
Dynamic Classification Models for
Human-Machine Improvisation and

Composition

Master Thesis

Joakim Borg

Aalborg University Copenhagen
Sound and Music Computing

Copyright © Aalborg University Copenhagen 2020

Sound and Music Computing
Aalborg University
http://www.aau.dk

Title:
Dynamic Classification Models for
Human-Machine Improvisation and
Composition

Theme:
Human-Machine Musical Improvisa-
tion

Project Period:
Spring Semester 2020

Project Group:
-

Participant(s):
Joakim Borg

Supervisor(s):
Stefania Serafin
Gérard Assayag

Copies: 1

Page Numbers: 77

Date of Completion:
May 27, 2020

Abstract:

This thesis presents a number of up-
dates to an existing real-time sys-
tem for human-computer improvisa-
tion, among them a modular frame-
work for integrating new models for
analysis and classification, an offline
framework and scheduling solution to
adapt the system to composition as
well as its original purpose of real-
time improvisation, and a framework
for numerical evaluation of the sys-
tem in terms of usability and quality.
New harmonic classifiers have been
added to the system and evaluated
with a number of musical corpora,
representing a number of genres and
instrumental settings. The results in-
dicate that the new classifiers outper-
form the original classifier in terms
of usability on average, greatly so in
more difficult cases. In terms of qual-
ity, the results indicate little differ-
ence between the classifiers, but fur-
ther studies will be required to find
models to quantify harmony based on
the way it is used in the system.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

Sound and Music Computing
Aalborg Universitet
http://www.aau.dk

Titel:
Dynamiska klassifikationsmodeller
för människa-datorimprovisation och
-komposition

Tema:
Människa-datorimprovisation

Projektperiode:
Förårssemestern 2020

Projektgruppe:
-

Deltager(e):
Joakim Borg

Vejleder(e):
Stefania Serafin
Gérard Assayag

Oplagstal: 1

Sidetal: 77

Afleveringsdato:
27. maj 2020

Abstract:

Denna uppsats presenterar ett an-
tal uppdateringar till ett existe-
rande realtidssystem för människa-
datorimprovisation, bland annat ett
modulärt ramverk för att integre-
ra nya analys- och klassifikations-
modeller, ett ramverk för komposi-
tion, utöver dess ursprungliga an-
vändningsområde realtidsimprovisa-
tion, samt ett ramverk för numerisk
utvärdering av systemet. Ett antal
nya modeller för klassifikation har
lagts till och utvärderats med ett an-
tal musikstycken med syfte att rep-
resentera ett flertal genrer och in-
strumentationer. Resultaten visar att
de nya klassifikationsmodellerna har
en högre användarvänlighet än syste-
mets ursprungliga modeller, men in-
dikerar på en svag skillnad i kvalitet.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske

efter aftale med forfatterne.

Contents

Preface ix

1 Introduction 1
1.1 Related Works . 2

2 Fundamentals 5
2.1 Overview . 5
2.2 Corpus . 6

2.2.1 Slicing . 7
2.2.2 Trait Analysis . 8
2.2.3 Clustering and Classification Modelling 8

2.3 Influence . 9
2.3.1 Slicing . 9
2.3.2 Trait Analysis, Classification and Matching to Model 11
2.3.3 Matching Slice to Model . 11
2.3.4 Peaks . 12

2.4 Generate . 12
2.4.1 Triggers . 12
2.4.2 Collecting, Scaling and Merging Peaks 13
2.4.3 Scaling Peaks Again - Fuzzy Filtering 14
2.4.4 Generating Output . 15

3 Implementation 17
3.1 Overview . 17
3.2 Corpus Builder . 18

3.2.1 Slicing . 19
3.2.2 Trait Analysis . 19
3.2.3 The Corpus . 21

3.3 Runtime Architecture . 22
3.3.1 The Runtime System’s Components 22
3.3.2 Modularity and Dynamicity . 23
3.3.3 Clustering and Classification: the Classifier class 24

vii

viii Contents

3.3.4 Fuzzy Filtering: the MergeAction class 26
3.4 Scheduling and the Generator Module 27

3.4.1 Scheduling . 27
3.4.2 Real-time Scheduling . 29
3.4.3 Offline Scheduling . 30
3.4.4 The Generator Module . 30

4 Evaluation 33
4.1 Evaluation Procedure . 33

4.1.1 Measurements . 34
4.1.2 Architecture and Parameters 38

4.2 Evaluation Results . 39
4.2.1 Number of Peaks . 39
4.2.2 Number of Generated Peaks 40
4.2.3 Score Selected Peak . 41
4.2.4 Non-generating Influence Ratio 41
4.2.5 Chain Length . 42
4.2.6 Root Mean Square . 43
4.2.7 Self-similarity . 44

5 Discussion 47
5.1 Top Note Classifier (PT) . 47
5.2 Pitch Class Classifier (P12) . 49
5.3 SOM Chroma Classifier (CSOM) . 50
5.4 Absolute GMM Chroma Classifier (AGMM) 52
5.5 Relative GMM Chroma Classifier (RGMM) 53
5.6 Corpora . 54

6 Conclusion 57

Bibliography 59

A Gaussian Mixture Models 63
A.0.1 Clustering . 63
A.0.2 Classification . 65

B Evaluation Corpora 67

C Detailed Evaluation Results 69

Preface

This thesis was written as the final project of the Sound and Music Computing
graduate programme at Aalborg University Copenhagen. The work was carried
out between February 1st and May 27th. I would like to thank my supervisors
Stefania Serafin and Gérard Assayag for their guidance during the course of this
work.

Aalborg University, May 27, 2020

Joakim Borg
<jborg18@student.aau.dk>

ix

Chapter 1

Introduction

Computer-generated music has a long history, starting with the Illiac Suite [18]
from 1957, which is generally considered as one of the first pieces composed
by a computer. But even long before the invention of computers, algorithmic
approaches to composition have been used. Mozart’s Musikalisches Würfelspiel
from 1792 is commonly attributed as one of the first examples of the kind, but
as Herremans points out, there are at least twenty examples of algorithmic com-
positions published between 1757 and 1812 [17], revolving around rules and/or
pre-composed material. Algorithmic approaches to composition became more
frequent in the postwar period with composers like John Cage and to some ex-
tent the entire serialism school, and in the past decades the field has grown
significantly with the advances in technology and the availability of computers.

Today, there are a number of branches in the domain of music-generating
systems. One branch of particular interest is that of corpus-based interactive
music systems, which is a mode of human-computer music improvisation. Nika
[27] gives the following description:

The corpus-based interactive music systems create music from a mu-
sical memory constituted by offline corpora and / or live material.
Sequences in this memory are searched, retrieved, transformed, and
concatenated to generate the machine improvisation [...]

This thesis is based on a system called Somax, originally presented in [6], which
is an example of a corpus-based interactive music system. In this work, the
system is extended, generalized and evaluated, with the purpose of (a) adapting
the system towards (offline) compositional practices, in parallel with its original
domain of real-time improvisation, and (b) modularizing the system to allow new
research to be integrated into the system.

In the following section, the context of the system and state of the art in the
field will be presented in further detail. In chapter 2, the theoretical framework

1

2 Chapter 1. Introduction

of the system will be presented, briefly reiterating the content of [6] and [7],
where much of the original system was presented, but also adding a number of
new aspects to the framework. In chapter 3, the realization and temporal con-
text of the theoretical framework, with a detailed description of relevant aspects
of the code, will be presented. Chapter 4 describes the procedure used to eval-
uate the system as well as the results of the evaluation, which will be further
discussed in chapter 5.

1.1 Related Works

Many of the early digital systems for music generation were primarily rule-
based, i.e. systems where the music was created by rules and/or internal logic.
Among them are for example Lewis’ Voyager system [22], David Cope’s EMI
(Experiments in Musical Intelligence) [10] as well as a number of systems and
their related compositions by Iannis Xenakis [35]. Over time, this domain of mu-
sic generation, which often goes by the name Computer-aided composition, has
been extended with a number of concepts from the field of machine learning, for
example Markov models and neural networks. For a more complete review of
the different paradigms in computer-aided composition, see [26].

In the same domain, a number of libraries and framework aimed toward com-
posers and musicians have been developed, often in a visual-programming envi-
ronment. In this category, we see a number of applications developed at Ircam
[2], where OpenMusic [8] is among the more famous examples. Another example
is the Bach library [1], a toolbox for computer-aided composition for Max/MSP
[11], which among other things adapts and integrates several concepts from
OpenMusic into Max/MSP.

In recent years, with the progress in the field of deep learning, several sys-
tems have adapted deep learning into the domain of music generation, where the
Magenta project [23] is among the more prominent ones. In most cases, systems
based on deep learning rely on large datasets in the form of audio and/or other
music representations, and are often able to generate longer sequences [30] or
entire compositions [19] [32] [16] convincingly in the style of the dataset. For
an exhaustive overview of the field of deep learning for music generation, see
[9]. While many deep learning systems for music generation are able to produce
convincing compositions, they lack usefulness as tools for composers since they
(a) are limited to style constraints that require large amounts of data and (b)
the user often has limited control over the output of the system. The latter is
however not always true, there are a number of examples of parametric deep
learning. Among them is for example the DeepBach system [16] which, on top
of generating compositions in the form of four-part chorales in the style of J.S.
Bach, also can harmonize user-defined melodies, and there are a number of sys-

1.1. Related Works 3

tems in the Magenta Project [23] that allows some degree of user input and/or
parametric control.

A third branch, in-between the rule-based approaches and the data depen-
dent deep learning approaches, stems from the OMax system [3] [21], a corpus-
based machine improvisation system which relies on a user-specified corpus
(small dataset) and uses concatenative synthesis - producing output by recom-
bining the order of small segments of the corpus, to some extent similar to the
process of granular synthesis but with much larger grains - where the corpus
role is similar to that of a user-controlled parameter, heavily influencing the gen-
erated result. Over the years, a number of systems have been developed using
mechanics similar to or stemming from OMax, among them the PyOracle [33],
Mimi4x [14], Somax [6][7], ImproteK [29] and the DYCI2 library [28]. For a
complete taxonomy of these systems (and many others), refer to [17].

As can be seen in [17], most of these systems rely on some sort of classifi-
cation of individual segments of the corpus as well as in some cases user input
(from a musician or other sound sources) with regards to musical features, for
example pitch, rhythm, timbre or harmony, and the output is largely determined
by these values. The Somax system, which much of the work presented in this
thesis is built on, relies on classification of pitch and harmony (quantified as
chroma), and to some extent tempo/beat, but does not integrate any models for
timbre, dynamics, time signature, etc. At the same time, there’s an entire re-
search field of music information retrieval (MIR), mainly represented by ISMIR
[20] and its sub-scene MIREX [25], where a large portion of the research is re-
lated to estimating and classifying both high level features (for example genre,
mood and key of an entire file) as well as low level features (for example chord
analysis, onset detection and multi-f0 estimation) that would be relevant for the
framework. As several of the corpus-based machine improvisation systems are
written in and/or integrated with Python, the LibROSA [24] and Madmom [5]
could be used to further integrate modes of MIR into the systems.

As mentioned, the work presented in this thesis is largely built on the So-
max system, which was introduced in [6] and further developed in [7]. One of
the main focuses of this work is to not necessarily add new features for clas-
sification, but design a modular framework where classifiers based on new (or
existing) features can be integrated dynamically, allowing new research to be
integrated as it becomes available. The thesis will also present a number of
updates to bridge the gap between real-time human-machine improvisation and
(offline) computer-aided composition, adapting Somax to be able to work in both
contexts. Finally, a framework and procedure for evaluating the system and any
newly implemented classifiers will be presented.

Chapter 2

Fundamentals

This chapter describes the theoretical foundation of the system, which will serve
as a basis for chapter 3, where it will be further expanded. This chapter is largely
based on [7], but describes the system in more detail, where a number of aspects
were omitted in [7]. It also introduces a number of novelties presented for the
first time in this thesis.

2.1 Overview

The main purpose of the system presented in [6] and [7] and described in this
thesis is to generate musical material based on an external, already existing ma-
terial. The principle through which it generates new material is called concate-
native synthesis, and is (as briefly mentioned in section 1.1) to some extent alike
that of granular synthesis, where very short pieces of audio are sampled from
a preselected material and recombined. In this system, however, the grains (or
"slices", as they will be denoted from here on) are much longer than in a gran-
ular synthesizer - either the duration of a beat or the length between two note
onsets - and the output selection is based on listening to a second, external input,
and the system is continuously selecting the most suitable slice using statistical
machine learning. In other words, the system is improvising around a musical
material and in real-time adapting to a musician (or any other sound source).

In practice, this behaviour is realized by learning the sampled material, which
may be either audio or midi, in multiple layers, where each layer listens to a
single feature (or "trait", as they will be denoted from here on) of the material,
for example pitch, chroma, mfcc, velocity, etc. At runtime, each layer then listens
to the corresponding trait of a second, external audio and/or midi source and
continuously matches this to the learned material, generating activations in the
memory where matches are found. The output is then selected from the point
in the memory with the most activity, after the activities in all layers has been

5

6 Chapter 2. Fundamentals

merged and scaled. The activities generated at earlier points in time also remain
in the memory for some time, thus impacting future time steps and with that
simulating a short-term memory with respect to the original material.

The process of learning the sampled material or constructing a corpus will be
described in section 2.2. The listening, from here on denoted as influencing, is
described in section 2.3, and finally the generation of output, which for practical
reasons is decoupled from the influencing process, is described in section 2.4.

2.2 Corpus

Figure 2.1: The main steps in constructing and modelling a Corpus.

The corpus C is the basis of Somax from which all output material will be drawn.
It is constructed from one or multiple audio and/or midi files, which are seg-

2.2. Corpus 7

mented into short slices S , where each segment is analyzed with respect to a
number of traits θ, clustered and classified in multiple layers - each layer with
respect to a single trait - and finally modelled according to a specific data model.
This procedure can be seen in figure 2.1, and each step will be described in
detail in the following sections.

2.2.1 Slicing

Figure 2.2: Example of slicing a short segment of a midi file, where the slices are represented by
dashed vertical lines and notes represented by red horizontal bars.

The first step in constructing and modelling the corpus is to parse the midi/au-
dio files and segment the content into slices along the time axis. The start of
each slice is for midi file determined by each midi notes onset (see figure 2.2
and for audio files determined by each beat, which is estimated by either the
dynamic programming algorithm [13] for audio files with a fixed tempo or using
predominant local pulse estimation [15] for audio files with a dynamic tempo.

Each slice S (C) is assigned an index u, an onset time t(C) (in ticks, where 1 tick
correspond to one beat), a duration d (in ticks), a tempo ζ (in BPM) determined
either by the midi tempo at that specific point in time or estimated from the
inter-onset interval between two beats for audio files. The slice is also assigned
an absolute onset time τu and an absolute duration δu, both in milliseconds, that
will be relevant when determining the output position in audio files. Each slice
is also analyzed with respect to a number of traits θ(q), q = 1, . . . , Q which will be
described in section 2.2.2. More formally, we have a corpus of length U defined
as

C =
!

S(C)
1 , S(C)

2 , . . . , S(C)
U

"

(2.1)

8 Chapter 2. Fundamentals

where

S
(C)
u =

!

t(C)u , du, ζu, τu, δu, θ
(1)
u , . . . θ

(Q)
u

"

, u ∈ [1, U]. (2.2)

2.2.2 Trait Analysis

Note that all parameters in equation 2.2 apart from θ(1), . . . , θ(Q) are only related
to timing, so the purpose of the traits θ is to store any other feature of the slice,
for example pitch, velocity, harmonic content, etc. These traits will later be
used for clustering, classification and modelling the corpus. Another purpose of
modelling each slice in terms of traits is to make the model format-agnostic, i.e.
independent of whether the corpus is based on midi or audio data. Formally, the

procedure of calculating trait θ
(q)
u of slice S

(C)
u can be described as

θ
(q)
u = Ψ(q)

#

S
(C)
u ,

$

S
(C)
u−1, S(C)

u−2, . . .
%&

, u = 1, . . . , U (2.3)

where Ψ(q) denotes a function depending on S
(C)
u (and optionally previous slices)

for calculating trait θ
(q)
u . Once the trait analysis is completed, the process of

constructing (but not modelling) the corpus is completed.

2.2.3 Clustering and Classification Modelling

The completed corpus C is modelled in R layers, where each layer r ∈ [1, R]
has its own clustering Θ(r) and model M(r). The clustering in layer r will be
described as

Θ(r)
#

θ(q) | C
&

, q ∈ [1, Q], (2.4)

which in other words mean that each layer’s clustering is constructed with re-
gards to a single trait θ(q) given a corpus C. In practice, however, not all clus-
terings rely on C - there are both absolute and relative clusterings, which are
described further in section 3.3.3. Once a clustering has been constructed in

layer r, each slice S
(C)
u , u = 1, . . . , U in the corpus will be classified with respect

to its corresponding parameter θ
(q)
u , i.e.

l(r)u = Θ(r)
#

θ
(q)
u | C

&

, u = 1, . . . , U (2.5)

where l(r)u ∈ Z denotes the label of slice S
(C)
u in layer r with respect to trait θ(q).

Finally, a model M(r) is constructed from the collected labels, i.e.

M
(r) (l | lC) , lC =

$

l(r)1 . . . l(r)U

%T
. (2.6)

2.3. Influence 9

where M can be described as a mapping from a vector of labels l to a set of
slices, i.e.

M : l →
!

S
(C)
u1 , . . . , S(C)

uj

"

, u1, . . . , uj ∈ [1, U]. (2.7)

M can be described as a simplified, unweighted n-gram model which simply
returns all slices that matches the given input. The process of constructing M

is described in algorithm 2.1, where γ denotes the n-gram order, κ denotes the
given input at each time step and M here is modelled as a map where M [κ]
denotes the values at the map’s index κ.

Algorithm 2.1 Constructing M

for u = γ to U do
κ = [lu−γ, . . . , lu]

if M[κ] exists then

M[κ] := M[κ] ∪
!

S
(C)
u

"

else
M[κ] :=

!

S
(C)
u

"

end if
end for

2.3 Influence

The influence process takes a continuous stream K of midi/audio data, segments
it into slices, analyzes each slice with regards to its traits and determining where
the corpus (or more specifically, at which temporal positions the models M con-
structed from the corpus) matches the incoming stream. These positions will
later be used to determine the most suitable output. An overview of the influ-
ence process can be seen in figure 2.3.

One key aspect of Somax is that the influence process has a short-time mem-
ory, so that influences generated at previous time steps in the stream maintain
an impact on the output for a certain amount of time. How this behaviour is
simulated will be described in section 2.3.4.

2.3.1 Slicing

The slicing procedure of the influence process is almost identical to the pro-
cedure described in section 2.2.1, with the exception that it in the case of a
real-time stream uses different algorithms for onset detection and beat estima-
tion (see [7] for details). More formally, we will define the continuous stream K

10 Chapter 2. Fundamentals

Figure 2.3: The main steps in parsing a continuous midi/audio stream and influencing somax.

with an (in most cases undefined) length V as

K =
!

S
(K)
1 , . . . ,S (K)

V

"

(2.8)

where

S
(K)
v =

!

t(K)
v , dv, ζv, θ

(1)
v , . . . θ

(Q)
v

"

, v ∈ [1, V]. (2.9)

2.3. Influence 11

While the differences between equations 2.2 and 2.9 seem to be that of re-
placing one index for another, there is one key difference that will be important
in later sections: the difference between corpus time, t(C), and continuous time
t(K). The corpus time t(C)u , u = 1, . . . , U denotes the position of slice S

(C)
u in the

corpus which will always be fixed. The influence time t(K)
v denotes the time of the

current state v in the process of generating and is closely related to scheduling,
which will be described in section 3.4.1.

2.3.2 Trait Analysis, Classification and Matching to Model

Trait analysis and classification of a slice S
(K)
v is identical to the procedure de-

scribed in section 2.2, more specifically to equation 2.3 and 2.5 respectively, with

the only difference that it occurs in continuous time as soon as a slice S
(K)
v has

been segmented. The system uses the R layers that were used model the corpus,
and in each layer the clustering created from the corpus is used for classifica-

tion. In other words, at time step t(K)
v corresponding to influence slice S

(K)
v with

traits θ
(1)
v , . . . , θ

(Q)
v , we get one label l(r)v per layer r = 1, . . . , R so that

l(r)v = Θ(r)
#

θ
(q)
v | C

&

(2.10)

where θ
(q)
v denotes the single trait used in layer r at the time step corresponding

to index v.

2.3.3 Matching Slice to Model

In each layer r = 1, . . . R, at time step t(K)
v corresponding to influence slice S

(K)
v ,

a vector will be constructed from the previous k ∈ Z∗ labels, i.e.

l(r)v =
$

l(r)v−k . . . l(r)v−1 l(r)v

%

, (2.11)

and in accordance with the definition in equation 2.7 generate a set of slices

Σ(r)
v =

!

S
(C)
u1 , . . . , S(C)

uj

"

, u1, . . . , uj ∈ [1, U]. From Σ(r)
v , a matrix of peaks P(r)

v ∈
R2×j is constructed so that

P(r)
v =

$

pu1 . . . puj

%

(2.12)

where

pum =

'

t(C)um

yum

(

, m = 1, . . . , j (2.13)

where yum is a score (height) designated to each peak by the model and t(C)um is
the temporal position of the corresponding slice’s onset.

12 Chapter 2. Fundamentals

2.3.4 Peaks

The final step in the influence process is to in each layer r = 1, . . . R add the

peaks P(r)
v generated at time step t(K)

v corresponding to index v to the previous

set of peaks P(r)
v−1 generated at the previous time step t(K)

v−1. The purpose of this
behaviour is, as was described in section 2.3, to simulate a short-term memory,
where previous influences maintain a degree of impact on the output.

To achieve this, the positions of the previous peaks are shifted (in corpus
time t(C)) corresponding to the influence time t(K) elapsed since the previous
influence, and the scores are decayed exponentially corresponding to the same
interval scaled by a factor τ ∈ R, i.e.

P(r)
v−1 :=

'

1 0

0 exp
#

∆t(K)
v /τ

&

(

P(r)
v−1 + ∆t(K)

v

)

1 1 . . . 1
0 0 . . . 0

*

(2.14)

where

∆t(K)
v = t(K)

v − t(K)
v−1. (2.15)

Finally, the peak matrix P(r)
v is updated by concatenating it with the shifted and

decayed peaks from the previous time step, i.e.

P(r)
v :=

$

P(r)
v−1 P(r)

v

%

. (2.16)

2.4 Generate

So far, both section 2.2 and 2.3 have described a number of procedures for up-
dating the internal state of the system without generating any output. This sec-
tion will describe the steps taken to generate output from a continuous trigger
stream Y of (an often undefined) length W based on the state set by recent in-
fluences, for which the procedure is outlined in figure 2.4

2.4.1 Triggers

While the concept of a continuous audio/midi stream is rather self-explanatory,
the concept of a continuous trigger stream might need some explanation. Simi-
larly to a continuous midi stream, a trigger stream is a stream of discrete events

occurring at a time t(Y)
w , but without any external information. In other words,

the behaviour is that of a signal telling the system when to generate output.
In practice, the trigger stream is often correlated to the influencing au-

dio/midi stream, either by midi note onsets, beat onsets or pitch detection onsets
(for more details, see [7]) depending on the mode of the system, but may also be

2.4. Generate 13

Figure 2.4: The main steps in generating output from a continuous trigger stream.

completely decorrelated to incoming influences. This behaviour depends on the
mode of the system, which is discussed in section 3.4.1. In all cases, influencing
and generating operate interleaved along the same time axis, so the behaviour

of t(Y)
w is similar to the behaviour of t(K)

v (in chapter 3 we will see that they both
operate on the scheduler’s time).

2.4.2 Collecting, Scaling and Merging Peaks

When a trigger is received, the first step is to collect and scale the peaks from
all layers r = 1, . . . , R. Each layer will have a designated weight α(r) to scale the

14 Chapter 2. Fundamentals

scores of each layer, i.e.

P(r)
w =

)

1 0
0 α(r)

*

P(r)
v , r = 1, . . . , R (2.17)

where P(r)
v here denotes the peak matrix generated by the most recent influence

step v.
The scaled peaks P(r)

w from all layers r = 1, . . . R are then gathered into a sin-
gle matrix where any peaks that occur sufficiently close to each other in corpus
time t(C) are summed, i.e.

pi =

'

t(C)i
yi + yj

(

if
+

+

+

t(C)i − t(C)j

+

+

+

< ε ∀pi, pj ∈ Pw, (2.18)

for some interval ε, where

Pw =
$

P(1)
w . . . P(R)

w

%

. (2.19)

As the number of peaks nw at the time at index w after v influences has a the-
oretical worst case of nw = O (vRU), some optimization is required to solve
equation 2.18, which by default has a time complexity of O

,

n2
w
-

. In practice,
this is solved in linear time by multiplying the transposed peaks with a binary in-
terpolation matrix I ∈ Zm×n

[0,1] with m = ⌊1/ε⌋ rows and nw columns, and selecting
all non-zero columns from the transposed output, i.e.

Πw = IPT
w (2.20)

Pw :=
#

ΠT
w

&

: , y ∕=0
(2.21)

where

(I)i,j =

.

/

0

1 if

1

t(C)j

εt(C)U

2

= i

0 otherwise
(2.22)

resulting in a single merged peak matrix Pw ∈ R2×n̂w , n̂w ≤ nw for the time step
at index w.

2.4.3 Scaling Peaks Again - Fuzzy Filtering

In section 2.4.2, all peaks in each layer were scaled uniformly by a weight. Once
merged, the peaks are scaled again with respect to a set of more elaborate algo-

rithms
!

Γ(1), . . . , Γ(J)
"

, based on the time of influence, each peak’s corresponding

corpus data and/or previously output slices, i.e.

Pw := Γ(j)
#

Pw, t(Y)
w , C,

!

S
(Y)
w−1,S (Y)

w−2, . . .
"&

∀j = 1, . . . , J (2.23)

2.4. Generate 15

where

Γ(j) : Px → Pz, Pz ∈ Rmx×nx . (2.24)

This behaviour can be seen as a sort of fuzzy filtering, as opposed to the binary
matching provided by each classification/model-layer, to further emphasize or
de-emphasize peaks with regards to parameters that may be difficult to classify
in a meaningful manner.

2.4.4 Generating Output

Finally, the output for the time step at index w is selected from C as the slice
closest to the peak pi ∈ Pw with the highest score yi, i.e.

p̂w =
3

t̂(C) ŷ
4T

=
5

pj | ∀pi ∈ Pw : yj ≥ yi
6

, (2.25a)

S
(Y)
w = min

S
(C)
u ∈C

+

+

+

t̂(C) − t(C)u

+

+

+

. (2.25b)

If multiple vectors pj fulfil the condition in equation 2.25a, a single one will be
selected randomly. If on the opposite no vectors fulfil this condition, i.e. if the

peak matrix Pw is empty, the slice S
(C)
u+1 following the previously output slice will

be used for output, i.e. given

S
(Y)
w−1 = S

(C)
u (2.26)

for some u ∈ [1, U], we get

S(Y)
w = S

(C)
u+1. (2.27)

Chapter 3

Implementation

This chapter presents the realization of the theoretical framework as described
in chapter 2. While section 3.3 to some extent reiterates certain aspects from
[7], most of the content described here is either significantly rewritten or entirely
new. In addition to the modules described in this chapter, there’s also a front-
end for the real-time human-machine improvisation mode of the system, written
in Max/MSP [11], which is thoroughly described in [7] but will not be discussed
in this chapter since the changes presented here do not provide any significant
architectural changes to the front-end.

3.1 Overview

Figure 3.1: Module diagram over the main modules in the system and the relationship between
them.

Figure 3.1 shows the different modules of the system and how they relate to
each other. There are two main branches in this figure, one stemming from the
RealtimeServer module, corresponding to the real-time (i.e. human-machine
improvisation) framework, and one stemming from the Generator module, cor-
responding to the offline (i.e. composition-oriented) framework. Both of them

17

18 Chapter 3. Implementation

share the Corpus module (and its related CorpusBuilder), which handles the
construction of corpora and will be described in section 3.2, and the Main mod-
ule, which handles all the internal (runtime) logic of the system and will be
described in section 3.3. The RealtimeServer and its related UserInterface
module will not be specifically described in this chapter, as they were thoroughly
described in [7]. The logic of the RealtimeSchedulermodule, which handles the
runtime scheduling of events over time, has however been significantly updated
and will be presented in section 3.4.2.

In the branch stemming from the Generatormodule, the Generator itself will
be described in section 3.4.4 along with its OfflineScheduler, which handles
scheduling as an offline process and will be described in section 3.4.3. Finally,
the EvaluationFramework, which is used to gather statistics about the genera-
tion process and its output, is described in chapter 4. All the code described here
is written in Python 3 and is available at https://github.com/DYCI2/Somax21.

3.2 Corpus Builder

The purpose of the CorpusBuildermodule is to construct the core of the system,
the Corpus, from midi and/or audio files. It’s an offline (as opposed to real-time)
system that can be accessed both through a command-line build script as well
as through the real-time user interface.

Another purpose is to achieve the format-agnostic behaviour of the runtime
system as was described in section 2.2, i.e. to ensure that there are no dif-
ferences in how the runtime system handles corpora built from audio files in
comparison to corpora built on midi files. However, as we will see in section
3.2.2, this behaviour isn’t fully achieved yet. For this reason, as well as due to
the fact that the evaluation only uses midi, most of the behaviour described in
this chapter will focus mainly on the midi implementation.

When building a corpus frommidi files, the first step is to create a NoteMatrix
class, which essentially is a matrix where each row correspond to a single midi
note where each column correspond to pitch, velocity, channel, relative onset
time (measured in ticks/beats since start of file), absolute onset time (measured
in milliseconds since start of time), relative duration (measured in ticks), abso-
lute duration (measured in milliseconds) and tempo. The rows are sorted by
their relative onsets, i.e. their occurrences in time. This format is similar to
the format used in [12] with the addition of tempo. The NoteMatrix class also
stores any midi control changes and meta messages to allow reconstruction of
the original midi file.

1As of May 27, 2020, all code related to this thesis can be found in the evaluation branch at
https://github.com/DYCI2/Somax2/tree/evaluation, but will likely be merged into the master
branch at a later point in time.

3.2. Corpus Builder 19

PITCH VELOCITY CHANNEL ONSET ONSET DURATION DURATION TEMPO
(tick) (msec) (tick) (msec)

Figure 3.2: Columns of the MidiMatrix class.

3.2.1 Slicing

Once the NoteMatrix is constructed, the next step is to determine the temporal
boundaries for each slice, i.e. slicing. This is done differently for audio and midi
as mentioned in section 2.2 - per beat for audio and per note for midi. In the case
of midi file(s), to achieve the behaviour outlined in section 2.2.1 and specifically
figure 2.2, algorithm 3.1 is used. In this algorithm, the NoteMatrix is denoted
N , where Ni denotes the note at row i and .absolute_onset, .relative_onset,
etc. denote the columns corresponding to indices in figure 3.2. All other notation
in the figure apart from ε is outlined in section 2.2.1. The algorithm is iterating
over all midi notes and creating a new slice for any note whose onset is more
than ε millseconds from the previous note, otherwise appending the note to the
current slice. This ε is very important, as it will ensure that notes occurring
sufficiently close (for example appoggiaturas and other articulation) are treated
as part of the same slice, which both will be important for analysis later as well as
maintaining the original rhythmic feel of the file without quantization. Another
important aspect of the algorithm is line 14, which results in that any note in the
previous slice that overlaps into the new slice will be added as well, and thus
have an onset Ni.relative_onset that may be earlier than the slice onset du.
This will play an important role when scheduling slices, which is be described
in section 3.4.1. The result of the slicing procedure is the Corpus class with all
parameters set apart from its Traits.

3.2.2 Trait Analysis

In parallel with the slicing, two lowpass-filtered pseudo-spectrogram are com-
puted from the NoteMatrix in the Spectrogram class, one for the foreground (or
melodic) channels and one for the background (or harmonic) channels, which
are both specified by the user. If no channels are specified, the foreground and
background spectrogram will be computed from the entire set of channels and
thus be identical. The procedure for computing the pseudo-spectrogram is the
same as in [7], with the addition of the filter being interchangeable to allow dif-
ferent types of filtering, as well as no filtering at all. From these spectrogram,
two pseudo-chromagram are computed in the Chromagram class, again one for
the foreground channels and one for the background channels. For audio, these
are computed directly from the audio data.

Once the Spectrogram and the Chromagram have been computed and the

20 Chapter 3. Implementation

Algorithm 3.1 Slicing a NoteMatrix N into a Corpus C

1: u = 0
2: C = {}

3: θ
(N)
u = N0

4: t(C)u = N0.relative_onset
5: ζu = N0.tempo
6: τu = N0.absolute_onset
7: for i = 1 to |N |− 1 do
8: if Ni.absolute_onset > τu + ε then
9: du = Ni.relative_onset −t(C)u
10: δu = Ni.absolute_onset −τu

11: S
(C)
u =

!

t(C)u , du, ζu, τu, δu, θ
(N)
u

"

12: C = C ∪
!

S
(C)
u

"

13: u = u + 1
14: θ

(N)
u =

!

n | n ∈ θ
(N)
u−1, n.relative_onset+ n.relative_duration > du−1

"

15: t(C)u = Ni.relative_onset
16: ζu = Ni.tempo
17: τu = Ni.absoulute_onset
18: else
19: θ

(N)
u = θ

(N)
u ∪ {Ni}

20: end if
21: end for

slicing procedure to create the Corpus is completed, the trait analysis begins.
The trait analysis is dynamic, which means that it will import any class in the
code base extending the AbstractTrait stereotype (see figure 3.3) and call the
analyze function on each slice in the corpus.

class AbstractTrait(ABC):
@classmethod
@abstractmethod
def analyze(cls, event: CorpusEvent, audio_data: np.ndarray,

fg_spectrogram: Spectrogram, bg_spectrogram: Spectrogram,
fg_chromagram: Chromagram, bg_chromagram: Chromagram,

**kwargs):
pass

Figure 3.3: The AbstractTrait stereotype, which is used to analyze all traits.

3.2. Corpus Builder 21

In the current state of the system, the following traits have been imple-
mented:

Notes θ(N) The midi notes contained in the current slice, as defined in algorithm
3.1. Note that at the moment, no corresponding values exist for audio data,
which in other words means that the model isn’t truly format-agnostic yet.
Ideally, this could be solved by estimating these values with a polyphonic
f0-estimator, for example [31].

Top Note θ(PT) ∈ Z[0,127] This value is simply the note number of the highest
note in each slice, i.e.

θ
(PT)
u =

!

Ni.pitch | Ni ∈ θ
(N)
u ∧Nj ∈ θ

(N)
u : Ni.pitch ≥ Nj.pitch

"

.

(3.1)

Onset Chroma θ(C) ∈ R12×2, which is the column in the Chromagram class (both
foreground and background) at the index corresponding to the absolute
onset of the slice, i.e.

θ
(C)
u =

$

C(fg)
: ,τu C(bg)

: ,τu

%

(3.2)

where C denotes the Chromagram class as constructed in the previous step.

3.2.3 The Corpus

With the trait analysis completed, the Corpus class is finalized. Once again, it’s
important to emphasize the two purposes of the Corpus class: to (a) abstract the
data of the audio/midi file(s) into high-level data that can be used for classifica-
tion and (b) to create a format-agnostic object. The latter means that from this
point, all raw midi and audio data as well as the spectrogram and chromagram
will be thrown away. For midi data, this isn’t a problem, as the Notes trait θ(N)

contains all the midi data - in fact, the Corpus and NoteMatrix are interchange-
able, thus allowing re-export of the Corpus back to midi. For audio data, only a
reference to the original file will be kept, thus the raw audio data corresponding

each slice S
(C)
u can be reproduced by its absolute onset τu and its absolute dura-

tion δu. This compact data format also allows exporting the corpus as a JSON-file
for quickly reloading previously built corpora.

Finally, while the CorpusBuilder module is the main way to construct a
Corpus, it’s not the only way. As we will see in section 3.3, a Corpus can be
constructed from another Corpus during a real-time performance, and as we
will see in section 3.4, it can also be generated from other corpora offline.

22 Chapter 3. Implementation

3.3 Runtime Architecture

The runtime architecture handles all the influencing and output generation, it’s
basically the core of the system. While most of it already has been explained in
[7], some key aspects have been left out due to the article’s condensed format,
as well as some critical changes made since the article was written. For this
reason, the design of the architecture and the relation between the algorithms
described in chapter 2 and the components of the system will be reiterated in
the following section.

Figure 3.4: Simplified class diagram over the main components of the runtime architecture.

3.3.1 The Runtime System’s Components

The architecture of the system can be seen in figure 3.4. At the root of the
system is the Player class, through which all interaction with the system occurs.
At the opposite end, at what could be considered the core of the system, is the
Atom, where each Atom corresponds to one of the r = 1, . . . , R layers described
in chapter 2. The Atom contains one Classifier instance, corresponding to a
classifier Θ(r), one MemorySpace instance, corresponding to a model M(r) and
one ActivityPattern instance, which handles storing, shifting, decaying and
concatenation of peaks P(r) as described in section 2.3.4.

Inbetween the Player and the Atoms is the StreamView class, an element that
wasn’t mentioned in chapter 2. Each Player contains any number of StreamViews,

3.3. Runtime Architecture 23

which in turn is a recursive structure containing any number of StreamViews and
any number of Atoms, effectively forming a tree structure where the Player cor-
respond to the root of the tree, each StreamView correspond to a branch and
each Atom correspond to a leaf of the tree. Each Atom and StreamView is as-
signed a (by the user controlled) weight α(r) and at each branch in the tree,
merging (as described in section 2.4.2) and user-controlled fuzzy filtering Γ (as
described in section 2.4.3) are performed by the MergeAction class. Finally,
once all peaks have been merged up through the tree to the Player class, a final
set of (user-defined) MergeActions are performed, and from that set of peaks,
the output is selected as described in section 2.4.4 by the PeakSelector class.

There are three main states in the runtime architecture, each roughly cor-
responding to the three main sections of chapter 2: initialization, influence
and output. In the initialization state, which is only performed once, the user
defines the runtime architecture, i.e. the tree structure, which Classifiers
(and MemorySpaces and ActivityPatterns) to use in each layer, as well as the
MergeActions to use at each branch. This is also where the Corpus is built
(or loaded from a previously built Corpus), clustered, classified and modelled in
each of the Atoms. Note that while this step is mandatory for the initialization,
the clustering, classification and modelling can be recomputed with different
parameters in each of the Atoms while the system is running.

The two other states, influence and output, takes turns continuously while
the system is running and operate in opposite directions, where the influence
state flows from the Player through the architecture, computing each of the
steps defined in section 2.3, ending in each of the ActivityPatterns where
the generated peaks are stored, and the output state gathers all the generated
peaks in each of the ActivityPatterns and merge them towards the Player,
generating the output according to the steps in section 2.4.

3.3.2 Modularity and Dynamicity

Similarly to the AbstractTrait stereotype defined in section 3.2.2, each of the
components labelled with the abstract keyword in figure 3.4 can be substituted
using each class’ corresponding stereotype. For the MemorySpace, ActivityPattern
and PeakSelector classes, this behaviour is simply for future use and their
stereotypes will not be discussed in detail. In this work, the stereotypes for
the Classifier class and the MergeAction class are of greater importance, as
a number of each have been implemented and will be described in section 3.3.3
and section 3.3.4 respectively.

Finally, among the novelties added to the system are the Parametric and
Parameter classes (these are not displayed in figure 3.4, but all of the classes in
the figure extends the Parametric class). From a software engineering perspec-

24 Chapter 3. Implementation

class Parameter(HasParameterDict):
def __init__(self, default_value: Ranged, min_value: Ranged,

max_value: Ranged, type_str: str,
description: str, setter: Optional[Callable]):

...

Figure 3.5: The constructor for the Parameter class.

tive, addressing a parameter somewhere inside dynamic tree can be difficult, es-
pecially when communicating with an external client over a string-based proto-
col. The purpose of the Parametric class is to expose any Parameter to the user
interface. In practice, this means that any class that extends the Parametric
class can declare any of its user-controlled parameters as a Parameter class, and
it will be immediately available in the user interface with a name, type, range, de-
scription and optional setter function. The constructor for the Parameter class
can be seen in figure 3.5.

3.3.3 Clustering and Classification: the Classifier class

Clustering and classification is handled by the Classifier class. Each classi-
fier is implemented by extending the AbstractClassifier stereotype shown in
figure 3.6, implementing the functions cluster, corresponding to equation 2.4,
classify_corpus, corresponding to equation 2.5 and classify_influence, cor-
responding to equation 2.10. In practice, not all Classifiers rely on the Corpus
for clustering - in fact some Classifiers don’t implement the cluster function
at all.

In the current state of the system, these classifiers have been implemented:

Top Note Classifier Θ(PT), which, as the trait θ(PT) already is a discrete param-
eter, simply is an identity classifier, defined so that

l = Θ(PT)
#

θ(PT) | C

&

= θ(PT), l ∈ Z[0,127], (3.3)

in other words, a Classifier without any clustering and thus independent
of C.

Pitch Class Classifier Θ(P12), defined so that

l = Θ(P12)
#

θ(PT) | C

&

= θ(PT) mod 12, l ∈ Z[0,11]. (3.4)

Again, a Classifier without any clustering and thus independent of C.

3.3. Runtime Architecture 25

class AbstractClassifier(ABC):
@abstractmethod
def cluster(self, corpus: Corpus) -> None:

pass

@abstractmethod
def classify_corpus(self, corpus: Corpus) -> List[AbstractLabel]:

pass

@abstractmethod
def classify_influence(self, influence: AbstractInfluence) -> AbstractLabel:

pass

Figure 3.6: Stereotype for implementing a Classifier.

SOM Chroma Classifier Θ(CSOM) A classifier of onset chroma vectors based on
the original Somax implementation as defined in [6]. The clustering was
computed using a self-organizing map on a matrix X of 3600 chroma vec-
tors, i.e. X ∈ R3600×12, returning a set of labels l(X) ∈ Z3600

[0,121]. The origin
of these 3600 chroma vectors, as well as the exact parameters for the self-
organizing map has unfortunately been lost, but this classifier will serve as
an important base case when comparing different chroma classifiers.

As the self-organizing map itself can’t be used for classifying corpora or
influences, this classifier will simply select the label of the row in X mini-
mizing the distance to the chroma vector θ(C) ∈ R12 to classify, i.e.

l = Θ(CSOM)
#

θ(C)
| C

&

= l(X)
i (3.5)

where

i = argmin
x∈X

+x − θ(C)+2 (3.6)

and l(X)
i denotes the label in l(X) at index i.

Absolute GMM Chroma Classifier Θ(CAGMM) A classifier of onset chroma vec-
tors based on a Gaussian Mixture Model clustering, as described in ap-
pendix A. The classifier uses the same matrix X ∈ R3600×12 as the SOM
Chroma Classifier for clustering, but with a user-defined number of clus-

ters K. The initial clustering Θ
(C|GMM|)

i=0 is computed using K-means [4] with K
clusters and the EM-algorithm iterated for (user-defined) I iterations. The

26 Chapter 3. Implementation

classification is defined as in equation A.17, i.e. (with adapted notation)

l = Θ(CAGMM)
I

#

θ(C)
| C

&

= argmax
k∈1...K

p
#

C(k)
I | θ(C)

&

(3.7)

where C(k)
I denotes cluster k after I iterations. Compared to the SOM

Chroma Classifier, the main benefit with this is the variable number of clus-
ters. Having a variable number of matches means that the precision of the
classifier can be adjusted (where a higher number of clusters would mean
a higher precision) at the cost of number of matches in the corpus (where
a high number of clusters in most cases will result in less matches). This
means that each performance can be parametrically tuned with regards to
how well the corpus matches the input.

Relative GMM Chroma Classifier Θ(CRGMM) This classifier is identical to the
Absolute GMM Chroma Classifier, but uses the data in corpus C to con-
struct the matrix X, and thus uses C for both clustering and initial classifi-
cation. In other words, we have

X =

7

8

8

9

θ
(C)
1
...

θ
(C)
U

:

;

;

<

, (3.8)

X ∈ RU×12. This is the first classifier where the clustering is input depen-
dent. Compared to the Absolute GMM Chroma Classifier, having a cluster-
ing dependent on the corpus can potentially result in very poor matches
if the corpus is harmonically dissimilar to the input, as the classification
algorithm will simply select the match with the highest probability (which
then may be very low). But on the other hand, if the corpus and the input
are harmonically similar, the precision in the matches may be much higher,
even with a low number of classes, thus (ideally) resulting in a high number
of matches with high precision.

3.3.4 Fuzzy Filtering: the MergeAction class

The scaling of individual peaks with regards to parameters of the peaks or their

related slices S
(C)
u as described in section 2.4.3 is handled by the MergeAction

class, which only requires implementation of the merge function. The stereotype
for this class is shown in figure 3.7, and there are currently two such fuzzy filters
that the system makes use of:

Phase Modulation Γ(φ) which scales the peaks with regards to their current
phase/position in the beat so that peaks occurring at phase close to the

3.4. Scheduling and the Generator Module 27

class AbstractMergeAction(Parametric):
@abstractmethod
def merge(self, peaks: Peaks, time: float,

history: ImprovisationMemory,
corpus: Corpus = None, **kwargs) -> Peaks:

pass

Figure 3.7: Stereotype for implementing a MergeAction.

current phase of the output time t(Y) are emphasized and vice versa,

Γ(φ) (pi) =
$

t(C)i φiyi

%T
∀pi ∈ Pw (3.9)

where

φi = exp
$

cos
#

2π
#

t(Y)
w − t(C)i

&&

− 1
%

, φ ∈ R (3.10)

Next State Modulation Γ(+) which scales peaks close in time to the previously

output slice S
(Y)
w−1 by a constant α, i.e. for some ε ∈ R

Γ(+)(pi) =

.

/

0

$

t(C)i αyi

%T
if

+

+

+

t(C)i − t(C)w−1

+

+

+

< ε

pi otherwise
∀pi ∈ Pw. (3.11)

3.4 Scheduling and the Generator Module

While the internal algorithms of the system has been quite thoroughly described
by now, it has not yet been presented in context as a key aspect is missing - how
input and output is handled over time, i.e. scheduling. The following sections de-
scribe the Scheduler module, which determines how influences and triggers are
scheduled to generate actual midi/audio output and the modes that the sched-
uler operate under. Section 3.4.4 describes the Generator module, which is
using the scheduler to generate new corpora offline, which in turn is the mod-
ule that enables the statistical evaluation of the system, which chapter 4 will
describe.

3.4.1 Scheduling

The main role of the Scheduler is to handle triggers to appropriately queue and

output slices S
(Y)
w as they unfold over time, similar to a timeline in a DAW but

28 Chapter 3. Implementation

where the events in the timeline are continuously generated by the system itself.
The Scheduler has a running tick t(Q), a tempo ζ(Q) and a queue of scheduled

events E , where each event has timestamp t(Y)
w and a predefined behaviour upon

triggering, which depends on the event type. An event will be triggered when its

tick t(Y)
w is greater than or equal to the scheduler tick t(Q). There are currently

seven types of scheduled events:

TempoEvent: Sets the tempo of the scheduler to its value when triggered.

MidiEvent: Outputs a stored midi note on or note off message when triggered.

AudioEvent: Outputs an interval [τstart, τend] (in milliseconds) in the audio file to
play over a duration determined by a tempo factor fζ , defined as

fζ =
ζ
(Y)
w

ζ(Q)
(3.12)

where ζ
(Y)
w denotes the tempo of the audio event’s corresponding slice S

(Y)
w .

CorpusEvent: Outputs a slice S
(Y)
w when triggered. As we will see in sections

3.4.2 and 3.4.3, this behaviour seems to overlaps with the behaviour of
midi and audio events, but they are never used in combination.

InfluenceEvent: Calls the influence process as described in section 2.3 for a
given Player with its stored value.

TriggerEvent: Corresponding to an event in the trigger stream Y , which when
triggered calls the generate process as defined in section 2.4. The output
of the generate process is sent back to the scheduler and queued, either
as a CorpusEvent or as a MidiEvent/AudioEvent, depending on the type
of scheduler, as we will see in the following two sections. In practice,
this means that all MidiEvents, AudioEvents and CorpusEvents are queued
only through a TriggerEvent.

There are two different ways to add TriggerEvents to the scheduler, which
in turn depends on the scheduler’s mode, which may be either Automatic
or Manual. The Manual mode means that TriggerEvents are added man-
ually, which in practice means that they are added by the system after
every influence call. This is useful to create a note-by-note interaction be-
tween the system and the input. The Automatic mode means that new
TriggerEvents are automatically queued after a duration corresponding

to the generated output slice S
(Y)
w , i.e. for a trigger Yi, a new trigger Yi+1

is added at t(Y)
i+1 defined as

t(Y)
i+1 = t(Y)

i + d(Y)
w , (3.13)

3.4. Scheduling and the Generator Module 29

where d(Y)
w denotes the duration of the generated slice. Note that the

retriggering uses the time of the trigger t(Y) rather than the time of the
scheduler t(Q) when queueing new triggers to avoid drifting.

In practice, the scheduler is divided into two different classes, the RealTime-
Scheduler, which will be described in section 3.4.2, and the OfflineScheduler,
which will be described in section 3.4.3. As we will see, these two have very
little in common apart from the handling of TempoEvents and TriggerEvents.

3.4.2 Real-time Scheduling

The behaviour of the RealTimeScheduler is in many ways similar to the be-
haviour of the audio thread in an audio plugin. It’s a high-priority thread that’s
continuously polled at a millisecond interval, at each poll i updating its tick so
that

t(Q)
i = t(Q)

i−1 + ∆τi
ζ(Q)

60
, (3.14)

where ∆τi denotes the number of milliseconds that have passed since the last
poll, and triggering any event w whose tick t(Y)

w ≥ t(Q)
i .

When the system is used as a real-time framework, the scheduler is based
on the asyncio Python module, where influencing and setting parameters, as
well as queueing new TriggerEvents and TempoEvents, is handled by a different
thread corresponding to the ui thread in an audio plugin. The asyncio module is
however not truly multithreaded, but rather handles ui calls in-between polling
scheduler. These ui calls are blocking the thread and completes its operation
before the next poll is called, hence eliminating any risk of tearing. While such a
solution would not be acceptable for a real audio thread as the ui calls may delay
the audio thread up to a few milliseconds, it’s not a problem when handling an
event-based stream as these delays are too small to be perceivable.

Once a TriggerEvent has generated an output slice S
(Y)
w , the real-time sched-

uler will extract its content as an AudioEvent for audio corpora or as a set of
MidiEvents for midi corpora. For midi notes Nw, great care must be taken when
determining note ons and note offs, since we according to the slicing procedure
determined in section 2.2.1 would add a single note to multiple slices. In prac-

tice, we generate note ons at t(Y)
w for any note ni ∈ N

(on)
w , where the latter is

defined as

N
(on)
w = N

(Y)
w \ N

(from)
w−1 (3.15)

and note offs at t(W)
w + nj.duration for any note nj ∈ N

(off)
w , where the latter is

defined as

N
(off)
w =

#

N
(Y)
w \ N

(from)
w

&

∪
#

N
(from)
w−1 \ N

(to)
w

&

(3.16)

30 Chapter 3. Implementation

where

N
(to)
w =

!

n | n ∈ N
(Y)
w : n.onset < t(Y)

w

"

(3.17)

and

N
(from)
w =

!

n | n ∈ N
(Y)
w : n.onset+ n.duration > t(Y)

w + d(Y)
w

"

. (3.18)

When using the system in real-time, the RealTimeScheduler doesn’t handle
InfluenceEvents or CorpusEvents. The former are handled directly by the ui
thread and the latter are converted to MidiEvents or AudioEvents.

3.4.3 Offline Scheduling

The OfflineScheduler is unlike the RealTimeScheduler designed for a single
thread, where any operation stems from the scheduler itself while running. It
is also not continuously polled, but iterating over all the events E in the sched-
uler in order (where the iterator is being updated after each cycle to allow re-
queueing of TriggerEvents) until the queue is empty. At each step i in the

iteration, the tick t(Q)
i is updated so that

t(Q)
i = min

t(Y)∈E
t(Y) (3.19)

where once again all events w whose tick t(Y)
w ≥ t(Q)

i are triggered in order,
sorted by tick position as the first axis and type by the second, to ensure that
InfluenceEvents are triggered before TriggerEvents, should they occur simul-
taneously.

Unlike the RealTimeScheduler, the OfflineScheduler will not handle Midi-
Events or AudioEvents at all - it will output the slice S

(Y)
w corresponding to the

CorpusEvent directly, effectively producing a new Corpus. But since the Corpus
class is interchangeable with its midi and/or audio data, the generated result
could easily be converted to a midi/audio file.

3.4.4 The Generator Module

The Generator is a separate module completely detached from the MaxMSP
environment and the real-time system, and is designed around the Offline-
Scheduler to quickly generate new corpora. Similarly to section 3.3, the first
steps when creating a Generator are to define and initialize the architecture and
load a Corpus, which we from here on will call the source corpus. The Generator
itself is an abstract class where the definition of the architecture is done by ex-
tending the class and implementing the initialize function, as can be seen in
figure 3.8. But as the figure shows, there Generator requires two corpora in the

3.4. Scheduling and the Generator Module 31

class Generator(ABC):
def __init__(self, source_corpus: Corpus, influence_corpus: Corpus,

use_optimization: bool, gather_peak_statistics: bool,
name: Optional[str], **kwargs):

...

def run(self) -> Tuple[Corpus, Optional[PeaksStatistics]]:
...

@abstractmethod
def initialize(self, **kwargs) -> None:

pass

Figure 3.8: The signature of the constructor and run function as well as the initialize stereo-
type of the Generator class

constructor and returns a third corpus from the run function. These three cor-
respond to the three main sections in chapter 2: a source corpus C similar to its
definition in section 2.2, an influence corpus K (instead of an influence stream

as we defined it in section 2.3) and an output corpus O =
!

S
(Y)
1 , . . . S (Y)

W

"

, con-

structed from the output slices S
(Y)
w as defined in section 2.4. In other words, it

will build the architecture and source corpus C as usual, but it will also build an
influence corpus K using the same procedure. Each of the slices S

(K)
v of the lat-

ter are then queued as InfluenceEvents in the OfflineScheduler at their cor-
responding ticks t(K)

v , together with a TempoEvent constructed from the slice’s

tempo ζ
(K)
v and (if the mode is set to Manual) a TriggerEvent.

When the run function is called, the Generator will iterate over all events
in the OfflineScheduler for as long as there are InfluenceEvents left in the
queue and then stop, effectively producing a corpus O with the same duration
(and hopefully same traits) as the influence corpus K, using the slices of the
source corpus C.

The Generator module also allows the user to gather statistics about the
peaks at each step in the iteration, which as we will see in chapter 4 is very useful
for evaluating the usefulness of the architecture from a performer’s perspective.

Chapter 4

Evaluation

Evaluating large real-time systems with multiple parameters and complex out-
put is by no means a trivial task. In the case of the system described in this text,
most parameters are to some extent non-direct in a sense that the the change oc-
curring when modifying a parameter will often not be immediately perceivable,
and even if when it is, that change might be subtle enough to require special
training to hear. It’s also greatly dependent on the architecture used and which
source corpus C the system is trained on, as well as the style of the influence K

and how well it matches the source.
While usability tests of the actual system and/or listening tests of the system’s

output likely is the ideal way to evaluate a system designed for composition and
improvisation, a quantitative study can serve as a means to evaluate individ-
ual components of the system, for finding reasonable parameters and designing
good source corpora for matching different types of influences. For this rea-
son, the evaluation presented in this chapter is designed as a semi-quantitative
pre-study where a number of corpora from different periods and genres are eval-
uated in terms of usability, quantified as a number of measurements related to
the generation of peaks, and quality of the output, quantified as a number of
parameters related to the output.

4.1 Evaluation Procedure

Based on the Generator module described in section 3.4.4, each of the seven
midi corpora described in table B.1 will act as both source C and influence K in
relation to every other corpus, where the output O of each pair will be evaluated
in relation to its influence K, including information about its generated peaks,
that will be gathered after each influence v = 1, . . . , V. As one may recall, the
influence K corresponds to the input of a real-time improviser, so this evaluation
simulates the behaviour of the system if it’s for example listening to (and being

33

34 Chapter 4. Evaluation

Abbreviation Classifier Parameters

PT Top Note Classifier -

P12 Pitch Class Classifier -

CSOM SOM Chroma Classifier -

AGMM50 Absolute GMM Chroma Classifier Clusters: K = 50
AGMM100 Absolute GMM Chroma Classifier Clusters: K = 100
AGMM150 Absolute GMM Chroma Classifier Clusters: K = 150
RGMM50 Relative GMM Chroma Classifier Clusters: K = 50
RGMM100 Relative GMM Chroma Classifier Clusters: K = 100
RGMM150 Relative GMM Chroma Classifier Clusters: K = 150

Figure 4.1: Evaluated classifiers Θ and their corresponding parameters.

influenced by) César Franck’s Sonata for Violin and Piano while being trained
on Arnold Schönberg’s Drei Klavierstücke (and every other ordered pair of the
items in table B.1). Formally, we will denote each tuple

,

Ci,Kj,Oi,j
-

, i, j = 1, . . . , 7
as a generator Gi,j, with in total 49 generators. All generators will be constructed
using the architecture described in section 4.1.2 and evaluated with regards to
each classifier in figure 4.1, measuring each of the measurements described in
section 4.1.1.

Note that the specific case where the same corpus is used as source and
influence, i.e. all generators Gi,j where i = j, should for any well-designed

classifier reproduce its influence Kj as its output Oi,j so that S
(Ki)
v = S

(Yi,j)
w

∀v = w = 1, . . . , V. For this reason, these generators will only be evaluated
with regards to the measurement self-similarity described in section 4.1.1 and
discarded for every other measurement, leaving in total 42 generators to evalu-
ate.

4.1.1 Measurements

This section presents the measurements used to evaluate the usability and qual-
ity of each classifier. Most measurements are calculated either as a mean x̄ and
a standard deviation s or as a ratio η for a single classifier over an entire gen-
erator Gi,j. The equations for calculating these measurements are presented on
a form λk = f (x) where λk denotes the value of the measurement at a specific
time index k. Note that this time index varies depending on if the measurement
is related to influence (v = 1, . . . , V), output (w = 1, . . . , W) or if it’s discretized in
some other way (n = 1, . . . , N). Finally, the sample mean and standard deviation

4.1. Evaluation Procedure 35

are estimated using the normal formulas:

x̄ =
1
K

K

∑
k=1

λk (4.1)

s =

=

>

>

?

1
K − 1

K

∑
k=1

(λk − x̄)2 (4.2)

Number of Peaks
#

x̄(card), s(card)
&

: The total number of peaks existing in all lay-

ers after each influence with index v = 1 . . . V, i.e.

λv =
R

∑
r=1

m(r)
v , λv ∈ Z[0,∞) (4.3)

where m(r)
v denotes the number of columns in the peak matrix P(r)

v in layer
r = 1, . . . , R and R denotes the total number of layers. Note that this mea-
sures peaks before merge, so it may contain duplicates. A high value for
x̄(card) with a low standard deviation s(card) indicates a consistent large num-
ber of matches over time and thus a high responsiveness of the system in
general and the classifier in particular. A too high value could indicate
problems with the decay rate of the peaks, as well as issues with the preci-
sion of the classifier.

Number of Generated Peaks
#

x̄(gen), s(gen)
&

: Number of new peaks generated

by the evaluated classifier in layer r from the influence at time step v =

1, . . . , V, i.e.

λv = m(r)
v , λv ∈ Z[0,∞) (4.4)

where m(r)
v here denotes the number of rows in the peak matrix P(r)

v in the
evaluated layer r ∈ [1, R] before the concatenation with the previous time
step’s peaks performed in equation 2.10. Similar to x̄(gen), this value is
correlated to both the responsiveness and the precision of the system.

Score Selected Peak
#

x̄(mag), s(mag)
&

: The score (magnitude) of the by equa-

tion 2.25a selected peak p̂w at index w = 1, . . . , W, i.e.

λw =
3

0 1
4

p̄w, λw ∈ R[0,∞). (4.5)

A high value (above 1) would indicate accumulation of consecutive peaks,
which would mean that the selected segment over time matches the influ-
ence well, but at the same time also mean that new peaks generated (with
default score of 1) will not be selected unless they have prior history (which
is the intended behaviour of the system, but may sometimes result in poor
matches).

36 Chapter 4. Evaluation

Non-generating Influence Ratio
#

η(ng)
&

: The case where there are no new

generated peaks at influence index v = 1, . . . , V is of particular interest, as
this means that the classifier fails to find matches between the source and
influence. Like most other measurements, there is no ideal value for this
- a good classifier should fail to find matches between materials that are
too far apart - but a high value will severly impact the performance of the
system. This ratio is calculated as

η(ng) =
1
V

V

∑
v=1

λv, η ∈ R[0,1] (4.6)

where

λv =

@

1 if m(r)
v = 0

0 otherwise
, λv ∈ Z[0,1] (4.7)

and m(r)
v once again denotes the number of rows in the peak matrix P(r)

v of
the evaluated layer r ∈ [1, R] before the concatenation with previous peaks.

Chain Length
#

x̄(len), s(len)
&

: The number of from the source Ci consecutive slices

in outputOi,j, i.e. the average length of the segments sampled directly from

C. More specifically, each output slice S
(Y)
w temporarily stores its source

index u, which we will denote u(Y)
w when assigned to the output Oi,j. The

average chain length is calculated so that

λw =

@

λw−1 + 1 if u(Y)
w = u(Y)

w−1 + 1
0 otherwise

, λw ∈ Z[0,1]. (4.8)

A high value for this measurement indicates that large chunks are sampled
directly from the source Ci and thus likely resulting in a higher degree of
coherency at a beat/bar level of the composition/improvisation, but a too
high value indicates in less originality of the output. Similarly, a high stan-
dard deviation will indicate one or a few long chains, which could be the
result of either a long sequence of very good and/or accumulated matches
or the opposite - a long sequence of no matches at all (which would cause
the system to output consecutive slices as per equation 2.27).

Root Mean Square
#

x̄(rms), s(rms)
&

: The root mean square is the main measure-

ment for evaluating the quality of each match, and is individually defined
for each trait θ. It measures how much the output Oi,j differs from its in-
fluence Kj over time. As the slices of Oi,j and Kj are not necessarily are
aligned, the comparison is done continuously over the entire duration of Kj

4.1. Evaluation Procedure 37

(in ticks), denotes T(Kj) ∈ R[0,∞), discretized into N ∈ Z+ steps. For this

purpose, we define two signals θ(Kj)[n] and θ(Oi,j)[n] of length N so that the
value at θ(·)[n] correspond to the evaluated trait value at time tn,

tn =
nT(·)

N
, (4.9)

of corpus (·). The root mean square x̄(rms) and standard deviation s(rms)

are then calculated in accordance with equations 4.1 and 4.1.1 for a signal
measurement λ[n] of length N so that

x̄ =
1
N

N

∑
n=1

λ[n] (4.10)

s =

=

>

>

?

1
N − 1

N

∑
n=1

(λ[n]− x̄)2. (4.11)

For each trait, the signal measurements λ[n] are are defined as:

Top Note: For the signals θ(Kj)[n], θ(Oi,j)[n] ∈ ZN
[0,127],

λ[n] =

@

0 if θ(Kj)[n] = θ(Oi,j)[n]
1 otherwise

, λ[n] ∈ ZN
[0,1] (4.12)

Pitch Class: For the signals θ(Kj)[n], θ(Oi,j)[n] ∈ ZN
[0,11],

λ[n] =

@

0 if θ(Kj)[n] ≡12 θ(Oi,j)[n]
1 otherwise

, λ[n] ∈ ZN
[0,1] (4.13)

Chroma: For the vector signals θ(Kj)[n], θ(Oi,j)[n] ∈ RNx12
[0,1] ,

λ[n] = +θ̂(Kj)[n]− θ̂(Oi,j)[n]+2, λ[n] ∈ RN
[0,1] (4.14)

where

θ̂(·)[n] =
θ(·)[n]

maxθ∈θ(·)[n] θ
. (4.15)

Self-similarity
#

η(id)
&

: The final evaluation measurement is self-similarity, which

as was mentioned above is only evaluated for generators Gi,j where i = j,
and basically compared how well the output Oi,j of the generator repro-
duces the original influence Kj. Similarly to root mean square, this is mea-

sured continuously over the duration T(K) discretized in N steps. It utilizes

38 Chapter 4. Evaluation

the fact that Ci = Kj, and thus indices v correspond to indices u, so we can

use the previously defined notation u(Y)
w for the source index u as stored in

the output slice S
(Y)
w for output index w. We once again define discrete vec-

tors u(C)[n] and u(Y)[n] of length N and define the self-similarity measure
λ[n] as

λ[n] =
A

1 if u(C)[n] = u(Y)[n]
0 otherwise

, λ[n] ∈ RN
[0,1], (4.16)

from which we calculate self-similarity ratio η(id) as

η(id) =
1
N

N

∑
n=1

λ[n], η(id) ∈ R[0,1]. (4.17)

This measurement simulates an identity operator and works as a sanity
check - for any well-designed classifier, given a corpus Ci = Kj, we expect

η(id) to be close to 1, with the only exception being if the corpus contains
identical repetition of longer sections.

For each classifier k in figure 4.1, each measurement will be evaluated with
regards to every generator Gi,j, i, j = 1, . . . , 7. This produces a set G(k) for every
classifier k so that

G
(k) =

!

G
(k)
i,j | i = 1, . . . 7, j = 1, . . . 7, i ∕= j

"

, (4.18)

each containing a generator with all of the above measurements. For each mea-

surement, section 4.2 will present the generator G
(k)
i,j ∈ G(k) that produces (a)

the minimum value, (b) the maximum value and (c) the unweighted mean of all
generators in G(k), as well as their corresponding standard deviations.

4.1.2 Architecture and Parameters

The architecture used for evaluation consists of a single Player, a single StreamView
and a single Atom. The Atom uses the Classifier that is currently being evalu-
ated as presented in figure 4.1 with, if applicable, the parameters as specified
in the figure. The Player uses each of the MergeActions presented in section
3.3.4, and the Scheduler only operates in Manual mode. The values of all other
user-controlled parameters are the same for all classifiers and can be found in
figure 4.2.

4.2. Evaluation Results 39

Parameter Value

n-gram order (γ) 2

weight (α, Atom & StreamView) 1.0

next state modulation (εΓ(+)) 0.5

peak decay (τΓ(φ)) 4.6

Figure 4.2: User-controlled parameters used in the evaluated architecture.

Figure 4.3: Number of peaks x̄(card) ordered by classifier, with error bars indicating the standard
deviation s(card).

4.2 Evaluation Results

4.2.1 Number of Peaks

For pitch classifiers, the number of peaks x̄(card) range from 93.98, in the worst
("min") case of the Top Note classifier, to 3491, in the best ("max") case of the
Pitch Class classifier. For chroma classifiers, the range is between 29.43, in the
worst case of the SOM Chroma classifier, to 5395 in the best case of the Absolute
GMM classifier (K = 100). An overview of the data is presented in figure 4.3 and

40 Chapter 4. Evaluation

more detailed information can be found in figure C.2, along with information
about which corpora are being used in each of the worst and best cases.

4.2.2 Number of Generated Peaks

Figure 4.4: Number of generated peaks x̄(gen) ordered by classifier, with error bars indicating
the standard deviation s(gen).

For pitch classifiers, the number of generated peaks x̄(gen) range from 9.366, in
the worst ("min") case of the Top Note classifier, to 336.3, in the best ("max")
case of the Pitch Class classifier. For chroma classifiers, the range is between
3.634, in the worst case of the Relative GMM Chroma classifier (K = 150), to
842.2 in the best case of the Absolute GMM classifier (K = 50). An overview of
the data is presented in figure 4.4 and more detailed information can be found
in figure C.4, along with information about which corpora are being used in each
of the worst and best cases. Also note that the number of peaks generated has a
theoretical limit of the length of the source corpus, i.e. x̄(gen) ≤ U, and will thus
vary for corpora of different lengths.

4.2. Evaluation Results 41

4.2.3 Score Selected Peak

Figure 4.5: Score selected peak x̄(mag) ordered by classifier, with error bars indicating the stan-
dard deviation s(mag).

For pitch classifiers, the score of the selected peak x̄(mag) range from 0.3058, in
the worst ("min") case of the Top Note classifier, to 4.765, in the best ("max")
case of the Pitch Class classifier. For chroma classifiers, the range is between
0.2691, in the worst case of the SOM Chroma classifier, to 8.661 in the best case
of the Relative GMM classifier (K = 50). An overview of the data is presented in
figure 4.5 and more detailed information can be found in figure C.3, along with
information about which corpora are being used in each of the worst and best
cases.

4.2.4 Non-generating Influence Ratio

For pitch classifiers, the non-generating influence ratio η(ng) range from 0.0001,
in the best ("min") case of the Pitch Class classifier, to 0.7535, in the worst
("max") case of the Top Note classifier. For chroma classifiers, the range is
between 0.0073, in the best case of the Relative GMM Chroma classifier (K =

42 Chapter 4. Evaluation

Figure 4.6: Non-generating influence ratio η(ng) ordered by classifier.

50), to 0.7299 in the worst case of the Absolute GMM classifier (K = 150). An
overview of the data is presented in figure 4.6 and more detailed information can
be found in figure C.5, along with information about which corpora are being
used in each of the worst and best cases.

4.2.5 Chain Length

For pitch classifiers, the chain lengths mean x̄(len) range from 0.0278, in the best
("min" - we will see in chapter 5 why the "min" case is labelled as the "best" case)
case of the Pitch Class classifier, to 1.930, in the worst ("max") case of the Top
Note classifier, and in this case more importantly, standard deviations ranging
from 0.1776, in the best case of the Pitch Class classifier to 8.443 in the worst
case of the Top Note classifier. For chroma classifiers, the range is between
0.0181, in the best case of the SOM Chroma classifier, to 2.986 in the worst case
of the SOM Chroma classifier, with corresponding standard deviations ranging
from 0.1404 in the best case of the SOM Chroma classifier to 21.53 in the worst
case of the SOM Chroma classifier. An overview of the data is presented in
figure 4.3 and more detailed information can be found in figure C.2, along with

4.2. Evaluation Results 43

Figure 4.7: Chain length x̄(len) ordered by classifier, with error bars indicating the standard
deviation s(len).

information about which corpora are being used in each of the worst and best
cases.

4.2.6 Root Mean Square

For pitch classifiers, the root mean square x̄(rms) range from 0.1707, in the best
("min") case of the Pitch Class classifier, to 0.7900, in the worst ("max") case
of the Top Note classifier. For chroma classifiers, the range is between 0.2081,
in the best case of the SOM Chroma classifier, to 0.4569 in the worst case of
the Absolute GMM Classifier (K = 100). An overview of the data is presented in
figure 4.3 and more detailed information can be found in figure C.2, along with
information about which corpora are being used in each of the worst and best
cases.

For comparison, another test was run to compute root mean square values
for all traits in a completely random case. This test was performed so that each
of the 42 corpus pairs (Ci,Kj) corresponding to generators Gi,j, i ∕= j were evalu-
ated, where in each pair, the influence corpus Kj was randomly shuffled and the

44 Chapter 4. Evaluation

Figure 4.8: Root mean square x̄(rms) ordered by classifier as defined by the trait corresponding
to the evaluated classifier, with error bars indicating the standard deviation s(rms).

two corpora were compared using the root mean square procedure as defined in
section 4.1. This procedure was repeated 100 times for each corpus pair, result-
ing in a total of 4200 evaluations, from which a mean and a standard deviation
were calculated. The results were:

Top Note: x̄(rms) = 0.9650, s(rms) = 0.1833,

Pitch Class: x̄(rms) = 0.9085, s(rms) = 0.2879,

Chroma: x̄(rms) = 0.4395, s(rms) = 0.09094.

4.2.7 Self-similarity

For all classifiers, the self-similarity η(id) range from 0.7240, in the worst ("min")
case of the Pitch Class classifier, to 1.000, in the best ("max") case (all classi-
fiers). An overview of the data is presented in figure 4.3 and more detailed infor-
mation can be found in figure C.2, along with information about which corpora
are being used in each of the worst and best cases.

4.2. Evaluation Results 45

Figure 4.9: Self-similarity η(id) ordered by classifier.

As the self-similarity in some of the worst cases were surprisingly low, a sec-
ond test was performed where the root mean square in these specific cases (i.e.
generators Gi,j, i = j) were computed. These are presented in figure C.8 and
range from 0.0000 (all classifiers) in the best case to 0.0203 in the worst case
(Relative GMM Chroma classifier, K = 50).

Chapter 5

Discussion

In this chapter, the results presented in chapter 4 will be discussed in relation to
each classifier. This discussion will focus on the two main goals of the evaluation:
usability and quality, as described in chapter 4. The former is in this chapter fur-
ther subdivided into two areas: peak generation and peak accumulation, where
peak generation focus on measurements related to the number of peaks existing
in the system at each point in time as well as the non-generating influence ratio
x̄(ng), while peak accumulation focus on measurements regarding how the peaks
relate to and merge with each other.

5.1 Top Note Classifier (PT)

For the Top Note classifier, we can see that we have a rather low value η(ng) of
0.2326 for the mean case, which means that on average 76.74% of the influences
generate new peaks. The minimum value of 0.0067 indicates that in the best case
out of the 42 generators, almost every influence generates a peak, while in the
worst case, 75.35% of the influences will not generate any peaks. Regarding the
two measures for number of peaks generated, x̄(card) and x̄(gen), we see that there
is, even in the worst case, on average 93.98 peaks existing at a given time with a
standard deviation of s(card) = 48.71, while in the average case we have x̄(card) =
567.1 peaks before merge with a standard deviation s(card) = 534.9. While the
comparatively large standard deviations indicate that there could occasionally
be a critically low number of peaks, it will in most cases be a decent number
of peaks. In the worst case, the low number of peaks generated per influence,
x̄(gen) = 9.366 with a standard deviation of s(gen) = 13.51, is however problematic.

For the score of the peaks, we have in the mean case x̄(mag) = 1.801 and
s(mag) = 1.394, which indicates some degree of peak accumulation (as new peaks
are created with score 1.0), while the minimum case has a x̄(mag) = 0.3058 with
a standard deviation of s(mag) = 0.4574, in other words no or very little peak

47

48 Chapter 5. Discussion

accumulation. Regarding the chain length measurement, as described in section
4.1, this measurement was originally intended as a quality measure, but manual
inspection of the minimum and maximum cases of the raw data has shown that
there’s in all of these cases, there’s in fact a strong relationship between high
chain length, high non-generating influence ratio and high root mean square.
There are theoretically two disparate cases when the chain length would be
high:

1. When multiple consecutive influences trigger consecutive slices as output.
This is the case we see in generators Gi,j, i = j, where the chain length
often is several orders of magnitude higher than in figure 4.7, while root
mean square and non-generating ratio are close to zero, as the generator
perfectly matches the influence to the corpus.

2. When no peaks Pw exist at all for multiple consecutive outputs w ∈ [1, W].
In this case, the system will output the next event as per equation 2.27
since there are no peaks to base the output on. In this case, we will have a
high non-generating ratio η(ng) and (most likely) a high root mean square.
We will for these scenarios often see high standard deviations s(len), indi-
cating that there are patches of very long chains where no matches are
found at all.

As we will see in the following sections, the cases among the 42 generators
Gi,j, i ∕= j with the highest chain lengths are in fact always cases with high non-
generating ratio and high root mean square, thus high chain length is in this
evaluation related to aspects regarding peak generation and accumulation (i.e.
usability) rather than the quality of the output. Or perhaps even worse - a high
chain length is (in most cases) an indication that the system is not listening to
the performer but rather generating results solely based on a previous state.

For the Top Note classifier, we have a chain length x̄(len) = 0.5741 with
a comparatively high standard deviation s(len) = 1.927 and in the worst case
x̄(len) = 1.930, s(len) = 8.443. These high standard deviations indicate that there
are quite a few patches of longer chains where no peaks are present at all.

Regarding the quality of the output, we can see from figure 4.8 that the root
mean square x̄(rms) is surprisingly high in all cases. For the average case, we
have x̄(rms) = 0.5446, s(rms) = 0.4775, indicating that in 54.46% of the slices
of the output, the top note of the output does not match the top note of the
influence. Even in the best case, almost 25% of the output slices will not match
the influence. In this case, we have a non-generating ratio close to 0, so we
can with some certainty say that the the fact that the system, despite finding
matches with the correct top note, will due to either peak accumulation and/or
fuzzy filtering still in the average case output something else than the match

5.2. Pitch Class Classifier (P12) 49

more than half of the time. This is of course part of the design and intention with
the system - if the purpose was to match the input note-by-note, a much simpler
system without memory, merge actions or accumulation of peaks would suffice
and perform better - but it’s interesting to see how high the ratio of non-matches
in fact is.

Finally, regarding the self-similarity η(id), we can see that it in the average
case reproduces the original to a 97.92% degree, and in the worst case, produced
by the Brahms corpus (see figure C.7), where the somewhat low value of η(id) =

0.8929 is achieved, the root mean square (as per figure C.8) is as low as 0.0089,
indicating that the differences in self-similarity are caused by locating identical
places in the corpora, as both the used movements in that corpus follows a sonata
form.

In summary, we can see that in the average case, the Top Note classifier is
performing quite well when it comes to generation and accumulation of peaks.
It is however quite context-dependent, and will in some cases, as shown by the
worst cases in the study, have problems with both generation and accumulation
of peaks. Also, while it generally will be able to find peaks, it will not necessarily
output these in a single atom architecture like the one evaluated due to accu-
muluation of peaks and/or as a result of fuzzy filtering, thus resulting in a rather
bad quality even in the mean case when comparing the top note of the output to
the top note of the influence.

5.2 Pitch Class Classifier (P12)

Compared to the Top Note classifier, the Pitch Class classifier has a much lower
η(ng): in the mean case 0.0430 and in the best case 0.0001. This is to be ex-
pected, as the alphabet over which the Pitch Class classifier is defined only con-
tains 12γ symbols for an n-gram order of γ, compared to the Top Note classifier
whose alphabet contains 127γ possible symbols. The number of peaks generated
x̄(gen) is much higher than the Top Note classifier with a stable value even in the
worst case, and the number of non-merged peaks x̄(card) is good in all cases. This
indicates that the system in general will have a lot more peaks to use in compar-
ison to the Top Note classifier, and that the Pitch Class classifier is much less
context sensitive, even though there are still quite a few influences that won’t
generate peaks in this case.

The score of the peaks, x̄(mag) is 2.585 in the mean case and 4.765 in the
best case, indicating quite some extent of peak accumulation, while in the worst
case there’s little, but still a more stable extent of accumulation compared to
the Top Note classifier, with an average of x̄(mag) = 0.8139 and s(mag) = 0.7091.
The chain length x̄(len) is lower than the Top Note classifier in all cases and,
more importantly, the standard deviation is much lower in the mean and worst

50 Chapter 5. Discussion

cases, both relative and absolute, indicating that there still may be occasional
sequences of no peaks occurring, but at a much lower rate than in the Top Note
classifier.

While the root mean square has a less strict definition for the Pitch Class clas-
sifier than the Top Note classifier, the values are still comparatively large in the
mean and worst cases with x̄(rms) = 0.4195 and 0.5997 correspondingly. It’s also
interesting to note that this case, as well as the worst non-generating influence
ratio, occurs between the Franck corpus and the Palestrina corpus, where most
other such worst-cases occur between the Schönberg corpus and some tonal (or
modal) corpus. While the used sample is much too small to draw any definitive
conclusions from, this could potentially indicate that the shape of the melodic
lines in the Schönberg corpus is a bigger problem than the differences in tonal-
ity, when compared to the Top Note classifier. For the self-similarity, we see the
lowest value of all classifiers with η(id) = 0.7240, but this seems to once again
indicate that it’s finding duplicate slices, as the root mean square value in this
case is lower than 0.0164, as indicated by figure C.8.

Overall, we see that (not surprisingly) the Pitch Class classifier is less context-
sensitive than the Top Note classifier, given its smaller alphabet. It’s a good op-
tion for disparate corpora and will almost always have peaks, but may in some
cases have a rather large non-generating influence ratio. The root mean square
is in most cases still rather high, most likely due to peak accumulation and the
intended design of the system as was explained in section 5.1.

5.3 SOM Chroma Classifier (CSOM)

For the SOM Chroma classifier, we have a non-generating ratio η(ng) ranging
from 0.0496 in the best case up to 0.8310 in the worst case, with a mean case of
0.3135. The number of peaks in the system x̄(card) are on average 462.3 with a
standard deviation of s(card) = 518.6, thus a number of peaks almost on par with
the Top Note classifier, but a rather problematic number of peaks in the worst
case, x̄(card) = 29.43 with s(card) = 39.29. For the number of peaks generated at
each influence, x̄(gen), we can see in figure 4.4 that the standard deviations are
rather large compared to the means in all cases, indicating that there will be
some problems with peak generation, especially for min and mean case, where
the number of peaks are low.

The score of the peaks x̄(mag) are for the mean and best cases 2.045 and 4.132
respectively, indicating some degree of peak accumulation, while for the worst
case 0.2691, indicating very little peak accumulation. The chain lengths are one
of the highest of all classifiers, x̄(len) = 0.7091 in the average case and 2.9855 in
the worst case, with corresponding standard deviations s(len) = 2.600 and 21.53
respectively. Especially the latter indicates that there are several long segments

5.3. SOM Chroma Classifier (CSOM) 51

of no peaks at all.
For the quality of the output, we can see that the classifier successfully re-

produces its influence for generators Gi,j, i = j where, once again, the worst case
of x̄ = 0.8401 is caused by the Mozart corpus, but where the root mean square in
this case is 0.0141 (as per figure C.8), thus once again likely selecting the identi-
cal repetitions in the sonata form. For the second quality measurement, the root
mean square, we have x̄(rms) = 0.2081, 0.3125 and 0.4279 for the best, average
and worst case, with rather uniform standard deviations s(rms) = 0.0830, 0.1012
and 0.1049 respectively. Of all the chroma classifiers, these are the lowest val-
ues for root mean square, and would thus indicate the best performance out of
all the chroma classifiers. There are however a number of problems with this
measurement, the first one becomes evident when we inspect figure 4.8, where
all chroma classifiers (apart from the SOM chroma classifier, which is slightly
lower in all values) independent of number of clusters have almost identical val-
ues for their corresponding best, average and worst cases. This isn’t necessarily
an issue, but it could indicate that the measurement is rather coarse for the
purpose. The second issue is related to the human perception of chroma. For
while we with a high degree of certainty can tell that the implementation of root
mean square in the Top Note classifier and Pitch Class classifier roughly models
(while ignoring aspects such as timbre and intonation) the human perception of
whether two notes are of the same pitch and whether two notes are of the same
pitch class respectively, the perception of chroma is more complex. While we do
have certain boundaries for the root mean square in this case - the root mean
square when comparing a corpus to itself is 0, while as presented in section 4.2,
the root mean square of a randomized comparison between two corpora is on
average 0.4394 with a standard deviation of 0.009094 - but we cannot necessar-
ily assume that this measurement within these boundaries linearly corresponds
to the human perception of chroma.

Do bear in mind that there was a very specific reason why this measurement
for root mean square was chosen for chroma, namely the fact that this is how the
chroma classification was done in the original implementation [6] and still is with
regards to the SOM Chroma classifier, as per equation 3.5. If this measurement
proves to be problematic, that would in turn indicate further problems with the
original implementation. Ideally, the solution to this problem would be to develop
better measurements for (filtered) chroma vectors, but as this is out of the scope
for this thesis, all further discussion regarding quality of chroma will treat these
two disparate assumptions separately:

1. The root mean square x̄(rms) as defined in equation 4.14 is a valid measure-
ment corresponding to the perception of differences between two chroma
vectors,

52 Chapter 5. Discussion

2. The root mean square x̄(rms) as defined in equation 4.14 is insufficient as
a measurement for the perception of differences between chromas, with
everything that implies for the SOM Chroma classifier.

In the former case, we can make some assumptions regarding the quality of
the output in terms of chroma based on the x̄(rms), but in the latter, we cannot
- we can only determine how well the classifier performs with regards to peak
generation, accumulation and self-similarity.

For the SOM Chroma classifier, we can safely under both premises say that
the worst case is very close the random case, hence the quality with regards
to chroma is very low, but for the best and mean cases, we can under the first
premise also say that out of the three chroma classifiers, the SOM Chroma clas-
sifier has the best quality.

In summary, we see that the SOM Chroma classifier is one of the most con-
text dependent classifiers, spanning a range from 0.0496 to 0.8310 for the non-
generating influence ratio, and while performing well in most best cases, the
mean case is generally less performant and the worst case is often terrible in
terms of both usability and quality. While it has the best quality under the first of
the root mean square measurement for the best and mean cases, it’s still close
to random in the worst case.

5.4 Absolute GMM Chroma Classifier (AGMM)

For the Absolute GMMChroma classifier, the non-generating influence ratio η(ng)

is lower than the SOM Chroma classifier for all cases and all cluster sizes except
in the best case for K = 150 clusters, The values in the best and mean cases seem
to be linearly increasing with the number of clusters, from η(ng) = 0.1685 in the
mean case for K = 50 up to 0.2949 for K = 150, while the worst cases are fixed
around 0.7 in all cases. The number of peaks x̄(card) and number of generated
peaks x̄(gen) are much higher than in the SOM Chroma classifier, indicating a
much more stable amount of peaks, except in the worst case where the number
of generated peaks x̄(gen) is close to the same as the SOM Chroma classifier but
with slightly higher standard deviations. In the two lower cluster sizes K = 50
and K = 100, we do however see a worrying "best" case, where on average 842.2
peaks and 835.0 peaks are generated respectively. This would in this case mean
that for the Brahms corpus consisting of 7040 slices, around 12% of these slices
matches the input every influence. This seems to indicate problems with the
precision of the classifier. So, while the classifier in the mean case performs
better than the SOM Chroma classifier in terms of peak generation, the sheer
number of peaks generated indicates some problems with the accuracy in the
worst case.

5.5. Relative GMM Chroma Classifier (RGMM) 53

Regarding the score of the peaks x̄(mag), we see an accumulation that is ap-
proximately of the same magnitude as the SOM Chroma classifier with slightly
better results for K = 50 and K = 100, which seems to be linearly decreasing
to the same level as the SOM Chroma for K = 150. The chain length x̄(len) is
comparatively lower in all the mean cases, but indicates quite some sequences
of no peaks in the worst case for clusters sizes K = 100 and K = 150.

As for the quality of the classifier, the interpretation of the results varies de-
pending on which of the two assumptions that were presented in section 5.3 we
choose. If the first assumption is valid, one peculiarity is the fact that all cluster
sizes K result in almost identical values for their best, mean and worst cases re-
spectively. We also see that the classifier performs slightly worse than the SOM
Chroma classifier in the best and mean case, while the worst case, similarly to
the SOM Chroma classifier, is close to random. Under the second assumption,
we can draw few conclusions about the quality from this measurement. For the
self-similarity measurement, it’s very high in all cases but for K = 100, where
we have a similar situation as in section 5.2, where we due to the low root mean
square value of 0.0172 in this case (as indicated in figure C.8) can safely assume
that it’s finding repetitions and properly reproduces the influence corpus.

In summary, we see that apart from the slightly higher root mean square,
the Absolute GMM classifier outperforms the SOM Chroma classifier in all mea-
surements. There are some cases of a problematically high amount of gener-
ated peaks x̄(gen) for lower numbers of clusters K that could indicate problems
with the quality of the output in the worst case, but the fact that K is a user-
controlled parameter should allow the user to easily adapt the cluster size in
real-time based on the number of peaks generated.

5.5 Relative GMM Chroma Classifier (RGMM)

The final classifier, the Relative GMM Chroma classifier, is the only classifier
that doesn’t base its clustering on the matrix X that was described in section
3.3.3. It’s therefore compared to the Absolute GMM classifier free of any bias
caused by clustering on X. We see that in terms of peak generation, this is by
far the most balanced classifier. It has the lowest best, mean and worst cases
in terms of non-generating influence ratio η(ng) and is the only chroma classifier
with reasonable values even in the worst case, seemingly linearly increasing
from η(ng) = 0.2695 for K = 50 to 0.4561 for K = 150. It has a much lower mean
case for x̄(card) than the corresponding Absolute GMM classifiers, but never to
the point of being problematic, except for the worst case, but even there the
standard deviation is much lower, with a promising x̄(card) = 38.57, s(card) = 18.19
for K = 100, suggesting that there rarely is a lack of peaks even in the worst
case.

54 Chapter 5. Discussion

Despite the in comparison to the Absolute GMMChroma classifier lower num-
ber of peaks, the score of the peaks x̄(mag) is much higher in all cases, suggest-
ing a rather high degree of peak accumulation. Similarly, while the chain length
x̄(len) is similar to the Absolute GMM classifier in the mean and best case, we see
much lower standard deviations for K = 100 and K = 150, s(len) = 1.718 and 2.052
respectively, indicating a low number of sequences without peaks.

Regarding the quality of the Relative GMM Chroma classifier, the same dis-
cussion as in section 5.4 holds true as the results are almost identical, with all
the complications that arises with regards to the root mean square measure-
ment. For the self-similarity, we see very high values in all cases, with the lowest
once again being the corpora containing sonata form repetitions.

In summary, the Relative GMM Chroma classifier is much better than the
Absolute GMM and SOM Chroma classifiers when it comes to generating and
accumulating peaks, suggesting a high degree usability, especially for K = 100.
Due to the issues presented in previous sections regarding the root mean square
implementation for chroma, it’s however difficult to evaluate the quality of this
output, and further evaluation in terms of developing better measurements or
listening tests, which in either case would be out of the scope for this thesis,
would be needed. What we can see is however that the Relative GMM Chroma
classifier due to its high usability in multiple contexts could serve as a good
starting point for experimenting in unknown contexts, where if problems with
the quality of the output arises despite a good number of peaks, changing to
Absolute GMM or SOM Chroma classifiers could serve as an option.

5.6 Corpora

So far, little focus has been on the corpora used in the evaluation, despite their
importance for the results. Many of the classifiers have been designed around
the idea of genre agnosticism, or at least around an idea that it the classifier
shouldn’t be limited to tonal music (by for example using chroma instead of
chord analysis), but such an idea is difficult to evaluate with a small selection
of corpora. Of the corpora used for evaluation, the only atonal corpus is Schön-
berg’s Drei Klavierstücke, Op. 11 for piano, which, as we can see in appendix
C is overrepresented in many of the worst cases. There’s obviously no point in
trying to draw any statistical inferences from a single sample, which was never
the point with this study, especially not for a concept such as "atonality" which
ranges from dodecaphony to noise music and everything in between, but can in
this case merely serve an indication whether a classifier can find similarities in
very disparate pieces.

On the other side, we see many tonal corpora, particularly the pairs Mozart-
Palestrina and Brahms-Palestrina overrepresented in many of the best cases,

5.6. Corpora 55

which could suggest a bias towards the other end of the tonality spectrum. But
to evaluate this, a much larger set of corpora, preferably labelled by genre,
would be required. The reason for choosing a small set of corpora was (a) that
this was never intended as a large-scale quantitative study but a pre-study for
determining the scope of the system and (b) it wouldn’t technically possible with
the current implementation within the given time constraints. Previous tests of
the real-time architecture indicate that an influence-generate cycle can be han-
dled within a worst case of 10 ms. Given 7 corpora with an average length of 5988
influences, we get a worst evaluation time of around 48 minutes per classifier.
With a sample size of 100 corpora with the same length, the worst case evalua-
tion time would be 166 hours or close to 7 days per classifier. In other words,
while the system currently works well for real-time generation and offline gen-
eration of a few corpora, it would need a lot of optimization (and likely a change
of programming language) to fully support large-scale quantitative evaluation.

Chapter 6

Conclusion

This thesis presented a number of changes to the Somax framework, a system
originally designed for human-machine real-time improvisation, but with this
work extending the domain of the system towards composition as well. The most
important changes presented in this thesis are:

• A new procedure for constructing and labelling corpora, where the old sys-
tem’s static construction and labelling has been replaced with a modular
trait (feature) analysis framework and a modular classification framework.
This allows the system to handle the labelling and clustering dynamically
at runtime so that it can be parametrically controlled by the user. An-
other purpose of the trait analysis framework is to abstract the data to a
level where the runtime framework can operate independently of the for-
mat (midi/audio) from which the corpus was originally constructed.

• The module that handles the timing and scheduling of the system has been
redesigned and separated into a real-time component, designed for human-
machine improvisation, and an offline component, designed for offline gen-
eration of entire compositions. The latter can be used with the Generator
module where the user can define a configuration of the system and con-
trol the form of the composition by controlling the parameters of the system
over time.

• Based on the latter module, a module for evaluation was designed, which
allows the user to gather statistics about the performance of a configura-
tion, a set of corpora and/or a classifier, in terms of usability, quantified
as a number of measurements related to peak generation in the system,
and quality of the output, quantified as the differences in terms of traits
between the input and output of the system.

To evaluate the performance of the system, a number of new classifiers

57

58 Chapter 6. Conclusion

were implemented, using the new modular classification framework. A semi-
quantitative study was carried out using the evaluation module based on a small
set of corpora intended to cover a number of different genres and formats, and
the evaluation was performed on each of the classifiers in the system. The results
indicate that of the two pitch classifiers, Top Note classifier and Pitch Class clas-
sifier, the Top Note classifier is quite sensitive to the context it’s being used in, in
terms of usability, while the Pitch Class classifier performs rather well in terms
of usability in most contexts. In terms of quality, both classifiers had a surpris-
ingly large differences between the input and the output in terms of trait values.
For the three chroma classifiers, we see that the new Absolute GMM Chroma
classifier outperforms the original SOM Chroma classifier in terms of usability
in most contexts, but they are both quite context-sensitive. In contexts where
the Absolute GMM classifier performs poorly, the Relative GMM classifier seems
to be a good option. Moreover, both the Absolute GMM classifier and the Rel-
ative GMM classifiers are unlike the SOM Chroma classifier parametric, which
allows the user to further tune the clustering algorithm in real-time. In terms of
quality, the results show little difference between the different classifiers as well
as between different cluster sizes within each parametric classifier, indicating
problems with the measurement used. Therefore few quantitative conclusions
can be drawn from the results and further studies will be required to evaluate
this aspect.

One of the main limitations of the system is that it doesn’t fully support audio
in its current state, and the system is therefore only in theory format agnostic.
For future work, this would be one of the top priorities. Another key issue is that
the system would require a large amount of optimization to be able perform a
truly quantitative study. But what’s presented here is in a very early stage of
development. It’s a framework with a highly modular design but with very little
content in each of the modules. Fortunately, this framework will serve as a basis
for the ongoing MERCI1 project for the next three years, and there will as such
be plenty of time implement the missing components and fill the modules with
content. With this, the framework can hopefully grow from its current state to a
truly useful tool for human-machine improvisation as well as composition.

1https://www.ircam.fr/projects/pages/merci/

Bibliography

[1] Andrea Agostini and Daniele Ghisi. “Bach: An environment for computer-
aided composition in max”. In: ICMC. 2012.

[2] Gérard Assayag et al. “Computer-assisted composition at IRCAM: From
PatchWork to OpenMusic”. In: Computer Music Journal 23.3 (1999), pp. 59–
72.

[3] Gérard Assayag et al. “Omax brothers: a dynamic topology of agents for
improvization learning”. In: Proceedings of the 1st ACM workshop on Au-
dio and music computing multimedia. 2006, pp. 125–132.

[4] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[5] Sebastian Böck et al. “Madmom: A new python audio and music signal pro-
cessing library”. In: Proceedings of the 24th ACM international conference
on Multimedia. 2016, pp. 1174–1178.

[6] Laurent Bonnasse-Gahot. “An update on the SOMax project”. In: Ircam-
STMS, Tech. Rep (2014).

[7] Joakim Borg. “Somax 2: A Real-time Framework for Human-Machine Im-
provisation”. In: Internal Report - Aalborg University Copenhagen (2019).

[8] Jean Bresson, Carlos Agon, and Gérard Assayag. “OpenMusic: visual pro-
gramming environment for music composition, analysis and research”. In:
Proceedings of the 19th ACM international conference on Multimedia.
2011, pp. 743–746.

[9] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep learning
techniques for music generation. Vol. 10. Springer, 2019.

[10] David Cope. “Experiments in musical intelligence (EMI): Non-linear linguistic-
based composition”. In: Journal of New Music Research 18.1-2 (1989),
pp. 117–139.

[11] Cycling74 - Max. https://cycling74.com/products/max/. Accessed:
2020-05-24.

59

60 Bibliography

[12] Tuomas Eerola and Petri Toiviainen. “MIDI toolbox: MATLAB tools for mu-
sic research”. In: Department of Music, University of Jyvaskyla (2004).

[13] Daniel PW Ellis. “Beat tracking by dynamic programming”. In: Journal of
New Music Research 36.1 (2007), pp. 51–60.

[14] Alexandre RJ François, Isaac Schankler, and Elaine Chew. “Mimi4x: An in-
teractive audio-visual installation for high-level structural improvisation”.
In: International Journal of Arts and Technology 6.2 (2013), pp. 138–151.

[15] Peter Grosche and Meinard Muller. “Extracting predominant local pulse
information frommusic recordings”. In: IEEE Transactions on Audio, Speech,
and Language Processing 19.6 (2010), pp. 1688–1701.

[16] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. “Deepbach: a steer-
able model for bach chorales generation”. In: Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 1362–1371.

[17] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. “A functional tax-
onomy of music generation systems”. In: ACM Computing Surveys (CSUR)
50.5 (2017), pp. 1–30.

[18] Lejaren A Hiller Jr and Leonard M Isaacson. “Musical composition with a
high speed digital computer”. In: Audio Engineering Society Convention
9. Audio Engineering Society. 1957.

[19] Cheng-Zhi Anna Huang et al. “Music transformer: Generating music with
long-term structure”. In: arXiv preprint arXiv:1809.04281v3 (2018).

[20] ISMIR. https://ismir.net/. Accessed: 2020-05-24.

[21] Benjamin Lévy, Georges Bloch, and Gérard Assayag. “OMaxist dialectics”.
In: New Interfaces for Musical Expression. Ann Arbor, United States, 2012,
pp. 137–140.

[22] George E Lewis. “Too many notes: Computers, complexity and culture in
voyager”. In: Leonardo Music Journal (2000), pp. 33–39.

[23] Magenta. https://magenta.tensorflow.org/. Accessed: 2020-05-24.

[24] Brian McFee et al. “librosa: Audio and music signal analysis in python”.
In: Proceedings of the 14th python in science conference. Vol. 8. 2015.

[25] MIREX. https://www.music-ir.org/mirex/. Accessed: 2020-05-24.

[26] Gerhard Nierhaus. Algorithmic composition: paradigms of automated mu-
sic generation. Springer Science & Business Media, 2009.

[27] Jérôme Nika. “Guiding human-computer music improvisation: introducing
authoring and control with temporal scenarios”. PhD thesis. Paris 6, 2016.

Bibliography 61

[28] Jérôme Nika et al. “DYCI2 agents: merging the "free", "reactive", and
"scenario-based" music generation paradigms”. In: International Computer
Music Conference. Shangai, China, 2017.

[29] Jérôme Nika et al. “Guided improvisation as dynamic calls to an offline
model”. In: Sound and Music Computing (SMC). Maynooth, Ireland, 2015.

[30] Adam Roberts et al. “A hierarchical latent vector model for learning long-
term structure in music”. In: arXiv preprint arXiv:1803.05428 (2018).

[31] Justin Salamon and Emilia Gómez. “Melody extraction from polyphonic
music signals using pitch contour characteristics”. In: IEEE Transactions
on Audio, Speech, and Language Processing 20.6 (2012), pp. 1759–1770.

[32] Bob L Sturm et al. “Music transcription modelling and composition using
deep learning”. In: arXiv preprint arXiv:1604.08723 (2016).

[33] Greg Surges and Shlomo Dubnov. “Feature selection and composition us-
ing PyOracle”. In: Ninth artificial intelligence and interactive digital en-
tertainment conference. 2013.

[34] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition.
Elsevier, 2003.

[35] Iannis Xenakis. Formalized music: thought and mathematics in composi-
tion. 6. Pendragon Press, 1992.

Appendix A

Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is method for modelling an unknown distribu-
tion as a linear combination of weighted, normal distributed probability density
functions (for more details, see for example [4] or [34]). Several Classifiers in
this work utilizes some sort of GMM for clustering as well as classification. This
appendix describes the procedure for clustering and classification using a GMM.

A.0.1 Clustering

Given a data set X ∈ RN×M with N samples and M features, i.e.

X =

7

8

9

xT
1
...

xT
N

:

;

<

, xn ∈ RM×1, (A.1)

a clustering Θ =
!

C(1), . . . C(K)
"

consisting of K clusters C(k), where each cluster

is modelled as a weighted gaussian probability density function

p(k)(x) = π(k)
N

#

x | x̄(k), S(k)
&

, (A.2)

π(k) is a weight specific for cluster C(k), and N the multivariate gaussian prob-
ability density function determined the mean x̄(k) and covariance matrix S(k) of
the vectors {x}(k) assigned to cluster C(k), the clustering is performed over I
iterations or until convergence.

Initialization

Each vector x ∈ X is initially assigned to a cluster (the method for initial as-

signment is described in each classifier), from here on denoted as C(k)
i where

63

64 Appendix A. Gaussian Mixture Models

the subscript denotes the current iteration i = 0, . . . , I − 1. The initial weights

π0 =
$

π
(1)
0 . . . π

(K)
0

%T
are computed so that

π0 =
1
N

$

|C(1)
0 | . . . |C(k)

0 |

%

(A.3)

where |C(k)| denotes the number of vectors assigned to cluster C(k), X̄0 denoting
the matrix of means of each cluster so that

X̄0 =

7

8

8

9

x̄(1)0
...

x̄(K)0

:

;

;

<

, X̄0 ∈ RK×M (A.4)

where

x̄(k)0 =
1

|C(k)
0 |

∑
x∈C(k)

0

x (A.5)

and

S(k)
0 = cov

#

{x}(k)
&

, S(k)
0 ∈ RM×M. (A.6)

Iteration: EM-algorithm

Once π0, X̄0 and S(k)
0 have been estimated, the expectation-maximization algo-

rithm is used to find the maximum a posteriori estimates for πI, X̄I and S(k)
I ,

iterating over I steps or until convergence. The two steps in the algorithm are:

E-step: Calculate the probability that x belongs to cluster C(k)
i at iteration i ∈

[1, I] for all x ∈ X:

Pi =
$

p(1)
i . . . p(K)

i

%

=

7

8

8

8

9

p
#

C(1)
i | x1

&

. . . p
#

C(K)
i | x1

&

...
...

...

p
#

C(1)
i | xN

&

. . . p
#

C(K)
i | xN

&

:

;

;

;

<

, (A.7)

where Pi ∈ RN×K is the posteriori matrix at iteration i and

p
#

C(k)
i | xn

&

= π
(k)
i−1N

#

xn | x̄(k)i−1, S(k)
i−1

&

, (A.8)

where N

#

x | x̄(k), S(k)
&

∈ R[0,1] denotes the multivariate gaussian

N

#

x | x̄(k), S(k)
&

=
1

B

(2π)M
+

+S(k)
+

+

exp
)

−1
2

#

x − x̄(k)
&T #

S(k)
&−1 #

x − x̄(k)
&

*

.

(A.9)

65

M-step: Calculate weights, means and covariance matrices for step i. Note
that unlike in the initialization step, these values are estimated from the soft-
count ηi of each cluster, defined as

ηi =
$

η
(1)
i . . . η

(K)
i

%

=
3

1 . . . 1
4

C DE F

N

Pi, ηi ∈ R1×K (A.10)

instead of the hard count
+

+

+

C(k)
+

+

+

used in the initialization. We get

πi =
1
N

ηi, πi ∈ R1×K, (A.11)

X̄i = PT
i X diag−1

K (ηi) , X̄i ∈ RK×M, (A.12)

where diag−1
K (v) denotes the element-wise inversion of the diagonal K×K matrix

constructed from vector v, and

S(k)
i =

1

η
(k)
i

#

diagN

#

p(k)
i

&

D(k)
i

&T
D(k)

i (A.13)

where

D(k)
i = X −

7

8

9

1
...
1

:

;

<

CDEF

N

x(k)i , D(k)
i ∈ RN×M. (A.14)

Convergence: The EM-algorithm is as mentioned iterated over for I steps or
until convergence, which is defined as

|Ei − Ei−1| < ε (A.15)

for some tolerance ε, where Ei ∈ R denotes the accumulated log likelihood over
X, at step i, i.e.

Ei =
N

∑
n=1

ln

G

K

∑
k=1

π
(k)
i N

#

xn | x̄(k)i , S(k)
i

&

H

. (A.16)

A.0.2 Classification

Given the final weights πI, means X̄I and covariance matrices S(k)
I , k = 1, . . . , K,

a vector x ∈ RM×1 is classified as belonging to cluster C(j)
I , j ∈ [1, K] if

j = argmax
k∈1,...K

p
#

C(k)
I | x

&

. (A.17)

Appendix B

Evaluation Corpora

67

68 Appendix B. Evaluation Corpora

In
d
e
x

C
o
m
p
o
se
r

T
it
le

E
x
c
e
rp

t
Y
e
a
r

In
st
ru

m
e
n
ta
ti
o
n

L
e
n
g
th

(f
)

P
a
le
st
ri
n
a

M
is
sa

P
a
p
a
e

M
a
rc
e
ll
i

a
ll
m
vm

t:
s

1
5
6
2
(?
)

C
h
o
ir

(S
S
A
A
T
B
B
)

3
1
4
7

(e
)

M
o
za
rt

S
ym

p
h
o
n
y
N
o
.
3
6

In
C
M
a
jo
r,
K
.
4
2
5

a
ll
m
vm

t:
s

1
7
8
3

O
rc
h
e
st
ra

(0
2
0
0
2
2
0
0
ti
m
p
st
r)

7
6
5
4

(a
)

B
ra
h
m
s

S
ym

p
h
o
n
y
N
o
.
3

In
F
M
a
jo
r,
O
p
.
9
0

m
vm

t
1
+
2

1
8
8
3

O
rc
h
e
st
ra

(2
2
2
2
+
cf
g
4
2
3
0
ti
m
p
st
r)

7
0
4
0

(c
)

F
ra
n
ck

S
o
n
a
ta

in
A
M
a
jo
r

fo
r
V
io
li
n
a
n
d
P
ia
n
o

a
ll
m
vm

t:
s

1
8
8
6

C
h
a
m
b
e
r

(V
io
li
n
&

P
ia
n
o
)

6
9
0
4

(b
)

D
e
b
u
ss
y

S
tr
in
g
Q
u
a
rt
e
t

in
G
M
in
o
r

a
ll
m
vm

t:
s

1
8
9
3

C
h
a
m
b
e
r

(S
tr
in
g
Q
u
a
rt
e
t)

7
9
6
6

(g
)

S
ch

ö
n
b
e
rg

D
re
i
K
la
vi
e
r-

st
ü
ck
e
,
O
p
.
1
1

a
ll
m
vm

t:
s

1
9
0
9

S
o
lo

(P
ia
n
o
)

3
3
0
2

(d
)

Ja
rr
e
t

T
h
e
K
ö
ln

C
o
n
ce
rt

a
ll

1
9
7
5

S
o
lo

(P
ia
n
o
)

5
9
0
0

Table B.1: The corpora used for evaluation. The "Excerpt" column indicates which movements
were used for the evaluation if not all of the movements were used. The "Length" column indicates
the number of slices in the corpus.

Appendix C

Detailed Evaluation Results

69

70 Appendix C. Detailed Evaluation Results

classifier bar x̄ s source influence

PT
min 0.0934 0.3545 (a) (f)
mean 0.5741 1.9272 (n/a) (n/a)
max 1.9297 8.4429 (f) (g)

P12
min 0.0278 0.1776 (a) (f)
mean 0.4012 0.8844 (n/a) (n/a)
max 0.9072 1.7257 (b) (d)

CSOM
min 0.0181 0.1404 (a) (f)
mean 0.7091 2.6005 (n/a) (n/a)
max 2.9855 21.5295 (f) (b)

AGMM50
min 0.0194 0.1638 (a) (f)
mean 0.4921 1.3481 (n/a) (n/a)
max 1.2062 2.8731 (f) (g)

AGMM100
min 0.0281 0.1821 (a) (f)
mean 0.4948 1.4086 (n/a) (n/a)
max 1.5973 8.4021 (f) (b)

AGMM150
min 0.0376 0.2192 (a) (f)
mean 0.5389 1.5149 (n/a) (n/a)
max 1.6147 8.9232 (f) (b)

RGMM50
min 0.0331 0.1827 (a) (f)
mean 0.4628 0.9839 (n/a) (n/a)
max 1.3052 3.6474 (b) (c)

RGMM100
min 0.0338 0.1931 (a) (f)
mean 0.4915 0.9581 (n/a) (n/a)
max 1.0597 1.7175 (e) (b)

RGMM150
min 0.0321 0.2039 (a) (f)
mean 0.4915 0.9500 (n/a) (n/a)
max 1.0093 2.0522 (c) (b)

Figure C.1: Chain length x̄(len) and its corresponding standard deviation s(len) by classifier with
corresponding corpora used for source and influence indicated in the two last columns, where the
letter correspond to their indices assigned in appendix B.

71

classifier bar x̄ s source influence

PT
min 93.9803 48.7093 (g) (f)
mean 567.0502 534.9195 (n/a) (n/a)
max 1365.4058 1483.1599 (e) (a)

P12
min 241.5438 133.6169 (g) (f)
mean 1577.1498 1024.6000 (n/a) (n/a)
max 3490.8465 2361.6722 (e) (a)

CSOM
min 29.4320 39.2903 (g) (f)
mean 462.2816 518.5547 (n/a) (n/a)
max 1608.9841 2178.8250 (e) (a)

AGMM50
min 48.3151 82.9972 (g) (f)
mean 1370.8170 1256.0073 (n/a) (n/a)
max 4147.1343 3856.6018 (e) (d)

AGMM100
min 35.2957 44.1210 (g) (f)
mean 1436.3921 1404.3004 (n/a) (n/a)
max 5394.7881 4583.6579 (e) (g)

AGMM150
min 42.0137 47.5429 (g) (f)
mean 781.8305 848.1519 (n/a) (n/a)
max 3145.1872 3266.7072 (e) (a)

RGMM50
min 69.8099 66.0801 (f) (g)
mean 907.2567 645.4078 (n/a) (n/a)
max 2780.2911 2448.8219 (e) (d)

RGMM100
min 38.5702 18.1903 (g) (f)
mean 482.6139 363.5348 (n/a) (n/a)
max 1600.1041 948.2913 (b) (g)

RGMM150
min 33.7639 33.9166 (f) (g)
mean 323.9137 268.5948 (n/a) (n/a)
max 1355.0847 1075.2837 (c) (d)

Figure C.2: Number of peaks x̄(card) and its corresponding standard deviation s(card) by classifier
with corresponding corpora used for source and influence indicated in the two last columns, where
the letter correspond to their indices assigned in appendix B.

72 Appendix C. Detailed Evaluation Results

classifier bar x̄ s source influence

PT
min 0.3058 0.4574 (f) (g)
mean 1.8013 1.3944 (n/a) (n/a)
max 3.0500 2.5461 (b) (a)

P12
min 0.8139 0.7091 (f) (g)
mean 2.5850 1.7898 (n/a) (n/a)
max 4.7646 3.2218 (a) (d)

CSOM
min 0.2691 0.5374 (f) (g)
mean 2.0445 1.6831 (n/a) (n/a)
max 4.1322 2.8051 (a) (e)

AGMM50
min 0.4273 0.5088 (g) (f)
mean 2.7806 2.1070 (n/a) (n/a)
max 5.8766 3.6431 (a) (d)

AGMM100
min 0.3823 0.4702 (f) (g)
mean 2.4994 2.0472 (n/a) (n/a)
max 5.1716 4.2920 (a) (d)

AGMM150
min 0.4008 0.5129 (f) (g)
mean 2.0848 1.7687 (n/a) (n/a)
max 4.1052 3.9278 (a) (d)

RGMM50
min 0.8143 0.5362 (f) (g)
mean 3.4408 2.1776 (n/a) (n/a)
max 8.6614 7.6503 (a) (d)

RGMM100
min 0.7104 0.5402 (f) (g)
mean 2.7367 1.7866 (n/a) (n/a)
max 6.1864 3.8481 (b) (d)

RGMM150
min 0.7229 0.5731 (f) (g)
mean 2.4610 1.6584 (n/a) (n/a)
max 5.4260 4.7234 (a) (d)

Figure C.3: Selected peak score x̄(mag) and its corresponding standard deviation s(mag) by classi-
fier with corresponding corpora used for source and influence indicated in the two last columns,
where the letter correspond to their indices assigned in appendix B.

73

classifier bar x̄ s source influence

PT
min 9.3660 13.5142 (g) (c)
mean 57.3204 82.0839 (n/a) (n/a)
max 155.7201 152.0477 (d) (f)

P12
min 36.5241 38.4281 (g) (e)
mean 160.4490 160.5064 (n/a) (n/a)
max 336.2672 265.6539 (e) (f)

CSOM
min 4.7036 8.5269 (g) (b)
mean 55.0656 93.3381 (n/a) (n/a)
max 309.2882 406.9802 (e) (f)

AGMM50
min 7.9139 24.6414 (g) (f)
mean 177.1874 251.2320 (n/a) (n/a)
max 842.2050 986.9866 (a) (f)

AGMM100
min 5.5446 11.2040 (g) (f)
mean 182.9100 292.3782 (n/a) (n/a)
max 834.9655 1080.9673 (e) (g)

AGMM150
min 4.1965 10.3206 (g) (d)
mean 85.8593 154.1919 (n/a) (n/a)
max 299.6466 499.8891 (e) (a)

RGMM50
min 7.8534 9.5179 (f) (g)
mean 150.9822 134.6780 (n/a) (n/a)
max 565.4995 356.1842 (a) (f)

RGMM100
min 5.6432 6.4621 (f) (g)
mean 72.8901 68.8736 (n/a) (n/a)
max 269.4897 120.9738 (b) (f)

RGMM150
min 3.6336 4.3155 (f) (g)
mean 47.0705 54.1489 (n/a) (n/a)
max 221.7073 263.1990 (e) (f)

Figure C.4: Number of peaks generated x̄(gen) and its corresponding standard deviation s(gen)

by classifier with corresponding corpora used for source and influence indicated in the two last
columns, where the letter correspond to their indices assigned in appendix B.

74 Appendix C. Detailed Evaluation Results

classifier bar η − source influence

PT
min 0.0067 n/a (d) (f)
mean 0.2326 n/a (n/a) (n/a)
max 0.7535 n/a (f) (g)

P12
min 0.0001 n/a (a) (b)
mean 0.0430 n/a (n/a) (n/a)
max 0.3759 n/a (f) (c)

CSOM
min 0.0496 n/a (e) (f)
mean 0.3135 n/a (n/a) (n/a)
max 0.8310 n/a (f) (g)

AGMM50
min 0.0105 n/a (e) (f)
mean 0.1685 n/a (n/a) (n/a)
max 0.6867 n/a (g) (f)

AGMM100
min 0.0375 n/a (d) (f)
mean 0.2281 n/a (n/a) (n/a)
max 0.7250 n/a (f) (g)

AGMM150
min 0.0740 n/a (e) (f)
mean 0.2949 n/a (n/a) (n/a)
max 0.7299 n/a (f) (g)

RGMM50
min 0.0073 n/a (a) (f)
mean 0.0991 n/a (n/a) (n/a)
max 0.2695 n/a (f) (g)

RGMM100
min 0.0145 n/a (b) (g)
mean 0.1721 n/a (n/a) (n/a)
max 0.3889 n/a (a) (g)

RGMM150
min 0.0686 n/a (e) (f)
mean 0.2136 n/a (n/a) (n/a)
max 0.4561 n/a (c) (g)

Figure C.5: Non-generating influence ratio η(ng) by classifier with corresponding corpora used
for source and influence indicated in the two last columns, where the letter correspond to their
indices assigned in appendix B.

75

classifier bar x̄ s source influence

PT
min 0.2336 0.4231 (e) (f)
mean 0.5446 0.4775 (n/a) (n/a)
max 0.7900 0.4073 (f) (g)

P12
min 0.1707 0.3762 (e) (f)
mean 0.4195 0.4771 (n/a) (n/a)
max 0.5997 0.4900 (f) (c)

CSOM
min 0.2081 0.0830 (e) (f)
mean 0.3125 0.1012 (n/a) (n/a)
max 0.4279 0.1049 (f) (g)

AGMM50
min 0.2481 0.0864 (e) (f)
mean 0.3666 0.0968 (n/a) (n/a)
max 0.4516 0.0852 (f) (g)

AGMM100
min 0.2397 0.0999 (e) (f)
mean 0.3657 0.0998 (n/a) (n/a)
max 0.4569 0.0872 (e) (g)

AGMM150
min 0.2456 0.0939 (e) (f)
mean 0.3656 0.1004 (n/a) (n/a)
max 0.4511 0.0908 (d) (g)

RGMM50
min 0.2462 0.1010 (e) (f)
mean 0.3659 0.0978 (n/a) (n/a)
max 0.4447 0.1241 (f) (b)

RGMM100
min 0.2436 0.0943 (a) (f)
mean 0.3540 0.1000 (n/a) (n/a)
max 0.4401 0.0839 (b) (g)

RGMM150
min 0.2339 0.0969 (e) (f)
mean 0.3559 0.1010 (n/a) (n/a)
max 0.4333 0.1300 (f) (b)

Figure C.6: Root mean square x̄(rms) and its corresponding standard deviation s(rms) by classifier
with corresponding corpora used for source and influence indicated in the two last columns, where
the letter correspond to their indices assigned in appendix B.

76 Appendix C. Detailed Evaluation Results

classifier bar η − source influence

PT
min 0.8929 n/a (a) (a)
mean 0.9792 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

P12
min 0.7240 n/a (e) (e)
mean 0.9253 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

CSOM
min 0.8401 n/a (e) (e)
mean 0.9592 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

AGMM50
min 0.9095 n/a (e) (e)
mean 0.9677 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

AGMM100
min 0.7340 n/a (e) (e)
mean 0.9526 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

AGMM150
min 0.9707 n/a (a) (a)
mean 0.9920 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

RGMM50
min 0.9115 n/a (e) (e)
mean 0.9640 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

RGMM100
min 0.9348 n/a (a) (a)
mean 0.9840 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

RGMM150
min 0.9383 n/a (e) (e)
mean 0.9833 n/a (n/a) (n/a)
max 1.0000 n/a (b) (b)

Figure C.7: Self-similarity η(id) by classifier over the seven generators Gi,j, i = j with correspond-
ing corpora used for source and influence indicated in the two last columns, where the letter
correspond to their indices assigned in appendix B. self similarity self

77

classifier bar x̄ s source influence

PT
min 0.0000 n/a (b) (b)
mean 0.0020 0.0270 (n/a) (n/a)
max 0.0089 0.0942 (a) (a)

P12
min 0.0000 n/a (b) (b)
mean 0.0033 0.0346 (n/a) (n/a)
max 0.0164 0.1271 (a) (a)

CSOM
min 0.0000 n/a (b) (b)
mean 0.0045 0.0193 (n/a) (n/a)
max 0.0141 0.0494 (e) (e)

AGMM50
min 0.0000 n/a (b) (b)
mean 0.0058 0.0290 (n/a) (n/a)
max 0.0177 0.0789 (d) (d)

AGMM100
min 0.0000 n/a (b) (b)
mean 0.0046 0.0274 (n/a) (n/a)
max 0.0172 0.0700 (e) (e)

AGMM150
min 0.0000 n/a (b) (b)
mean 0.0015 0.0118 (n/a) (n/a)
max 0.0069 0.0436 (a) (a)

RGMM50
min 0.0000 n/a (b) (b)
mean 0.0066 0.0290 (n/a) (n/a)
max 0.0203 0.0777 (a) (a)

RGMM100
min 0.0000 n/a (b) (b)
mean 0.0015 0.0094 (n/a) (n/a)
max 0.0077 0.0398 (a) (a)

RGMM150
min 0.0000 n/a (b) (b)
mean 0.0011 0.0086 (n/a) (n/a)
max 0.0035 0.0221 (e) (e)

Figure C.8: Measurement of root mean square over the seven generators Gi,j, i = j with its mean
x̄ and its corresponding standard deviation s by classifier with corresponding corpora used for
source and influence indicated in the two last columns, where the letter correspond to their indices
assigned in appendix B. This measurement is not presented in chapter 4, but briefly discussed in
chapter 5.

