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•  Reaching the modelization gap towards times series

•  Querying and non-linear musical similarity

•  Data mining over databases of millions sequences

•  Efficient audio sample querying (~ 107)

•  Introduction of two search algorithms

•  Research based on time series


(a) (b)

(a) (b)

[Esling Philippe, Agon Carlos "Time series 
data mining", ACM Computing Surveys, 

vol.46, no.1, 2012]


[AFIM Prize of the young researcher 2010]


First time-series based search for audio samples


Finding any kind of sounds

(objective temporal evolution, no metadata)


… By simply drawing their shapes


First step towards the signal-symbolic links


Time series mining 



•  How to allow a flexible similarity over multiple series

•  Introduction of innovative search paradigms on “conflictive dimensions”

•  Multiobjective time series matching (MOTS) = never merge similarities
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Extension to classification by using the hypervolume 
dominated by classes
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Sound is not a uni-dimensional 
object


Multiple descriptors (pitch, loudness, …)

Temporal perception issues


? 

Deux algorithmes de recherche efficaces déjà implémentés


Multiobjective time series matching 



New generalization to univariate series, excellent results 


[Esling Philippe, Agon Carlos “Taking all advices in time series classification through multi-objective 
assessment”, DMKD, 2015 (in review)] 5

Research extension 

Dynamic Time Warping
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    (Q, e₁) = 6.08 DTW(Q, e₁) = 2.66

    (Q, e₂) = 2.83 DTW(Q, e₂) = 5.46
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ℓ2 DTWb DTWf ML Mult HVs HVb

50Words 36.9 24.2 31 33.6 27.9 25.9 25.9
Adiac 38.9 39.1 39.6 25.1 36.1 29.7 27.9

ARSim 48.6 44.3 44.3 36.1 0 0 0
Beef 46.7 46.7 50 20 31.0 34.5 24.1
CBF 14.8 0.4 0.3 10.3 1.1 0.56 0

Chlorine 35 35 35.2 - 33.6 33.6 32.9
Cinc ECG 10.3 7 34.9 - 6.1 2.9 1.08

Coffee 25 17.9 17.9 0 3.7 3.7 0
CricketX 42.6 23.6 22.3 - 21.3 23.1 20.8
CricketY 35.6 19.7 20.8 - 22.1 19.2 19.2
CricketZ 38 18 20.8 - 23.9 23.4 21.3

DiatomSize 6.5 6.5 3.3 - 4.6 4.9 1.3
ECG 12 12 23 11 17.2 17.2 6.1

ECGFiveD 20.3 20.3 23.2 - 2.9 5.5 1.5
Face (all) 28.6 19.2 19.2 17.6 20.2 20.8 20.2

Face (four) 21.6 11.4 17 11.4 6.9 4.6 3.4
FacesUCR 23.1 8.8 9.5 - 3.7 4.3 3.7

Fish 21.7 16 16.7 14.9 8.1 8.1 5.7
GunPoint 8.7 8.7 9.3 6.7 8.7 0.7 0.7

Haptics 63 58.8 62.3 - 57.3 55.1 52.4
InlineSkate 65.8 61.3 61.6 - 55.7 55.5 53.7
ItalyPower 4.5 4.5 5 - 4.2 4.1 3.0
Lightning2 24.6 13.1 13.1 19.7 18.3 11.7 10
Lightning7 42.5 28.8 27.4 28.8 30.5 26.4 16.7
MALLAT 8.6 8.6 6.6 - 8.1 6.1 3.8

Medical 31.6 25.3 26.3 - 28.3 26.5 25.6
MoteStrain 12.1 13.4 16.5 - 16.2 15.9 8.5

N-ECG 1 17.1 18.5 20.9 - 17.8 15.9 15.9
N-ECG 2 12 12.9 13.5 - 11.2 10.5 9.2
OliveOil 13.3 16.7 13.3 13.3 10.3 10.4 6.8

OSU Leaf 48.3 38.4 40.9 45.4 25.3 21.2 19.9
SonyI 30.5 30.5 27.5 - 31.3 34.8 23.5

SonyII 14.1 14.1 16.9 - 15.9 19.01 8.4
StarLight 15.1 9.5 9.3 - 9.2 6.9 6.8
SwedishL 21.3 15.7 21 13.4 11.4 9.1 7.2

Symbols 10 6.2 5 - 4.9 4.4 2.8
Synthetic 12 1.7 0.7 4 3.3 3.3 3.3

Trace 24 1 0 18 1 0 0
TwoPatt. 9 0.1 0 9.4 0 0.05 0
TwoLead 25.3 13.2 9.6 - 12.3 15.7 4.1
uWaveX 26.1 22.7 27.3 - 25 23.5 22.7
uWaveY 33.8 30.1 36.6 - 33.5 33.3 31.0
uWaveZ 35 32.2 34.2 - 33.3 30.6 30.5

Wafer 0.5 0.5 2 0.6 0.5 0.3 0.3
Words 38.2 25.2 35.1 - 32.3 32.3 28.7

Yoga 17 15.5 16.4 16.7 14.9 14.9 14.9
TABLE III. COMPARISON OF OVERALL ERROR RATES FOR DIFFERENT

METHODS ON EACH DATASET. WE DISPLAY THE RESULTS PROVIDED BY

THE UCR WEBSITE [18] FOR THE EUCLIDEAN DISTANCE (ℓ2), DTW WITH

BEST WINDOW (DTWb), FULL DTW (DTWf ) AND THE BEST RESULTS

OBTAINED BY MACHINE LEARNING (ML) METHODS [3]. THE THREE LAST

COLUMNS PRESENT THE RESULTS OF THE MULTIDIMENSIONAL

ASSESSMENT OF SIMILARITY BY RELYING EITHER ON A NEAREST

NEIGHBOR (MULTI) OR HV-MOTS CRITERION WITH AN AUTOMATIC

SELECTION OF THE SIMILARITY SPACE (HVs) OR ITS BEST SIMILARITY

SPACE (HVb).

assessments based on a 1-NN selection (Multi) and HV-
MOTS shows that even though their results are quite close,
the HV-MOTS approach systematically outperforms the 1-NN
criterion. This resemblance can also be noted in the almost
identical scatterplots obtained when comparing the Multi and
HV-MOTS approaches against other state-of-art results (two
left columns of the scatterplot matrix). The same observations
hold for the results based on the multidimensional space
automatically selected by the optimization procedure. As could
be expected, the two variants of the DTW either with full
(DTWf ) or best (DTWb) window exhibit an almost similar
distribution of results.

Finally, we provide in Figure 5 the critical difference
graphs [9], in order to exhibit the true statistical differences
between classifiers across all datasets within a single represen-
tation. These critical differences are computed either between

Fig. 4. Scatterplots matrix showing the pairwise comparisons between our
proposed method (HV-MOTS), the nearest-neighbor in our multidimensional
similarity space (Multi) and the state of arts method, DTW with full window
(DTWf ) or best warping (DTWb) and the Euclidean distance (ℓ2). The
upper triangular matrix show these comparisons based on the best results
obtained and the lower triangular matrix compare the results for the space
automatically selected by the optimization procedure. We display in the HV-
MOTS sub-figures the light grey portion of the corresponding space that shows
a superiority of the HV-MOTS approach.

the best distance combinations (top) or the automatically
selected space (bottom). Two very interesting observations
can be drawn from these graphs. First, in terms of best
results, we can see that the multi-dimensional assessment of
similarity with a 1-NN (Multi) or HV-MOTS criterion are not
only statistically but also critically superior to the state-of-arts
results. This underlines the fact that the idea of embedding
all advices provided by multiple time series distance measures
can provide a strongly superior approach to TSC. Hence, even
if it seems that the two criteria belong to the same clique of
statistical equivalence, it should be noted that the performance
of HV-MOTS are still strongly superior than those of the 1-
NN criterion. This observation is underlined by the critical
differences graph obtained from the space results. As we can
see, even though the two criteria still belong to the same
clique and are statistically superior to other approaches, only
HV-MOTS is able to be critically superior to the state-of-
art results (as the 1-NN belongs to the same clique as the
DTWb approach). This supports the idea that evaluating each
distance on a separate dimension without merging them into a
single measure through evaluation of the hypervolume of each
class allows obtaining a more powerful classification approach.
Overall, these results show that the HV-MOTS criterion on a
multidimensional assessment of similarity is the first method
to critically outperform previous approaches of TSC.
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Partition piano

Partition
orchestre

Orchestration

(v)

Orchestra
(time < t)

...
...

...

Piano
(time t)

(h)

...

(x)

Factors

(z)

Orchestra
(time t)

Unknown
(randomly initialized)Clamped

Alternate Gibbs
Sampling

Figure 5: Sampling in a FGcRBM. Context and feature units
are respectively clamped to the last (t�1 to t�N ) orchestral
frames and the current (t) piano frame. Visible units are
randomly initialized. Then, several Gibbs sampling step are
performed until reaching the equilibrium distribution of the
model.

models because of the partition function. However, samples
from an approximate distribution can be reached through al-
ternate Gibbs sampling. After randomly setting the visible
units (for each index i, v

i

⇠ U(0, 1)), K Gibbs sampling
steps are performed to obtain a visible sample. The objec-
tive of these K steps is to reach the equilibrium distribution
of the model. Even though a theoretically infinite number
of steps is necessary, 20 to 100 steps are typically sufficient.
Note that, in practice, a threshold is applied on the activation
of the visible units before the last sampling step in the Gibbs
chain so that unlikely activations are set to zero.

Projective orchestration
In this section, we introduce and formalize the automatic
projective orchestration task presented in Figure 1 on page
1. In particular, we detail the database used, data representa-
tion, evaluation framework, and discuss the results obtained
by different models.

Database
We use a database of piano scores and their orchestration
by famous composers. The database consists of 76 excerpts
of orchestral pieces, and fourteen different instruments were
present in the database. This database has been collected by
orchestration teachers and are the transcription of famous
composers orchestration in the MusicXML format.

Data representation
In order to process the scores, we import them as matrices
called piano-roll, a data representation traditionally used to
model polyphonic music (see Figure 6 on page 5). The pi-
ano and orchestra scores are represented in two different
piano-rolls. The orchestral piano-roll is the concatenation
of piano-rolls from each instrument along the pitch dimen-
sion.

The rhythmic quantization is defined as the number of
time frame in the piano-roll per quarter note. When con-
structing the piano-rolls, we used a rhythmic quantization of
4.

In order to reduce the number of units, we systematically
remove, for each instrument, any pitch which is never played
in the training database. Hence, the dimension of the orches-
tral vector decreased from 2432 to 456 and the piano vector
dimension from 128 to 88. Also, we follow the classic or-
chestral simplifications used when writing orchestral scores
by grouping together all the instruments of the same sec-
tion. For instance, the violin section, which might be com-
posed by several instrumentalists, is written as a single part.
Finally, the velocity information is discarded, since we use
binary units which solely indicate if a note is on or off.
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Figure 6: From the score of an orchestral piece, a convenient
representation for computer processing named piano-roll is
extracted. A piano-roll pr is a matrix whose rows represent
pitches and columns represent a time frame depending on
the discretization of time. A pitch p at time t played with
an intensity i is represented by pr(p, t) = i, 0 being a note
off. This definition is extended to an orchestra by simply
concatenating the piano-rolls of every instruments along the
pitch dimension. Finally, each time frame in the piano-roll
matrix will be modelled by the visible units of the RBM, in
order to learn the probability distribution of the orchestral
process.

Model definition
For each orchestral piece, we define Orch(t) and Piano(t)
as the sequence of column vectors from the piano-roll of
the orchestra and piano part respectively, with t 2 [1, N

T

]
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In the case of time series, if the visible units represent a
frame at time t, these context units can be used to model
the influence of the recent past frames [t�N, t� 1] on the
current frame (N defining the temporal order). Thus, the
energy function of the cRBM is given by
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This model can be trained using CD, since the marginal
probabilities of visible and hidden units are the same as the
RBM (simply replacing the static biases by dynamics ones).
Hence, the update rules are unchanged for W , a and b, and
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Figure 3: The conditional RBM (cRBM) adds a layer of con-
text units to the standard RBM architectures. Those context
units linearly modify the biases of both the visible and hid-
den units through the dynamics terms.

Factored Gated cRBM
The Factored Gated cRBM (FGcRBM) model (Taylor and
Hinton 2009) proposes to extend the cRBM model by adding
a layer of feature units z which modulates the weights of the
conditional architecture in a multiplicative way (see Figure
4 on page 4). Hence, the parameters of the model become
✓ = {W ,A,B,a, b}, where W = (W )

ijl

, A = (A)

ikl

and B = (B)

jkl

are three-dimensional tensors.
This multiplicative influence can be interpreted as a mod-

ification of the energy function of the model depending on
a for of style features. For a fixed configuration of fea-
ture units, a new energy function is defined by the cRBM

(v, h, and x). The number of parameters grows cubically
with the number of units. To reduce the computation load,
the three dimensional tensors can be factorized into a prod-
uct of three matrices by including factor units indexed by f
such that W

ijl
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where the dynamic biases of the visible and hidden units are
defined by
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Context units
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Figure 4: FGcRBM model. The features units (z) modify
the energy landscape of the model through a multiplicative
influence over the weights A, B and W . Here, the role of
each unit in the context of orchestration is indicated.

Sampling from the models
Using gradient descent during the learning phase brings no
guarantee over the quality of the approximation between the
model distribution and the data distribution. However, CD
guarantees that the Kullback-Leibler divergence between
the model and data distribution is reduced after each itera-
tion(Hinton 2002), and an acceptable approximation should
be found after large number of CD steps. Therefore, by
sampling from the model distribution, we are able to gen-
erate novel data similar to the one observed in the training
dataset but yet unseen. In practice, sampling from the condi-
tional models is performed by computing the marginal dis-
tribution of the visible units knowing the context p(v|x) =P

h

p(v, h|x), and then sampling from a Bernoulli distribu-
tion of parameter p(v|x). Unfortunately, this marginal distri-
bution remains computationally intractable in the introduced



Partition piano

Partition
orchestre

Orchestration

IRCAM Scientific Council – 14-15 March 2016 14

Artificial Creative 
Intelligence

Time series at 
variable 

granularities

Deep learning and 
multiobjective time series 

Representation of time 
series for learning

MIDI Input

Audio rendering

OSC 
Client

Score rendering

OSC 
Server

Max/Msp MATLAB Pre-trained network
Real-time user input

Model Orchestral Event-level (%)
Random 0.5
Repeat 12.6
cRBM 23.2

FGcRBM 6.2

Table 1: Event-level accuracy for the orchestral inference
task. Even though the cRBM performances increase by a
factor 3 between the cRBM and the random model, the in-
clusion of features units provides a leap in the accuracy by
multiplying the performances by 4.

Live Orchestral Piano (LOP)
We introduce in this section the Live Orchestral Piano
(LOP) application, which is the first software able to pro-
vide a way to compose music with a full classical orchestra
in real-time by simply playing on a MIDI piano. The goal
of this framework is to rely on the knowledge learned by the
model introduced in the previous sections in order to per-
form the projection from a piano melody to the orchestra.

Workflow
The software is implemented on a client/server paradigm.
This choice allows to separate the orchestral computation
part from the interface and sound rendering engine. That
way, multiple interfaces can easily be implemented. It
should also be noted that separating the computing and
rendering on different computers, can allow to use high-
quality and CPU-intensive orchestral rendering plugins.
This can allow a more realistic orchestral rendering with
heavy amounts of computation performed while ensuring
the real-time constraint on the overall system (preventing
degradation of the computing part). The complete imple-
mentation workflow is presented in Figure 7.

As we can see, the user can input a melody (single notes
or chords) through a MIDI keyboard, which is retrieved in-
side the Max/Msp interface. The interface transmits this
symbolic information (as a variable-length vector of active
notes) via OSC to the MATLAB server. The interface per-
forms a real-time transcription of the piano score to the
screen in parallel. The server uses this vector of events to
produce an 88 vector of binary input note activations (as de-
fined in the sub-section Data representation). This vector
is then processed by using the orchestration algorithms pre-
sented in sub-section Model definition in order to obtain a
projection of a specific symbolic piano melody to the full
orchestra (an operation defined as projective orchestration).
The resulting orchestration is then sent back to the client in-
terface which performs both the real-time audio rendering
and score transcription.

Interface
The interface has been developed in Max/Msp, to facilitate
both the score and audio rendering aspects in a real-time en-
vironment. The score rendering is handled by the Bach li-
brary environment. This interface provides a way to easily
switch between different orchestration models, while con-
troling other meta-parameters of the sampling. For instance

the cutoff probability gives a direct access to the density of
the generated orchestration (in terms of number of played
instruments). Indeed, a low cutoff probability implies that
most activation of notes will be taken into account in the
playback, while a high cutoff will produce more sparse or-
chestration.

Conclusion and future works
We have introduced a system for real-time projective orches-
tration of a midi piano input. In order to select the most
adapted model, we have proposed an evaluation framework
called orchestral inference which rely on an orchestral infer-
ence task. We have assessed the performance of the cRBM
and FGcRBM, and observed the better performances of the
cRBM model.

The general objective of building a generative model for
time series is one of the most prominent topic for the ma-
chine learning field. Orchestral inference sets a slightly
more specific framework where the generated time series
is conditioned by an other observed time series (the piano
score). Besides, being able to grasp the long range de-
pendencies structuring music appears as a challenging and
worthwhile task.

The high dimensionality of the data and their sparsity
are a major obstacle for learning algorithms. A first re-
mark is that a larger database would be required to train
any model sufficiently complex to properly represent the
underlying distribution of a projective orchestration. It is
important to build a reference database of piano scores and
their orchestration by acknowledge composers, with all in-
strument name indicated and velocity for the notes. Indeed,
we believe that taking the notes’ velocity into consideration
is crucial, since many orchestral effects are justified by in-
tensity variations in the original piano scores. Besides, the
sparse representation of the data suggests that a more com-
pact distributed representation might be found. Lowering
the dimensionality of the data would greatly improve the ef-
ficiency of the learning procedure. For instance, methods
close to the word-embedding techniques used in natural lan-
guage processing might be useful (Kiros et al. 2015).

Moreover, other models should be evaluated. The features
units of the FGcRBM model could be used to model dif-
ferent composing styles. The fundamental mechanisms in-
volved in recurrent models (LSTM (Hochreiter and Schmid-
huber 1997)) could also be augmented by a notion of condi-
tional dependence and used in an orchestral inference con-
text.

Finally, a better performance measure should be devel-
oped for the orchestral inference task. A solution could be
to derive estimators for the likelihood of sequences under
the proposed models. Recent work on methods such as An-
nealed Importance Sampling are promising.
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[Esling Philippe, Leopold Crestel “Live Orchestral Piano, the first system for real-time orchestration”, 
ICCC, 2016 (submitted)]
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Current state (L. Crestel) 
•  New variational and conditional model 
•  Full force database (4Gb of MIDI - ~1M tracks) 
•  First symbolic orchestration database 

•  Piano vs. orchestral versions 
•  ~250 full tracks 
•  Currently hand-screened 

•  We need a baseline task to evaluate models 
•  Toy examples + reference DB 

•  We need a correct measure to evaluate this 
•  Also … is prediction a good proxy ? 
•  Need to define new learning objectives, auxiliary tasks 
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~1 month internship (M. Pariente) 
•  Generating an embedding of symbolic music 
•  What data augmentations to use for symbolic music 

•  Dropout, masking 
•  Transposition 
•  Temporal warps 

•  We need a baseline task to evaluate models 
•  Toy examples + reference DB 

•  Also … is prediction a good proxy ? 
•  cf.  Skip-thought vectors 

•  Need to define new learning objectives, auxiliary tasks 
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7.3 software architecture 39

Figure 11: Proposed co-improvisation architecture

This process is dynamic: the short-term scenario used by Improtek
is re-updated in real-time by comparing the predictions done with
the actual outcomes. If the predictions were wrong, the sequence cur-
rently generated by Improtek is updated to follow the new scenario.

Partition piano

Partition
orchestre

Orchestration

T. Bazin internship 

Part II

P R E D I C T I O N A N D A B S T R A C T S C E N A R I O
I N F E R E N C E

In this second part, we present our approach to the sce-
nario inference and prediction problem.

Prediction is performed through temporal analysis using
recurrent neural networks. Due to the high representation
power of these networks and their large number of param-
eters, we searched for a large dataset on which to train
them. This lead us to the choice of the Million Song

Dataset, which provides one million chromagrams.

A meta-optimization loop is implemented to devise an ap-
propriate architecture for this task, given the large dataset
at hand.

The abstraction step is done using clustering algorithms
on the available chromas, effectively turning a sequence
of chromas into a sequence of abstract labels.

Figure 8: Proposed prediction and symbolization architecure

Memory 

Scenario 

Future ? 

4.2 long short-term memory 24
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Figure 7: Long Short-Term Memory unit

the unit, and three gates, which control how the memory cell’s content
is being updated and used.

This “control” is done via a multiplicative operation, the point-wise
multiplication of vectors.

The three gates, standard neural networks receiving input from the
current input x(t) to the network and the previous output o(t- 1),
are:

1. A forget gate, which controls which part of the memory to forget.
For instance, the network can “decide” , based on the input
x(t) and the previous output o

t-1

, to “forget” all dimensions
in the memory vector but the last, by modulating the recurrent

connexion with the vector
⇣
0 . . . 0 1

⌘>
.

2. An update gate, which controls which part of the units input
to store into the memory cell. Similarly, the unit can decide to
select the value at the first dimension in the current input, by

multiplying it with the vector
⇣
1 0 . . . 0

⌘>
.

3. An output gate, which controls which part of the memory to
output at the current time-step.

At each time t, the content of the memory cell is then updated by
combining – through a simple sum of the two vectors – the values
stemming from the update gate and from the forget gate,

Optimizing the weights in those gates through training, the lstm

can be taught to properly manage its memory for various operations.
Through these mechanisms, it can transport information over long

periods, by storing some values into the memory cell and simply

2. Tools 65

Figure 2.12: Log-magnitude constant-Q spectrogram of the audio
recording of an acoustic guitar shown in figure 2.6. The constant-Q
transforms are computed over logarithmically-spaced bins from C2 to
B5 (65.4 to 987.8 Hz), with 12 bins per octave.

to the length-Mk Hann window, which provides a good balance for analysis tasks.

An important consideration when computing this formulation of the constant-Q

transform is the hop size. If the hop size R is larger than mink(Mk) (the window

size of the highest frequency bin), it is possible that a portion of the signal will not

be analyzed, and furthermore if R > mink(Mk)/2 then some distortion may result.

The simplest way to mitigate this is to set R < mink(Mk)/2. However, if mink(Mk)

is by necessity very small, this can result in excessive oversampling. An alternative,

advocated by (Schörkhuber and Klapuri, 2010), is to compute the high-frequency

CQT bins at multiple o↵sets within each window and aggregate the results.

As with the DFT, the CQT produces complex-valued coe�cients, and a more

more perceptually accurate transform can be obtained by computing a log-magnitude

CQT. For comparison, the log-magnitude CQT of the audio signal in figure 2.6 is

shown in figure 2.12.

2.2.3 Dynamic Time Warping

A common task in signal processing is measuring the similarity between two sequences

of feature vectors. For example, given a collection of recorded speech utterances with
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The simplest way to mitigate this is to set R < mink(Mk)/2. However, if mink(Mk)

is by necessity very small, this can result in excessive oversampling. An alternative,

advocated by (Schörkhuber and Klapuri, 2010), is to compute the high-frequency

CQT bins at multiple o↵sets within each window and aggregate the results.

As with the DFT, the CQT produces complex-valued coe�cients, and a more

more perceptually accurate transform can be obtained by computing a log-magnitude

CQT. For comparison, the log-magnitude CQT of the audio signal in figure 2.6 is
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2.2.3 Dynamic Time Warping

A common task in signal processing is measuring the similarity between two sequences

of feature vectors. For example, given a collection of recorded speech utterances with

•  Multiscale 
•  Multi-predictions 
•  Adaptive 
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Figure 11: Proposed co-improvisation architecture

This process is dynamic: the short-term scenario used by Improtek
is re-updated in real-time by comparing the predictions done with
the actual outcomes. If the predictions were wrong, the sequence cur-
rently generated by Improtek is updated to follow the new scenario.

Lots of ideas on the matter  
•  New internship this year with Dr. Nika 
•  Let’s do it all together ? 
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Fig. 4. Critical differences graphs comparing the performances of the state-
of-art approaches (`2, DTW and TSE) and the multidimensional assessment
of similarity by relying either on a nearest neighbor (1NNm) or hypervolume
(HV-MOTS) criterion. These critical differences are computed either between
the best distance space (top) or the space automatically selected by the
optimization procedure (bottom).

B. State-of-art comparison

We provide in Table II the comparison of error rates

obtained by different methods on each dataset. We display

the results provided by the UCR website [20] for 1-NN

selection with DTW with best window (DTW ) and time series

ensembles (TSE) [24]. The last columns display the results

of the auto-encoder (AE), Restricted Boltzmann Machine

(RBM ), Stacked auto-encoder (SAE), Deep Belief Network

(DBN ) and Deep Boltzmann Machine (DBM ). Dark grey

rows identify the datasets where deep learning models obtain

a lower error rate than all state-of-art methods, while light grey

rows show an equivalent error rate.

As we can see [...]

Finally, we provide in Figure 4 the critical difference

graphs [8], in order to exhibit the true statistical differences

between classifiers across all datasets within a single represen-

tation. These critical differences are computed with [...]

1) Computational efficiency:

2) Interpretability and generalization:

C. Motif discovery

V. DISCUSSION

First evidence

* ML For TSC

* Interpretability

TABLE II. COMPARISON OF OVERALL ERROR RATES FOR THE DTW
WITH BEST WINDOW (DTW ), TIME SERIES ENSEMBLES (TSE) [24] AND
THE BEST PERFORMING AUTO-ENCODER (AE), RESTRICTED BOLTZMANN

MACHINE (RBM ), STACKED AUTO-ENCODER (SAE), DEEP BELIEF
NETWORK (DBN ) AND DEEP BOLTZMANN MACHINE (DBM ).

DTW TSE AE RAE DAE CAE
50Words 24.2 18.0 48.9 38.7 32.1 34.0

Adiac 39.1 35.3 34.6 33.5 31.7 31.7
ArrowHead 21.7 16 21.2 19.9 19.9 19.3

ARSim 44.3 10.3 28.9 21.8 20.7 22.4
Beef 46.7 36.7 30.8 25.7 23.3 28.7

BeetleFly 35 40 20 25 15 15
BirdChicken 35 35 25 25 25 25

Chlorine 35 36 45.8 40.3 35.2 35.5
Cinc ECG 7 6.2 22.1 16.5 16.5 18.5

Coffee 17.9 0 0 0 0 0
Computers 12.4 11.6 51.2 49.4 44.3 44.1
DiatomSize 6.5 5.9 35.1 15.7 7.3 5.4
DistalPOA 20.1 22.3 48.6 25.1 21.6 21.6
DistalPOC 25.4 23.2 38.6 27.2 22.9 21.7
DistalPTW 32.4 31.7 45.6 31.7 31.7 31.2

Earthquakes 30.9 28.1 3.6 0 0 0
ECGFiveD 20.3 17.8 11.3 5.4 4.3 2.9

ElectricDevices 29.5 27.7 38.0 32.5 31.1 32.1
Face (all) 19.2 15.2 12.6 9.0 0 1.7
GunPoint 8.7 7 12.6 14.6 7.3 7.5

Haptics 58.8 58.4 67.2 63.2 57.2 55.2
Herring 34.4 29.7 54.7 42.8 39.1 39.4

InlineSkate 61.3 56.7 76.5 71.6 64.4 62.7
ItalyPower 4.5 3.9 4.8 3.9 3.9 3.7

LargeKitchen 26.4 23.2 36.4 31.7 23.2 22.7
Lightning2 13.1 11.5 27.6 20.9 14.7 13.3
Lightning7 28.8 23.3 8.7 6.8 6.8 3.6
MALLAT 8.6 5 15.6 5.6 5.6 7.7

MiddlePOA 53.9 47.4 51.9 61.5 52.1 57.5
MiddlePOC 19.9 21 22.4 25.6 19.1 19.1
MiddlePTW 68.2 63 57.8 55.5 49.4 50.3
MoteStrain 13.4 11.4 26.7 20.6 12.6 12.6

N-ECG 1 18.5 17.8 15.9 8.9 7.1 8.2
N-ECG 2 12.9 11.2 18.5 17.4 7.2 6.3

OliveOil 16.7 13.3 28.8 26.6 23.3 20.4
Phalanges 22.8 21.7 29.5 24.0 19.1 17.6

ProximalPOA 12.7 11.7 33.9 18.2 18.1 23.8
ProximalPOC 19.6 17.2 33.4 25.3 14.8 15.3
ProximalPTW 27.8 24.4 28.1 20 20 21.8
Refrigeration 51.5 42.4 61 61 61 64.3
ScreenTypes 44.5 44 52.8 48.3 38.1 35.7

SonyI 30.5 29.3 36.3 25.7 25 26.1
SonyII 14.1 12.4 27.8 21.2 15.2 16.5

StarLight 9.5 7.9 19.0 5.7 5.7 5.7
Trace 1 1 5.6 5.6 1 1.2

TwoPatt. 0.1 0 0.1 0.1 0 0
TwoLead 13.2 6.7 18.1 16.7 11.5 13.3

Wafer 0.5 0.3 5.4 5.4 0.2 0.2
Words 25.2 22.6 39.7 38.4 32.2 34.4

Yoga 15.5 12.1 29.6 23.9 17.4 18.2
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Fig. 4. Critical differences graphs comparing the performances of the state-
of-art approaches (`2, DTW and TSE) and the multidimensional assessment
of similarity by relying either on a nearest neighbor (1NNm) or hypervolume
(HV-MOTS) criterion. These critical differences are computed either between
the best distance space (top) or the space automatically selected by the
optimization procedure (bottom).

B. State-of-art comparison

We provide in Table II the comparison of error rates

obtained by different methods on each dataset. We display

the results provided by the UCR website [20] for 1-NN

selection with DTW with best window (DTW ) and time series

ensembles (TSE) [24]. The last columns display the results

of the auto-encoder (AE), Restricted Boltzmann Machine

(RBM ), Stacked auto-encoder (SAE), Deep Belief Network

(DBN ) and Deep Boltzmann Machine (DBM ). Dark grey

rows identify the datasets where deep learning models obtain

a lower error rate than all state-of-art methods, while light grey

rows show an equivalent error rate.
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between classifiers across all datasets within a single represen-

tation. These critical differences are computed with [...]
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TABLE II. COMPARISON OF OVERALL ERROR RATES FOR THE DTW
WITH BEST WINDOW (DTW ), TIME SERIES ENSEMBLES (TSE) [24] AND
THE BEST PERFORMING AUTO-ENCODER (AE), RESTRICTED BOLTZMANN

MACHINE (RBM ), STACKED AUTO-ENCODER (SAE), DEEP BELIEF
NETWORK (DBN ) AND DEEP BOLTZMANN MACHINE (DBM ).

DTW TSE AE RAE DAE CAE
50Words 24.2 18.0 48.9 38.7 32.1 34.0

Adiac 39.1 35.3 34.6 33.5 31.7 31.7
ArrowHead 21.7 16 21.2 19.9 19.9 19.3

ARSim 44.3 10.3 28.9 21.8 20.7 22.4
Beef 46.7 36.7 30.8 25.7 23.3 28.7

BeetleFly 35 40 20 25 15 15
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Chlorine 35 36 45.8 40.3 35.2 35.5
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In the case of time series, if the visible units represent a
frame at time t, these context units can be used to model
the influence of the recent past frames [t�N, t� 1] on the
current frame (N defining the temporal order). Thus, the
energy function of the cRBM is given by
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This model can be trained using CD, since the marginal
probabilities of visible and hidden units are the same as the
RBM (simply replacing the static biases by dynamics ones).
Hence, the update rules are unchanged for W , a and b, and
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Figure 3: The conditional RBM (cRBM) adds a layer of con-
text units to the standard RBM architectures. Those context
units linearly modify the biases of both the visible and hid-
den units through the dynamics terms.

Factored Gated cRBM
The Factored Gated cRBM (FGcRBM) model (Taylor and
Hinton 2009) proposes to extend the cRBM model by adding
a layer of feature units z which modulates the weights of the
conditional architecture in a multiplicative way (see Figure
4 on page 4). Hence, the parameters of the model become
✓ = {W ,A,B,a, b}, where W = (W )
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Figure 4: FGcRBM model. The features units (z) modify
the energy landscape of the model through a multiplicative
influence over the weights A, B and W . Here, the role of
each unit in the context of orchestration is indicated.

Sampling from the models
Using gradient descent during the learning phase brings no
guarantee over the quality of the approximation between the
model distribution and the data distribution. However, CD
guarantees that the Kullback-Leibler divergence between
the model and data distribution is reduced after each itera-
tion(Hinton 2002), and an acceptable approximation should
be found after large number of CD steps. Therefore, by
sampling from the model distribution, we are able to gen-
erate novel data similar to the one observed in the training
dataset but yet unseen. In practice, sampling from the condi-
tional models is performed by computing the marginal dis-
tribution of the visible units knowing the context p(v|x) =P

h

p(v, h|x), and then sampling from a Bernoulli distribu-
tion of parameter p(v|x). Unfortunately, this marginal distri-
bution remains computationally intractable in the introduced



IRCAM Scientific Council – 14-15 March 2016 56

Artificial Creative 
Intelligence

Time series at 
variable 

granularities

Joint embedding 
spaces of signal, 

symbol and 
cognition

Understanding learning and 
knowledge extraction 

Deep learning and 
multiobjective time series 

Multiple time scales  
deep temporal 

granularities learning 

Joint signal-symbol 
embedding spaces and 

zero-shot learning

Multimodal regularities 
and semantic knowledge 

inference

Auxiliary task transfer, 
indirect knowledge 

inference
Knowledge extraction 

and semantic exploration

Variational space-space 
multimodality learning

Representation of time 
series for learning

Understanding 
unsupervised learning

Partition piano

Partition
orchestre

Orchestration

and the sum of the static and dynamic biases is equal to

â
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In the case of time series, if the visible units represent a
frame at time t, these context units can be used to model
the influence of the recent past frames [t�N, t� 1] on the
current frame (N defining the temporal order). Thus, the
energy function of the cRBM is given by
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This model can be trained using CD, since the marginal
probabilities of visible and hidden units are the same as the
RBM (simply replacing the static biases by dynamics ones).
Hence, the update rules are unchanged for W , a and b, and
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Figure 3: The conditional RBM (cRBM) adds a layer of con-
text units to the standard RBM architectures. Those context
units linearly modify the biases of both the visible and hid-
den units through the dynamics terms.

Factored Gated cRBM
The Factored Gated cRBM (FGcRBM) model (Taylor and
Hinton 2009) proposes to extend the cRBM model by adding
a layer of feature units z which modulates the weights of the
conditional architecture in a multiplicative way (see Figure
4 on page 4). Hence, the parameters of the model become
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are three-dimensional tensors.
This multiplicative influence can be interpreted as a mod-

ification of the energy function of the model depending on
a for of style features. For a fixed configuration of fea-
ture units, a new energy function is defined by the cRBM

(v, h, and x). The number of parameters grows cubically
with the number of units. To reduce the computation load,
the three dimensional tensors can be factorized into a prod-
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Figure 4: FGcRBM model. The features units (z) modify
the energy landscape of the model through a multiplicative
influence over the weights A, B and W . Here, the role of
each unit in the context of orchestration is indicated.

Sampling from the models
Using gradient descent during the learning phase brings no
guarantee over the quality of the approximation between the
model distribution and the data distribution. However, CD
guarantees that the Kullback-Leibler divergence between
the model and data distribution is reduced after each itera-
tion(Hinton 2002), and an acceptable approximation should
be found after large number of CD steps. Therefore, by
sampling from the model distribution, we are able to gen-
erate novel data similar to the one observed in the training
dataset but yet unseen. In practice, sampling from the condi-
tional models is performed by computing the marginal dis-
tribution of the visible units knowing the context p(v|x) =P

h

p(v, h|x), and then sampling from a Bernoulli distribu-
tion of parameter p(v|x). Unfortunately, this marginal distri-
bution remains computationally intractable in the introduced
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In the case of time series, if the visible units represent a
frame at time t, these context units can be used to model
the influence of the recent past frames [t�N, t� 1] on the
current frame (N defining the temporal order). Thus, the
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This model can be trained using CD, since the marginal
probabilities of visible and hidden units are the same as the
RBM (simply replacing the static biases by dynamics ones).
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text units to the standard RBM architectures. Those context
units linearly modify the biases of both the visible and hid-
den units through the dynamics terms.

Factored Gated cRBM
The Factored Gated cRBM (FGcRBM) model (Taylor and
Hinton 2009) proposes to extend the cRBM model by adding
a layer of feature units z which modulates the weights of the
conditional architecture in a multiplicative way (see Figure
4 on page 4). Hence, the parameters of the model become
✓ = {W ,A,B,a, b}, where W = (W )
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are three-dimensional tensors.
This multiplicative influence can be interpreted as a mod-

ification of the energy function of the model depending on
a for of style features. For a fixed configuration of fea-
ture units, a new energy function is defined by the cRBM

(v, h, and x). The number of parameters grows cubically
with the number of units. To reduce the computation load,
the three dimensional tensors can be factorized into a prod-
uct of three matrices by including factor units indexed by f
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Figure 4: FGcRBM model. The features units (z) modify
the energy landscape of the model through a multiplicative
influence over the weights A, B and W . Here, the role of
each unit in the context of orchestration is indicated.

Sampling from the models
Using gradient descent during the learning phase brings no
guarantee over the quality of the approximation between the
model distribution and the data distribution. However, CD
guarantees that the Kullback-Leibler divergence between
the model and data distribution is reduced after each itera-
tion(Hinton 2002), and an acceptable approximation should
be found after large number of CD steps. Therefore, by
sampling from the model distribution, we are able to gen-
erate novel data similar to the one observed in the training
dataset but yet unseen. In practice, sampling from the condi-
tional models is performed by computing the marginal dis-
tribution of the visible units knowing the context p(v|x) =P

h

p(v, h|x), and then sampling from a Bernoulli distribu-
tion of parameter p(v|x). Unfortunately, this marginal distri-
bution remains computationally intractable in the introduced
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