Using Multidimensional Sequences for Improvisation in the OMax Paradigm

Ken Déguernel^{1,2}, Emmanuel Vincent¹, Gérard Assayag²

¹ Inria Nancy ²STMS Lab, Ircam/CNRS/UPMC

Table of contents

- <u>1. Automatic Improvisation.</u>
- 2. Sub-model Interpolation.
- 3. Combining knowledge and context.
- 4. Belief Propagation.

Factor Oracle

w = abcbacbaba

- Structure representing the evolution of an improvisation on a local context
- One-dimensional data
- Heuristics and control parameters : continuity, leap choices, loops, taboo...

Music is multidimensional

Pitch harmony, rhythm dynamics, timbre, orchestration...

Dimensions are correlated and style-dependent => Difficult to model

Oleo - Sonny Rollins

Table of contents

- 1. Automatic Improvisation.
- <u>2. Sub-model Interpolation.</u>
- 3. Combining knowledge and context.
- 4. Belief Propagation.

High dimensional. Can not be used in practice.

 $\Sigma_i \lambda_i = 1 \quad \lambda_i \ge 0 \ \forall i$

Using probabilistic submodels to represent correlation between dimensions.

 $P(M_t \mid M_{t-1}, \dots, M_{t-n}) \bigstar$

 $P(M_t \mid C_t)$

 $P(C_t \mid C_{t-1})$

Smoothing techniques

- Training corpora are small.
- Smoothing techniques help avoiding of zerovalued probabilities and overfitting.
 - Additive smoothing : every possible event appears δ times more than it actually appears in the corpus.
 - Back-off smoothing : interpolation with a lower order model.
 P(X | Y) = λP(X | Y) + (1-λ) P(X | Z), with Z ⊂ Y

 $P(M_t \mid X_{1:t}) = \alpha P(M_t) + \beta U(M_t) + \lambda_1 P(M_t \mid M_{t-1}) + \lambda_2 P(M_t \mid C_t)$

Training on Charlie Parker's Omnibook (50 tunes with improvisation) :

- Training corpus : 40 tunes and improvisations to train the submodels
- Validation corpus : 5 tunes and improvisations to train the interpolation and smoothing coefficients
- Test corpus : 5 tunes and improvisations

$\begin{array}{ll} \mbox{(B)} & P(M_t \mid X_{1:t}) = P(M_t \mid M_{t-1}) \\ (M) & P(M_t \mid X_{1:t}) = P(M_t \mid M_{t-1}) \\ \end{array}$

 $P(M_t \mid X_{1:t}) = \alpha P(M_t) + \beta U(M_t) + \lambda_1 P(M_t \mid M_{t-1}) + \lambda_2 P(M_t \mid C_t)$

	Coefficients				Cross-entropy
	λ1	λ2	α	β	H(M)
B+M	0,582	0,129	0,289	0	4,543
В	0,672	0	0,328	0	4,572
М	0	0,639	0,361	0	4,881
U	0	0	0,998	0,002	5,858

Table of contents

- 1. Automatic Improvisation.
- 2. Sub-model Interpolation.
- 3. Combining knowledge and context.
- 4. Belief Propagation.

"The development of a motive should be done in a logical, organic way, not haphazardly (improvisation as spontaneous composition) - not, however, in a preconceived way - rather in a way based on intuition enriched with knowledge (from all the study, playing, listening, exposure to various musical styles, etc., that have occurred through a lifetime including all life experiences); the result is a personal musical vocabulary."

-Marylin Crispell, Elements of Improvisation.

Combining probabilistic models with the factor oracle

- Interpolated models represent the system's knowledge
- The Factor Oracle represents the local context
 - Acts as a constraint for the probabilistic model.
 - Enables the system to take into consideration a longer context.
- Navigation in the Factor Oracle is now guided by previous knowledge.

Experimental Results

- Generated improvisations on Charlie Parker's music following 3 methods (15 improvisations per method over 3 tunes) :
 - OMax without any probabilistic module.
 - OMax with a probabilistic module trained on the Omnibook (50 improvised tunes).
 - Omax with a probabilistic module trained on a classical music corpus (850 non improvised tunes).

Improvisation on Donna Lee

other examples on <u>members.loria.fr/evincent/files/smc16</u>

Donna Lee

Experimental Results

 $P(M_t \mid M_{t-1})$ $P(M_t \mid C_t)$ $P(C_t \mid C_{t-1})$

- Informal listening
- When using a probabilistic module :
 - Better harmonic stability.
 - Charlie Parker's musical language a bit faded when trained on classical music.
 - Improvisations are more "diverse, fluid and creative". The combination of dimensions and the smoothing provide escape mechanisms.

Table of contents

- 1. Automatic Improvisation.
- 2. Sub-model Interpolation.
- 3. Combining knowledge and context.
- <u>4. Belief Propagation.</u>

Cluster graph

 $\phi_1(A, B, C), \phi_2(B, C), \phi_3(B, D), \phi_4(B, E), \phi_5(D, E), \phi_6(B, D), \phi_7(B, D, F)$

- ϕ_i : factors ; Ψ_i : initial potentials
- C_i : Clusters ; $S_{i,j} \subseteq C_i \cap C_j$: Sepsets

Belief Propagation

Message passed from cluster i to cluster j :

$$\delta_{i \to j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \psi_i \prod_{k \in (N_i - \{j\})} \delta_{k \to i}$$

• Belief Propagation algorithm :

1. Assign each factor ϕ_k to a cluster.

2. Construct initial potentials of each cluster (product of assigned factors).

- 3. Initialise all messages to be 1.
- 4. Repeat message passing.
- 5. Compute final beliefs :

$$\beta_i(C_i) = \psi_i \prod_{k \in N_i} \delta_{k \to i}$$

Application to the factor oracle and sub-models

- Sub-models are factors for the cluster graph.
- A subset of clusters represents the oracles.
- Oracles
 communicate via the
 cluster graph through
 messages.

Coda

- What about the multiscale organisation?
- How to combine dimensions evolving on different time scales?
- How can we extend the concept of scenario used in ImproTek? (inference of scenario)

References

- [1] K. Déguernel, E. Vincent, G. Assayag
 Using Multidimensional Sequences In The OMax Paradigm.
 Sound and Music Computing, 2016.
- [2] G. Assayag, G. Bloch Navigating the oracle : A heuristic approach. International Computer Music Conference, 2007.
- [3] S. A. Raczynski, S. Fukayama, E. Vincent Melody harmonisation with interpolated probabilistic models. Journal of New Music Research, 2013.
- [4] S. F. Chen, J. Goodman An empirical study of smoothing techniques for language modelling. Harvard University, Tech. Report, 1998.
- [5] D. Koller, N. Friedman Probabilistic Graphical Models Principles and Techniques. MIT Press.