boldsymbol{I}_{s}\ ^{2} + L(\boldsymbol{S}_{0}^{s}) + \gamma \sum_{k=1}^{N_{cp}} \left\ \boldsymbol{\alpha}_{0,k}^{s} \right\ \right\}$
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $O_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\overline{\mathcal{O}} = X_0 = \{x_{0,k}\}$

$$\phi.X_0 = \{\phi(x_{0,k})\} \text{ solution of:}$$

$$\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} K(x_k(t), c_k(t))\alpha_k(t) = G(\mathbf{S}(t), x_k(t))$$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

	$ \begin{split} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \left\ X_s(1) - I_s \right\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{\text{cp}}} \left\ \alpha_{0,k}^s \right\ \right\} \end{split} $
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $O_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\overline{\mathcal{O}} = I_0$, an image

•
$$\phi.X_0 = \{\phi(x_{0,k})\}$$
 solution of:
 $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$
 $\phi.X_0 = X(1)$ with $\begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$

• Sum of squared differences: $||X_s(1) - Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

⇒ ≥ ∽<</p>

	$ \begin{aligned} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\ \alpha_{0,k}^s \right\ \right\} \end{aligned} $
$ \begin{array}{l} \mathcal{O}_{3} & \mathcal{O}_{2} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - ϕ . $X_0 = {\phi(x_{0,k})}$ solution of:
 - $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} \mathcal{K}(x_k(t), c_k(t)) \alpha_k(t) = \mathcal{G}(\mathbf{S}(t), x_k(t))$ $\phi X_0 = \mathcal{X}(1) \text{ with } \begin{cases} \dot{\mathcal{X}}(t) = \mathcal{G}(\mathbf{S}(t), \mathcal{X}(t)) \\ \mathcal{X}(0) = \mathcal{X}_0 \end{cases}$
 - Sum of squared differences: $||X_s(1) Y_s||^2_{\mathbb{R}^N}$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

३। <u>३</u> १९९७

$O_{i} = O_{i} = \phi_{i} \cdot O + \varepsilon_{i}$	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $O_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of:
 - $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{op}} \mathcal{K}(x_k(t), c_k(t)) \alpha_k(t) = \mathcal{G}(\mathbf{S}(t), x_k(t))$ $\phi X_0 = X(1) \text{ with } \begin{cases} \dot{X}(t) = \mathcal{G}(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$
 - Sum of squared differences: $\|X_s(1) Y_s\|_{\mathbb{R}^N}^2$, $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

	$E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - I_s\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \ \alpha_{0,k}^s\ \right\}$
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\overline{\mathcal{O}} = I_0$, an image

 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{x}_k(t) = v_t(x_k(t)) = \sum_{k=1}^{N_{cp}} K(x_k(t), c_k(t)) \alpha_k(t) = G(\mathbf{S}(t), x_k(t))$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} X(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

⇒ ≥ <000</p>

	$E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - I_s\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \ \alpha_{0,k}^s\ \right\}$
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\overline{\mathcal{O}} = I_0$, an image

 - $\phi.I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} K(y_k(t), c_k(t))\alpha_k(t)$

$$\phi.X_0 = X(1) \text{ with } \begin{cases} X(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$$

Sum of squared differences: $||X_s(1) - Y_s||_{\mathbb{D}^N}^2$ $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

• Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$

- Template of the form: $\overline{\mathcal{O}} = I_0$, an image
- $\phi \cdot l_0 = l_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} \mathcal{K}(y_k(t), c_k(t)) \alpha_k(t)$ $\phi \cdot X_0 = X(1)$ with $\begin{cases} \dot{X}(t) = G(\mathbf{S}(t), X(t)) \\ X(0) = X_0 \end{cases}$

• Sum of squared differences: $\|X_{\mathfrak{s}}(1) - Y_{\mathfrak{s}}\|_{\mathbb{R}^{N}}^{2}$, $\nabla_{X(1)} \|X(1) - Y\|^{2} = 2(X(1) - Y)$

	$E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - I_s\ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \ \alpha_{0,k}^s\ \right\}$
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{X}_{s}(t) = G(\mathbf{S}_{s}(t), X_{s}(t)) \\ X_{s}(0) = X_{0} \end{cases}$

• Image case: $O_s = I_s$ arrays, domain discretization $\{y_k\}$

- Template of the form: $\bar{\mathcal{O}} = I_0$, an image
- $\phi \cdot l_0 = l_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} K(y_k(t), c_k(t)) \alpha_k(t)$

 $\phi.I_0 = I_0(Y(0)) \text{ with } \begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \mathrm{Id} \end{cases}$

• Sum of squared differences: $\|X_{s}(1) - Y_{s}\|_{\mathbb{R}^{N}}^{2}$, $\nabla_{X(1)} \|X(1) - Y\|^{2} = 2(X(1) - Y)$

	$ \begin{aligned} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ X_s(1) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{\text{cp}}} \left\ \alpha_{0,k}^s \right\ \right\} \end{aligned} $
$ \begin{array}{c} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = Id \end{cases}$

• Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$

- Template of the form: $\bar{\mathcal{O}} = I_0$, an image
- $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} K(y_k(t), c_k(t)) \alpha_k(t)$
 - $\phi I_0 = I_0(Y(0)) \text{ with } \begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \text{Id} \end{cases}$
- Sum of squared differences: $\|X_s(1) Y_s\|_{\mathbb{R}^N}^2$, $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

	$E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ \mathbf{X}_s(1) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\ \alpha_{0,k}^s \right\ \right\}$
$ \begin{array}{c} \mathcal{O}_{3} & \mathcal{O}_{2} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = Id \end{cases}$

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} \mathcal{K}(y_k(t), c_k(t)) \alpha_k(t)$ $\phi \cdot I_0 = I_0(Y(0))$ with $\begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \mathrm{Id} \end{cases}$
 - Sum of squared differences: $\|X_s(1) Y_s\|_{\mathbb{R}^N}^2$, $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

	$E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ I_0(\mathbf{Y}_s(0)) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \ \alpha_{0,k}^s \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	× }
$ \begin{array}{cc} \mathcal{O}_{3} & & \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = Id \end{cases}$)

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} \mathcal{K}(y_k(t), c_k(t)) \alpha_k(t)$ $\phi \cdot I_0 = I_0(Y(0))$ with $\begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \mathrm{Id} \end{cases}$
 - Sum of squared differences: $\|X_s(1) Y_s\|_{\mathbb{R}^N}^2$, $\nabla_{X(1)} \|X(1) - Y\|^2 = 2(X(1) - Y)$

	$ \begin{split} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ I_0(Y_s(0)) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\ \alpha_{0, k}^s \right\ \right. \end{split} $	k∥}
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = Id \end{cases}$))

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} \mathcal{K}(y_k(t), c_k(t)) \alpha_k(t)$ $\phi \cdot I_0 = I_0(Y(0))$ with $\begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \mathrm{Id} \end{cases}$
 - Sum of squared differences: $||X_s(1) Y_s||_{\mathbb{R}^N}^2$, $\nabla_{X(1)} ||X(1) - Y||^2 = 2(X(1) - Y)$

	$ \begin{split} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) &= \\ \sum_{s=1}^N \left\{ \frac{1}{2\sigma^2} \ I_0(Y_s(0)) - I_s \ ^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\ \alpha_{0, k}^s \right\ \right. \end{split} $	k∥}
$ \begin{array}{l} \mathcal{O}_{3} \\ \mathcal{O}_{j} = \\ \phi_{j} \cdot \mathcal{O} + \varepsilon_{j} \end{array} $	$s.t. \begin{cases} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{cases} \begin{cases} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = Id \end{cases}$))

- Image case: $\mathcal{O}_s = I_s$ arrays, domain discretization $\{y_k\}$
 - Template of the form: $\bar{\mathcal{O}} = I_0$, an image
 - $\phi \cdot I_0 = I_0 \circ \phi^{-1}$ with $\phi^{-1}(y_k)$ solution of: $\dot{y}_k(t) = -v_t(y_k(t)) = -\sum_{k=1}^{N_{cp}} \mathcal{K}(y_k(t), c_k(t)) \alpha_k(t)$ $\phi \cdot I_0 = I_0(Y(0))$ with $\begin{cases} \dot{Y}(t) = -G(\mathbf{S}(t), Y(t)) \\ Y(1) = \mathrm{Id} \end{cases}$
 - Sum of squared differences: $\|I_0(Y_s(0)) I_s\|_{L^2}^2$, $\nabla_{Y_s(0)} \|I_0(Y_s(0)) - I_s\|^2 = 2(I_0(Y_s(0)) - I_s) \nabla_{Y_s(0)} I_0$,

$$\begin{array}{l} E(I_{0}, \mathbf{S}_{0}^{1}, \dots, \mathbf{S}_{0}^{N}) = \\ \sum_{\sigma_{s}}^{N} \int_{\sigma_{s}}^{1} \left\{ \frac{1}{2\sigma^{2}} \|I_{0}(Y_{s}(0)) - I_{s}\|^{2} + L(\mathbf{S}_{0}^{s}) + \gamma \sum_{k=1}^{N_{cp}} \left\|\alpha_{0,k}^{s}\right\| \right\} \\ \xrightarrow{\mathcal{O}_{s}}_{\phi_{i},\mathcal{O}+\varepsilon_{i}} & s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_{s}(t) = F(\mathbf{S}_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{array} \right\} \left\{ \begin{array}{l} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ Y_{s}(0) = \mathrm{Id} \end{array} \right\}$$

æ

<ロト <回 > < 注 > < 注 > 、

$$\begin{array}{l} E(I_0, \mathbf{S}_0^1, \dots, \mathbf{S}_0^N) = \\ \sum_{\sigma_i}^{N} \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^2} \|I_0(Y_s(0)) - I_s\|^2 + L(\mathbf{S}_0^s) + \gamma \sum_{k=1}^{N_{cp}} \left\|\alpha_{0,k}^s\right\| \right\} \\ \xrightarrow{\sigma_i}^{\sigma_i} \sum_{\phi_i, \bar{O} + \varepsilon_i}^{\sigma_i} s.t. \left\{ \begin{array}{l} \dot{\mathbf{S}}_s(t) = F(\mathbf{S}_s(t)) \\ \mathbf{S}_s(0) = \mathbf{S}_0^s \end{array} \right\} \left\{ \begin{array}{l} \dot{Y}_s(t) = -G(\mathbf{S}_s(t), Y_s(t)) \\ Y_s(0) = \mathrm{Id} \end{array} \right\}$$

• w/o L^1 prior:

$$\dot{\eta}(t) = -\partial_{\mathcal{S}(t)} \mathbf{G}^{\mathsf{T}} \eta(t), \quad \eta(0) = \frac{1}{\sigma^2} (I_0(\mathbf{Y}_{\mathsf{s}}(0)) - I_{\mathsf{s}}) \nabla I_0$$
$$\dot{\xi}(t) = -\partial_{\mathbf{Y}(t)} \mathbf{G}^{\mathsf{T}} \eta(t) - \mathbf{d} \mathbf{F}^{\mathsf{T}} \xi(t), \quad \xi(1) = 0$$

$$\nabla_{\mathcal{S}_0} E = \xi(\mathbf{0}) + \nabla_{\mathcal{S}_0} L$$

• with *L*¹ prior: gradient soft-thresholded

э

★ Ξ → ★ Ξ →

< 🗇

$$\begin{array}{l} E(I_{0}, \mathbf{S}_{0}^{1}, \dots, \mathbf{S}_{0}^{N}) = \\ \sum_{\sigma_{0}}^{N} \int_{\sigma_{0}}^{1} \sum_{s=1}^{N} \left\{ \frac{1}{2\sigma^{2}} \|I_{0}(Y_{s}(0)) - I_{s}\|^{2} + L(\mathbf{S}_{0}^{s}) + \gamma \sum_{k=1}^{N_{cp}} \left\|\alpha_{0,k}^{s}\right\| \right\} \\ \xrightarrow{\sigma_{1}}{} \int_{\phi_{1}, \tilde{O} + \varepsilon_{1}}^{\sigma_{1}} S_{s}(t) = F(\mathbf{S}_{s}(t)) \left\{ \begin{array}{c} \dot{Y}_{s}(t) = -G(\mathbf{S}_{s}(t), Y_{s}(t)) \\ \mathbf{S}_{s}(0) = \mathbf{S}_{0}^{s} \end{array} \right\}$$

• w/o L^1 prior:

$$\dot{\eta}(t) = -\partial_{\mathcal{S}(t)} \mathbf{G}^{\mathsf{T}} \eta(t), \quad \eta(0) = \frac{1}{\sigma^2} (I_0(\mathbf{Y}_{\mathsf{S}}(0)) - I_{\mathsf{S}}) \nabla I_0$$
$$\dot{\xi}(t) = -\partial_{\mathbf{Y}(t)} \mathbf{G}^{\mathsf{T}} \eta(t) - \mathbf{d} \mathbf{F}^{\mathsf{T}} \xi(t), \quad \xi(1) = 0$$

$$\nabla_{\mathcal{S}_0} E = \xi(\mathbf{0}) + \nabla_{\mathcal{S}_0} L$$

• with L¹ prior: gradient soft-thresholded

ъ

프 에 에 프 에 다

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$

≣ ▶

≣ ▶

≣ ▶

Atlas construction: optimization

Single gradient descent:

- template image
- o position of CP
- number of CP
- momenta

< < >> < </>

Image size=128², $\sigma_V = 25$, $\sigma^2 = 0.005$, $\gamma = 540$ 8 estimated control points! Introduction

Deformation model

Atlas with landmarks

Atlas with current

Atlas with images

Atlas from the US postal database (20 training images)

 $\gamma =$ 0; 36 active CPs

 $\gamma =$ 400; 27 active CPs

 $\gamma =$ 800; 13 active CPs

 $\gamma =$ 700; 21 active CPs

 $\gamma =$ 400; 27 active CPs

 $\gamma =$ 800; 13 active CPs

Introduction

Deformation model

Atlas with landmarks

Atlas with current

Atlas with images

Atlas from the US postal database (20 training images)

 $\gamma =$ 0; 36 active CPs

 $\gamma=$ 200; 27 active CPs

 $\gamma=$ 400; 18 active CPs

 $\gamma =$ 0; 36 active CPs

 $\gamma=$ 200; 27 active CPs


```
\gamma= 400; 18 active CPs
```


э

→ < Ξ →</p>

э

э

э

(E)

э

(E)

э

코 에 제 코 어

э

э

► < E >

э

(E)

э

э

A E > A E >

< < >> < </>

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Conclusion

- A generic method for atlas construction:
 - images, points, surface meshes, fiber bundles, etc..
 - control over the model complexity (template + variability)
 - single gradient descent for:
 - template estimation
 - best parameterization of shape variability
 - template-to-shape correspondence
- Useful for:
 - Characterization of atypical anatomical configuration
 - Classification, clustering
 - Regression against clinical or genetic variables

Conclusion

Warm thanks to:

- S. Allassonnière (X)
- N. Ayache (INRIA)
- O. Colliot (ICM)
- G. Gerig (SCI Institute)

- S. Joshi (SCI Institute)
- X. Pennec (INRIA)
- M. Prastawa (SCI Institute)
- A. Trouvé (ENS Cachan)

< < >> < </>

★ 문 ► ★ 문 ►