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Analysis of Sound Mixture	


•  We aim at performing 	



o  Auditory Scene Analysis	



o  Computationally	



o  But like human do	



o  Humans focus on one source	



•  Task	



o  Source separation ?	



o  Source classification ?	



o  Something in-between ?	



o  What then ?	
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Human separate, really ?	


•  It seems so:	
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(Fig. from Mesgarani Nature’12	
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Computational ASA (CASA)	


•  How do people analyze sound mixtures ?	



o  break mixture into small elements (in time-freq)	



o  elements are grouped in to sources using cues	



o  sources have aggregate attributes	
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1. Frequency Analysis (FA)	


•  Fourier based analysis	



o  The Short-Term Fourier Transform (STFT)	



o  By far the most widely used	
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(Fig. from Aphex Twin)	
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1. Frequency Analysis (FA)	


•  Perception inspired front-ends	



o  Like the Correlogram	



o  Designed to imitate what is 
known about the physiology of 
the inner ear	



o  Usually composed of	



o  A cascade of filterbanks	



o  Interleaved with non linear 
operators	
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(Fig. from [McDermott11])	
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How to use FA for grouping ?	


•  Source Separation: a masking problem	



•  Goal: find a mask M that retrieves one source when used to 
filter a given time-frequency representation.	



•  What about the phase ?	



o  Keep the one of the mixture	
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 º  is the Hadamard (element-wise) product	
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The Ideal Binary Mask (IBM)	


•  The IBM	



o  Is an “oracle” separation method, that is we know something (everything ?) we 
need for separating the sources.	



•  It provides 	



o  An upper bound for masking based approaches	



o  A way to understand issues with the front end	



o  Time/frequency resolution tradeoff	



o  Issues with the phase	
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Demonstration of the IBM	



•  Utterance: “That noise problem grows more annoying each day”	



•  Interference: Crowd noise with music (0 SNR)	
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(Fig. from [Hanse 04])	
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2. Cues (Binaural Case)	


•  Have spatial location cues	



o  Termed Interchannel or Interaural	



o  Phase and Intensity Differences: IPD and IID 	



o  Warning: profesionaly mastered audio does not preserve them.	



	



	



	



•  DUET (Degenerate Unmixing Estimation Technique) 	


	

 	

[Yilmaz&Rickard04]	


o  Histogram of IPD and IID	



o  Binary Mask created by selecting bins around histogram peaks.	



(Fig. from [Yilmaz&Rickard04])	


[Yilmaz&Rickard04]	

 Ö. Yilmaz and S. Rickard. Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Trans. on Signal Processing. Vol. 52(7), July 2004	
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2. Cues (Binaural Case)	


•  Human-assisted time-frequency masking [Vinyes06]	



o  Human-assisted selection of the time-frequency bins out of the DUET-
like histogram for creating the unmixing mask	



o  Implementation as a VST plugin (“Audio Scanner”)	



[Vinyes06]	


	



M. Vinyes, J. Bonada and A. Loscos. Demixing Commercial Music Productions via Human-Assisted Time-Frequency 
Masking. 120th AES convention, Paris, France, 2006.	
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2. Cues (Monaural case)	


•  Most ASA cues can be considered	



•  But the most important cue is pitch	
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Common Offset	
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 Spectro-temporal	
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Harmonic relation	



local source fragments	



(Fig. from [Barker 11])	
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2. Cues (Monaural case)	
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Filterbank output	



`Ideal’ segmentation	



Pitch candidates 	



Pitch tracking	



Harmonic fragments	



(Fig. from [Barker 11])	





Mathieu Lagrange.                                          Blind Source Separation.	



3. Grouping	


•  Bottom up approaches	



o  Statistical (Blind) approaches (NMF)	



o  Clustering approaches based on ASA cues (CASA)	



•  Top down approaches	



o  Model based approach	



o  Dictionary based approach	



•  Combination between the two	



o  Model based approach	
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Nonnegative Matrix Factorization (NMF)	


•  Given a nonnegative matrix V of dimensions FxN, NMF is the 

problem of finding a factorization	



•  where W and H are nonnegative matrices of dimensions FxK 
and KxN, respectively.	


	



•  Use for transcription:	



o  P. Smaragdis and J.C. Brown. Non-Negative Matrix Factorization for Polyphonic Music 
Transcription. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 
(WASPAA), New Paltz, USA, 2003.	



•  Use for separation:	



o  B. Wang and M. D. Plumbley. Musical Audio Stream Separation by Non-Negative Matrix 
Factorization. Proc. UK Digital Music Research Network (DMRN) Summer Conf., 2005.	
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NMF	


•  Along VQ, PCA or ICA, NMF provides an unsupervised linear 

representation of data	
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NMF for Vision	


•  By representing signals as a sum purely additive, non- negative 

sources, we get a parts-based representation [Lee’99]	
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[Lee’99]	

 Lee and Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, 1999, 41	
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Update Rules for NMF	


•  Multiplicative (Lee & al)	



o  Minimize a cost function with positivity constraints	



o  Update Rules	



o  Theorem: under the update rules, the cost function is 	



o  Non increasing	



o  Invariant iif @ stationary point	
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[Lee’01]	

 Lee and Seung, Algorithms for Non-negativeMatrix Factorization, Nips, 2001	
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ICA on spectrograms	
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(Figs from Virtanen)	
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NMF on spectrograms	
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(Figs from Virtanen)	
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CASA	


•  How can we use the different cues ?	



o  Earlier approach: consider the cues in sequence.	



o  Sequentiality is brittle due to the propagation of errors	



•  All at once	
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Top down approaches	


•  Prior knowledge can be represented as an abstract model of 

some events of interest	



o  Recognition:	



•  Example: GMM models of spoken digits like in speech recognition	



•  In this case, the background can be dealt with numerous approaches	



•  Noisy training	



•  Multi-condition training	



o  Separation:	



•  Example: separation of the singing voice in a music signal	



•  Need model for 	



•  the singing voice	



•  The music	
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(Fig. from [Barker 11])	
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GMM – Based Source Separation	


•  Given a mixture	



•  Represented in the spectral domain	



•  Following simple algebra	
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(Fig. from [Ozerov 05])	
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GMM – Based Source Separation	
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(Fig. from [Ozerov 05])	
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GMM – Based Source Separation	
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(Fig. from [Ozerov 05])	
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Combining Bottom-up and Top-Down	


•  Combining bottom up and top down approaches is 	



o  the dream goal	



o  Is difficult	
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Combining Bottom-up and Top-Down	


•  One good example	



o  Fragment-based spoken digit decoding	



o  A simple (but terribly inefficient) implementation:	
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(Fig. from [Barker 11])	
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To summarize	
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Live coding in Matlab	


•  You can find the source here:	



o  http://recherche.ircam.fr/equipes/analyse-synthese/lagrange/teaching/atiam11/
coursAtiam2011Ibm.m	



o  http://recherche.ircam.fr/equipes/analyse-synthese/lagrange/teaching/atiam11/
coursAtiam2011Nmf.m	



•  You will need some external dependencies, web locations are 
provided in the code	



•  The code uses cell mode, please look at the Matlab 
documentation for usage	
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Research question (Master Subject)	


•  Can those computational frameworks such as NMF be 

considered for implementing important aspects of ASA ?	



•  Proposition: consider Semi Supervised NMF for implementing 
the Old+New heuristic	



o  ON rationale: remove what we can infer from the scene, and model the remaining	



o  Semi Supervised NMF:	



o  X =  FG + HU	



•  F: prior knowledge	



•  H: model new events	



•  Reference:	



o  Supervised and Semi-Supervised Separation of Sounds from Single-Channel 
Mixtures [Smaragdis 07] http://www.merl.com/reports/docs/TR2007-062.pdf	
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CASA for singer similarity	


•  Aim: discover an application of CASA for MIR	



•  Testbed: Music similarity by singer	



o  2 songs are defined as similar if they have the same lead-singer	



o  Evaluation metric : ranking	



o  First method:	



o  Extract some features from the spectral representation of the songs	



o  Compare them	



o  Check if the closest ones are from the same singer	



o  Problem: even though the lead singer is prominent, the spectral properties of the 
observed signal are most of the time a non linear combination of the singer and 
the accompaniment.	



o  Question: can we use some knowledge about ASA to minimize the impact of the 
accompaniment ?	
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CASA for singer similarity	


•  Assumptions:	



o  The accompaniment does not change throughout the song	



o  The singer starts singing at about 1 minute	



•  Proposed approach	



o  Model the accompaniment as the audio signal of the beginning of the song	



o  Model the singing voice as the audio signal around 1 minute	



o  Compare songs represented as 	



o  spectral features	



o  MFCC’s	



•  Binary Masking:	



o  Only consider spectral bins where amplitude of the mixture is larger than the 
accompaniment model.	
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CASA for singer similarity	


•  Dealing with missing data	



o  Marginalization: only consider the non-zero spectral components during 
comparison	



o  Loose a lot of data when many zeros are present	



o  Feature representation is less powerful (can’t use MFCCs) 	

	



o  Imputation: replace zero values  by default ones	



o  Can use any feature representation	



o  What are the default values to consider ?	
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