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Résumé 
Ce	document	présente	les	résultats	de	recherche	et	le	développement	de	prototypes	portant	sur	
l’écoute,	 la	découverte,	et	 la	prédiction	de	structures	dans	un	 flux	audio	en	 temps	réel.	Le	cas	
d’application	 de	 nos	 prototypes	 est	 l’alphabet	 des	 labels	 d’accords.	 Des	 recherches	 sur	 des	
modèles	 d’extraction	 d’accords	 et	 des	 modèles	 d’inférence	 de	 séquences	 d’accords	 à	 l’aide	
d’apprentissage	profond	ont	été	menées	conjointement	et	ont	abouti	à	une	plateforme	de	test	en	
langage	 Python,	 ainsi	 qu’un	 interfaçage	 avec	 l’environnement	Max	 pour	 les	modèles	 les	 plus	
performants.	 	
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Notre	objectif	est	ici	de	concevoir	un	système	permettant	de	détecter	des	structures	musicales	
dans	un	 flux	audio	et	de	prédire	 localement	 les	structures	 futures	 en	 temps	réel.	La	première	
version	de	ce	système	s’intéresse	à	l’extraction	automatique	de	labels	d’accords	et	la	génération	
de	séquences	de	labels	d’accords	en	temps	réel	pour	la	prédiction.	Le	processus	se	décompose	en	
deux	étapes	:	l’écoute	et	la	prédiction.	Le	module	d’écoute	permet	d’extraire	la	structure	musicale	
jouée	par	le	musicien,	alors	que	le	module	de	prédiction	est	un	générateur	de	séquences	musicales	
symboliques.	

Module d’écoute 
	
L’extraction	automatique	d’accords	est	étudiée	depuis	plusieurs	décennies	et	a	notamment	profité	
des	avancées	de	l’apprentissage	machine.	En	effet,	les	systèmes	les	plus	performants	utilisent	des	
réseaux	 de	 neurones	 pour	 extraire	 les	 accords	 à	 partir	 du	 flux	 audio.	 Pourtant,	 ce	 champ	 de	
recherche	 a	 été	 confronté	 à	un	 effet	de	plafonnement	depuis	plusieurs	 années,	 ce	qui	 incite	 à	
explorer	 d’autres	 pistes	 que	 l’amélioration	 intrinsèque	 des	 modèles,	 par	 exemple	 la	
représentation	des	données	et	l’utilisation	de	connaissances	a	priori	sur	les	labels	et	les	relations	
entre	eux.	
Nous	avons	conçu	nos	propres	détecteurs	d’accords	en	employant	des	méthodes	d’apprentissage	
machine	basées	sur	la	structure	de	Convolutional	Neural	Network.	L’apprentissage	de	ces	réseaux	
a	été	réalisée	sur	un	 jeu	de	données	où	chaque	 trame	audio	est	annotée	par	un	label	d’accord	
(dataset	 http://isophonics.org).	 Afin	 d’améliorer	 les	 résultats	 de	 l’état	 de	 l’art,	 nous	 avons	
introduit	des	distances	musicales	entre	les	différents	labels	d’accords	dans	l’apprentissage.	Nous	
avons	 réalisé	 des	 entraînements	 en	 faisant	 varier	 différents	 paramètres	 comme	 la	 distance	
musicale	 entre	 les	 labels	 d’accords,	 ou	 la	 précision	 de	 l’alphabet	 d’accords	 pour	 étudier	 les	
influences	croisées	de	ces	différents	paramètres.	Dans	un	second	temps,	nous	avons	mené	une	
étude	 inédite	 des	 erreurs	 de	 classification	 des	 modèles	 les	 plus	 répandus	 d’un	 point	 de	 vue	
qualitatif	 en	 se	 basant	 sur	 la	 théorie	 fonctionnelle	 de	 l’harmonie.	 Nos	 résultats	montrent	 que	
l’utilisation	des	distances	musicales	proposées	permet	d’améliorer	les	résultats	de	l’état	de	l’art	
aussi	bien	qualitativement	(équivalence	fonctionnelle	de	certains	accords)	que	quantitativement	
(score	de	classification).	
Ces	recherches	ont	mené	à	la	publication	d’un	article	pour	la	conférence	ISMIR	2018	joint	à	la	
suite	 de	 ce	 rapport.	 Le	 code	 fourni	 permet	 de	 sélectionner	 un	 modèle	 d’apprentissage,	 une	
distance	musicale	ainsi	qu’un	alphabet,	de	réaliser	l’entraînement	du	modèle,	et	de	comparer	un	
ensemble	de	modèles	préalablement	entraînés.	

Module de prédiction 
	
La	 prédiction	 de	 séquences	 d’accords	 symboliques	 a	 été	 étudiée	 de	manière	 comparative	 en	
explorant	différentes	méthodes	statistiques	dont	les	modèles	de	Markov	cachés	et	les	Recurrent	
Neural	Networks.	Dans	les	deux	approches,	l’apprentissage	a	été	réalisé	sur	une	base	de	donnée	
regroupant	des	 séquences	d’accords	 cohérentes	 (Dataset	 comprenant	 les	différents	Realbooks	
https://github.com/keunwoochoi/lstm_real_book).	 Nos	 résultats	 préliminaires	 indiquent	 une	
meilleure	qualité	de	prédiction	avec	des	réseaux	de	neurones.	
Le	 rapport	 de	 stage	 ATIAM	de	 Tristan	 Carsault	 qui	 développe	 l’idée	 générale	 de	 la	détection	
d’accords	 jumelée	 avec	 de	 la	prédiction	 temps-réelle	de	 séquences	 d’accords	 symboliques	 est	
fourni	à	la	suite	de	ce	rapport.	
	Le	code	fourni	permet	de	réaliser	l’apprentissage	sur	les	deux	grandes	familles	de	modèles.	Une	
partie	du	code	permet	de	tester	la	performance	des	différents	modèles.	

Associer écoute et prédiction : code source et interface Max 
	
Afin	de	joindre	ces	deux	modèles,	un	patch	Max	offre	une	interface	utilisateur.	Tout	d’abord,	les	
accords	sont	extraits	d’un	 flux	audio	par	le	module	d’écoute	à	chaque	pulsation,	et	affichés	en	
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temps	réel.	Ces	accords	extraits	sont	alors	envoyés	au	module	de	prédiction	à	chaque	étape,	et	le	
patch	Max	affiche	à	chaque	pulsation	la	séquence	prédite	pour	les	prochaines	mesures.	
	
Les	codes	sources	et	un	fichier	README	sont	fournis	pour	chacune	des	taches.	/ismir2018_clean	et	
/HMMLSTM_clean	 contiennent	 respectivement	 les	 fichiers	 d’entraînement	 des	 modèles	
d’extraction	d’accords	 et	de	 génération/prédiction	d’accords.	 Le	dossier	/OscChordLSTM_clean	
contient	le	patch	Max	et	le	serveur	OSC	permettant	la	communication	avec	les	modèles	développés	
en	Python.	Les	bases	de	données	sont	disponibles	sur	demande,	et	des	modèles	pré-entraînés	sont	
fournis	avec	le	code	source	(un	modèle	d’extraction	d’accords	majeurs/mineurs	entraîné	avec	une	
distance	«	tonnetz	»,	et	un	modèle	de	prédiction	basée	sur	des	LSTM).	
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ABSTRACT

Recent research on Automatic Chord Extraction (ACE)
has focused on the improvement of models based on ma-
chine learning. However, most models still fail to take
into account the prior knowledge underlying the labeling
alphabets (chord labels). Furthermore, recent works have
shown that ACE performances have reached a glass ceil-
ing. Therefore, this prompts the need to focus on other
aspects of the task, such as the introduction of musical
knowledge in the representation, the improvement of the
models towards more complex chord alphabets and the de-
velopment of more adapted evaluation methods.

In this paper, we propose to exploit specific properties
and relationships between chord labels in order to improve
the learning of statistical ACE models. Hence, we ana-
lyze the interdependence of the representations of chords
and their associated distances, the precision of the chord
alphabets, and the impact of performing alphabet reduc-
tion before or after training the model. Furthermore, we
propose new training losses based on musical theory. We
show that these improve the results of ACE systems based
on Convolutional Neural Networks. By analyzing our re-
sults, we uncover a set of related insights on ACE tasks
based on statistical models, and also formalize the musical
meaning of some classification errors.

1. INTRODUCTION

Automatic Chord Extraction (ACE) is a topic that has been
widely studied by the Music Information Retrieval (MIR)
community over the past years. However, recent results
seem to indicate that the rate of improvement of ACE per-
formances has diminished over the past years [20].

Recently, a part of the MIR community pointed out the
need to rethink the experimental methodologies. Indeed,
current evaluation methods do not account for the intrinsic
relationships between different chords [10]. Our work is
built on these questions and is aimed to give some insights
on the impact of introducing musical relationships between
chord labels in the development of ACE methods.

c� Tristan Carsault, Jérôme Nika, Philippe Esling. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Tristan Carsault, Jérôme Nika, Philippe
Esling. “Using musical relationships between chord labels in Automatic
Chord Extraction tasks”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

Most ACE systems are built on the idea of extracting
features from the raw audio signal and then using these
features to construct a chord classifier [4]. The two major
families of approaches that can be found in previous re-
search are rule-based and statistical models. On one hand,
the rule-based models rely on music-theoretic rules to ex-
tract information from the precomputed features. Although
this approach is theoretically sound, it usually remains brit-
tle to perturbations in the spectral distributions from which
the features were extracted. On the other hand, statistical
models rely on the optimization of a loss function over an
annotated dataset. However, the generalization capabilities
of these models are highly correlated to the size and com-
pleteness of their training set. Furthermore, most training
methods see musical chords as independent labels and do
not take into account the inherent relations between chords.

In this paper, we aim to target this gap by introducing
musical information directly in the training process of sta-
tistical models. To do so, we propose to use prior knowl-
edge underlying the labeling alphabets in order to account
for the inherent relationships between chords directly in-
side the loss function of learning methods. Due to the com-
plexity of the ACE task and the wealth of models available,
we choose to rely on a single Convolutional Neural Net-
work (CNN) architecture, which provides the current best
results in ACE [19]. First, we study the impact of chord
alphabets and their relationships by introducing a specific
hierarchy of alphabets. We show that some of the reduc-
tions proposed by previous researches might be inadequate
for learning algorithms. We also show that relying on
more finely defined and extensive alphabets allows to grasp
more interesting insights on the errors made by ACE sys-
tems, even though their accuracy is only marginally better
or worse. Then, we introduce two novel chords distances
based on musical relationships found in the Tonnetz-space

or directly between chord components through their cate-
gorical differences. These distances can be used to define
novel loss functions for learning algorithms. We show that
these new loss functions improve ACE results with CNNs.
Finally, we perform an extensive analysis of our approach
and extract insights on the methodology required for ACE.
To do so, we develop a specifically-tailored analyzer that
focuses on the functional relations between chords to dis-
tinguish strong and weak errors. This analyzer is intended
to be used for future ACE research to develop a finer un-
derstanding on the reasons behind the success or failure of
ACE systems.



2. RELATED WORKS

Automatic Chord Extraction (ACE) is defined as the task
of labeling each segment of an audio signal using an alpha-
bet of musical chords. In this task, chords are seen as the
concomitant or successive combination of different notes
played by one or many instruments.

2.1 Considerations on the ACE task

Whereas most MIR tasks have benefited continuously from
the recent advances in deep learning, the ACE field seems
to have reached a glass ceiling. In 2015, Humphrey and
Bello [10] highlighted the need to rethink the whole ACE
methodology by giving four insights on the task.

First, several songs from the reference annotated chord
datasets (Isophonics, RWC-Pop, McGill Billboard) are not
always tuned to 440Hz and may vary up to a quarter-tone.
This leads to multiple misclassifications on the concomi-
tant semi-tones. Moreover, chord labels are not always
well suited to describe every song in these datasets.

Second, the chord labels are related and some subsets of
those have hierarchical organizations. Therefore, the one-
to-K assessment where all errors are equivalently weighted
appears widely incorrect. For instance, the misclassifica-
tion of a C:Maj as a A:min or C#:Maj, will be considered
equivalently wrong. However, C:Maj and A:min share two
pitches in common whereas C:Maj and C#:Maj have to-
tally different pitch vectors.

Third, the very definition of the ACE task is also not
entirely clear. Indeed, there is a frequent confusion be-
tween two different tasks. First, the literal recognition of
a local audio segment using a chord label and its precise
extensions, and, second, the transcription of an underlying

harmony, taking into account the functional aspect of the
chords and the long-term structure of the song. Finally, the
labeling process involves the subjectivity of the annotators.
For instance, even for expert annotators, it is hard to agree
on possible chord inversions.

Therefore, this prompts the need to focus on other as-
pects such as the introduction of musical knowledge in the
representation of chords, the improvement of the models
towards more complex chord alphabets and the develop-
ment of more adapted evaluation methods.

2.2 Workflow of ACE systems

Due to the complexity of the task, ACE systems are usually
divided into four main modules performing feature extrac-

tion, pre-filtering, pattern matching and post-filtering [4].
First, the pre-filtering usually applies low-pass filters

or harmonic-percussive source separation methods on the
raw signal [12, 26]. This optional step allows to remove
noise or other percussive information that are irrelevant
for the chord extraction task. Then, the audio signal is
transformed into a time-frequency representation such as
the Short-Time Fourier Transform (STFT) or the Constant-
Q Transform (CQT) that provides a logarithmically-scaled
frequencies. These representations are sometimes summa-
rized in a pitch class vector called chromagram. Then, suc-

cessive time frames of the spectral transform are averaged
in context windows. This allows to smooth the extracted
features and account for the fact that chords are longer-
scale events. It has been shown that this could be done
efficiently by feeding STFT context windows to a CNN in
order to obtain a clean chromagram [13].

Then, these extracted features are classified by relying
on either a rule-based chord template system or a statistical
model. Rule-based methods give fast results and a decent
level of accuracy [21]. With these methods, the extracted
features are classified using a fixed dictionary of chord pro-
files [2] or a collection of decision trees [12]. However,
these methods are usually brittle to perturbations in the in-
put spectral distribution and do not generalize well.

Statistical models aim to extract the relations between
precomputed features and chord labels based on a train-
ing dataset in which each temporal frame is associated
to a label. The optimization of this model is then per-
formed by using gradient descent algorithms to find an ad-
equate configuration of its parameters. Several probabilis-
tic models have obtained good performances in ACE, such
as multivariate Gaussian Mixture Model [3] and convolu-
tional [9, 14] or recurrent [1, 25] Neural Networks.

Finally, post-filtering is applied to smooth out the clas-
sified time frames. This is usually based on a study of
the transition probabilities between chords by a Hidden
Markov Model (HMM) optimized with the Viterbi algo-
rithm [17] or with Conditional Random Fields [15].

2.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a statistical
model composed of layers of artificial neurons that trans-
form the input by repeatedly applying convolution and
pooling operations. A convolutional layer is characterized
by a set of convolution kernels that are applied in parallel
to the inputs to produce a set of output feature maps. The
convolution kernels are defined as three-dimensional ten-
sors h 2 RM⇥U⇥V where M is the number of kernels, U
is the height and V the width of each kernel. If we note the
input as matrix X , then the output feature maps are defined
by Y = X ⇤hm for every kernels, where ⇤ is a 2D discrete
convolution operation

(A ⇤B)i,j =

(T�1)X

r=0

(F�1)X

s=0

Ar,sBi�r,j�s (1)

for A 2 RT⇥F and B 2 RU⇥V with 0  i  T+U�1
and 0  j  F + V � 1.

As this convolutional layer significantly increases the
dimensionality of the input data, a pooling layer is used
to reduce the size of the feature maps. The pooling opera-
tion reduces the maps by computing local mean, maximum
or average of sliding context windows across the maps.
Therefore, the overall structure of a CNN usually consists
in alternating convolution, activation and pooling layers.
Finally, in order to perform classification, this architecture



Figure 1. Hierarchy of the chord alphabets (blue: A0, or-
ange: A1, green: A2)

is typically followed by one or many fully-connected lay-
ers. Thus, the last layer produces a probability vector of
the same size as the chord alphabet. As we will rely on the
architecture defined by [9], we redirect interested readers
to this paper for more information.

3. OUR PROPOSAL

3.1 Definition of alphabets

Chord annotations from reference datasets are very precise
and include extra notes (in parenthesis) and basses (after
the slash) [7]. With this notation, we would obtain over
a thousand chord classes with very sparse distributions.
However, we do not use these extra notes and bass in our
classification. Therefore, we can remove this information

F : maj7(11)/3 ! F : maj7 (2)

Even with this reduction, the number of chord qualities (eg.
maj7, min, dim) is extensive and we usually do not aim for
such a degree of precision. Thus, we propose three alpha-
bets named A0, A1 and A2 with a controlled number of
chord qualities. The level of precision of the three alpha-
bets increases gradually (see Figure 1). In order to reduce
the number of chord qualities, each one is mapped to a par-
ent class when it exists, otherwise to the no-chord class N .

The first alphabet A0 contains all the major and minor
chords, which defines a total of 25 classes

A0 = {N} [ {P ⇥maj,min} (3)

where P represents the 12 pitch classes.
Here, we consider the interest of working with chord

alphabets larger than A0. Therefore, we propose an alpha-
bet containing all chords present in the harmonization of
the major scale (usual notation of harmony in jazz music).
This corresponds to the orange chord qualities and their
parents in Figure 1. The chord qualities without heritage
are included in the no-chord class N , leading to 73 classes

A1 = {N}[ {P ⇥maj,min, dim,maj7,min7, 7} (4)

Finally, the alphabet A2 is inspired from the large vo-
cabulary alphabet proposed by [19]. This most complete
chord alphabet contains 14 chord qualities and 169 classes

A2 = {N} [ {P ⇥maj,min, dim, aug,maj6,min6,

maj7,minmaj7,min7, 7, dim7, hdim7, sus2, sus4}
(5)

3.2 Definition of chord distances

In most CNN approaches, the model does not take into ac-
count the nature of each class when computing their differ-
ences. Therefore, this distance which we called categorical
distance D0 is the binary indicator

D0(chord1, chord2) =

⇢
0 if chord1 = chord2
1 if chord1 6= chord2

(6)
However, we want here to include the relationships be-

tween chords directly in our model. For instance, a C:maj7

is closer to an A:min7 than a C#:maj7. Therefore, we in-
troduce more refined distances that can be used to define
the loss function for learning.
Here, we introduce two novel distances that rely on the
representation of chords in an harmonic space or in a pitch
space to provide a finer description of the chord labels.
However, any other distance that measure similarities be-
tween chords could be studied [8, 18].

3.2.1 Tonnetz distance

A Tonnetz-space is a geometric representation of the tonal
space based on harmonic relationships between chords.
We chose a Tonnetz-space generated by three transforma-
tions of the major and minor triads [5] changing only one
of the three notes of the chords: the relative transforma-

tion (transforms a chord into his relative major / minor),
the parallel transformation (same root but major instead
of minor or conversely), the leading-tone exchange (in a
major chord the root moves down by a semitone, in a mi-
nor chord the fifth moves up by a semitone). Representing
chords in this space has already shown promising results
for classification on the A0 alphabet [11].

We define the cost of a path between two chords as the
sum of the succesive transformations. Each transformation
is associated to the same cost. Furthermore, an extra cost is
added if the chords have been reduced beforehand in order
to fit the alphabet A0. Then, our distance D1 is:

D1(chord1, chord2) = min(C) (7)

with C the set of all possible path costs from chord1 to
chord2 using a combination of the three transformations.

3.2.2 Euclidean distance on pitch class vectors

In some works, pitch class vectors are used as an inter-
mediate representation for ACE tasks [16]. Here, we use
these pitch class profiles to calculate the distances between
chords according to their harmonic content.

Each chord from the dictionary is associated to a 12-
dimensional binary pitch vector with 1 if the pitch is
present in the chord and 0 otherwise (for instance C:maj7



becomes (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)). The distance be-
tween two chords is defined as the Euclidean distance be-
tween the two binary pitch vectors.

D2(chord1, chord2) =

vuut
11X

i=0

(chordi1 � chordi2)
2 (8)

Hence, this distance allows to account for the number
of pitches that are shared by two chords.

The D0, D1 or D2 distance is used to define the loss
function for training the CNN classification model.

3.3 Introducing the relations between chords

To train the model with our distances, we first reduce the
original labels from the Isophonics dataset 1 so that they fit
one of our three alphabets A0, A1, A2. Then, we denote
ytrue as the one-hot vector where each bin corresponds to
a chord label in the chosen alphabet Ai. The output of
the model, noted ypred, is a vector of probabilities over all
the chords in a given alphabet Ai. In the case of D0, we
train the model with a loss function that simply compares
ypred to the original label ytrue. However, for our proposed
distances (D1 and D2), we introduce a similarity matrix M
that associates each couple of chords to a similarity ratio.

Mi,j =
1

Dk(chordi, chordj) +K
(9)

K is an arbitrary constant to avoid division by zero. The
matrix M is symmetric and we normalize it with its max-
imum value to obtain M̄ . Afterwards, we define a new
¯ytrue which is the matrix multiplication of the old ytrue

and the normalized matrix M̄ .

¯ytrue = ytrueM̄ (10)

Finally, the loss function for D1 and D2 is defined by
a comparison between this new ground truth ¯ytrue and the
output ypred. Hence, this loss function can be seen as a
weighted multi-label classification.

4. EXPERIMENTS

4.1 Dataset

We perform our experiments on the Beatles dataset as it
provides the highest confidence regarding the ground truth
annotations [6]. This dataset is composed by 180 songs
annotated by hand. For each song, we compute the CQT
by using a window size of 4096 samples and a hop size
of 2048. The transform is mapped to a scale of 3 bins
per semi-tone over 6 octaves ranging from C1 to C7. We
augment the available data by performing all transpositions
from -6 to +6 semi-tones and modifying the labels accord-
ingly. Finally, to evaluate our models, we split the data into
a training (60%), validation (20%) and test (20%) sets.

1 http://isophonics.net/content/
reference-annotations-beatles

4.2 Models

We use the same CNN model for all test configurations,
but change the size of the last layer to fit the size of the se-
lected chord alphabet. We apply a batch normalization and
a Gaussian noise addition on the inputs layer. The archi-
tecture of the CNN consists of three convolutional layers
followed by two fully-connected layers. The architecture
is very similar to the first CNN that has been proposed for
the ACE task [9]. However, we add dropout between each
convolution layer to prevent over-fitting.

For training, we use the ADAM optimizer with a learn-
ing rate of 2.10�5 for a total of 1000 epochs. We reduce the
learning rate if the validation loss has not improved during
50 iterations. Early stopping is applied if the validation
loss has not improved during 200 iterations and we keep
the model with the best validation accuracy. For each con-
figuration, we perform a 5-cross validation by repeating a
random split of the dataset.

5. RESULTS AND DISCUSSION

The aim of this paper is not to obtain the best classification
scores (which would involve pre- or post-filtering meth-
ods) but to study the impact on the classification results of
different musical relationships (as detailed in the previous
section). Therefore, we ran 9 instances of the CNN model
corresponding to all combinations of the 3 alphabets A0,
A1, A2 and 3 distances D0, D1, D2 to compare their re-
sults from both a quantitative and qualitative point of view.
We analyzed the results using the mireval library [22] to
compute classification scores, and a Python ACE Analyzer

that we developed to reveal the musical meaning of classi-
fication errors and, therefore, understand their qualities.

5.1 Quantitative analysis: MIREX evaluation

Regarding the MIREX evaluation, the efficiency of ACE
models is assessed through classification scores over dif-
ferent alphabets [22]. The MIREX alphabets for evalua-
tion have a gradation of complexity from Major/Minor to
Tetrads. In our case, for the evaluation on a specific al-
phabet, we apply a reduction from our training alphabet
Ai to the MIREX evaluation alphabet. Here, we evaluate
on three alphabet : Major/Minor, Sevenths, and Tetrads.
These alphabets correspond roughly to our three alphabets
(Major/Minor ⇠ A0, Sevenths ⇠ A1, Tetrads ⇠ A2).

5.1.1 MIREX Major/minor

Figure 2 depicts the average classification scores over all
frames of our test dataset for different distances and alpha-
bets. We can see that the introduction of the D1 or D2

distance improves the classification compared to D0. With
these distances, and even without pre- or post-filtering, we
obtain classification scores that are superior to that of sim-
ilar works (75.9% for CNN with post-filtering but an ex-
tended dataset in [10] versus 76.3% for A2 � D1). Sec-
ond, the impact of working first on large alphabets (A1 and
A2), and then reducing on A0 for the test is negligible on
Maj/Min (only from a quantitative point of view, see 5.2).
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Figure 2. Results of the 5-folds: evaluation on MIREX
Maj/Min (⇠ reduction on A0).
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Figure 3. Results of the 5-folds: evaluation on MIREX
Sevenths (⇠ reduction on A1).

5.1.2 MIREX Sevenths

With more complex alphabets, the classification score is
lower than for MIREX Maj/Min. This result is not surpris-
ing since we observe this behavior on all ACE systems.
Moreover, the models give similar results and we can not
observe a particular trend between the alphabet reductions
or the different distances. The same result is observed for
the evaluation with MIREX tetrads (⇠ reduction on A2).
Nonetheless, the MIREX evaluation uses a binary score to
compare chords. Because of this approach, the qualities of
the classification errors cannot be evaluated.

5.2 Qualitative analysis: understanding the errors

In this section, we propose to analyze ACE results from
a qualitative point of view. The aim here is not to intro-
duce new alphabets or distances in the models, but to in-
troduce a new type of evaluation of the results. Our goal
is twofold: to understand what causes the errors in the first
place, and to distinguish “weak” from “strong” errors with
a functional approach.

In tonal music, the harmonic functions qualify the roles
and the tonal significances of chords, and the possible
equivalences between them within a sequence [23, 24].
Therefore, we developed an ACE Analyzer including two
modules discovering some formal musical relationships

Model Tot. ⇢ Maj ⇢ min

A0-D0 34.93
A0-D1 36.12
A0-D2 35.37
A1-D0 52.40 23.82 4.37
A1-D1 57.67 28.31 5.37
A1-D2 55.17 25.70 4.21
A2-D0 55.28 26.51 4.29
A2-D1 60.47 31.61 6.16
A2-D2 55.45 25.74 4.78

Table 1. Left: total percentage of errors corresponding to
inclusions or chords substitutions rules, right: percentage
of errors with inclusion in the correct triad (% of the total
number of errors).

Model rel. M rel. m T subs. 2 m!M M!m

A0-D0 4.19 5.15 2.37 7.26 12.9
A0-D1 4.40 5.20 2.47 7.66 13.4
A0-D2 5.13 4.87 2.26 8.89 10.89
A1-D0 2.63 3.93 1.53 4.46 8.83
A1-D1 3.05 3.36 1.58 5.53 7.52
A1-D2 3.02 4.00 1.62 5.84 8.07
A2-D0 2.54 4.15 1.51 4.96 8.54
A2-D1 2.79 2.97 1.54 5.29 7.46
A2-D2 3.11 4.26 1.63 5.34 7.59

Table 2. Left: percentage of errors corresponding to usual
chords substitutions rules, right: percentage of errors “ma-
jor instead of minor” or inversely (% of the total number
of errors).

between the target chords and the chords predicted by ACE
models. Both modules are generic and independent of the
classification model, and are available online. 2

5.2.1 Substitution rules

The first module detects the errors corresponding to hierar-
chical relationships or usual chord substitutions rules: us-
ing a chord in place of another in a chord progression (usu-
ally substituted chords have two pitches in common with
the triad that they are replacing).

Table 1 presents: Tot., the total fraction of errors that
can be explained by the whole set of substitution rules we
implemented, and ⇢ Maj and ⇢ min, the errors included in
the correct triad (e.g. C:maj instead of C:maj7, C:min7 in-
stead of C:min). Table 2 presents the percentages of errors
corresponding to widely used substitution rules: rel. m and
rel. M, relative minor and major; T subs. 2, tonic substitu-
tion different from rel. m or rel. M (e.g. E:min7 instead or
C:maj7), and the percentages of errors m!M and M!m

(same root but major instead of minor or conversely). The
tables only show the categories representing more than 1%
of the total number of errors, but other substitutions (that
are not discussed here) were analyzed: tritone substitution,
substitute dominant, and equivalence of dim7 chords mod-
ulo inversions.

First, Tot. in Table 1 shows that a huge fraction of errors
can be explained by usual substitution rules. This percent-

2 http://repmus.ircam.fr/dyci2/ace_analyzer



Model Non-diat. targ. Non-diat. pred.

A0-D0 37.96 28.41
A0-D1 44.39 15.82
A0-D2 45.87 17.60
A1-D0 38.05 21.26
A1-D1 37.94 20.63
A1-D2 38.77 20.23
A2-D0 37.13 30.01
A2-D1 36.99 28.41
A2-D2 37.96 28.24

Table 3. Errors occurring when the target is non-diatonic
(% of the total number of errors), non-diatonic prediction
errors (% of the subset of errors on diatonic targets).

age can reach 60.47%, which means that numerous clas-
sification errors nevertheless give useful indications since
they mistake a chord for another chord with an equivalent
function. For instance, Table 2 shows that a significant
amount of errors (up to 10%) are relative major / minor
substitutions. Besides, for the three distances, the percent-
age in Tot. (Table 1) increases with the size of the alpha-
bet: larger alphabets seem to imply weaker errors (higher
amount of equivalent harmonic functions).

We can also note that numerous errors (between 28.19%
and 37.77%) correspond to inclusions in major or minor
chords (⇢ Maj and ⇢ min, Table 1) for A1 and A2. In the
framework of the discussion about recognition and tran-

scription mentioned in introduction, this result questions
the relevance of considering exhaustive extensions when
the goal is to extract and formalize an underlying harmony.

Finally, for A0, A1, and A2, using D1 instead of D0

increases the fraction of errors attributed to categories in
the left part of Table 2 (and in almost all the configurations
when using D2). This shows a qualitative improvement
since all these operations are considered as valid chord
substitutions. On the other hand, the impact on the (quite
high) percentages in the right part of Table 2 is not clear.
We can assume that temporal smoothing can be one of the
keys to handle the errors m!M and M!m.

5.2.2 Harmonic degrees

The second module of our ACE Analyzer focuses on har-

monic degrees. First, by using the annotations of key in
the dataset in addition to that of chords, this module de-
termines the roman numerals characterizing the harmonic
degrees of the predicted chord and of the target chord (e.g.

in C, if a chord is an extension of C, I; if it is an extension
of D:min, ii; etc.) when it is possible (e.g. in C, if a chord
is an extension of C# it does not correspond to any degree).
Then, it counts the errors corresponding to substitutions of
harmonic degrees when it is possible (e.g. in C, A:min in-
stead of C corresponds to I⇠vi). This section shows an
analysis of the results using this second module. First, it
determines if the target chord is diatonic (i.e. belongs to
the harmony of the key), as presented in Table 3. If this
is the case, the notion of incorrect degree for the predicted
chord is relevant and the percentages of errors correspond-
ing to substitutions of degrees is computed (Table 4).

Model I⇠IV I⇠V IV⇠V I⇠vi IV⇠ii I⇠iii

A0-D0 17.41 14.04 4.54 4.22 5.41 2.13
A0-D1 17.02 13.67 3.33 4.08 6.51 3.49
A0-D2 16.16 13.60 3.08 5.65 6.25 3.66
A1-D0 17.53 13.72 3.67 5.25 4.65 3.50
A1-D1 15.88 13.82 3.48 4.95 6.26 3.46
A1-D2 16.73 13.45 3.36 4.70 5.75 2.97
A2-D0 16.90 13.51 3.68 4.45 5.06 3.32
A2-D1 16.81 13.60 3.85 4.57 5.37 3.59
A2-D2 16.78 12.96 3.84 5.19 7.01 3.45

Table 4. Errors (> 2%) corresponding to degrees substitu-
tions (% of the subset of errors on diatonic targets).

A first interesting fact presented in Table 3 is that
36.99% to 45.87% of the errors occur when the target
chord is non-diatonic. It also shows, for the three alpha-
bets, that using D1 or D2 instead of D0 makes the frac-
tion of non-diatonic errors decrease (Table 3, particularly
A0), which means that the errors are more likely to stay
in the correct key. Surprisingly, high percentages of errors
are associated to errors I⇠V (up to 14.04%), I⇠IV (up to
17.41%), or IV⇠V (up to 4.54%) in Table 4. These errors
are not usual substitutions, and IV⇠V and I⇠IV have re-
spectively 0 and 1 pitch in common. In most of the cases,
these percentages tend to decrease on alphabets A1 or A2

and when using musical distances (particularly D2). Con-
versely, it increases the amount of errors in the right part
of Table 4 containing usual substitutions: once again we
observe that the more precise the musical representations
are, the more the harmonic functions tend to be correct.

6. CONCLUSION

We presented a novel approach taking advantage of musi-
cal prior knowledge underlying the labeling alphabets into
ACE statistical models. To this end, we applied reduc-
tions on different chord alphabets and we used different
distances to train the same type of model. Then, we con-
ducted a quantitative and qualitative analysis of the classi-
fication results.

First, we conclude that training the model using dis-
tances reflecting the relationships between chords im-
proves the results both quantitatively (classification scores)
and qualitatively (in terms of harmonic functions). Second,
it appears that working first on large alphabets and reduc-
ing the chords during the test phase does not significantly
improve the classification scores but provides a qualitative
improvement in the type of errors. Finally, ACE could
be improved by moving away from its binary classifica-
tion paradigm. Indeed, MIREX evaluations focus on the
nature of chords but a large amount of errors can be ex-
plained by inclusions or usual substitution rules. Our eval-
uation method therefore provides an interesting notion of
musical quality of the errors, and encourages to adopt a
functional approach or even to introduce a notion of equiv-
alence classes. It could be adapted to the ACE problem
downstream and upstream: in the classification processes
as well as in the methodology for labeling the datasets.



7. ACKNOWLEDGMENTS

The authors would like to thank the master’s students who
contributed to the implementation: Alexis Font, Grégoire
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A B S T R A C T

Human computer co-improvisation aims to rely on a computer in or-
der to produce a musical accompaniment to a musician’s improvisa-
tion. Recently, the notion of guidance has been introduced to enhance
the process of human computer co-improvisation. Although this con-
cept has already been studied with a step-by-step guidance or by
guiding with a formal temporal structure, it is usually only based
on a past memory of events. This memory is derived from an anno-
tated corpus which limits the possibility to infer the potential future
improvisation structure. Nevertheless, most improvisations are based
on long-term structures or grids. Our study intends to target these
aspects and provide short term predictions of the musical structures
to improve the quality of the computer co-improvisation.

Our aim is to develop a software that interacts in real-time with
a musician by inferring expected structures. In order to achieve this
goal, we divide the project into two main tasks: a listening module and
a symbolic generation module. The listening module extracts the musi-
cal structure played by the musician whereas the generative module
predicts musical sequences based on these extractions.

In this report, we present a first approach towards this goal by in-
troducing an automatic chord extraction module and a chord label
sequence generator. Regarding the structure extraction, as the cur-
rent state-of-the-art results in automatic chord extraction are obtained
with Convolutional Neural Networks (CNN), we first study new ar-
chitectures derived from the CNNs applied to this task. However, as
we underline in our study, the low quantity of audio labeled dataset
could limit the use of machine learning algorithms. Hence, we also
propose the use of Ladder Networks (LN) which can be trained in a
semi-supervised way. This allows us to evaluate the use of unlabeled
music data to improve labeled chord extraction. Regarding the chord
label generator, many recent works showed the success of Recurrent
Neural Networks (RNN) for generative temporal applications. Thus,
we use a family of recurrent networks, the Long Short-Term Memory
(LSTM) unit, for our generative task.

Here, we present our implementations and the results of our mod-
els by comparing to the current state-of-the-art and show that we ob-
tain comparable results on the seminal evaluation datasets. Finally,
we introduce the overall architecture of the software linking both
modules and propose some directions of future work.
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R É S U M É

La co-improvisation homme-machine a comme but l’utilisation d’un
ordinateur dans l’accompagnement musical d’un musicien lors d’une
improvisation. Les technologies existantes en improvisation homme-
machine permettent un guidage pas-à-pas ou un guidage basé sur des
formalismes structuraux pré-enregistrés. Ces structures calculées sont
issues de corpus annotés, ce qui limite grandement la génération de
structures improvisées construites sur un potentiel futur. Ainsi, notre
logiciel aspire à combiner ces deux aspects en proposant à chaque
pas des séquences de symboles en cohérence avec la progression des
structures renseignées par le musicien.

Notre but est de concevoir un programme pouvant interagir en
temps-réel avec un musicien en inférant des structures musicales fu-
tures. Cette conception peut se décomposer en deux étapes : un mod-
ule d’écoute et un module d’improvisation. Le module d’écoute permet
d’extraire la structure musicale jouée par le musicien, alors que le
module d’improvisation est un générateur de séquences musicales
symboliques.

Dans ce rapport, nous présentons les premières étapes du pro-
jet : l’extraction automatique d’accords musicaux et la génération de
séquences de labels d’accords. A ce jour, les meilleurs algorithmes
d’extraction automatique d’accords intègrent un réseau de neurones
convolutif. Ainsi, nous avons étudié ces modèles pour la tache d’éxtrac-
tion automatique d’accords. Cependant, nous avons souligné durant
notre étude la faible quantité de bases de données audio annotées.
Nous avons donc étudié le ladder network, un modèle de réseau
de neurones pouvant être entraîné de façon semi-supervisée. Cet en-
traînement semi-supervisé nous permet de paramétrer notre modèle
aussi bien avec des données labellisées qu’avec des données non la-
bellisées. D’autre part, plusieurs logiciels de génération musicale ont
été récemment développés avec des réseaux de neurones récurrents.
C’est pourquoi, nous utilisons une catégorie de réseau de neurones
récurrents, les long short term memory.

Ici, nous présentons nos implémentations ainsi que les résultats
de nos modèles en les comparant à l’état de l’art actuel et en mon-
trant que nous obtenons des résultats comparables sur les bases de
données de références. Finalement, nous introduisons l’architecture
globale du logiciel reliant les deux modules et nous proposons des
directions pour des études ultérieures.
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I N T R O D U C T I O N

The concept of musical structure could be defined as the arrangement
and relations of musical elements through time. Furthermore, a piece
of music has different levels of structure depending on the tempo-
ral scale that is under scrutiny. Indeed, elements of music such as
notes (defined by their pitch, duration and timbre) can be combined
into groups like chords, motifs and phrases and these, in turn, com-
bine into larger structures such as chord progressions or choruses
and verses. Thus, there can be complex and multi-scaled hierarchical
and temporal relationships between the different musical elements.
Given these complexities, musical structure have been given different
meanings throughout the literature.

structure : In this work, we define a structure as a sequence of
symbols in a chosen alphabet (e.g. chord progression, profile
of audio features), which describes the temporal evolution of a
musical sequence. Hence, here we will not focus on other music
information retrieval notions such as the high-level segmenta-
tion of an entire piece of music [43, 45].

Structures are inherent in music, and their knowledge becomes cru-
cial in the process of improvisation involving multiple musicians. In-
deed, even though improvisation is often associated with spontaneity
and randomness, it is largely based on rules and structures that al-
low these different musicians to play together correctly. If we focus
on blues or jazz improvisation, we can see that it generally relies on
a chord progression defining a guideline for the overall performance.
This chord progression is the backbone structure that the musicians
will follow to develop their improvisations, while performing with
others. Therefore, in a collective improvisation, an understanding of
the current musical structures is critical.

Therefore, in this internship, we will target the development of in-
telligent listening modules that could emulate this process of musi-
cal structure discovery, as performed in real-time by a musician. To
that end, we separate this task as first the ability to perform auto-
matic chord extraction and then to understand higher-level musical
progressions by performing chord prediction.

The remainder of this work is organized as follows. First, we present
existing human-computer co-improvisation systems (Section 1) and
motivate our choice to use chord extraction as the first step of our
musical inference system. Then, we present the state-of-the-art in the
Automatic Chord Extraction (ACE) field (Section 2). In the following
part, we introduce the basic concepts of machine learning, neural net-
works and deep learning models (Section 3). Finally, we present the
results of our chord extraction models (Section 4) and the architecture
of our complete inference and co-improvisation model (Section 5).
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1
M U S I C A L M O T I VAT I O N A N D R E L AT E D W O R K S

1.1 guidance in human-computer co-improvisation

The motivation of this work comes from the field of interactive mu-
sic generation, defined as "music that is produced by a hardware and
software system that importantly includes a computer" [9]. Over the past
years, many works have focused on the idea of relying on a computer
algorithm to generate music. Here, we focus on the symbolic music
without deep details on the sound synthesis. In these works, the def-
inition of the musical structure underlying the generation is central
to the success of these algorithms. Among them, we focus on human-
computer co-improvisation processes. That is to say, as system that
plays music with a musician in real time.

For instance, Omax [2] is a system that learns features specific to
the musician’s style in real-time, and then plays along with him in-
teractively. This technology is based on Oracle’s theory [1] and gen-
erates music with the help of an audio database that has been pre-
viously analyzed. Here, we focus on another family of software that
retains a control and authoring on the musical output. Indeed, as in-
troduced by Nika [36], human-computer co-improvisation processes
can be enhanced through the notion of guidance. In this domain of
guided human-computer co-improvisation, the notion of guiding mu-
sic generation has two different meanings. On the one hand, guiding
can be seen as a purely reactive and step-by-step process. This ap-
proach offers rich interaction possibilities but cannot take advantage
of the prior knowledge of a temporal structure to introduce antici-
patory behavior. On the other hand, guiding can mean defining the
temporal structures or descriptions themselves, in order to drive the
generation process of the whole musical sequence. These “scenario-
based” systems are able to introduce anticipatory behaviours but re-
quire some prior knowledge about the musical context (a pre-defined
scenario).

1.1.1 “Guiding” step by step

The step-by-step process aims to produce an automatic accompani-
ment using purely reactive mechanisms without prior knowledge.
The musician input signal is analyzed in real-time and the system
compares it to the corpus and select the most relevant music in order
to generate an accompaniment.

For instance, SoMax [6] uses a previously annotated corpus and ex-
tracts in real time multimodal observations of the musician’s playing.
Then it retrieves the most relevant music slices from the corpus to
generate an accompaniment.

11
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Other software as VirtualBand [34] or Reflexive Looper [41], also re-
lies on feature based interaction. Given the extracted features (e.g. RMS,
spectral centroid or chroma) of the musician’s audio signal, the soft-
ware selects the audio musical accompaniment from the database .

1.1.2 “Guiding” with a Formal Temporal Structure or Description

Another approach is to see the guidance as constraints for the gener-
ation of complete musical sequences.

On the one hand, constraints can be used to preserve some struc-
tural patterns present in the database. In 2015 Herremans et al. built a
system to generate bagana music [20], a traditional lyre from Ethiopia
based on a first order Markov model. Another project using Marko-
vian model is a model for corpus-based generative electronic dance
music that has been proposed in 2013 by Eigenfeldt and Pasquier [15].

On the other hand, some research projects introduced a tempo-
ral specification to guide the music generation process. For instance,
Donzé applies this concept in order to generate a monophonic solo
similar to a given training melody upon a given chord progression
[14]. Recently, the notion of musical scenario has been proposed [38]
as the specification of the high-level musical structure that generated
sequences should follow. This approach allows to define an overall
direction to the music generation process. It introduces such motion
or intention at each step of the generation.

scenario : In our work, we define a scenario as a formalized tem-
poral structure guiding the music generation.

An example of scenario-based system is ImproteK [37], which uses
pattern-matching algorithms on symbolic sequences. Then, the sym-
bolized inputs from the musician are compared with pre-defined sce-
narios. ImproteK is also reactive, as the scenario can be modified via
a set of pre-coded rules or with parameters controlled in real-time via
an external operator [39].

1.1.3 Intelligent listening and inference of short-term scenarios

In 1969, Schoenberg and Stein [49] formulated a fundamental distinc-
tion between progression and succession. From their point of view, a
progression is aimed at a definite goal and is oriented towards its fu-
ture, whereas a succession is a step-by-step conformity. The systems
using a formal temporal structure or description consolidate this no-
tion of progression developed by Schoenberg and Stein. Moreover,
they introduce a notion of anticipatory behavior. However, this con-
cept of scenario is limited to a pre-defined setup, which limits the
capability of the algorithm to foresee any future movement or change
inside the music. Moreover, Huron formalized the chain [25]

“expectation- > prediction- > anticipation” (1)
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Thus, the scenario is the temporal specification that takes the place
of prediction and expectation. In other words, this chain becomes
“specification -> anticipation” in scenario-based systems. Therefore, a
promising direction would be the inference of short-term scenarios in
order to obtain the entire chain (1).

The over-arching goal of interactive music systems is to emulate the
behavior of a trained human musician. Hence, our aim is to design
an intelligent listening module able to perform a real-time discovery
of the structures existing inside a musical stream. At the end, an infer-
ence of short-term structures could be achieved from this discovery
in order to feed scenario-based generative systems. (see figure 1)

Figure 1: Extracting structures and prediction.

Multiple music generation applications could benefit from a real-
time prediction of the musical structures, in particular, scenario-based
generative softwares, such as ImproteK [37]. Based on this inference,
music generation processes could combine the advantages of the two
aforementioned forms of “guidance”. Hence, we aim for a system that
could be responsive (in a real-time sense), while maintaining a long-
term temporal vision, able to anticipate and generate improvisation
from an inferred (and not only pre-defined) underlying structure.

our motivation is to infer future musical structures for improv-
ing human computer co-improvisation. In this report, we present our
approaches for structure extraction in audio streams and for symbolic
music prediction based on this information.

our application case is musical chords. Indeed, chords are
mid-level musical features which concisely describe the harmonic
content of a piece. Moreover, chord sequences are often sufficient for
musicians to play in an improvisation context. Thus, the models pre-
sented in this report principally concern the Automatic Chord Extrac-
tion (ACE) field and the generation of musical chord sequences.



2
S TAT E O F T H E A RT I N M A C H I N E L E A R N I N G

2.1 machine learning

Machine learning aims to empower the computers with the capabil-
ities to perform complex tasks that are innate to humans. The main
idea is to develop algorithms able to learn by observing and modeling
a set of examples. Thus, machine learning algorithms use computa-
tional methods to learn directly from the data by adapting the param-
eters of a pre-defined family of functions. The overarching goal of
machine learning is to produce a model that could be able to general-
ize its understanding of a given (training) set to unseen data. In this
section, we introduce the basic aspects and definitions underlying ma-
chine learning. Then, we introduce the different specific models that
have been used along this internship.

2.1.1 Function approximation

In most machine learning problems, we start from a given dataset
X = {x1, ..., xN} ; xi 2 Rd and want to obtain a set of corresponding
information in a given target space Y = {y1, ...,yN} ;yi 2 Rt. This
target space usually defines the goal of the learning system. However,
in most cases, going from one space to the other can be seen as a
transform F : Rd ! Rt, such that

F (xi) = yi, 8i 2 [1,N]

Hence, the aim of machine learning would be to find this func-
tion F 2 F that applies on the given data to obtain our desired so-
lution. However, this family of functions F is usually not defined
in a straightforward manner and cannot be used directly. Therefore,
across the set of all possible functions, we usually restrain the algo-
rithm to consider only a given family of functions F⇤, that we define,
hoping to be as close to F as possible. Finally, to approximate the
ideal solution, we select a parametric function f✓ 2 F⇤, in order to
obtain an estimation

f✓ (xi) = ỹi, 8i 2 [1,N]

by modifying the set of parameters ✓ 2 ⇥ of this function, the algo-
rithm learns to predict a set of solutions that should be as close as the
real solutions as possible.

2.1.2 Loss function

Given this parametric function f✓, the goal of machine learning is to
find the parameters that can provide the highest accuracy possible.

14
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The parameters ✓ are defined as a multi-dimensional vector contain-
ing the values of each parameter of the function. In order to find this
vector, we need to define a loss function L, that quantifies the differ-
ence between the correct solution and the current approximation

L(x | ⇥) =
NX

i=1

L(f(xi), f̃⇥(xi)) (2)

The goal will be, therefore, to minimize this function by adjusting
iteratively the parameters of our function f✓. This error minimization
process evaluates a given set of training examples and then performs
the parameters update based on the derivative of the error.

2.1.3 Types of learning algorithms

The different approaches to machine learning can be broadly divided
into three major types : supervised, unsupervised and reinforcement
learning. The choice between these approaches depends principally
on the information that we have on the data and the output that
we seek for a given task. Here, we focus on detailing the supervised
2.1.3.1 and unsupervised 2.1.3.2 approaches as they will both be used
in our subsequent methods, in the form of semi-supervised learning
2.1.3.3.

2.1.3.1 Supervised learning

The supervised learning approach aims at classifying an unknown
dataset with the help of a labeled dataset. The learning is done on a
dataset {x(i),a(i)}16i6N containing N samples. Here, x(i) is an input
data and a(i) its associated label. We also define an alphabet C that
contains all the different labels. In this way, we want the system to
extract enough information from x(i) to classify it in the right class
c 2 C.

For instance, in the field of ACE, a potential supervised task would
be to use a frame of the spectrogram x(t) as an input and develop a
model that could find the associated chord label a(t). Thus, we need
a training set containing associations between frame and chord label
(an example dataset is depicted in Figure 2).

Figure 2: Example of elements inside a chord labeling dataset based on spec-
trogram windows.
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For training an ACE model that could perform chord labeling, a
potential choice of loss function is the distance between the predicted
chord labels and the annotated chord labels. Then, training the model
can be done as shown in Figure 3. Here, by following our previously
defined notation (2), we have the desired output of the classification
task given by f(x(t)) = a(t) and the approximation of our model
f̃⇥(x(t)) = y(t), which is here composed of several layers of trans-
formations. By comparing these two values through the loss function
L(f(x(t)), f̃⇥(x(t))), we can assess the errors made by the model in
order to improve it by changing its parameters.

Figure 3: An example of supervised training for an ACE task, where we
compare the ground truth annotation a(t) with the approximation
of our model f̃⇥(x(t)) = y(t).

2.1.3.2 Unsupervised learning

Most of the time the data that are available for a task are not labeled.
Thus, we only have a dataset composed by M elements {x(j)}16j6M

and want to discover the structure of those data. The most well-
known type of unsupervised learning is clustering algorithms. It is
used for exploratory data analysis to find patterns or groupings in-
side a dataset. In other words, we extract the most salient features
from the inputs. Then, we cluster the data by applying a distance
between these features. Since we don’t inform the model on which
features we are focusing on, the unsupervised learning works with-
out any assumptions.

Once again, in the context of ACE, an example task would be to
present a noisy spectrogram frame x⇤(t) as input in order to denoise
it. This task is known as a denoising operation, as depicted in Figure 4.
Here, one part serves to transform the input into a representation,
which could then be used to reconstruct a noiseless version of the
frame x⇤(t). The cost function is defined by the distance between the
output z(t) and the initial frame x(t).

Despite the fact that supervised learning has demonstrated impres-
sive results in the past years, unsupervised learning would be an
approach widely studied in the next years.
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Figure 4: An example of unsupervised training for an ACE task, where we
compare a frame of spectrogram x(t) with a denoising corrupt
version of it f̃⇥(x⇤(t)) = z(t).

“We expect unsupervised learning to become far more im-
portant in the longer term. Human and animal learning
is largely unsupervised: we discover the structure of the
world by observing it, not by being told the name of every
object.”

– LeCun, Bengio, Hinton, Nature 2015 [29]

2.1.3.3 Semi-supervised learning

In most applications, we usually have access to few labeled data
{xt,yt}16t6N and, comparatively, to a lot of unlabeled data {xt}N+16t6M

(i.e. music tracks without annotations). Consequently, the labeled data
is scarce whereas the unlabeled data is plentiful (N ⌧M). The main
idea is to assign probabilistic label to unlabeled data in order to use
them in the training. By modeling P(x|y) as clusters, unlabeled data
affects the shape and size of clusters [58]. Technically, we use the clus-
tering effect of the unsupervised learning and assign a label at each
cluster with the help of the labeled dataset.

Figure 5: Example of a two-class cluster classification dataset where two
sample are labeled and others are unlabeled. The addition of unla-
beled data modifies the cluster sizes and shapes. [58].

In Figure 5, we represent a two-class cluster classification dataset
where two sample are labeled and others are unlabeled. Thus, the
addition of unlabeled data shifts the decision boundary and gives a
most accurate classification on unseen data.
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Nevertheless, the semi-supervised learning does not always give
better results and the error convergence depends on the learning task
[52].

2.1.4 Numerical optimization and training

As discussed previously, we need to find an efficient way to adjust
the parameters of a model, in order to increase its accuracy. The accu-
racy is calculated by the error function. One solution for an efficient
training is to use its derivative depending on the parameters. Hence,
at each training iteration we find which direction to explore, leading
to the family of gradient descent algorithms.

2.1.4.1 Gradient descent and learning rate

the gradient descent is an iterative optimization algorithm
aimed at finding a local minimum of an error function. Each step
consists of moving the set of parameters in a direction that maximally
lowers the value of this loss function. The gradient descent is there-
fore defined as starting with a random set of parameters ⇥0 and then
repeatedly picking the direction of steepest descent (with respect to
the loss function) in order to update the parameters

⇥t+1  ⇥t -↵ ⇤r⇥L(⇥t) (3)

where r⇥L(⇥t) represents the gradient of the loss function with
respect to the parameters and ↵ is an hyperparameter called the learn-
ing rate. This hyperparameter allows to control the magnitude of the
step that we are taking at each parameter update. A bigger learning
rate will accelerate the convergence but can cause to "jump" over the
minima as the update steps are too large. These ideas are exempli-
fied in Figure 6. This figure represents the shape of a two parameter
loss function J(✓0, ✓1). On the figure we see two paths (in black). The
starting points of the paths (in the red area) are set by a random ini-
tialization of the model parameters. Then, each path is constructed by
choosing the best gradient descent at each step. They naturally end
in a local minima (in blue).

Over the past decades, the cardinality and dimensionality of datasets
have outpaced the expansion of the speed of processors. As argued
by Bottou [7], the capabilities of machine learning has been limited
by the computing time rather that the sample size. Hence, stochas-
tic approximation of the gradient optimization method as Stochastic
Gradient Descent (SGD) have been proposed [7], which update the
parameters of the model after observing each example, rather than
relying on the whole dataset.

2.1.4.2 Overfitting, Generalization

The goal of learning methods is to obtain a model which provides a
good generalization over unseen data. The generalization performance
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Figure 6: Gradient of a two parameters function with two local minima and
example of the use of gradient descent based on two different ran-
dom initializations, image taken from [35].

of a method refers to its capacity to make good predictions for inde-
pendent (unseen) test data. Thus, we hope that the training set will
reflect the characteristics of the entire sample space.

The overfitting appears when a model attached too many impor-
tance to the details of the training set. For instance, we show in Fig-
ure 7 the effect of overfitting for a task of classification between two
classes inside a two-dimensional feature space. The black line repre-
sents a model with a good generalization performance whereas the
green line shows a model displaying overfitting.

Figure 7: Two different models showing either overfitting (in green) or gen-
eralization (in black) for separation in a two-dimensional feature
space with two classes, image taken from [40].

The overfitting can come from the complexity of the model. In-
deed, if a model is excessively complex, it has too many parameters
comparing to the number of observations. Among other solutions
we can avoid overfitting and obtain better generalization by corrupt-
ing slightly the inputs. The overfitting also depends of the time of
training. Thus, when we use learning methods, we have to stop the
optimization process in order to avoid this effect. This optimization
step can be seen as finding a tradeoff between the data that we use
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in our training set and the general behavior of future unseen data.
One widely used method to avoid overfitting is to validate the model
with a dataset which is independent from the training and the test
set. Therefore, we divide the data into three subsets.

• the training set is used to train the model. It contains the sam-
ple from which we adjust the parameters.

• the validation set is used to avoid overfitting. As seen in Fig-
ure 8, the validation error decreases and then increases during
the training process. We must stop the training when the valida-
tion error is the lower in order to have the better generalization.

• the test set is the data set on which the performance of the
model is calculated.

Figure 8: Evolution of train and valid errors versus training time, image
taken from [40].

2.2 neural networks

2.2.1 Artificial neuron

An artificial neuron can be compared to a biological neuron. In biolog-
ical neurons, the dendrites are connected to a cell body. Each dendrite
transmits electrical impulsion from the outside to the body. When the
electrical charge exceeds a threshold the cell body sends an electrical
impulsion through the axon. In an artificial neuron such as Figure 9,
the dendrites are modeled by the inputs {xi}16i6m, the activation is
a non-linear function f with a threshold b and the axon is the output
h.

A neuron is then defined by its parameters, namely the bias b and
the weights wi, and by an activation function f. We have then a math-
ematic formalization that links the inputs xi to the output h :

h = f(
mX

j=1

wjxj + b) (4)
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Figure 9: Schema of an artificial neuron.

In the literature we find many activation function f. The activation
should be a non-linear transformation. Here we present two examples
of widely used activation function.

the sigmoïd function is a function that has been widely used
in the field of machine learning. His derivative is very simple, making
easier the chain-rule computations of the back propagation process
(see back propagation 2.2.2.1).

f(x) =
1

(1+ exp(-x))

relu that stands for rectified linear unit, has been introduced in
2000 with strong biological and mathematical motivation. As of 2015
this is the most popular activation function used in deep neural archi-
tecture.

f(x) = max(0, x)

2.2.1.1 Interpretation

Here we provide two ways of interpreting the Neural Networks (NN).
First, by looking at Equation 4, we can see that if the transfer func-
tion is a threshold function, this defines an hyperplane. On the one
hand, network with a single processing layer can be interpreted as
separating the input space in two regions with a straight line (as seen
in Figure 10). Here, the blue and red lines represents two data distri-
butions, while the colored region represent the value of the output
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neuron. Therefore, we can note that a single-layered network can not
separate properly these two distributions (as this dataset is non lin-
early separable. Hence, we must use a non-linear transfer function for
this classification task. On the other hand, a way of interpreting these
networks is to see the successive layers as performing space transfor-
mation operations. As we can see in Figure 11, the space is gradually
transformed by the successive neuron layers, as the coordinates of the
next space is defined by the output values of the different neurons.
Hence, for complex data we must use neural networks with multiple
layers, to exploit this property of compositionality.

Figure 10: Space separation with one linear output layer. Image from [3].

Figure 11: Space transform operated by successive hidden layer. Image from
[3].

2.2.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a feed-forward model organized
as a succession of layers of neurons defined previously. Each layer
receives the output of neurons in the previous layer as input and then
applies a (linear) affine transform and a non-linear transfer function
to these values. Therefore, a MLP is a fully-connected network of
depth L. Here, we denote the output value of the l-th layer by vector
hl 2 RMl , where Ml is the number of neurons contained in this layer
(see Figure 12). For 1 6 l 6 L, the parameters of a layer are defined
by a weight matrix Wl 2 RMl⇥Ml-1 and a bias vector bl 2 RMl .
Therefore, the activation of neuron m in layer l is computed with the
following equation

hl
m = f(

Ml-1X

j=1

(Wl
m,j.h

l-1
j ) + bl

m) (5)
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Let us rewrite the equation 5 such as bl
m = Wl

m,0.hl-1
0 .

hl
m = f(

Ml-1X

j=0

(Wl
m,j.h

l-1
j )) = f(yl

m) (6)

Thus, yl
m is the net input for the neuron m in the layer l.

Figure 12: Multi-Layer Perceptron.

2.2.2.1 Back propagation

In order to train the MLP, it would seem that we should define a
procedure that takes all layers into account, leading to a very compli-
cated formulation. However, the introduction of the back-propagation
method by Rumelhart and Hinton [56] allows to decompose this into
a set of simple operations. The main idea is to see that adding layers
amounts to add a function to the previous output. Therefore, in the
forward pass, this output is updated by relying on the weight and bias
of the neurons in this layer. Therefore, when trying to obtain the con-
tribution of a given neuron to the final error value, we can use the
chain rule of derivations, to separate its contribution inside the net-
work. The error values obtained after a forward pass can be simply
propagated backwards, starting from the output, and computing the
derivative of each neuron output given its parameters. This procedure
is repeated until all neurons in the network have been updated.

After the last layer L, we compute the loss of our network (see
Section 2.1.2), that we take here to be the squared error between the
desired output �Li and the output of the network hL

i :

L(�Li ,hL
i ) =

1

2
||�Li - hL

i ||
2 (7)

The derivative of this loss is then given by

L(�Li ,hL
i )

0 = eLi = [�Li - hL
i ].f

0(yL
i ) (8)

Using the chain rule, the error is then back propagated by comput-
ing error for preceding layers :

eli = f 0(yl
i)

Ml+1X

j=0

Wl+1
ij .el+1

j ; l 2 [1...L- 1] (9)
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Finally, the weights are updated in the corresponding layer :

Wl
ij = Wl

ij + �.elih
l-1
j (10)

Where � is the learning rate.

2.2.2.2 Limitations and deep learning solutions

As seen in the previous part, a MLP is composed of layers of artifi-
cial neurons as a simple model that tries to mimic biological neurons.
Hence, simple neural networks are composed by a few layer of neu-
rons to reduce their computational costs. However, an architecture
with such insufficient depth would require an infinite number of com-
putational elements [5] to solve complex tasks. Conversely, deep ar-
chitectures can exploit non-linear hierarchies to solve this issue. Thus,
we use deep learning when we need higher level of abstractions for
our problem. This approach allows to construct optimal abstractions
by discriminating the important variations at each layer by focusing
on information at different scales. Nevertheless, adding several layers
leads to a gradient diffusion problem during the back-propagation. It
can be solved by a layer pre-training [4].

Deep learning usually relies on an encoder/decoder (unsupervised)
model that aims to deconstruct an object and reconstruct it from fewer
parts. In other words we are learning its structure. This notion of en-
coder/decoder seems fit to our musical structure problem. Indeed,
each layer can be seen as a different abstraction (notes, chords, keys).

2.2.3 Convolutional network

A Convolutional Neural Network (CNN) is a specific type of feed-
forward neural network that is currently amongst the best performing
systems for image processing tasks [13, 28]. The architecture of CNNs
were inspired by the organization of the animal visual cortex [30]. The
main idea of CNN is to introduce invariance properties (such as trans-
lation, rotation, perspective distortion) into the transform computed
by neural networks. Compared to the MLP, the hidden layers of a
CNN compute different operations, by relying on convolution and
pooling operators. In the next parts, we describe these operators and
the overall behavior of CNNs.

2.2.3.1 Convolutional Layers

A convolutional layer is defined by a set of convolution kernels that
are applied in parallel to the inputs and produce a set of output fea-
ture maps. These kernels are learned during the training and hopefully
each of these should describe a recurrent characteristic of the training
data. After applying each kernel to the input, we obtain a set of fea-
ture maps, that is defined by a three-dimensional tensor h 2 RM⇥I⇥J

where M is the number of kernel, I is the height and J the width of
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each kernel. During the feed-forward pass we apply a convolution by
sliding the kernel over every local area of the input.

For instance, as seen in Figure 13, we start from the top left region
and move the kernel until it reaches the bottom border of the input
matrix. If we define the input as the matrix X, then the output feature
maps are defined by Y = X ⇤hm for every kernels. Here, the operator
⇤ is a 2D discrete convolution

(A ⇤B)i,j =
TX

r=1

FX

s=1

Ar,sBr+i-1,s+j-1 (11)

for A 2 RT⇥F and B 2 RI⇥J with 1 6 T 6 I- 1 and 1 6 F 6 J- 1

Figure 13: Illustration of the convolution operation, image taken from [57].

Here, we note that depending on the size of the kernel, the dimen-
sion of the output will be smaller than that of the input. Therefore,
to keep the dimensions constant, we can use a zero-padding opera-
tion which consists to add zeros to the border of the original input.
Furthermore, the norm is to apply an activation function after each
convolutional layer.

2.2.3.2 Pooling Layer

Each convolutional layer significantly increases the dimensionality of
the input data. Therefore, a pooling layer is often placed between con-
volutional layers in order to reduce the size of the feature maps. This
downsampling layer can either perform an average pooling, L2-norm
pooling or max pooling. For instance, the max pooling (depicted in
Figure 15) operation only keeps the maximum value in each regions
of a partition of the input. The pooling size refers to the factor to
which the map is reduced.

Figure 14: Example of a 2X2 max pooling.
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2.2.3.3 Fully-connected layer

The overall structure of a convolutional network usually consists of a
succession of convolution, activation and pooling layers. However, in
order to then perform correlation between the different feature maps,
this architecture is typically followed by one or many fully-connected
layers (see Figure 15). This fully-connected layer is a standard MLP,
where each neuron in layer l is connected to all neurons in layer l+ 1.

Figure 15: Example of a convolutional neural network for a task of ACE.

2.2.4 Ladder Networks

Recently, the ladder network (LN) has been proposed to allow a com-
bination of supervised and unsupervised learning [47]. In this ap-
proach, we use an auxiliary unsupervised learning task (here denois-
ing) to support supervised learning. This model has proved to give
very satisfying results for the hand-written digit classification task
[48]. However, as far as we know, the ladder network has not yet
been applied to audio classification tasks. In this section we present
the ladder network architecture.

2.2.4.1 Lateral connections and noise injection

One of the particularity of the LNs comes from the lateral connec-
tions of the encoder/decoder. As seen in Figure 16, each layer of the
encoder is laterally connected to the decoder. These connections aim
at relieving the pressure of higher layers. Thus, each layer concen-
trates more efficiently on their degree of abstraction.

Figure 16: Semi-supervised learning on ACE task, the supervised classifica-
tion (in blue) is reinforced by the unsupervised denoising autoen-
coder task (in green)

The lateral connection (from the layer l of the encoder to the layer l
of the decoder) and the vertical connection (from the layer l+ 1 of the
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decoder to the layer l of the decoder) are combined by a combination
function before to enter in the layer l of the decoder. This combination
function has a non-negligible impact on the overall performance of
the LN. In [46], Pezeshki et al. improve gradually the combination
function from a simple linear combination to a function enhanced by
multiplicative terms and sigmoïd non-linearity functions.

However, the choice of the combinator function seems less cru-
cial than the type of noise introduced in the denoising autoencoder.
Indeeed, the introduction of noise into each layer of the encoder
has a strong regularization effect that helps for the generalization.
Nevertheless, the most important aspect of the LN lies in its semi-
supervised training.

2.2.5 Reconstruction cost and loss function

The LN can be trained to minimize simultaneously the sum of super-
vised (Cross Entropy) and unsupervised (L2 reconstruction) cost func-
tions. We consider the dataset with N labeled examples {x(t),y(t)}16t6N

and M unlabeled examples {x(t)}N+16t6M. The output of x(t) per-
formed by the supervised part of the network is written y(t). The
cost function is then defined by

Cost = -
NX

t=1

logP(y(t) = a(t)|x(t))+
MX

t=N+1

LX

l=1

�lReconsCost(z
(l)(t), ẑ(l)(t))

(12)

Where L is the total number of layers, ẑ(l) and z(l) are respectively
the outputs of the supervised and unsupervised path at the layer l .
�l define the contribution of each layer by their reconstruction cost.
Moreover, these reconstructions costs are the most important proper-
ties of the LD and provide the desired regularization from unlabeled
data.

Finally, each layer of the LN, initially classic MLPs, can be replaced
by more specific ones such as CNNs.

2.3 temporal structure and memory

2.3.1 Recurrent Neural Networks

One of the largest issue in NN is its incapacity to store temporal infor-
mation. However, in our setup, we need to discover the underlying
structure of a music signal. Therefore, we need to design our model
with an understanding of time. Recurrent Neural Networks (RNN)
show promising results in many learning fields [11] including musi-
cal structure generation [16]. To define recurrent networks, we usually
rely on loops inside the network, where the output of a neuron is di-
rectly linked to itself for the next sequence element. The RNN can
also be interpreted as a neural networks with lateral connections as
seen in Figure 17
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Figure 17: Loops of a RNN unfolded through time, image taken from [54].

The inputs xi are processed by the RNN and it outputs a value hi.
The transformation is operated by a module A(xi,hi-1) that takes in
arguments the input xi and the output of the previous step hi-1.

When have then a mathematical formalism for the RNN :

hi = A(xi,hi-1) (13)

In a standard RNN, the function A has a very simple structure such
as a linear layer followed by a tanh layer.

The training of a RNN is realized by the Backpropagation Through
Time (BPTT). This algorithm works by fixing the amount of time steps,
unrolling the RNN in order to obtain a classic NN, and training it
with a standard backpropagation algorithm.

Nevertheless, standard RNNs tend to forget things quickly along
the time steps. Gated memory mechanisms solved this problem by
adding to standard RNNs few trainable gates that allow to select,
stock and transport the most important information for the task at
end. The two most used gated RNN structures are the Long Short-
Term Memory (LSTM) and the Gated Recurrent Unit (GRU).

2.3.2 LSTM

Generic RNN are limited in there capacity to learn long-term depen-
dencies and are hard to train [42]. An elegant variant, called LSTM,
has been introduced by Hochreiter and Schmidhuber [21]. It provides
good results in many use case [53].

Similarly to classic RNN, LTSM network performs a transforma-
tion of an input xi by taking into account the transformations of the
previous time steps. The difference between the two cells lies in the
structure of the module A. In classic recurrent neuron, the output of
the previous step hi-1 is send through a tanh layer (see Figure 18).
The reminiscence of information between distant time steps is then
relatively poor.

In LSTMs, an additional internal connection is present (see Fig-
ure 19). This connection carries information through time steps with
only some minor linear interactions. Thus, the information between
distant time steps could be unchanged.

In addition to this memory cell, the LSTM is composed by three
gates which control how to update and used the memory cell. The
gates are principally the combination of a sigmoïd layer followed by
a point-wise multiplication layer.
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Figure 18: Internal structure of a classical RNN cell, image taken from [54].

Figure 19: Internal structure of a LSTM cell, image taken from [54].

1. The forget gate controls which part of the memory cell to forget.
It looks at hi-1 and xi, select which dimension we have to keep
or forget and then update the memory cell.

2. The update gate decides which values to update, then compute
a new memory vector and add it to the previous vector.

3. The output gate controls which memory dimension must be
output to the next time step.

Furthermore, a LTSM network is composed by layer of LSTM units.
This construction allows to detect patterns at different abstraction
levels. This hierarchy vision is reminiscent of the structure hierarchy
in an audio track. Thus, LSTM network could operate at different
time scales.
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E X T R A C T I N G C H O R D L A B E L S F R O M A U D I O
S I G N A L

3.1 chord progression extraction

3.1.1 Definition of the workflow

Across the several tasks in the field of Music Information Retrieval
(MIR), the Automatic Chord Estimation (ACE) from audio signal is a
topic that has been widely studied over the past years [33]. Through-
out the literature, chord recognition systems are usually designed by
following the same workflow.

1. First of all, the audio signal is transformed into a time-frequency
representation. In the chord classification task, the Short-Term
Fourier Transform (STFT) or a logarithmic representation such
as the Constant-Q Transform (CQT) are often used.

2. Secondly, features are extracted and the signal is represented
by a chromagram (a matrix with 12 rows representing each pitch
class, and N columns corresponding to the number of time
frames of the audio track).

3. At the end, each time frame (or related chromagram frame) is
assigned by the system to a chord label. A post-filtering step,
which is also called chord sequence decoding is often performed
to smooth out the sequence of outputs.

3.1.2 Related works in Automatic Chord Extraction

In the seminal paper by Wakefield in 1999 [55], the first mathemat-
ical grounds for the definition of chromagram opened up its use for
the ACE field. Consequently, Hidden Markov Models (HMM) have
been amongst the first models investigated for chord extraction [51]
as post-filtering methods. Following these works, multiple variants of
this workflow were explored, either where other features have been
exploited such as the tonal centroid [18], or replacing the classifica-
tion methods with probabilistic N-Grams [50] or Dynamic Bayesian
Networks (DBN) [32].

In the recent years, several works relied on neural networks for
ACE. For instance, Humphrey and Belo [23] applied CNN to classify
major and minor chords. This new approach has raised a different
perspective on the problem, where a context (which takes several sec-
onds of pitch spectra) is classified directly by a CNN, without relying
on the explicit definition and computation of sound features before-
hand.

30
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Since then, the use of deep learning in the field of chord extrac-
tion has been explored in different parts of the traditional workflow.
Boulanger-Lewandowsky et al. [8] trained a RNN as a post filtering
method, over a feature extraction pipeline learned by a Restricted
Boltzmann Machine (RBM), making this whole approach entirely based
on learning methods.

The previously cited approaches were trained to distinguish be-
tween major and minor chords only. However, based on the excel-
lent results provided by learning methods, following works consid-
ered other chord types (seventh, augmented, or suspended) mapped
to major/minor as a novel classification problem. Hence, the Deep
Chroma Extractor system was proposed [27] to target this problem,
which aims to learn how to extract a chroma representation from
the audio signal with deep networks. Following this work, the same
authors proposed a method combining a CNN for feature extraction
with a Conditional Random Field (CRF) for chord sequence decoding
[26]. The CNN is trained to predict chord labels for each audio frame,
which provides hidden representations that are used as features for
the subsequent pattern matching and chord sequence decoding stage
performed by the CRF.

3.1.2.1 MIREX

In order to perform a systematic and objective evaluation of the ro-
bustness of the proposed approaches, ACE systems are compared in
an annual evaluation called the Music Information Retrieval Evalu-
ation eXchange (MIREX). For the ACE task, the MIREX chord label
dictionary is composed of five different alphabets.

1. Chord root note only;

2. Major and minor N (no chord), maj, min;

3. Seventh chords N, maj, min, maj7, min7, 7;

4. Major and minor with inversions N, maj, min, maj/3, min/b3,
maj/5, min/5;

5. Seventh chords with inversions N, maj, min, maj7, min7, 7, maj/3,
min/b3, maj7/3, min7/b3, 7/3, maj/5, min/5, maj7/5, min7/5,
7/5, maj7/7, min7/b7, 7/b7.

In order to perform these comparisons, MIREX evaluates the qual-
ity of an automatic extraction by comparing the results to a ground
truth created by one or more human annotators. The Chord Symbol
Recall (CSR) measure is typically used to estimate how well the pre-
dicted chords match with the ground-truth.

CSR =
total duration of segments where (annotation = estimation)

total duration of annotated segments
(14)
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We present in Table 1 the methods proposed for the ACE task in
MIREX 2016 as we will be using their results (detailed in Table 2) on
the same datasets as a baseline in order to evaluate the success of our
proposed methods (see Chapter 4).

Algorithm Contributors

CM1 (Chordino) Chris Cannam, Matthias Mauch
DK1-DK4 Junqi Deng, Yu-Kwong Kwok
FK2, FK4 Filip Korzeniowski
KO1 (shineChords) Maksim Khadkevich, Maurizio Omologo

Table 1: Contributors for MIREX 2016 in ACE, for more information see
MIREX website [31]

Algorithm 1 2 3 4 5

CM1 78.56 75.41 72.48 54.67 52.26
DK1 79.21 76.19 74.00 66.02 64.15
DK2 77.84 74.49 71.93 61.61 59.47
DK3 80.03 77.55 74.79 68.40 65.88
DK4 76.05 72.96 71.41 62.77 61.44
FK2 86.09 85.53 82.24 74.42 71.54
FK4 82.28 80.93 78.03 70.91 68.26
KO1 82.93 82.19 79.61 76.04 73.43

Table 2: ACE on Isophonics 2009 for MIREX 2016

3.2 datasets and audio pre-processing

We introduce in this section the datasets and the audio pre-processing
that will be used in the evaluation, based on the MIREX evaluation
guidelines.

3.2.1 Isophonics datasets

The Isophonics dataset is the major dataset for ACE over the past
years. It has been collected by the Centre for Digital Music at Queen
Mary of the University of London and is composed by 5 subsets. The
subsets are from The Beatles, Carole King, Queen, Michael Jackson
and Zweieck. The sum of all the subsets represents 300 MP3 files at
a sampling rate of 44100Hz with annotations on chords, keys, beats
and structural segmentations. Nevertheless, the different subsets that
composed Isophonics have not the same level of confidence. Besides
all of them the Beatles’s dataset (180 songs) created by Christopher
Harte [17] is the one with the highest level of confidence. The annota-
tions of the chords follows the syntax described on the Figure 20
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Figure 20: Syntax of Chord Notation in Isophonics, image taken from [17].

3.2.2 Audio transformation

In order to obtain an efficient representation of input signals, we need
to compute a time-frequency transform of the musical tracks. The an-
alyzed data is then a two-dimensional matrix X[m,k] where k is a
bin centered around a frequency and m is the temporal index of the
frame. However, this representation might remain computationally
intensive for learning. Therefore, a dimensionality reduction can be
performed by reducing the frequency resolution or temporal quantifi-
cation.

In this section, we discuss our choices regarding spectral trans-
forms and also introduce the audio data transposition which allows
us to augment the training dataset with transposed chords.

3.2.2.1 Short Term Fourier Transform

The Short-Term Fourier Transform (STFT) is a spectral transform which
is used to extract the sinusoidal frequency and phase content of local
sections of a signal. In the STFT, we divide the pressure signal, into
shorter segments of equal length (by performing a windowing oper-
ation) and then compute the Fourier transform separately on each
segment.

XSTFT [m,k] =
N-1X

n=0

x[n].w[n-m].e-i 2⇡k
N n (15)

where x[m] is the m - th sample of the signal and w[n] is the
window function, commonly a Hann or Gaussian window centered
around zero. The variation of the window length N is a trade-off be-
tween time and frequency resolution.
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3.2.2.2 Constant-Q Transform

The STFT gives a linear resolution of the frequency bands along a def-
inite range. However, the pitches in western music are rather based
on a logarithmic scale organization along the spectrum of audible
frequency. Thus, the STFT might not be the most optimized repre-
sentation for the study of musical chords. The Constant-Q Transform
(CQT) is also a spectral transform of audio signals, akin to the Fourier
transforms. However, this transform can be thought of as a series of
logarithmically spaced filters. Thus, in the CQT, the Q value, which
is the ratio between the central fk frequency to the bandwidth �fk is
constant :

Q =
fk
�fk

(16)

The windows length N becomes a function of the bin number
N[k] and the windowing function becomes a function of the window
length :

XCQT [m,k] =
1

N[k]

N[k]-1X

n=0

x[n].W[k,n-m].e-i 2⇡Q
N[k]n (17)

Therefore, an appropriate choice in the bank of filters allows us
to have a correspondence between the calculated bins and the music
notes. This property will be very helpful to simplify our implementa-
tion of the audio transposition for augmenting the training dataset.

3.2.2.3 Audio transposition

In the CQT we define a number of bin per octave. Hence, we can
artificially transpose our signal with a translation on our CQT rep-
resentation. We also transpose the metadataset by remplacing the
< natural > and the < modifier > accordingly (see Figure 20).

For our trainings, we choose to work with transpositions between
-6 and +6 demi-tone.

3.2.3 Chord alphabet reduction

All ACE algorithms do not generate the same alphabets of chords and
this choice influences the performance evaluation [44]. As mentioned
in our motivation, we are interested in the functional aspect of the
chord labels. Hence, we built our own alphabets that slightly differ
from these presented in the subsubsection 3.1.2.1.

We use three different alphabets for our classification task :

1. Major and minor: N (which means no chord), maj, min;

2. Major and minor, seventh, diminished chords: N, maj, min, maj7,
min7, 7, dim;
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3. Major and minor, seventh, diminished, augmented chords: N,
maj, min, maj7, min7, 7, dim, aug;

The most studied alphabet between them is the n°2. It represents
the harmonization of the major scale (Figure 3). With this alphabet
we can describe nearly all the jazz, rock and pop songs.

I II III IV V VI VII

C Major D Minor E Minor F Major G Major A Minor B Diminished

Table 3: Harmonization of the C Major scale.

Isophonics’dataset is annotated much richer than our desired al-
phabet, we then applied a chord alphabet reduction. This mapping is
a surjection M : CM0 ! CM2 where CM0 is the original domain with
the Harte’s notation [17] and CM2 = {N,maj,min,maj7,min7, 7,dim}

is the domain of the alphabet n°2. Our mapping associated all exist-
ing chords in CM0 with a chord in CM2.

3.2.4 Transforming the chords into pitch vectors

In a basic classification, a model does not take into account the dis-
tance between the output classes. Nonetheless, we want to include
in our model some information from music theory. For instance, a
CMaj7 is nearer to a Am7 than a C#Maj7. Our conception is based on
harmonic network such as Tonnetz, that has been already exploited
in many works on music information extraction [10, 24]. Thus, every
chord of our alphabet is transformed into a 12-D vector where each
dimension represents a pitch class.

3.3 our models

In this section, we present the results obtained for our different mod-
els. We trained two families of models, namely CNN and LN. Each of
these families are composed by different variants of these models. For
the CNN, we have the Vanilla one which has been introduced earlier
in this report (see Section 2.2.3). Here, we also tested the new propos-
als called Residual CNN and the Dense CNN. Both of these models
are CNN with additional skip-connections between layers. These con-
nections carry the untouched information from one layer to the next,
in parallel to the transformation path. For more details, the interested
reader can refer to the literature [19, 22]. We also implemented the LN,
while performing the same types of improvements. We replaced the
classic MLP layers with CNN layers and Residual CNN layers. For
all the models we are working on the Beatles dataset introduced pre-
viously. We transform the input pressure signal through a CQT with
24 bins per octave and a frequency range of 27 Hz to 3.5kHz. There-
fore, each frame contains 169 frequency bins, and we set the temporal
context to 10 steps. Each temporal step is equivalent to 0.2s from an
MP3 file, This implies that our overall context windows represent 2s
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of sound. These parameter choices are based on previous works [23,
26].

To evaluate our results in an objective way, we provide in Table 4
the results of a CNN for Maj/Min chord extraction without any post-
filtering method. These results have been obtained on the Isophonic
dataset with multiple transpositions.

Train Valid Test

82.81 77.8 77.48

Table 4: 5-Fold recognition accuracy for ACE on Maj/Min classification task
on Isophonics dataset with a CNN, results taken from [23]

A fold is a repartition of our dataset between train, valid and tests
subsets. On the table 4 the authors present results that are the mean
of 5 different folds. Nevertheless, our models were only tested on one
fold.

We trained our models with different configurations : with and
without transposition, with and without the chord to vector transfor-
mation and on the three different alphabets of the section 3.2.3.

3.3.1 Convolutional networks

The CNNs that we trained are composed by 3 layers, each layer has
500 neurons. The two first convolutional layers have 32 kernels (11
bin heights by 3 bin width), the last convolutional layer has also 32
kernels (5 bin heights by 2 bin width).

3.3.1.1 Vanilla

The table 5 shows the results of the ACE task using a vanilla CNN
without transposition on the dataset and without the chord to pitch
vector space transformation.

Train Valid Test

Alphabet n°1 85.51 73.16 73.34
Alphabet n°2 80.93 60.56 62.39
Alphabet n°3 81.71 55.27 59.80

Table 5: 1-Fold recognition accuracy for ACE on three different alphabet
with a classic CNN on the Isophonics dataset.

The other models are still under calculation, this report will be completed
in an updated version.
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I N T R O D U C I N G T E M P O R A L C O N T E X T A N D
M E M O RY

The interest of adding a temporal context in our model is twofold.
On one hand, this is a post-filtering method that completes our ACE
models. On the other hand, the memory of the musical structures can
be used for predictive models.

4.1 post-filtering methods for ace

The models presented on the previous part do not represent the
whole chain of ACE described on section 3.1.1. Indeed, the post fil-
tering step is missing. This step consists of smoothing the chord se-
quence obtained after the feature extractions. Among other methods,
we decided to train LSTM layers to achieve this task.

Figure 21: Complete ACE system using CNN/LN as feature extractor and
LSTM as post-filtering method.

On the Figure 21 the CNN (or the LN) extracts the features from
the signal x(t). These feature are combined to the prediction of the
LSTM realized on the last extracted features y(t- 1),y(t- 2), ...,y(0).

4.1.1 Real Book

In order to augment the amount of data for the training of the LSTM,
we used the dataset [12] composed of 2847 taken from the real book.
The real book is a compilation of jazz classics that has been firstly col-
lected by the students of the Berklee College of Music during the sev-
enties. As of today we count a lot of existing books (e.g Realbook (1,
2, 3), New Realbook (1, 2, 3), the Fakebook, the real Latin book). The
annotations of this dataset follow the ones of the Isophonics dataset.

4.2 generating new data from memory

In this part we present the generative aspect of the LSTM. We use the
same training than for the ACE task. Nevertheless, instead of doing
a prediction at only one step, we use the LSTM to generate chord
sequences.

37
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4.2.1 Generation of a chord sequence

As shown in Figure 22, we have as input a chord sequence {Gm,D7,Gm,D7,B[,Gm}

where each element is contained in an alphabet CM. The output of
the LSTM is a vector with a dimension equals to the number of ele-
ments in CM. This vector contains the prediction probabilities for the
next chord. If we select the chord with the highest probability, we can
add it to our initial sequence. Thus, at time t+ 1 we use this new se-
quence as input of the LSTM. A t+ n we obtain a scenario of length
n elements from the alphabet CM.

Moreover, if we don’t choose the chord with the highest probability
but the second one, we obtain a slight variant in the predicted chord.
Thus, we can generate multiple scenarios from the LSTM.

Figure 22: The chord sequence prediction is realized with adding element
to the chord sequence at each time step.

4.3 our models

Our LSTM model contains three layers. The number of LTSM units
by layer not exceed 500. During the training we use a maximum of 8
time-steps for the back-propagation. The time-step is relative to each
song and corresponds to its beat. The table 6 shows the results on the
tree different alphabets (see section 3.2.3.)

Train Valid Test

Alphabet n°1 38.55 30.05 31.44
Alphabet n°2 26.04 27.05 24.45
Alphabet n°3 14.62 15.88 16.62

Table 6: 1-Fold chord prediction task with a LSTM trained on 8 time-step
sequence from the realbook dataset.

At first view these results seem perfectible. Nevertheless, deeper
studies must be realized in order to analyze the output of the LSTM
for a given chord sequence. Indeed, even if the predicted chord is not
formally exact it could have a musical interest.
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4.4 towards real-time prediction

In our approach, we use machine learning methods for both the clas-
sification and the prediction task. We have then divided our system
in two part : a detection system which aims to discover the chords
playing and a predictive system.

The chord sequence sent to the LSTM is the one discovered by
the ACE system in the musician’s live record. Our overall software
architecture is depicted on Figure 23.

Figure 23: Our overall system architecture. Each frame of the audio flux is
processed by the ACE system. Then the chord sequence is sent to
a LSTM in order to predict the next chord.

We plan to use this software for real-time application. Indeed, the
musician signal would be process by MAX/MSP in order to extract
CQT frames. Then, the overall system should generate music chord
sequences based on this audio stream. Finally, the predicted chord
sequence would be sent at each time step to a scenario-based music
generation software (e.g. ImproteK).



5
C O N C L U S I O N A N D P E R S P E C T I V E S

The goal of this internship was to enhance computer co-improvisation
processes by introducing inference of short-term scenario. Thus, we
separated this task between the ability to extract structures in an au-
dio stream on one hand, and to generate symbolic music based on
this information on the other hand. Our application case was the de-
sign of an ACE system and a subsequent chord sequence generator.

For the ACE task, we focused on the feature extraction part of
the workflow. We pre-processed the data from Isophonics with CQT
and STFT transforms. Then, we augmented the data by using sets of
transpositions from the spectral transforms. We implemented various
architectures to compare the results between CNN, Residual CNN,
Dense CNN, LN, Convolutional LN and Residual LN models. We
assessed different models as well as their parameters and their train-
ing and testing procedures. The CNN models are trained with a su-
pervised learning algorithm whereas the LN models are trained in
a semi-supervised way. Furtehrmore, we proposed another training
process that takes as output a transformation from the chord label an-
notation to a pitch vector representation. This allowed us to define a
more accurate distance criterion for chords. We obtained results com-
parable to the state of the art even without taking into account all our
enhancements. Indeed, the global ACE system that includes LSTM
post-filtering has not been tested yet. However, given its preliminary
results, we can expect it to improve our results even further.

Secondly, we designed a LSTM network for chord sequence genera-
tion. We trained this LSTM network with the realbook dataset, which
allows to cast our problem into a purely symbolic inference task. This
approach allows to generate a scenario which is the continuation of a
given chord sequence. Moreover, the scenarios are not pre-calculated
but created from a probabilistic study on a large corpus. We showed
the applicability of this system and its encouraging results.

Finally, we designed the overall architecture of the system and pro-
posed an overarching workflow of our application that could be ap-
plicable to real-time setups. Nevertheless, we did not yet realize ap-
plication case use with musicians.

future work

Given the large amount of models and enhancements proposed in
this work, we are still currently waiting for the complete results for
all the models. As soon as all models are assessed, we plan to first in-
vestigate the reasons behind their relative successes and failures and
to perform hyper-optimization of the parameters for the best mod-
els. Then, this model will be trained on different musical annotations
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(chroma, chord progressions), in order to develop a multi-scale sys-
tem able to scrutinize temporal relationships at different time scales.

Furthermore, we strongly believe that the post-filtering method
would also largely improve our results. On the other hand, the LSTM
outputs could also be interpreted in a musical way. We intend to de-
fine this evaluation procedure in order to gain some insights on the
inference and generation process.

Regarding the overall system, a real-case use of our modules in-
cluding real-time human improvisation will be performed to confirm
the qualities and drawbacks of our proposals. Therefore, we plan to
test the complete system in real case application in order to have feed-
back from musicians.

Finally, a study on multivariate signals that could allow structure
inference and generation for multiple musicians could be performed
by relying on our overall framework.
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