Experiments

Conclusion

Description of Chord Progressions by Minimal Transport Graphs Using the System & Contrast Model

LOUBOUTIN Corentin, BIMBOT Frédéric

ICMC 2016

Outline of the work

Introduction to the S&C model

- Computational approach
 - Chords relation description
 - S&C Description estimation

Experiments 3

- Algorithm design
- Evaluation using perplexity measure

Conclusion

Understand musical structure

Various points of view:

- Structure music as a **succession of events** ? (for instance Tymoczko 2008)
- Structure music using **formal language theory** ? (for instance De Haas 2011)
- Structure music considering the simplest explanation using minimum description length principle ? (for instance Meredith 2013)

Our view $? \Rightarrow$ Music structure also depends on an **expectation process**. (Narmour 2000)

Introduction	ı to	the	S&C	model
--------------	------	-----	-----	-------

Experiments

Conclusion

Let's guess

Relations \Rightarrow Expectation

Experiments

Conclusion

System as an extentsion of progressions

The expectation is induced by the *system* formed by the first three elements.

Experiments

Conclusion

System as an extension of progressions

The expectation is induced by the *system* formed by the first three elements.

Progressions also form square systems.

Introduction to the S&C model	Computational approach	Experiments 0000	Conclusion
The contrast			

Denial \Rightarrow Contrast (creates some closure to the system)

S&C in music

Recent formalization and exploration of the model

- The S&C model has been formalized to analyse structures from 3 to 6 motifs. (Bimbot ISMIR 2012)
- It generalizes the Narmour's Implication Realization model. (Bimbot Music Perception 2016)
- It is found in music from different types. (Bimbot ISMIR 2012, Deruty Master Thesis 2013)

Experiments

Conclusion

A very "popular" music example

Have you ever analyzed the Macarena ?

Experiments

Conclusion

Multi-scale principle

The first element of the chorus of the Macarena can also be modelized as an S&C.

The S&C model works at multiple scales.

Introduction to the S&C model

ICMC 2016-Description of Chord Progressions by Minimal Transport Graphs Using the System & Contrast Model

Experiments

Conclusion

Multi-scale description

Macarena Chorus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 x 2 x 2 x 2 Tensor

Just another way of organizing information.

Experiments

Conclusion

From theory to application

Two more steps to go

- A need to explicitly describe the relations between elements.
- A need to design and evaluate an algorithmic implementation of the model.

- 2 Computational approach
 - Chords relation description
 - S&C Description estimation

3 Experiments

- Algorithm design
- Evaluation using perplexity measure

4 Conclusion

Formalisation of the S&C model

Notations

The System and Contrast model in its square form defines the organisation of a sequence of four elements as:

$$X = \left[\begin{array}{cc} x_0 & x_1 \\ x_2 & x_3 \end{array} \right]$$

with

- *x*₀ the primer of the system
- $x_1 = f(x_0)$ and $x_2 = g(x_0)$
- $x_3 = \gamma(\hat{x}_3)$

where $\hat{x_3} = f(g(x_0))$ is the virtual element

Objective : modeling f, g, and γ .

Experiments

Conclusion

Describing relations between chords

The relations between chords are described in terms of **minimal transport**.

Definition

A *transport* between two chords $P = (p_i)_{0 \le i \le m_p}$ and $Q = (q_j)_{0 \le j \le m_q}$ is a set :

 $T = \{(p_k, q_k) | p, q \in \llbracket 0; 11 \rrbracket, k \in \llbracket 0; n \rrbracket\}$

The cost of a transport is determined by the **taxicab norm** (L_1) .

Experiments

Conclusion

Minimal transport with S&C model

Experiments

Conclusion

Minimal transport with S&C model

Experiments

Conclusion

Minimal transport with S&C model

Experiments

Conclusion

Minimal transport with S&C model

Experiments

Conclusion

Minimal transport with S&C model

A sequence of 16 chords can be described as 4 square S&Cs linked by an upper-scale S&C, resulting in a tensor structure.

Cm Cm Cm Bb Ab Ab Ab Ab G F F F F Cm Cm Bb Bb

Experiments

Conclusion

Biscale description for chord sequences

Experiments

Conclusion

Biscale description for chord sequences

Experiments

Conclusion

Biscale description for chord sequences

Nested S&C description estimation

Optimization of an S&C: finding the set of transport $\{f, g, \gamma\}$ that minimizes the global transport cost S&C.

Optimization in two steps:

- optimization of the S&C U
- optimization of the four sub-S&C.

Multiple tensorial configurations

30 possible choices of combination of squares corresponding to the four sub-S&Cs in the tensor.

A choice of four sub-S&C is a permutation of the initial sequence.

Experiments

Conclusion

Tensorial permutations

Using permutations, the four sub-S&C and the upper-scale S&C are different.

Experiments

- 2) Computational approach
 - Chords relation description
 - S&C Description estimation

3 Experiments

- Algorithm design
- Evaluation using perplexity measure

4) Conclusion

Experiments

- Computational approach
 - Chords relation description
 - S&C Description estimation

3 Experiments

- Algorithm design
- Evaluation using perplexity measure

4 Conclusion

Experiments

Conclusion

Evaluating with perplexity

What is Perplexity ?

Model prediction $PPx = 2^{-log(P_{model}(data))}$ ability $= 2^{Negative \ Log \ Likelihood \ (i.e. \ NLL)}$

 $\textit{model}_1 > \textit{model}_2 \ \Leftrightarrow \ \textit{PPx}_1 < \textit{PPx}_2$

Calculating P(Y|X)

$$\log P(Y|X) = \frac{1}{K} \sum_{i=1}^{K} \log p(y_{\tau(i)}|x_i)$$

870)

Introduction to the S&C model	Computational approach	Experiments oo●o	Conclusion
Perplexity calcula	ation process		
	Sequence : $X_0 X_1$.	X _n	
Bigram model			
$NLL_{bigram} = -\frac{1}{n}[loc$	$gp(X_0) + \log p(X_1 X_0$	$() + \cdots + \log p(X_n)$	<i>X</i> _{<i>n</i>-1})]
Tensorial model			
Estimate conf transport.	iguration ϕ that minim	nizes global minim	al
Compute perp	plexity given ϕ		

$$NLL_{\phi} = -\frac{1}{n} [\log p(X_0) + \log p(X_1|X_{\phi(1)}) + \dots + \log p(X_n|X_{\phi(n)})]$$

Both are first order models.

Experiments

Experiment protocol

Data

- A corpus of 45 sections of recent pop songs represented as sequences of 16 chords.
- The probabilities are estimated using leave-one-out cross-validation strategy.

Results

	Perplexity
Bigram	3.84
Best piece-specific permutation	2.73
Best global permutation	3.17

Additional experiments show the benefit from the virtual element. (see paper)

Conclusions

These are only preliminary results which indicate the potential following trends:

Outcomes

- In our experiments the S&C model outperforms the sequential model on chord sequence prediction.
- Using minimal transport with S&C model appears as an effective way to model chord progression.

Perspectives

Future work

- Improve optimization complexity using crossing free property (Tymokzco 2006)
- Constraint transports to comply with musicological rules
- Investigate the effectiveness of S&C model to other musical dimensions (melody, rhythm)

Introduction to the S&C model	Computational approach	Experiments 0000	Conclusion

Thank you

Questions ?