
SoMax Documentation

Getting Started

Going further

Advanced

Welcome to the SoMax Documentation. SoMax is a musical improvisation soft-
ware which aims to provide a stylistically-coherant improvisation while adapting
itself to the musical context from real live musicians.

This document is made to provide any useful infomation regarding to SoMax,
whether you are an absolute beginner or an accomplished developer.

If you have troubles installing SoMax, please go to the setup section.

If you are looking for basic information on how to start and play with SoMax,
please go to the Getting Started section.

If you want more specific explanations of some features or other details, please
go to the Going Further page.

If you are a programmer interested on deeper details, see the Advanced section.

1

Contents

1 Getting Started 5
1.1 Playing with SoMax . 5
1.2 Testing interaction modes . 7
1.3 Modelling improvisation . 8
1.4 Recording online . 10

2 Going Further 11
2.1 Overview of the conductors . 11

2.1.1 Audio Input . 12
2.2 Overview of the player . 15
2.3 Generation algorithm . 18

2.3.1 Activity and recombination method 18
2.3.2 Influences and dimensions 19
2.3.3 Activity modulations . 21
2.3.4 Rythmic adjustments . 22

3 Advanced 24
3.1 Modularity in SoMax . 25

3.1.1 Inputs . 25
3.1.2 Outputs . 27

3.2 Software architecture . 28
3.3 Python core . 31

3.3.1 Overview of the code . 31
3.3.2 Detailed documentation . 33

3.4 SoMax corpus file format. 40
3.5 Corpus construction library . 41

3.5.1 Basic construction . 41
3.5.2 Additional options . 42
3.5.3 Overview of the library . 42
2.1.1 Audio Input . 12
2.3.1 Activity and recombination method 18
2.3.2 Influences and dimensions 19
2.3.3 Activity modulations . 21

2

2.3.4 Rythmic adjustments . 22
3.1.1 Inputs . 25
3.1.2 Outputs . 27
3.3.1 Overview of the code . 31
3.3.2 Detailed documentation . 33
3.5.1 Basic construction . 41
3.5.2 Additional options . 42
3.5.3 Overview of the library . 42

3

Setup

This SoMax version is made for Max 7 32-bit (you can toggle the 32-bit version
of Max by opening its properties), even if it should also work with Max 6.

Corpus construction corpus. To be able to use the corpus construction li-
brary, the following Python librairies have to be installed :

• LibRosa1, used for the computation of audio descriptors

• scikits.samplerate, that fastens greatly the computation.

To do this, you can open the Terminal and using the pip system by typing this :

pip install librosa

pip install scikits.samplerate

1https://bmcfee.github.io/librosa/

4

Chapter 1

Getting Started

This section is made to guide a first contact you could have with SoMax.

1.1 Playing with SoMax . 5
1.2 Testing interaction modes . 7
1.3 Modelling improvisation . 8
1.4 Recording online . 10

1.1 Playing with SoMax

In this section, you will learn how to play with SoMax. This section assumes that
SoMax is properly installed ; if a Max error is shown, please insure that all the
steps described in the setup section have been properly followed.

Controllers and players. In SoMax, there are two main patches : a conductor
and a player.

• The conductor is managing the inputs that the players receive, the outputs
that the players send and several parameters regarding the interaction modes
(that we will deepen in the section below).

• The player is a unit which generates improvisation. It receives information
from the outside (from human or virtual players) and generate musical con-
tent.

Please note that there are two conductors : one that listens to MIDI streams
called conductor_midi.maxpat and one that listens to audio streams called
conductor_audio.maxpat. There is only one player, which can generate au-
dio or MIDI regarding to the corpus chosen.

It is possible to use players separately ; in a first time it is more conveniant
to use the conductors, which manage all the routings and give you quick accesses
to the most important parameters. If you are using a MIDI device, please open

5

Figure 1.1: Audio conductor (to the left) and MIDI conductor (to the right)

the MIDI conductor ; if you want to use an audio stream, please open the audio
conductor.

Configuring inputs. Before playing, let’s check if your outputs and inputs are
properly configured.

For MIDI players, please first select the MIDI input with the popup button
below the midi input indication. Then, please check the MIDI channel of your
device : depending on the MIDI channel your device will be considered by the
players as a foreground channel, a background channel or a beat channel ; to have
further information on this, please go to this section. For this tutorial, please
insure that your MIDI is sending notes to the channel 1. If it works properly, you
should see the notes played on the displayed keyboard.

For Audio players, please check in the Options>Audio Status, and activate the
DSP status. If everything is OK, the input part should react to the audio stream.

Awaking the player. Before all, please press in the bottom of the conductor
the note against note preset for p_1 (it will be explained in the following tutorial).
Now that the input is properly configured, please double-click on the first player,
or the box soma player_1. A similar window than below should appear (cf fig.
1.4).

You juste have to select the corpus you want to play with in the popup menu,
located at the top of the window. Now, play your instrument, and the system will
play a note each time it receives an event from you (a note in MIDI, or an onset
in audio).

6

Figure 1.2: SoMax player patch

1.2 Testing interaction modes

Playing with interaction matrix. Now that we have managed to make the
system play, now we will focus a bit on interaction modes. As SoMax is conceived
in a rather free way, a lot of interaction modes are possible ; the conductor is
offering a quick way to configue effective interactions with the interaction matrix.
The interaction matrix is the grid displayed on the conductor as below :

Figure 1.3: SoMax player patch

There are several matrices, defining how the system will be influenced by the
input for the following musical dimensions : one for the melodic influence, one for
the harmonic influence, one for the pulsation influence and one for "bang" (we
will see this later).
This matrix has to be read as if the input entered the routing matrix from be-
low, and were leaving from the right where a dot is lighted. If you look at the
pictures below, you can see that the first one means that the melody of the input
is influencing the first SoMax Player. The second matrix means that the input’s
pulsation is influencing the second SoMax Player.

7

Figure 1.4: Examples of influences matrix : melodic influence on the left, and pulse influence on the right.

Basically, here are quickly explained the meaning of the different parameters
shown in the Interactions part:

• melodic influence : the melody detected from the input player is influenc-
ing the target player. When you are playing with MIDI, this listens to the
foreground channel (see below).

• harmonic influence : the harmonies detected from the input player are
influencing the target player. When you are playing with MIDI, this listens
to the background channel (see below).

• pulsation influence : the pulsation detected from the input player is influ-
encing the target player. When you are playing with MIDI, this listens to the
beat channel (see below).

• bang : the onsets of the input player triggers the output of the target player.
This typically gives a "note-to-note" effect on the interaction.

Foreground and background channels. When playing with MIDI, you can
use separate MIDI channels to specify your interaction with SoMax. This can be
done using the MIDI input matrix :

Figure 1.5: MIDI matrix on the MIDI conductor

here you can specify which MIDI channel you will send to the foreground chan-
nel, used for pulsation and melodic influences, and the ones you will send to the
background channel, used for the harmonic influences. For example up here, only
the first MIDI channel goes to the foreground channel, while every other channel
is sent to the background channel. The beat channel is used for the pulse influence

Now play with these different interactions and make the best with each of these!

1.3 Modelling improvisation

Now that we have explored the different interactions of the conductor, we will
now explore how to model the improvisation generated by each of the player.

8

The improvisation can be modeled with many parameters, reacting to its input
or independently with internal rules.

Corpus. SoMax being a recomposition-based improvisation system, it needs a
memory to perform its generation. This memory, that will be recomposed during
the improvisation, can come from audio material or from MIDI material. You
can select the memory you want to improvize with by selecting a specific corpus
in the popup button in top-right corner of this window. You can also construct
your own corpus ; more explanations in the section 2.3.2

Figure 1.6: Corpus selection with the popup button

Influences. This is with the concept of influence that the reactivity is brought
into SoMax. An influence is the active listening of a musical dimension that will
guide the system towards a generation judged "relevant". Details can be found
later (see section 2.3).

SoMax Player can listen to three musical dimensions : the melodic influence,
the harmonic influence and the self-influence. The respective amount of influence
of these three dimensions can be specified using the three sliders at the bottom
of the window as below. The first one is the self-listening influence amount,
the second one the melodic influence amount and the third one is the harmonic
influence amount.

Figure 1.7: Influences’ multislider of a SoMax Player

As the two first influences are quite clear and rely with the previous part, the
self-influence needs a little more explanation. Basically, increasing self-influence

9

means gives higher priority to the memory’s coherance with itself, whereas in-
creasing other influences means gives higher priority to reaction.

Transposition & BPM. It is also possible to transpose the memory of the
player. The recombination algorithm will thus find its solutions regarding to the
transposition factor. This, for example, can be interesting if a given corpus be-
longs to a particular key, and that you want to play in another one.

It is also possible to give to the algorithm the BPM you want to play with, by
adjusting the master BPM. Though, if you the player to keep the orginal tempo,
you can check the use original BPM box. For further informations regarding to
the rythmic adjustments, please refer to the rythmic adjustments part.

Taboos The taboo table is a high-level method to slightly conduct the generation
of the algorithm. The taboo system weights the places of the memory that the
system chose in a recent past.
This is basically done by example to penalize the freshly read states, avoiding the
system to loop and forcing it to go somewhere else. To do that, you can click the
preset taboo. In a different way, you can promote some of the read states to force
the system to enter a loop. The detailed explanation of how taboos work can be
read here.

1.4 Recording online

It is also possible to record online material to build a new corpus to play with. It
can be MIDI or audio, depending of the input you give to him.

Figure 1.8: Recording in the soma.maxpat

To record on online material, please first click on erase memory (don’t worry,
it doesn’t erase the original memory but just the one currently loaded in the
player). Then, you just have to click the record button, and play. Click again to
stop recording, then click the save as button to write what you have written in
a file.
Please not that, if you are recording MIDI and using conductors, your input must
to be in the pitch influence of the player.

10

Chapter 2

Going Further

This section is made to make you have a deeper understanding of SoMax by
detailing all the features of the conductors and of the player, and by explaining
how SoMax generates its improvization.

2.1 Overview of the conductors . 11
2.1.1 Audio Input . 12

2.2 Overview of the player . 15
2.3 Generation algorithm . 18

2.3.1 Activity and recombination method 18
2.3.2 Influences and dimensions 19
2.3.3 Activity modulations . 21
2.3.4 Rythmic adjustments . 22

2.1 Overview of the conductors

This section will now exhaustively describe all the features displayed on the con-
ductors. Notice that the only difference between the midi conductor and the audio
conductor is the input part, so everything excepting this is relevant for both.

MIDI Input

• MIDI channels : maps the channel of the MIDI input to the three channels
used by SoMax players. The foreground channel (or fg) is used to influence

11

the melodic dimension of the players. The background channel (or bg) is
used to influence the harmonic dimension of the players. Finally, the beat
channel can be used to give pulsation to the players, that can help them to
be synchronous (see the rhythmic adjustments part).

• MIDI Input : here is the popup menu to select the MIDI input you want
to use.

• Harmonic Input : on this graph is shown the harmonic context computed
with the data arriving by the background channel. This is a table containing
the amount detected of the twelve notes of the tempered scale.

• Melodic Input : here is shown on a keyboard the melodic flow arriving by
the foreground channel.

• Beat Tracker : this is a beat tracker which can be used to estimate the
pulse of the MIDI Input. To activate it, please check the box at the top-left
corner of the window. You can also press the space bar of the computer to
give the players pulsation.

2.1.1 Audio Input

• Input level : shows the level of the audio input.

• Pitch tracker : here are the parameters of the pitch tracker, based on the
Yin algorithm.

• Harmonic Input : here is shown the harmonic context detected on the
audio input. This is a table containing the amount detected of the twelve
notes of the tempered scale. This harmonic context is made with the chroma
detection algorithm of ircamdescriptors.

• Routing window : double click the routing subpatch to select the audio
input sent to the players, and the audio input used by the player in the case
of recording.

• Melodic Input : here is shown on a keyboard the pitch computed by the
pitch tracker.

12

• Beat Tracker : this is a beat tracker which can be used to estimate the
pulse of the MIDI Input. To activate it, please check the box at the top-left
corner of the window. You can also press the space bar of the computer to
give the players pulsation.

The segmentation of the audio input flow is made with an onset detection algo-
rithm based on the bonk Max external object. Please note that to configure
the audio input device, you have to configure that into the Max preferences (Op-
tions>Audio Status).

Output

Please notice that the input sections are different between the audio conductor
and the MIDI conductor, but that it is the same for the output.

• Players : accessing the players’ parameters by double-clicking the boxes.
The detailed overview of the player is available here.

• Listen to MIDI : as a player can produce MIDI streams and audio streams,
you can able/disable the MIDI output of a player by checking this box.

• MIDI Output : with this popup menu, you can choose the MIDI output
device. The refresh button updates the MIDI outputs available.

• Audio Parametrs : in the case where the player outputs audio streams, you
can set the volume with the vertical slider and the pan with the horizontal
slider.

Interactions matrix

For all the matrices below, a matrix has to be read from bottom to left. This
means that the input is arriving vertically, and the output is leaving horizontally.
This is why input is available only as a column.

13

• Melodic influence : routes where the melodic information goes. Activating
themod 12 checkbox means that the influence will be insensitive to the input’s
octave.

• Harmonic influence : routes where the harmonic information goes.

• Pulse influence : routes where the pulse information goes. Be careful, you
can send input pulse information only if the beat tracker is activated.

• Triggers : the bang matrix is a special matrix which forces player’s output
in certain cases, as the note-against-note mode for instance.

There are below this part two routing presets. The first, called note-against-
note mode, will force the player to answer any input note by another note. The
second, called beat mode, will let the player improvize freely according to its
parameters.

14

2.2 Overview of the player

• Corpus Selection : here you can select the memory the player will use.

• Position Slider : when the player improvizes, you can see the location in the
memory in the played state. You can also force the player to go somewhere
in the memory by adjusting manually the slider.

• Play button : tells the player to start or to stop improvizing. It can also
show not ready, if no corpus is selected or if a problem occured.

• State Display : shows the position of the current state, and lights up when
the system jumps in the memory.

• Keyboard : a keyboard-style display to show the current notes played by
the player.

• Transposition factor : transpose the memory by the selected number of
semi-tones. This can be useful if the corpus is in a given key and that the
improvizer wish it to be in another one.

• Recording session : here you can record new corpus online. To do that,
first erase the memory (otherwise it will be added to the previous one, which
can be OK if you want to concatenate) and then click the record button.

15

When you are done, click again the record button and click save as, where
a corpus name will be asked ; the corpus will be automatically added to the
corpus list. Please note that if you are using conductors the input stream has
to come into the player as pitch influence!

• Influences section : here you can select the respective amounts of self-
influence, melodic influence or harmonic influence of the player. Reinforcing
self-influence will encourage the player to promote its consistency with its
memory, whereas reinforcing melodic or harmonic influence will encourage
him matching the external context. More details in here.

• Taboo table : Here are shown the taboo weights that the player will use to
ponderate the likeliness of the previous played states for a further selection.
The points symbolize, from left to right, the weights applied to the eight pre-
vious selected states of the player. If the weight is negative, the corresponding
state will be disavantaged, whereas if the weight is positive the state will be
encouraged.

• Taboo presets : here are some presets for the taboo table. The Loop 4
preset puts a high positive weight on the state played 8 steps before, creating
some kind of loop in the improvization. The taboo preset corresponds to a
classic taboo situation, where the closed past states are strongly inhibated to
prevent the system falling in loops.

• Jump button : forces the system to jump in the memory. Can be used if
the system is stuck in a region of the memory.

• Next state properties : SoMax, when selecting a state, automatically
modulate the activity of the conjoint state of the memory to encourage con-
tinuity. The next state mod allows to set the amount of boost of the conjoint
state. The next state auto mod forces the system to jump to avoid to much
continuity, with a parameter which is a measure of the maximum tolerated
continuity.

• Rythmic properties : here are shown all the features available regarding
to the rythmic adjustment. You can set manually the BPM of the player, or
tell him to use the original tempo information of its memory by clicking the
use original BPM box.
The phase influence modulation makes the system sensitive to the current
phase in pulsation for its state selection (see here). That means that it will

16

favorize states in the memory close to the current rhythmic phase.
The phase adjust modulation is a feature of the SoMax system that is pre-
serving the original timing of the memory as it rearranges it, while preserving
the given pulsation feeling. If you want the player to align its pulsation to
an external pulsation (via the conductor for instance), you can check the box
auto adjust bpm, and define the range of possible BPMs.

• Notes actions : the all notes off button is a kind of panic button which
cuts all the currently played notes. The "held notes" mode will prevent the
player to play notes by itself, waiting for external signals to play one (as in
the note-against-note mode in the conductor by instance).

17

2.3 Generation algorithm

To really understand what all the features described above really mean, we will
now describe how SoMax generates its improvisation. For even further informa-
tion, please read the Bonnasse-Gahot’s report on SoMax1.

SoMax is based on a musical memory, an existing musical sequence segmented
into states and labelled according to their musical content. The improvisation
is generated by recomposing it according to a non-linear path, assuring a stylistic
consistency with the original sequence and a relevance regarding to the external
context. The selection of this non-linear path is based on the key concept of ac-
tivity, which is described below.

2.3.1 Activity and recombination method

Activity. The activity of a memory state can be understood as its score of rele-
vance depending on the current musical context. To become reactive, the system
is listening to the external context and takes observations from it. These ob-
servations will activate the states of the memory that show a certain amount of
similarity and will softly guide the system towards the more relevant solutions.

In this version of SoMax, the memory is based on a n-gram tree, which can be
seen as a dictionary of all the n-sized sub-sequences of the memory. This is to
compare the n last observations with all the n-sized subsequences of the memory,
introducing some past-depth in the reaction. Note that the values of the activity
are continuous, so the total score can be seen as te total relevance of the sub-
sequence..

activité

place

mémoire

contexte

Figure 2.1: Activity of a memory stimulated by a 3-sized length observation history

The memory is a succession of musical segments, but this activity concept
1Laurent Bonnasse-Gahot, An update on the SoMax project, September 2014

18

lies on a continuous representation of the time. The activity is modelized as a
Gaussian, created at the arriving on the observation and evolving synchornously
through the memory. This Gaussian is also decaying in amplitude ; however if
the Gaussian keeps matching the context as it evolves, it will be stimulated so
that the activity is kept constant. If it stops matching the context, the Gaussian
will so start to decay.

activité

place

contexte

Figure 2.2: Activity profile after a hearing a new observation

This decaying Gaussian model allows the system to keep "formerly valid" so-
lutions for a little moment, as the musical memory does not omit a short-term
past immediatiely. Short-term valid solutions are so still eligible to be stimulated
again by new observations. Basically, the activity of a memory state can be con-
sidered probabilistically as a likelihood of this place knowing the context ; for a
more strict proof, please consider to the Bonnasse-Gahot report.

Recombination. SoMax bases itself on a short-term forecast of the context,
which means that he uses the given context at the current time t to select the
future state to play after the current one.
This can be understood as if it was sampling the context information and using
each present slice of context to forecast the near future. By refreshing its activity
profile, SoMax can choose the next event to be played by selecting the one which
has the maximum activity. As SoMax chooses these events step-by-step, this rou-
tine is deeply reactive even if based on a short-term forecast.

2.3.2 Influences and dimensions

One of the advantage of the activity concept and its relation with the likelihood
concept is that it gives the possibility to add several activity profiles regarding to
different musical dimensions. This is what SoMax does, by cumulating three ac-
tivity profiles : themelodic influence, the harmonic influence and the self-listening

19

(which is a little special).

activité

place

contexte

Figure 2.3: Different points of view on a musical memory.

For the melodic and harmonic influence, SoMax bases itself on the same mu-
sical memory but from different points of view, a melodic one and an harmonic
one. Similarly, the observations of the external context are based on several di-
mensions, so that the places stimulated in the memory can be different regarding
to the musical dimension.
Furthermore, the different points can be segmented in different ways ; for exam-
ple, when you are using conductors, the melodic influence is separated by onsets
and the harmonic influence is separated by pulse.

Then, given these two activity profiles, a weighted sum is done to get a global
activity and then select a next state relevant regarding to the different dimen-
sions. Basically, adjusting the weights is exactly what you do when you adjust
the influence sliders in the player window. Weighting more the harmonic activity
profile will so give to the harmonic dimension a bigger influence on the next state
selection.

The self-influence point of view is a little special : it is not using the external
context but itself to guide the improvisation, to keep consistency with the original
musical memory. This is done by, at each generated state of the improvisation,
listening to its own output to find states in the original memory that shares a
common musical past and activating it in this specific point of view. This allows
to assure some kind of stylistic consistency with the original memory, as there will
always be a subsequence of the improvisation that can be found in the original
memory.
This point of view is considered as its melodic and harmonic colleagues, so ad-
vantaging the self-listening will encourage the player to be consistent with the

20

activité

place

contexte

Figure 2.4: Summing the different weighted activites to get a global activity.

original memory rather than be listenting the external context.

2.3.3 Activity modulations

Once the global activity is obtained from the three points of view, it can be still
modulated to guide the system and modelling the generated improvisation. From
now two operations are implanted : the taboo system and the rythmic modulation.

Taboos. After refreshing its global activity profile, the system modulates the
activity of the 8 previous states he played with the weights of the taboo table (see
figure below).

Figure 2.5: Classical taboo table

For example, the taboo presets whose table is displayed above strongly pro-
hibites the recent few states played, to avoid the system looping or repeating
the same state in a too short time. On the contrary, it is possible to set posi-
tive weights on the taboo table, to make the system loop as with the loop 4 preset.

21

Rythmic modulation. It is also possible to modulate the global activity ac-
cording to the rhythmic phase, and preferring the states of the memory at the
same rhythmic phase as the current improvisation. This is done by modulating
the global activity by a cosinus synchronous with the wanted improvisation time.
There is also a selectivity parameter, which sharpens the cosine modulation func-
tion and so improve the selectivity.
You can able or disable the rhythmic modulation and its selectivity with the
checkbox and the slider in the Rythmic parameters part in the player.

Figure 2.6: Phase modulation function

Jump. The last one is the jump command, which forces the system to move in
another place of the memory. This is done by setting the activity of the cojoint
state of the current one in the memory to 0, making it unlikely to be chosen.

2.3.4 Rythmic adjustments

Another important feature of SoMax is its capacity to align its improvisation to
an external pulsation. Given a certain pulsation phase (constrained, from the
musical memory or listened from the outside context), a jump of the system in
another region of the memory can lead to rhythm phase breaks and a loss of the
rhythmic feeling. The solution purposed here is a phase correction algorithm that
adjust the original phase of the state aimed by the jump regarding to the actual
one of the improvisation. This avoids the rhythm dislocation provoked by a phase
disrupt and preserve the rhythmic feeling of the original memory.

You can able or disable this adjustment by checking the adjust phase box. The
two numbers near the check box is the window where this adjustment is effective;
if the difference between the unadjusted date and the adjusted date lies outside
this temporal window, the phase adjustment mechanism will not apply.

22

Figure 2.7: Phase adjustment mechanism

23

Chapter 3

Advanced

This part is made for the advanced users of SoMax, programmers who would like
to use all the deepest possibilities of SoMax. SoMax is based on the dialog of
a MaxMSP part managing all the realtime flow processing, and a Python core
acting as a library that implements the high-level concepts of SoMax.
Once again, we will describe how it works with an ascending level of details ; first
we will explain how to use the player as an object, secondly how the inside of the
player works and finally the construction of the Python core of the player.

24

3.1 Modularity in SoMax

SoMax consists in three main patches, two conductors which have been described
in a previous part and a player patch, called soma.maxpat.
It is important to notice that in fact the two conductors are high-level players that
are just made to have an easier and quicker access to the possibilites of the player
patch. It redirects audio/MIDI information and manages some of the parameters
the player patch deals with ; however, if the possibilites of the conductor is too
weak for you can use the player patch by itself.

soma.maxpat is an abstraction you can use as an unit improvisation object.
Here are the different information it takes and the one it gives back (note that
you have to initialize it with a name, to avoid namespace conflicts) :

Figure 3.1: Inputs and outputs of the somax object

3.1.1 Inputs

Parameters. The first inlet is made to send miscanelleous commands to the
SoMax object. Most of them are made to set diverse parameters of the player.

• bang : forces the player to output a state

• start : tells the player to start playing (assuming a corpus is first set)

• stop : tell the player to stop playing

• load [symbol] : tell the player to load the corpus symbol.

• useOriginalBeatPhaseValue [boolean] : activates the phase modulation and
the phase adjustment features (see rhythmic modulation and phase adjust-
ment).

• phaseAdjustment [min][max] : sets the phase adjustment window between
min and max (see here).

25

• bpm [value] : sets the bpm to value.

• useOriginalBpm [boolean] : tells the player to use the original BPM of the
memory.

• autoBpm [boolean] : activates the auto adjust bpm feature

• autoBpmWindow [min][max] : set the minimum and the maximum of the auto
adjust bpm feature between min and max.

• autoJump [boolean] : activitates the next state auto mod, which forces the
system to jump after a certain amount of continuity set by the parameter
just below :

• nextStateAutoMod [float] is the parameter setting the maximum continuity
of the improvisation regarding to the original memory, if the next state auto
mod is activated.

• listeningWeights [float][float] [float] sets the respective weights of the self-
influence, melodic influence, the harmonic influence. Note that the values,
as long as they are positive, does not have a specific range as they are then
normalized.

• heldMode [boolean] : makes the player waiting for bang messages to output
its improvisation (notes or audio chunks).

• color [float][float][float][float] set the color of the player GUI (RGBA format).

Influences. The three next inputs are the influences of the player, respectively
the melodic influence, the harmonic influence and the pulse influence. There is
an additional onset input, whose role will also be explained.

• the melodic influence consists in MIDI formated messages ([pitch channel
velocity]) each time a note of a melody occurs. For exemple, sending a message
containing [52 0 128] will send a E3 influence to the player.

• the harmonic influence consists in a chroma table, which is an array of twelve
floats containing the "amount" from 0. to 1. of the chromatic notes, from
C to B. In the case of MIDI, it is easy to analyse the present notes in a
slice of time, and setting their respective value to 1. However, in the audio
case, a chroma detection is necessary and so explains this harmonic message
formatting.
Please be careful! Even if the flow of harmonic information is countinuous,
the information is segmented by the pulse of the player.

26

• the pulse influence is simply a succession of bang setting the pulsation of
the player, that he will use as internal BPM and for the phase adjustments
features.

In addition to these entries, on onset input is there. The onsets sent to this
input are the onsets used for the phase adjustments features ; in the conductor
these onsets are directly the onsets of the melodic channel (foreground channel in
the case of MIDI, global flow in the case of audio). However, more specific appli-
cations could require something else, and so the onset input has been detached
from the melodic input.

Record inputs. In the case where audio flows have to be recorded for a real-
time corpus building, there are also two audio inputs : the first one, the pitch
record input, will be used to extract the pitch, and the second one audio record
input will be sliced and used as the audio material.
This distinction can be useful in a live context, where a precise but poor quality
piezometric microphone can be used to track pitch, and another microphone of
better quality is used to record the audio material. In the case where you just
have one microphone, connect your input to both inlets.

3.1.2 Outputs

The soma.maxpat has also four outputs, two outputs being the musical outputs
of the player and two being its information outputs.

• The first output of the player is a MIDI output, that can be directly linked
to a noteout object in Max or be used as melodic influence for other soma
players.

• The second output of the player is an Audio output, that can be directly
linked to a dac object in Max or be used as audio material for other soma
players.

• The two other outputs are made to be directly reinjected in other soma play-
ers, as harmonic influence and pulse influence.

With all these inputs and all these outputs, you can basically build a totally
brand new soma players networks, with several outputs and inputs, and so fulfill
your most secret desires.

27

3.2 Software architecture

We will now take a further look on how the soma player is built.

SoMax is an hybrid environment, built with a part in MaxMSP, which man-
ages audio streams, MIDI streams, timing and interfacing, and a core library in
Python implemanting the main concepts of SoMax.

Figure 3.2: Inputs and outputs of the somax object

The code of the soma.maxpat is organized this way. We will now have a
detailed look of all this part. In this code, there is very important abstraction
called pycore, which in fact call Python core’s methods.

Parameters : This section takes care of the parameters displayed to the user
or available from the outside. It gathers all the information regarding the phase
adjustments, the weights, the corpus, the auto jump and taboos, and sends its
information to the Python Core.
Please note that the taboo presets are saved in specific tables, that you can feel
free to adapt, or to add some others.

Influences : This section gathers all the influence signals from the outside con-
text and format them to send it to the Python core. In addition to binding the
pure information for the occuring date of the event, there is some specific format-
ting according to the point of view.
Regarding to the melodic influence, it eventually transposes it. With the har-
monic influences, it also eventually transposes it, but also sends it periodically
at every puslation of the player (in contrary to the melodic influence, which is
rhythmically free).
Regarding to the self-influence, it first get the label of the played state, before

28

sending it to the Python core.

Regarding to the rythmic adjustments, the onsets detected from the outside
are sent as external events to the Python core, and a BPM adjust command
is also sent with some more information required by the Python core (see the
auto_adjust_bpm function).

Record : The record part is quite direct : it

Time : All the player events are synchronized on a custom transport, identified
with the ID of the patch. The BPM of this transport can be fixed, taken from the
original corpus (which can change at every chosen state) or synchronized from an
external pulse (which does not immediately change by first by a leaky integration,
for a smoother change). The pulse of this transport is the one returned by the
player to the external world.

Core : The python core receive all the information received and managed by
the MaxMSP environment and returns all the information the player needs to
generate music : states to play, musical contents, new BPMs... all the details
regarding this Python core are given in the Python core part.

Process : As said in here, SoMax bases itself on a short-term forecast of the
context, which means that he uses the given context at the current time t to select
the future state to play after the current one.
This is based on a loop : when an event is selected to be played, it is then waiting
for the right time to be played and, when the time has come, a new query is sent
to the Python core and the played event is sent to the self-influence. The process
part of the code contains this whole loop.

Midi out : In the case where the musical memory is some MIDI content, the
Python core will output SoMax encoded information, that the part of this code
will resitute as MIDI content ready to be exploited. This part also manages the
panic message that is accessible from the user interface and the transposition part.

Audio out : In the vase where the musical memory is audio content, the Python
core will output the states to play as intervals in the audio buffer. The audio
restitution is based on two buffers : a reference buffer (main_buff) which contains
the whole file, and a state buffer (tmp_buff) which is loaded with the state to
play. The buffer is played by Ircam’s supervp, to perform the realtime time
manipulation (if the current BPM is different from the original one).

29

Output & Info : this part gives the user, on the interface, some feedback of
the notes and states played (via the keyboard and the state position slider). It
also returns the harmonic context of the state to the external world, which comes
from the musical memory.

30

3.3 Python core

We will now enter the Python script which implements all the SoMax generation
algorithm. The interface between MaxMSP and Python is made thanks to the py
external by Thomas Grill 1.
This code is splitted in two scripts : the first script, somax_rt.py mainly links the
MaxMSP to the real SoMax architecture contained in the second script, soma.py.
As the major part of somax_rt.py just calls function of the main script, we will
first describe the soma.py script.

3.3.1 Overview of the code

The soma.py script contains the main Python object, Player, which has the
leading role in the generation of the improvisation. The Player class contains
the musical memory and its differents points of view, each embodied in a general
abstract class called StreamView. It also carries the new_event function, which
carries the step-by-step generation of the events, and the phase adjustments ma-
nipulations.

A point of view on the memory is stored in an abstract object called StreamView.
This object is responsible for the correct data extraction from the corpus file ac-
cording to its affected musical dimension, its n-gram representation and its activ-
ity profile. It relies on two other subobjects : the ActivitySpace object which
takes care of the activity profile and its updates over time, and the KappaSpace
which containts all the information relative to the memory content and its n-gram
representation.

For example, the influences from the outside context are directly stimulating
the ActivitySpace of its corresponding StreamView, which asks the KappaSpace
the stimulated places and updates its activity profile.
When online recording is done, some new states are added to the StreamView’s
data and the n-gram of the KappaSpace is updated.
When a new state is queried at a given date, the Player ask all its StreamViews to
give it back their activity profiles, makes the weighted sum of it all, apply modula-
tions and jump and finally returns the appropriate state and the appropriate time.

The theoric SoMax concepts are based on a continuous model, which can’t be
implemanted on a computer. The activity profile is so modelized as arrays of
(date, value) pairs. When the activity profile is updated, the dates are translated
and the values are exponentially decaying, until the value reaches an extinction

1http://grrrr.org/research/software/py/

31

Player

Point du vue mélodique

Espace κ Activité

identification

(A, A, B) -> 2, 4
(A, B, A) -> 6, 5
(A, B, B) -> 8
(B, A, B) -> 7
(B, B, A) -> 1

dictionnaire n-gram

activation

Point du vue harmonique

Espace κ Activité

identification

(A, A, B) -> 2, 4
(A, B, A) -> 6, 5
(A, B, B) -> 8
(B, A, B) -> 7
(B, B, A) -> 1

dictionnaire n-gram

activation

Point du vue auto-écoute

Espace κ Activité

identification

(A, A, B) -> 2, 4
(A, B, A) -> 6, 5
(A, B, B) -> 8
(B, A, B) -> 7
(B, B, A) -> 1

dictionnaire n-gram

activation

Activité globale au temps t?
Filtrage

évenement

new event

au temps t?

contexte

Figure 3.3: Inputs and outputs of the somax object

threshold, and the corresponding pair is deleted.

If we now come back to the somax_rt.py script which relies the MaxMSP
environment and the Player class, we can now explain that it uniquely consists
in an object called SomaxPlayer which possesses a Player instance, and takes
care of properly translating the outside queries to the Player object.
We can though notice the parse_new_slice, which adds to the Player memory
new material in the case of real-time recording, and the update_buffer function
which takes care of updating the buffers for the MaxMSP environment.

32

3.3.2 Detailed documentation

Here is now the exact documentation of the soma library. This gathers classes
defined in both soma.py and soma_rt.py.

SomaxPlayer

Attributes:

• bob : the instance of Player used to generate the improvisation

• s_ngram_size : size of the self-listenting n-gram used by the player

• m_ngram_size : size of themelodic n-gram used by the player

• h_ngram_size : size of the harmonic n-gram used by the player

• crossfade : length of the crossfade used to concatenate the states in buffer

• sr_str : suffix of the messages sent to the Max environment (you normally
don’t have to move that)

• shorten_rests

Methods:

Note that below, the srid argument is the ID of the soma.maxpat instance, made
to label the messages in the environment (in the case of several players).

• new_state float : date float :srid
returns the new event obtainted by calling the new_state function of the
Player.

• load str :name
tells the Player to load the corpus called name.

• self_influence float :date int :pitch
makes the self-influence StreamView of the Player register the pitch event
occured at improvisation time date.

• pitch_influence float :date int :pitch
makes the melodic StreamView of the Player register the pitch event occured
at improvisation time date.

• harmonic_influence float :date 12×float :chromas makes the harmonic StreamView
of the Player register the chromas event occured at improvisation time date.

• start float :date int :event float :srid resets all the StreamView of the Player
and the internal history, and finally asks the Player a new state.

33

• reset
makes a new Player instance.

• jump
ask the Player to jump.

• record_external_event float :date
add the date of a recent external event to the Player registry. We don’t care
about the nature of the event, as this information is only used for rhyhtmic
adjustments.

• set_tau_mem_decay float :tau
sets the tau_mem_decay attribute of all ActivityPattern see ActivityPattern
documentation.

• set_activation_threshold float :activation_threshold
sets the activation_threshold attribute of all ActivityPattern, see ActivityPattern
documentation.

• set_weights 3×float :weights
sets respectively the self-influence weight, the melodic weight and the har-
monic weight of the player’s StreamView.

• set_phase_ref float :phase_ref

• set_gamma float :gamma sets the gamma attribute of the Player. See Player
documentation.

• set_adjust_phase boolean:adjust_phase
enables the phase adjustment of the Player. See Player documentation.

• set_adjust_phase_w 2×float :phase_w
sets the phase adjustment window of the Player. See Player documentation.

• set_taboo_params 8×float :phase_w
sets the taboo coefficients of the Player.

• adjust_bpm float :current_bpm float :min_bpm float :max_bpm float :date
tells the Player to re-adjust BPM regarding to the recent events from the
current_bpm and within [min_bpm, max_bpm]. It then outputs the BPM,
to be given to the global transport.

• set_w_length float :w_length
sets the BPM adjustment window of the Player. See Player documentation.

• set_next_state float :next_state
sets the next state modulation amount of the Player. See Player documen-
tation.

34

• set_auto_jump_mode boolean:auto_jump_mode
enables the auto-jump mode of the Player. See Player documentation.

• set_tau_next_state float :tau_next_state
sets the maximum continuity tolerance for the auto-jump mode of the Player.
See Player documentation.

• set_verbose boolean:verbose enables the verbose mode the Player, which will
output a lot of informations during the process in the Max window.

• get_label int :index float :srid outputs the label of the index th state of the
memory.

• get_notes int :index float :srid
outputs the MIDI musical content of the index th state of the memory. Out-
puts something only if the memory is MIDI.

• get_state_ticks_duration int :event float :srid
outputs the duration of the index th state of the memory in ticks.

• get_bpm int :event float :srid
outputs the bpm of the index th state of the memory.

• get_hctxt int :event float :srid
outputs the harmonic context of the index th state of the memory as a 12-
chroma array.

• parse_new_slice SoMax entry :slice
adds the new slice to the Player memory. For additional information of the
SoMax entry formatting, please go to the corpus construction section.

• save_as string :name tells the Player to save its actual memory in a file
named name.

• set_crossfade float :crossfade sets the crossfade duration in ms, used to con-
catenate the conjoint states.

• update_buffer string :main_name string :temp_name int :event float :tb_pos
float :t_length
internal routines made to update the temporary buffer from the main buffer
containing the whole file.

Player

Attributes:

• s_l : Self-influence StreamView object

• m_l : Melodic influence StreamView object

35

• h_l : Harmonic influence StreamView object

• s_w : Self-influence activity weight

• m_w: Melodic influence activity weight

• h_w: Harmonic influence activity weight

• prepare_to_jump : is the system about to jump at the next step?

• phase_ref : Player’s phase reference, used for phase adjustments calculations

• gamma : selectivity of the phase modulation feature.

• adjust_phase : is the phase adjustment mode enable

• phase_adjustment_w : phase adjustment window

• w_length : bpm adjustment window

• taboo_length : length of the taboo table

• b_step : number of states per taboo value

• taboo_params : value of taboo table

• next_state : conjoint state modulation during the new event selection

• auto_jump_mode : is auto jump mode enabled

• tau_next_state : maximum continuity for the improvisation generation if
the auto jump is enabled

• last_jump : last event before the previous jump

Methods:

• load_mem string :corpus
tells the StreamView objects of the Player to load the corpus memory. The
files can be different regarding to the StreamView ; go to the corpus construc-
tion section.

• save_mem string :name
saves the StreamView’s memory in new files named name.

• new_event string :date
asks the system the most relevant state of the memory around the date.
Outputs a pair (state, date) ; note that the date can be different if the phase
adjustment is enabled.

• jump
sets the activity of the present conjoint state in the memory very low, to force
the system to jump.

36

• adjust_bpm float :current_bpm float :min_bpm float :max_bpm float :date
asks the best bpm estimation regarding to the past recorded external events.

37

StreamView

Init :

Attributes:

• k_self_listening: the KappaSpace where the memory knowledge is

• activity : the ActivitySpace where the activity profile is

• mm_data : the raw content of the memory

• kappa_event_history : history of the events received by the context’s
influence

• compute_pre_rep : the function used to select the StreamView’s relevant
data from the raw memory. Depending to the StreamView’s nature, this
function is one of the compute_pre_rep methods described below

• event_list : list of the dates of the memory states

• rep_list : list of the labels of the memory states

• event_history : history of the states played during improvisation

• external_events : history of the external_events recorded and used for BPM
adjustments. Only used by the self-listening StreamView.

• id : an arbitrary number identifying the stream view

Methods:

• load_mem string :name
load the file named name and stores the raw data into its memory.

• init_stream_view:
takes the raw data, takes the relevant data from it and ask the KappaSpace
to build the n-gram.

• update_memory SoMaxEntry :new_slice
updates its memory by adding the new_slice, and updates its KappaSpace.

• compute_pre_rep_pitch int :n
takes the pitch information from the nth event of the raw content of memory

• compute_pre_rep_chroma int :n
takes the chroma information from the nth event of the raw content of memory

• update_player_activity float : new_date
asks the ActivityPattern of the StreamView to updates its activity profile
at the date new_date.

38

• record_external_event float : date
Inserts the date of an external event into the external events history. Only
used by the self-influence StreamView.

KappaSpace

Attributes:

• ke_map : the dictionary containing every occurrences dates of the subse-
quences found in the memory. This dictionary is the representation of the
n-gram.

• ngram_size : size of the n-gram

• kappa_activation :

• node_specificity :

• kappa_activity_threshold

Methods:

• kappa_activation_pitch int : pitch

• kappa_activation_som_chr: 12×float : chromas

• map_kappa_to_events list : event_list list : rep_list

Activity Space

Attributes:

• date : current date of the ActivitySpace

• zeta : list of the dates of activity stimulation

• value : value of activity peaks

• tau_mem_decay : decay time of the peaks

• t_width :

• extinction_threshold: threshold below which an activity stimulation disap-
pears.

• available : is ActivitySpace available for update

39

Methods:

• update_activity float :new_date
update the activity profile to the new_date, which means updating the zeta
list and the value list

• clean_up:
deletes the values in activity profile whose activity is below the extinction
threshold.

• insert list :new_zeta_list list new_value_list
inserts the new events (zeta, value) splitted up in two lists to the activity
profile.

• get_activity
returns the current activity profile

3.4 SoMax corpus file format.

SoMax is supposed to work with JSON2 files supposed to have a specific structure.
Originally built with Matlab, a whole corpus construction with Python has been
conceived to allow the easy construction and specification of these corpus.
This algorithm is also made to be compatible with further developments of SoMax
and more generally for the OMax family, and is so much more flexible that the
current SoMax version ; though a good variety of corpus can be built with this
new library.

SoMax understands JSON file, which is in fact a dictionary, with a very specific
structure described below :

• name : name of the corpus

• size : number of states of the corpus

• type : not used

• typeID : MIDI or Audio (also not used)

• data : main dictionary of the memory states

– beat : tempo-relative information as an array [beat, tempo, 0, 0]
– extras : free information used for the harmonic background, most of the
time chroma vectors (but where also supposed to contain Mel Frequence
Cepstral Coefficients)

2JavaScript Object Notation

40

– notes : in the case of a MIDI files, the corresponding notes of the event.
A note is itself a dictionary containing :
∗ note : An array [pitch velocity channel]
∗ time : An arrat [relative time duration]

– seg : additional index, in the case of a corpus containing several files
– slice : the entry containing the label of the state, as a vector [label, 0].
In traditional uses, 0 to 127 represents a single note, 128 to 139 represents
a chord and 140 represents silence

– time : time properties of the state, as an array [time, duration] in mil-
liseconds]

Please note that the data entry must contain an all empty state as state 0,
permitting the SoMax Player to initialize.

3.5 Corpus construction library

Associated with the Somax package is a corpus construction library programmed
with Python.

This library provides high-level methods to construct standard corpus from
audio files or a MIDI files, which can be interactive thus allowing the user to
quickly parametrize the different processes. The corpus construction is also object-
oriented, permitting easy modifications and extensions of the building routines
and their dynamic use in the Python routine engine.

3.5.1 Basic construction

The corpus construction routine can be launched by just executing the build.py
Python file (in Terminal):

python build.py <file path>

where you can easily put the file path by dragging and dropping the file into
the terminal window.

The path can lead to a single file, or to a folder ; in the case of the file, the
program will scan its folder to automatically find the additionnal files (named
corpusname_suffix).
In the case of the folder, the program will concatenate all the found files to
compute the final corpus file. If additional files are provided, please be careful
that all the main files have their corresponding extension files. If it doesn’t,

41

the program will ask you whether to delete the extension, or to compute the
corresponding extension algorithm on the main file.

In every case, the files outputed by the algorithm will be placed in the corpus
folder of SoMax.

3.5.2 Additional options

Several options have available in addition to this simple corpus construction.

Verbose mode. You can activate the verbose mode of the construction algo-
rithm by simply adding -v before the corpus path :

python build.py -v <file path>

This allows to get back some information about the construction routine.

Output mode Similarly, you can select the output location of the corpus file
by adding the -o option :

python build.py -o <file path>

After the calculation, the program will ask you the location where you want to
output the corpus file.

Interactive mode Last but not least, you can activate the interaction mode
by adding the -i extension. The interactive mode allows some kind of intermedi-
ate level between the high-level model method and the object-oriented dynamic
approach, where the program will ask you step by step if you want to change any-
thing during the average routine. We will detail this mode by giving the complete
description of library below.

3.5.3 Overview of the library

The corpus construction library is mainly based on two main type of objects :

• a big object, called CorpusBuilder, in charge of gathering all the relevant
files of the corpus, assigning them a given process and then executing them

• and a set of objects called operations, childs of an abstract object called
MetaOp, in charge of implemanting a given treatment to a set of file and
outputing the corresponding corpus file.

42

The CorpusBuilder. The Corpus Builder object, which is initialized with a
corpus path, optionally a corpus name, and several key arguments for different
parameters, has two main tasks.
When initialized, it will scan the given corpus path (file or folder) to build a
dictionnary, called ops, which lists for every extension type a corresponding op-
eration and ordered list of the file to be analyzed. The ops dictionary has the
extension of the found files as key (h, m for example) and a tuple (operation,
file paths) as value. For example :
{”: (OpSomaxStandard, ’corpus.mid’), ’h’:(OpSomaxHarmonic, ’corpus_h.mid’),
’m’:(OpSomaxMelodic, ’corpus_m.mid’)}

These default operations are contained in the callback_dic attribute, which
contain the default operations applied to a given extension. The build_corpus
method then takes in charge to apply the corresponding operation to the given
files, and then computing the corpus.

Figure 3.4: Standard corpus construction routine, witch SegmenationOp functions

The operations. The operations are the units in charge of generating the corpus
file. All the operations units are based on an strong heritage nature, to permit
easy modifications of a part of the process by overloading methods or attributes.
The main abstract object, MetaOp, is a very simple object initialized with just a
corpus name and containing a single method, named process. This method just
takes the output location of the resulting files. This very simple object permits,
for example, to generate content from scratch without needing an input file.
This abstract object also has a setParameter function, which is used for example
in the interactive mode to set parameters from outside the operation, insuring a
correct format a giving access to only relevant attributes to the user.

For more conventional operations, based on the segmentation and feature ex-
traction of an input file, there is a higher level abstraction called SegmentationOp.
Contrary to MetaOp, its initialization needs a list of input files and the generic
process function has to pass three subfunctions :

• readFiles, which extracts the raw data from the input files,

• readData, which takes the raw data and extracts from it the informations
needed in the corpus file

43

• writeFiles, which outputs the corresponding files at a given location

Furthermore, this abstraction has a admitted_extensions list of extension which
defines all the files that the operation can read.

Existing operations. The casual corpus construction routines of SoMax have
been implemented using these objects, as childs of the SegmentationOp object.
These routines can read MIDI and audio files, and outputs files formatted in the
Somax JSON structure.

The main operation, OpSomaxStandard, basically segments the file into states
(in the case of several files, it concatenates them), extracts features from these
states by labelling them by their pitch features and adds additional information
as timing and chroma context (for more information see SoMax corpus file format
section). Note that, in the case of MIDI files, the channels used for labelling
are the foreground channels, while the channels used for chroma context are the
background channels, that you can configure (see below).
The segmentation mode is here quite important. Several modes are available :
the default onsets mode segments the files with onset detection, whereas the beats
mode segments the files with beat detection. The beat mode is more appropriate
in the case of pulsed musical context, and the onset is more in the case of free
context. An other one, called free mode, basically segments the file at regular
intervals.

Two other operations implement the additional standard operations for the har-
monic dimension and the melodic dimension : OpSomaxHarmonic and OpSomaxMelodic.
They both inherit OpSomaxStandard, as they globally are based on this class with
just a few difference. OpSomaxHarmonic, to be more adequate on the detection of
harmonic context, segments by default by beats, and does not label its information
as the *_h.json files are used by SoMax only to get the extra entries. It is even
simpler for the OpSomaxMelodic, whose only difference with OpSomaxStandard is
that the mod12 mode, which labels the states by relative pitch. Both are simple
example of how to quickly use the operations’ inheritance model to customize the
corpus construction.

There is the list of the parameters of the three operations described above that
you can configure, for example via the interactive mode.

• fgChannels : in the case of a MIDI segmentation, choose the foreground
channels used for the labelling. Has to be an array of intergers from 1 to 16,
as [1 2 3].

• bgChannels : in the case of a MIDI segmentation, choose the background
channels used for the computation of the chroma context. Has to be an array

44

of intergers from 1 to 16, as [1 2 3].

• mod12 : in the case of a MIDI segmentation, tells if the labelling of the
information is octave-sensitive (from 0 to 140) or relative (from 0 to 12).
Has to be a boolean. For more information on the Somax standard labelling
system, see here.

• segtype : in the case of an audio segmentation, sets the segmentation mode
among onsets, beats and free.

• usebeats : in the case of an audio segmentation, tells the operation to use
or not a beat detection algorithm to detect beats and tempo of the file for
beat entry of the file. If not, sets the tempo to 120 and places a beat every
500 ms. Has to be a boolean.

• freeInterval : in the case of an audio segmentation, sets the time interval
of the free segmentation mode. Has to be a float, and in seconds.

Figure 3.5: Inheritance schema for currently implanted operations

45

	Getting Started
	Playing with SoMax
	Testing interaction modes
	Modelling improvisation
	Recording online

	Going Further
	Overview of the conductors
	Audio Input

	Overview of the player
	Generation algorithm
	Activity and recombination method
	Influences and dimensions
	Activity modulations
	Rythmic adjustments

	Advanced
	Modularity in SoMax
	Inputs
	Outputs

	Software architecture
	Python core
	Overview of the code
	Detailed documentation

	SoMax corpus file format.
	Corpus construction library
	Basic construction
	Additional options
	Overview of the library

