Artificial creative intelligence time series, orchestration

Philippe Esling
Maître de conférences
IRCAM (Repmus) – UPMC (UFR919)

Orchids - Released and debugged

Release of Orchids in late 2014, sold on Forumnet

Already very used and proficient in musical productions (Matlab proto)

Currently GdR/GdT Orchestration every month at IRCAM

Latest version delivered on Forumnet march 2016

Improved accuracy and search heuristics

Fully multi-threaded version

Extended database

Multiple bug corrections

Participants: P. Esling,, D. Ghisi (residency), Y. Maresz, M. Vitorio Garcia, E. Daubresse

External collaborations: McGill, Montreal (S. McAdams, CIRMMT) – Plymouth University, Uk (E. Miranda) –

NorthEastern University, Shenyang, China (Z. Liang) – University of Geneva, Switzerland

Time series mining

- Reaching the modelization gap towards times series
- Querying and non-linear musical similarity
- Data mining over databases of millions sequences
- Efficient audio sample querying (~ 10⁷)
- Introduction of two search algorithms
- Research based on time series

[AFIM Prize of the young researcher 2010]

[Esling Philippe, Agon Carlos "Time series data mining", *ACM Computing Surveys*, vol.46, no.1, 2012]

First time-series based search for audio samples

Finding **any kind** of sounds (objective temporal evolution, no metadata)

... By simply drawing their shapes

First step towards the **signal-symbolic links**

Multiobjective time series matching

Sound is not a uni-dimensional object

Multiple descriptors (pitch, loudness, ...)

Temporal perception issues

- How to allow a flexible similarity over multiple series
- Introduction of innovative search paradigms on "conflictive dimensions"
- Multiobjective time series matching (MOTS) = never merge similarities

$$\mathcal{S}^{*} = \underset{\mathcal{S}}{argmin} \left\{ \left(D_{Q}^{k}\left(\mathcal{S}\right) \right), k = 1, ..., K \right\} \right\}$$

Extension to **classification** by using the **hypervolume**

dominated by classes $\uparrow r_p$

Deux algorithmes de recherche efficaces déjà implémentés

Research extension

New generalization to univariate series, excellent results

-	ℓ^2	DTW_b	DTW_f	ML	Mult	HV_s	HV_b
50Words	36.9	24.2	31	33.6	27.9	25.9	25.9
Adiac	38.9	39.1	39.6	25.1	36.1	29.7	27.9
ARSim	48.6	44.3	44.3	36.1	0	0	0
Beef	46.7	46.7	50	20	31.0	34.5	24.1
CBF	14.8	0.4	0.3	10.3	1.1	0.56	0
Chlorine	35	35	35.2	-	33.6	33.6	32.9
Cinc_ECG	10.3	7	34.9	-	6.1	2.9	1.08
Coffee	25	17.9	17.9	0	3.7	3.7	0
CricketX	42.6	23.6	22.3	-	21.3	23.1	20.8
CricketY	35.6	19.7	20.8	-	22.1	19.2	19.2
CricketZ	38	18	20.8	-	23.9	23.4	21.3
DiatomSize	6.5	6.5	3.3	-	4.6	4.9	1.3
ECG	12	12	23	11	17.2	17.2	6.1
ECGFiveD	20.3	20.3	23.2	-	2.9	5.5	1.5
Face (all)	28.6	19.2	19.2	17.6	20.2	20.8	20.2
Face (four)	21.6	11.4	17	11.4	6.9	4.6	3.4
FacesUCR	23.1	8.8	9.5	-	3.7	4.3	3.7
Fish	21.7	16	16.7	14.9	8.1	8.1	5.7
GunPoint	8.7	8.7	9.3	6.7	8.7	0.7	0.7
Haptics	63	58.8	62.3	-	57.3	55.1	52.4
InlineSkate	65.8	61.3	61.6	-	55.7	55.5	53.7
ItalyPower	4.5	4.5	5	-	4.2	4.1	3.0
Lightning2	24.6	13.1	13.1	19.7	18.3	11.7	10
Lightning7	42.5	28.8	27.4	28.8	30.5	26.4	16.7
MALLAT	8.6	8.6	6.6	-	8.1	6.1	3.8
Medical	31.6	25.3	26.3	-	28.3	26.5	25.6
MoteStrain	12.1	13.4	16.5	-	16.2	15.9	8.5
N-ECG 1	17.1	18.5	20.9	-	17.8	15.9	15.9
N-ECG 2	12	12.9	13.5	-	11.2	10.5	9.2
OliveOil	13.3	16.7	13.3	13.3	10.3	10.4	6.8
OSU Leaf	48.3	38.4	40.9	45.4	25.3	21.2	19.9
SonyI	30.5	30.5	27.5	-	31.3	34.8	23.5
SonyII	14.1	14.1	16.9	-	15.9	19.01	8.4
StarLight	15.1	9.5	9.3		9.2	6.9	6.8
SwedishL	21.3	15.7	21	13.4	11.4	9.1	7.2
Symbols	10	6.2	5	-	4.9	4.4	2.8
Synthetic	12	1.7	0.7	4	3.3	3.3	3.3
Trace	24	1	0	18	1	0	0
TwoPatt.	9	0.1	0	9.4	0	0.05	0
TwoLead	25.3	13.2	9.6	-	12.3	15.7	4.1
uWaveX	26.1	22.7	27.3	-	25	23.5	22.7
uWaveY	33.8	30.1	36.6	-	33.5	33.3	31.0
uWaveZ	35	32.2	34.2	-	33.3	30.6	30.5
Wafer	0.5	0.5	2	0.6	0.5	0.3	0.3
Words	38.2	25.2	35.1	167	32.3 14.9	32.3	28.7
Yoga	17	15.5	16.4	16.7	14.9	14.9	14.9

[Esling Philippe, Leopold Crestel "Live Orchestral Piano, the first system for real-time orchestration", ICCC, 2016 (submitted)]

Current state (L. Crestel)

- New variational and conditional model
- Full force database (4Gb of MIDI ~1M tracks)
- First symbolic orchestration database
 - Piano vs. orchestral versions
 - ~250 full tracks
 - · Currently hand-screened
- We need a baseline task to evaluate models
 - Toy examples + reference DB
- We need a correct measure to evaluate this
- Also ... is prediction a good proxy?
- Need to define new learning objectives, auxiliary tasks

~1 month internship (M. Pariente)

- Generating an embedding of symbolic music
- What data augmentations to use for symbolic music
 - Dropout, masking
 - Transposition
 - Temporal warps
- We need a baseline task to evaluate models
 - Toy examples + reference DB
- Also ... is prediction a good proxy?
 - cf. Skip-thought vectors
- Need to define new learning objectives, auxiliary tasks

Lots of ideas on the matter

- New internship this year with **Dr**. Nika
- Let's do it all together?

DAE

32.1

31.7

19.9

20.7

23.3

15

25

35.2

16.5

0

44.3

7.3

21.6

22.9

31.7

4.3

31.1

7.3

57.2

39.1

64.4

3.9

23.2

14.7

6.8

5.6

52.1

19.1

49.4

12.6

7.1

7.2

23.3

19.1

18.1

14.8

20

61

38.1

25

15.2

5.7

1

0

11.5

0.2

0

0

CAE

34.0

31.7

19.3

22.4

28.7

15

25

35.5

18.5

0

44.1

5.4

21.6

21.7

31.2

0

2.9

32.1

1.7

7.5

55.2

39.4

62.7

3.7

22.7

13.3

3.6

7.7

57.5

19.1

50.3

12.6

8.2

6.3

20.4

17.6

23.8

15.3

21.8

64.3

35.7

26.1

16.5

5.7

1.2

0

13.3

0.2

reflecting water

A plane flying

in the sky

Nearest Images

(Kiros, Salakhutdinov, Zemel, TACL 2015)

