Improvised Symbolic Interaction
A Creative Perspective on Similarity

Gérard Assayag
IRCAM
Sciences and Technologies of Music and Sound (STMS) Lab
Music Representation Team
What are MIR / Sim studies useful to (in a creative perspective)

- keywords: find, retrieve, match, identify, align, query / compose, generate, improvise, interact, synthesize, replace, recombine

- in a creative perspective, off-line MIR used for composition, on-line MIR used for direct interaction (Machine Improvisation)

- Going from on line MIR to Machine Audition (artificial listening) to Machine cognition (Machine Musicianship, Rowe 2001)

- Equip autonomous creative agents with Machine Audition and Machine Cognition capabilities

- Escape from the Song (occidental pop song) paradigm: free form, composition, improvisation
Compositional Exemple: orchestral texture derived from a single sound spectral analysis

- Example 1. *Partiels* by Gerard Grisey, 1975
- Historical example considered at the origin of “Spectral Music”
- The source is the low E note on the trombone. The transformation is an exploration of the spectral content of this note by the whole orchestra
- Literal reconstruction or transformations inspired by electro-acoustics operators (distortion, ring-modulation, filtering etc.)
- Highlights the need for Computer Assisted Composition Environments
Orchestration

Projet ANR Sample Orchestrator

PhD G. Carpentier, Dec. 2008: Computational Approach of Musical Orchestration

Multi-Objective Optimization

PhD P. Esling 2013
Multi-Objective Time Series Matching

Time series data mining and analysis, ACM Computing Surveys 2011 (Accepted proof).

Intelligent sound samples database with multiobjective time series matching", IEEE Transactions on Speech Audio and Language Processing 2012
Getting it from scratch
The OMax Paradigm
& family

Style Modeling

Markov

LZ-IP/PST
Dubnov, Assayag al. [1998-2003]

OM-LZ
Assayag 2000

OMax Paradigm
- Listen, learn, model, generate loop

Factor Oracle

Conklin [2003]

Continuator
Pachet [2002-2013]

MIMI
François [2007]

Native Alien
Bhagwati [2011]

PyOracle
Surges & Dubnov [2013]

Impro Control
Donzé, Seshia, Wessel (2014)

SoMax
Bonnasse-Gahot, Assayag, Bloch 2013

OMax
Assayag, Chemillier, Bloch, 2004-2013
Lévy PhD 2013

ImproTeK
Chemillier & Nika 2013

Audio Oracle / Information Rate
Information Geometry

Formal grammars for jazz impro
Chemillier 2000

…………….
A Virtual Musician who Learns on the fly

- Before learning one must **listen**: efficient machine listening
 - perception aware signal segmentation into *musical units* distributed on some geometry
 - cognition aware discovery of an *alphabet structure* on the musical units delivering a *symbolic stream*

- **Learn** incrementally a *stylistic sequence model* into a formal representation directly from the stream of symbols

- **Generate** and **render** new sequences by navigating the model

- These 3 processes (Listen, Learn, Generate) are real-time and concurrent (competitive and cooperative): a unit played by the musician is recognized and integrated in the model after a few milliseconds (close to human performance)
Modeling Improvised Interaction as **Stylistic Reinjection**

- Past (memory)
 - OMax reifies the virtual past
 - Learned Repertoire
 - Fellow (avatar)
 - Subject (avatar)

- Present
 - Fellow Improviziers
 - Listening
 - Self Listening
 - Improvising subject
 - Evoking, predicting
 - Memorizing -- Modeling -- Compressing
Variable Memory (adaptive) Markov Models
Context-based methods in statistical learning

IPG based on [Lempel,Ziv,78]

Dict = {} ; S : Sequence

While $S \neq \varepsilon$
- $S = pu$ with $p =$ shortest prefix(S) \notin Dict
- Dict = Dict U {p}
- $S = u$

add shortest prefix not already in dict and move forward

```
ababaabc
Dict = {a, b, ab, ac, aba, abc}
```

Optimal coding: average code length for contexts converges to entropy of the source

$$\lim_{\infty} c(n) \log_2(c(n)) / n = H$$

$n :$ length, $c(n) nb$ of contexts, $\log_2(c(n))$ average length of code words

Universal Predictor: adaptively combines predictability of Markovian Models with increasing orders, converges to an optimal coding without knowing a-priori the statistical model of the source

Outperforms any fixed-order Markov predictor.

Shape Creation through Context - Prediction equivalent to navigation into compressed representation

Geraint : Similarity related to Prediction
Daniel Muellensiefen : compression distance performs well in evaluating similarity
Monodic signal: pitch follower (Yin~), or Midi Helper

Polyphonic Midi Processing

Arbitrary complex signal: audio descriptors
- stream of frame-wise perceptual spectral descriptors (MFCC)
- adaptive quantization of descriptor vectors
- local grouping/averaging → musical tokens
- adaptive KNN → symbolic alphabet

Information Geometry
- Machine Listening in an Information geometry Framework: Distributing Sound Frames over Riemannian Manifolds with information metrics over parametric exponential probability spaces
- Points are probability distributions (approxed as frequency domain descriptors)
- Distances are Bregman Divergences: amount to relative entropy between perceptual descriptors
- Bregman Balls cluster points into stable musical units abstracted as symbols in a formal language alphabet

Listen + Learn: Factor Oracle and Suffix Link Tree
Signal / Symbolic articulation

Factor Oracle + Suffix Link Trees

A. Cont., S. Dubnov Info-Geo + Similarity
on Beethoven's First Piano Sonata played by Gulda in 1958

Suffix Link Trees form a forest of trees fully explaining the algebraic partial order of patterns in learned sequence
OMBx versatility

Rhythm and pulse derive from the syllable and prosodic level analysis of similarities

Rhythm and pulse derive from off-line learning of the multi-track (beat aligned) studio sessions
Going SoMax: listen carefully
(ANR SOR2, Post-doc L. Bonnasse-Gahot)

Listen to several channels (foreground, background, voices etc.), one for the main memory model, the others for automatic annotation. Create e.g. a solo memory model plus loose harmonic / textural annotation, or the other way round, or both.
At generation time, match annotation with features extracted from the input.

Toiviainen & Krumhansl, 2003, Echoic memory and leaky integration
Durational accent; see Parnscutt, 1994
Going **SoMax** : Autumn in Köln
SoMax

Memory Activation Scheme

Addressing the **cartographical blindness**, the **evidence accumulation**, and the **cognitive persistence** questions

Fuzzy pattern escape from the purely markovian sequence logic
Summing up activation profiles of parallel annotation views including self listening

Self Listening: listening to the memory, or to the generation

Beat/Phase Profile

Figure 14: Phase modulation function, $\exp(\eta \cos(2\pi(\xi - \xi_{\text{target}}) - 1))$. In this illustration, $\xi_{\text{target}} = 0.5$ and $\eta = 2.0$.

Flexible Time
In the mood of *Time Remembered* (Rémi Fox + Bill Evans)

1 agent trained on Bill Evans music. note/note, flexible time adjustment, melodic listening

Right anticipation at 01:20
Schoenberg revisited
