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Introduction

* Musical quantities can be thought of as
interconnected variables.

 Each variable holds information about itself and
about others as well.

» For example, certain chords and their progressions
(e.g.,11-m7 | V-7 [I-maj7) will suggest that the
genre is jazz, which will also implicate the use of

certain instruments (e.g., saxophone, piano,
double bass)



Bayesian networks

* Relations between variables can be represented
in a form of a Bayesian network [1]:




Relation to language models

* In processing natural language (e.¢., continuous
speech recognition), probabilistic models of
language are used and they are called linguistic
models or language models.

* In music information retrieval, their
equivalents are referred to as musicological
models or music models.



Multiple pitch estimation

Estimating note pitches, onsets and durations given
an audio recording




Current approaches

* The most popular approaches are based on
Nonnegative Matrix Factorization (NMF).

* A spectrogram (typically obtained using a
constant-Q or ERB filter bank) X of the recording
is factorized to obtain the dictionary matrix A and
the salience matrix S:

X =AS

* The salience matrix is then analyzed to find the
positions of notes



Current approaches

* NMF is a mid-level representation of the audio.

 Typically, the salience values are analyzes
individually, e.g., thresholded.

Latent note variable Observed salience variable

* Better results can be obtained if relations between
the underlying binary note variables and more
aspects of the music are modeled jointly.



Music pitch model

In our experiments we have used a Dynamic Bayesian Network to
model relations between the latent and observed variables:

Chords

C»

Notes

Salience
obtained with acoustic model

(NMF)

P(N) =>» P(C1)P(N{|C1) - | [ P(N¢|N¢—1, Ci)P(Ct[Cy-1)
C

t=2



Harmonization

* Guessing the underlying chord sequence given a
melody
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* Used for automatic music composition, automatic
accompaniment, efc.



Current approaches

* A typical approach for harmonization uses Hidden
Markov Models (HMMs) to model relations between
the latent chords and the melody:

 This approach is used in such commercial applications
as MySong [2] or Band-in-a-box [3].



Music melody model

In our experiments we have used a Dynamic Bayesian Network to
model relations between the latent and observed variables:



Model complexity

* Jointly modeling multiple variables causes the
number of parameters to explode

> P(C1)P(N1|Ch) | [ P(INYNy_1, C)P(C4|Cy—1)

C t=2 i

2% x 24 x 2% = 2.3-10* parameters for K = 88
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Model interpolation

* Complexity can be reduced by approximating
the joint model with a combination of simpler
models — model interpolation.

* Model interpolation has been successfully used
in natural language processing by Klakow [4].

* This technique is also used to reduce
overfitting: models of different order are
combined (model smoothing).



Model interpolation: linear

K
P(N;|Cy,Ny_1) = ]___[ P(N¢k|N¢—1,Ct, N 1:6-1)
k=1

P(N¢k|Ct, Ni—1,Nyqp—1) = Z~ 1 Z AiPi(Nt x|N¢—1,C¢, N 1:p—1)

1
Z=> 3 NPi(Nyp=1N;_1,Cr,Ny1go1)
=0 1

Submodels P use only a small subset of the conditioning

variable set, e.9.:

PQ(Nt,kICt: Nt—la Nt,l:k—l) — P(Nt,k|Nt—l,ﬁc)



Model interpolation: log-linear

K
P(N{|Cy,Ni—1) = || P(NVek/Ne—1, C, Ny 14-1)

=1

5

P(NyilCo, N1, Ny 1) & Z7 [ [ Pi(Nee Nu—1, €, Ny e 1)™

7

1
Z=> []Pi(Nes =1UNi_1,Cp, Ny o)™
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Models and submodels used

and their trained parameter values



Pitch submodels

Harmony Pl(Nt ‘Ct, N;_1, Nt,l:k-—l) = P( inter{k'; I‘OOt{Ct}} \mode{C’i})
Duration Pg(Nt‘Ct, Nt—l: Ntﬁl;k_ﬂ = P(Nt:k‘Nt—lﬁk)

Voice Pg(Nt‘Ct,Nt—laNtﬁlzk—l) — P(Nt,k‘Mt:k)
My = |k —j|

Polyphony Py(N¢|Cy, Ny_1, Ny 1:6-1) = P(NVy k| Lt 1)

Neighbor Ps(N|Ct, Ny—1, Ny 1:6—1) = P(Neg| Ve g—1, N k—2)



Harmony submodel

* Independent of octave, depends only on the
chord mode and the interval from chord's root:
P;(N,|Cy, Ny—1, Ny 1.6-1) = P(inter{k; root{C} } } | mode{C}})

]
=3

Activation probability
01 02 03 04 05 06 07
| I
- /

N
/

M———-m

1
=

P4 T P5 mo6 M6 m7 M7
1 2 3 4 9 6 7 8 9 10 11

Interval from root

oI
=
N
<
no
=
@
<
@



Duration submodel

* Simple binary bigram model:

Po(Ny k|Cyy N1, Ny 1.—1) = P(Vy k| Ni21 )

0.8

0.4

0.0

0.000 0.015 0.030

P(Ny = 1|Ni_1k

:1)

Il

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 102 108
P(Ntx = 1|N¢—1 . = 0)

i

i

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 102 108

MIDI number



Voice submodel

* Pitch activity depends only on the distance to
the closest active pitch in the previous frame:

P3(N¢|Cy, N1, Ny 1.6-1) = P(Ne k| My 1)
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Polyphony submodel

* Pitch activity depends only on the number of
active notes below the current pitch:

P4(Nt|ct:Nf—1:Nt,1:ff.3—l) — P(Nt,k-|Lt,k-)
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Neighbor submodel

* A binary trigram model in the frequency domain:

Activation probability

0,0,1 0,1,1 1,0,1 1,151
Succesion of pitches

1-1 sequences are less likely than 0-1



Chord model

* Modeled with a multinomial distribution.
* 24-chord dictionary.
* State-tying is used because we do not model the tonality.

Chord transition matrix
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Harmonization submodels

Melody
Tonality

Chord bigram

P =P(C;
Py, = P(C;
P3 — P(Ct

M,)
T3)
Ci—1)

Note: it is a discriminative model



Melody submodel Py = P(Cy| M)

« M, is a set of active notes at time frame ¢.

 State tying: note patterns with the same content
relative to the chord root were given identical
probabilities, e.g., the unordered note combination
(C,G) in the chord of C-major is equally probable as
the note combination (D#,A#) in the chord of D#-major



Chord bigram submodel r;=rcC )

* A binary trigram model in the frequency domain.

* Chord labelled by one of 13 root pitch classes:

C,Cs, D,D¢%,E,F, Ft, G, G#, A, A%, B or “none” for non-chords

and one of 27 chord types:

major, minor, dominant, diminished, half-diminished, augmented, power, suspended-second,
suspended-fourth, major-sixth, minor-sixth, major-seventh, minor-seventh, dominant-seventh,
diminished-seventh, augmented-seventh, major-ninth, minor-ninth, dominant-ninth,
augmented-ninth, minor-eleventh, dominant-eleventh, major-minor, minor-major, major-
thirteenth, dominant-thirteenth or “none” for non-chords

e N =351 distinct chord labels



P(Cy|Cy—1)

Chord bigram submodel r;

1 frame = 1 beat

1 frame = 16 beats
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- (C,E,G)

P, = P(Cy| M)

M

Melody submodel
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Tonality submodel Py = P(Cy|Ty)

* Tonality encoded as one of 24 different key labels resulting from the
combination of 12 tonics (C, C#, D, D%, E, F, F#, G, G#, A, A%, B) and 2
modes (major or minor)

 State tying: chords corresponding to the same scale degree in
different keys are tied together.
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Smoothing

* To avoid overtitting in the submodels, they are
interpolated with simpler chord models (additive
smoothing): chord unigram and zero-gram:

P(Cy|Cr.4—1,X14) = aP(Cy) + ’3+th (CtlA; 1)

Ay C {Cr4-1,X14}

/ T

Subset of variables  Full set of variables

I
(I+_,5+Z{L@:1
=1



Smoothing
* In case of log-linear interpolation, each submodel is
smoothed separately:

1
P(CtlCrit-1,X1t) = Z7' [ ] (3iPi(ClAi) + 6P (Cr) + €)™
=1

Yi +0; +€ =1 for all i

4 = ZH(H Cf‘Azf +(5P(Ct)+{:1)¢

(_Ttél



P(Cy)

Chord unigram submodel

1 frame = 1 beat
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Evaluation



Multiple pitch analysis data

* Mutopia dataset was used:
* ~1300 files for training model parameters
* 100 fles for validation

* 100 files for testing

e 1 frame =1/6 of a beat

* RWC files annotated with harmony was used to train
the harmony submodel and the chord models



Harmonization data

* For training, we have used a collection of
around 2000 lead sheets from the Wikifonia
web page:

* melodies annotated with keys and absolute chord
labels,

* mostly popular (e.g., pop, rock) songs from the
twentieth and the twenty-first centuries,

* the songs were first screened for improper chord
labels and wrong keys.



Training

* Model parameters were trained by counting
occurrences (maximizing the likelihood) on the
training dataset.

* The smoothing parameters were optimized by
maximizing the average cross-entropy of individual
submodels on the validation dataset.

* Interpolation coetficients and smoothing for linear-
combined harmonization model were optimized by
maximizing cross-entropy of the validation dataset

\ = arg max log P(N|\)
&



Activity probability

Reference pitch model

P(N; ) ~ Bernoulli(p)  p = 0.03807 B
P(Ny ) ~ Bernoulli(py) PB
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Cross-entropy

* Common metric for measuring modeling power ot
language [7] and music [5,6] models.

* Multipitch estimation:

1
H(A) = KT logy P(NJ[A)
1
= — o7 o8 XC: P(N|C,A)P(C|A)

e Harmonization:

T
1 1
H(A) = —7 logy P(C|A) = - log, (P(@ML,TL)HP(CH@ 1311'tht))

{=2



Contextual cross-entropy

* For multipitch analysis, the cross-entropy value is
dominated by the silence (97% notes are inactive on
average).

___________________

* We would like to know how well do the models model
the note activity, i.e., note onsets, note offsets and
notes — contextual cross-entropy.

T
]- ~ ~
T > P > y log, P(Nt,k|Nt—1a Nt,l:k—l)
thl |St| t=1 k€S,

cH(A) =




Pitch cross-entropy

* Regular cross-entropy (in milibits):

DN HCV HCDPN HCDVPN

Linear 605.3 76.5 77.2 75.8
Log-linear 77.1 73.4 74.6 73.1
Difference  528.2 3.1 2.6 2.7

* Contextual cross-entropy (in milibits):

DN HCV HCDPN HCDVPN

Linear 1,560.0 4,042.7 4,058.9 3,963.4
Log-linear  6,022.7  3,886.3 3,969.5 3,869.7

Difference  -4462.7 156.4 89.4 93.7




Pitch cross-entropy
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Average cross—entropy [bits/frame]

Harmonization cross-entropy

Average cross-entropy per frame for log-linear interpolation Average cross—entropy per beat for log-linear interpolation
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Harmonization cross-entropy

Per-frame entropy reduction of log-linear over linear interpolation
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Accuracy

* Multipitch estimation:

* Precision, Recall and F-measure

* Reference musicological model: Bernoulli (equivalent to
thresholded NMF) and pitch-dependent Bernoulli (eq. to
pitch-dependent threshold)

e Harmonization:

* Root note estimation accuracy (compared to leadsheets)
and triad accuracy (root note + first chord interval)

* Reference musicological model: Harmonic Analyzer by
Temperley & Sleator [34]



Pitch estimation accuracy

Precision ?, Recall £ and F-measure ¥

PB D N P \" HC HCV  HCDVPN

P T73.0% 829% 142% T76.0% 83.1% 76.0% 83.4% 83.4%
R 83.6% 78.7% 83.9% 82.71% T719% 82.8% 77.9% 78.4%

Fo761%  T791% T12% T1.7% 78.7%  T7.6%  78.9% 79.2%

P, Rand F rilative to the full model
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Accuracy [%]
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e Root note estimation accuracies
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Harmonization accuracy

 Triad accuracies
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Conclusion

* Multiple musical variables can be jointly
modeled to improve their estimates

* Model interpolation is efficient in dealing with
joint model complexity

* Linear interpolation seems to work slightly
worse than the log-linear one



Possible Future work

* A larger number of more complex sub-models could be
investigated for further improvement in terms of cross-
entropy and accuracy.

* Proposed method could be tested on a larger populations
of songs that would include more diverse musical genres.

* Subjective listening tests could also be used to analyze
the quality of the harmonizations in more detail.

* Model interpolation could be applied to other MIR tasks
that would potentially benefit from modeling several
musical aspects simultaneously.



Thank you!
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