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Résumé 
Ce document décrit l’évaluation expérimentale de deux des contributions effectuées dans la thèse 

de Ken Déguernel et décrites dans le livrable L2.1.1 : a) une nouvelle méthode d’improvisation qui 

combine une mémoire musicale probabiliste apprise sur un corpus de morceaux et un oracle des 

facteurs déterministe qui représente l’improvisation en cours ; c) une méthode de communication 

entre différents systèmes d’improvisation basée sur la théorie du « message passing » probabiliste.  
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Parcours de l’oracle des facteurs orienté par un modèle probabiliste 

Cette méthode est décrite dans les parties 2 et 3 du livrable L2.1.1. Afin de l’évaluer, nous avons 

généré différentes improvisations unidimensionnelles à partir d’oracles mélodiques construits 

chacun sur un morceau parmi 5 morceaux de Charlie Parker : 

• des improvisations de type OMax sans aucune utilisation de module probabiliste, 

• des improvisations avec un module probabiliste appris sur un corpus de 50 

improvisations de Charlie Parker, 

• des improvisations avec un module probabiliste appris sur un corpus de musique 

classique. 

Nous avons recueilli et analysé l’avis de Pascal Mabit, musicien professionnel de jazz, sur ces 

improvisations. D’après lui, l’impact du module probabiliste est audible et les improvisations 

générées avec ce module sont préférées aux autres. Des tests d’écoute supplémentaires sont en 

cours avec deux autres musiciens professionnels. Ce travail a donné lieu aux publications [1,2]. 

 

Communication entre oracles par belief propagation 

Cette méthode est décrite dans la partie 4 du livrable L2.1.1. Afin de l’évaluer, nous avons généré 

différentes improvisations multidimensionnelles à partir d’oracles mélodiques et harmoniques 

appris sur les 5 mêmes morceaux de Charlier Parker et communicant entre eux par propagation 

de croyances. Pascal Mabit a jugé ces improvisations réalistes et de bonne qualité musicale. Des 

tests d’écoute supplémentaires sont en cours avec deux autres musiciens professionnels. Ce 

travail est également décrit dans la publication [2]. 
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ABSTRACT

Automatic music improvisation systems based on the OMax
paradigm use training over a one-dimensional sequence to
generate original improvisations. Different systems use
different heuristics to guide the improvisation but none of
these benefits from training over a multidimensional se-
quence. We propose a system creating improvisation in a
closer way to a human improviser where the intuition of a
context is enriched with knowledge. This system combines
a probabilistic model taking into account the multidimen-
sional aspect of music trained on a corpus, with a factor
oracle. The probabilistic model is constructed by inter-
polating sub-models and represents the knowledge of the
system, while the factor oracle (structure used in OMax)
represents the context. The results show the potential of
such a system to perform better navigation in the factor
oracle, guided by the knowledge on several dimensions.

1. INTRODUCTION

Current automatic music improvisation systems such as
OMax [1] are able to learn the style of a one-dimensional
musical sequence (a melody represented by a sequence of
pitches or timbral audio features) in order to generate orig-
inal improvisations by recombining the musical material.
This style modeling can be performed live from a musi-
cian’s playing or offline with a corpus. Several systems
have been developed over the years using statistical se-
quence modeling [2], Markovian models [3] and other ma-
chine learning techniques [4]. However, most of these sys-
tems do not take the correlations between several musical
dimensions (pitch, harmony, rhythm, dynamic, timbre...)
into account.

Taking into consideration multiple dimensions and the re-
lations between them has been an issue for systems out
of the OMax paradigm. ImproTek [5, 6] makes use of a
prior knowledge of a scenario (for example a chord chart)
to guide the improvisation. SoMax [7] uses an active lis-
tening procedure enabling the system to react to its envi-
ronment by activating places in its memory. PyOracle [8]
uses information dynamics on audio features to create im-
provisations. Donze et al. [9] use an automaton in order to
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control the melodic improvisation with information about
other dimensions. But in all of these, the actual training is
still done on a one-dimensional sequence.

Training on multidimensional sequences has been stud-
ied by Conklin et al. [10] with multiple viewpoint systems
where different attributes of a melody (such as pitches, in-
tervals, contour...) are linked together for melody predic-
tion on Bach chorales. These systems have also been stud-
ied for four part harmonisation [11]. Raczyński et al. use
interpolated probabilistic models to do melody harmonisa-
tion [12]. This work proposes a flexible way to create a
global model from chosen sub-models whose weight can
be optimised and can be used in practice since the size of
the model is reduced in order to learn the dependencies be-
tween dimensions. This method also uses smoothing tech-
niques [13] to reduce overfitting issues that would other-
wise arise. Some multidimensional models based on deep
neural networks have also been proposed for the harmoni-
sation problem [14] or to create jazz melodies [15]. In this
case, the dependencies between dimensions are implicitly
represented in the hidden layers.

In this article we present a way to use interpolated proba-
bilistic models to create improvisations taking into account
multiple musical dimensions and the correlations between
them while keeping the benefits of the OMax paradigm and
its factor oracle based representation [16], in particular its
linear time oriented graph structure and optimised naviga-
tion scheme that make it a proficient tool for improvised
performance and interaction. These are well-established
methods that can profit from advanced smoothing and op-
timisation techniques. Moreover, they provide more ex-
planatory models than neural network and therefore can
provide us a deeper insight into the studied musical style
or the improviser’s mind.
We combine these models with the factor oracle [17] struc-
ture used in OMax, thus creating a new system with a musi-
cal training, able to use prior multidimensional knowledge
to guide itself in an improvisation context described by the
factor oracle.

In section 2, we explain how interpolation of probabilis-
tic models can be used to take multiple dimensions into
account for melody generation. Then, in section 3, we in-
troduce a system combining probabilistic models with the
factor oracle. And finally, in section 4 we present some
results of experimentations done with this new system.
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2. INTERPOLATION OF PROBABILISTIC
MODELS

2.1 Method

Our system relies on the work of Raczyński et al. in [12] on
automatic harmonisation. We want to create a probabilistic
model able to predict the melody given information from
different musical dimensions. Let us denote by Mt the
melody played at time t, represented by the pitch. We want
to predict :

P (Mt|X1:t) (1)

where X1:t is a set of musical variables from times 1 to t.
This model is able to take into account multiple musical di-
mensions since the musical variables included in X1:t can
be from several dimensions.
However, the combinatorics behind such a model are too
high, the set of possibilities being the cartesian product of
the set of possibilites of each dimension. Therefore such
a prediction cannot be used in practice. To make it appli-
cable, we approximate this global model by interpolating
several sub-models Pi, which are easier to compute, de-
pending only a subset of the musical variablesAi,t ⊂ X1:t.
For instance, we can use an n-gram model over a single di-
mension, or models representing the direct interaction be-
tween dimensions, for example, “which note should I play
at time t knowing the harmony at this time?”.
The interpolation can be linear [18] :

P (Mt|X1:t) =

I∑
i=1

λiPi(Mt|Ai,t) (2)

where I is the number of sub-models and λi ≥ 0 are the
interpolation coefficients such that

I∑
i=1

λi = 1

The interpolation can also be log-linear [19] :

P (Mt|X1:t) = Z−1
I∏
i=1

Pi(Mt|Ai,t)γi (3)

where γi ≥ 0 are the interpolation coefficients and Z is a
normalising factor :

Z =
∑
Mt

I∏
i=1

Pi(Mt|Ai,t)γi . (4)

The optimisation over the interpolation coefficients en-
able the system to accept as many sub-models as possible.
The most relevant sub-models will have a high interpola-
tion coefficient while irrelevant sub-models will receive an
interpolation coefficient close to zero. This could be ex-
tended with some sub-model selection similar to Model
M [20].

Two methods of smoothing techniques are used, the latter
being a generalisation of the former. [13].

• First we are going to use an additive smoothing which
consist of considering that every possible element
appears δ times more than it actually appears in the
corpus, with usually 0 < δ ≤ 1.

Padd(X|Y ) =
δ + c(X,Y )∑

X′
δ + c(X ′, Y )

(5)

where c is the function counting the number of times
an element appears in the corpus. This smoothing
enable the model to overcome the problem of zero
probabilities which often occurs with small training
corpora.

• Then, we are going to use a back-off smoothing which
consist of using information from a lower order model.

Pback-off(X|Y ) = λP (X|Y )+(1−λ)P (X|Z) (6)

where Z is a subset of Y . For instance, if P (X|Y )
is a n-gram, then P (X|Z) could be a (n− 1)-gram.
This smoothing enable the model to overcome the
problem of overfitting

2.2 Application to improvisation

In order to test sub-model interpolation for melody gener-
ation, we have used a corpus of 50 tunes from the Omni-
book [21] composed, played and improvised on by Charlie
Parker. We divided this corpus into three sub-corpora:

• a training corpus consisting of 40 tunes and impro-
visations in order to train the different sub-models,

• a validation corpus consisting of 5 tunes and impro-
visations in order to optimise the interpolation and
smoothing coefficients using cross-entropy minimi-
sation,

• a test corpus consisting of 5 tunes and improvisa-
tions.

We decided to use two sub-models :

P1(Mt|X1:t) = P (Mt|Mt−1)

P2(Mt|X1:t) = P (Mt|Ct)

where Mt represents the melody at time t, and Ct repre-
sents the chord label at time t.

We applied a combination of additive smoothing and back-
off smoothing techniques using P (Mt) as a lower order
model. Therefore, for the linear interpolation, we have :

P (Mt|X1:t) = αP (Mt) + βU(Mt)

+ λ1P (Mt|Mt−1) + λ2P (Mt|Ct) (7)

where α and β are the smoothing coefficients correspond-
ing respectively to the back-off smoothing and additive
smoothing, U is the uniform distribution and λ1 and λ2
are the interpolation coefficients. The conditional proba-
bilities are estimated using the counting function c.



coefficients cross-entropy
λ1 λ2 α β H(M)

B+M 0.582 0.129 0.289 0 4.543
B 0.672 0 0.328 0 4.572
M 0 0.639 0.361 0 4.881
U 0 0 0.998 0.002 5.858

Table 1. Cross-entropy results (bits/note) with linear inter-
polation. The results are shown for the smooth interpola-
tion of the bigram model and melody/chord model (B+M),
then for the bigram model with smoothing (B), then for the
melody/chord model with smoothing (M), and finally with
the smoothing alone (U) as a point of comparison.

In order to evaluate this model, we used the cross-entropy
on the test corpus :

H(M) = − 1

T

T∑
t=1

log2 P (Mt|X1:t) . (8)

This metric is in this case equivalent to the KL-divergence
up to an additive constant and represents the lack of un-
derstanding of the system. Therefore, the lower the cross-
entropy, the better the model prediction power.
In Table 1, we present some of the results obtained with lin-
ear interpolation. Note that all the results are shown with
the same smoothing technique in order to allow a proper
comparison. As shown, the model has a better prediction
power when using sub-model interpolation. However, the
improvement is quite small in term of cross-entropy. This
can be explained by the fact that the cross-entropy repre-
sents the system’s ability to reproduce the test data, while
improvisation is not about reproduction but about creativ-
ity, and as we said improvisation possibilities are unlim-
ited.

However, informal listening tests show some improve-
ment when using the interpolated model compared to a
classic n-gram model. But generated improvisation with
just this probabilistic model lack of consistency and of a
local organisation. Therefore, we have decided to go fur-
ther using this type of probabilistic model by combining
them with the oracle factor.

3. FACTOR ORACLE EXPLOITING A
PROBABILISTIC MODEL

The factor oracle is a structure coming from the field of
bioinformatics and language theory [17, 22] that has been
widely used in automatic improvisation systems such as
OMax [1, 16], ImproTek [5], SoMax [7] or PyOracle [8].
This structure is able to keep the linear aspect of what is
being learnt and create links, called suffix links, between
places in the memory with a similar context. An example
of factor oracle is shown Figure 1.

We designed a system combining the probabilitic model
able to take into account the multidimensional aspect of
music, with the contextual setting brought by the factor

a a b b a b b

b

b a

Figure 1. Example of factor oracle constructed on the
word w = aabbabb. Horizontal solid arrows are the tran-
sition, bent solid arrows are the factor links and dashed
arrows are the suffix links.

oracle. The idea was to conceive a system creating impro-
visation in a way closer to a human improviser. We were
inspired by this quote from Marilyn Crispell’s Elements of
Improvisation [23] (written for Cecil Taylor and Anthony
Braxton) :

The development of a motive should be done
in a logical, organic way, not haphazardly (im-
provisation as spontaneous composition) – not,
however, in a preconceived way – rather in a
way based on intuition enriched with knowl-
edge (from all the study, playing, listening, ex-
posure to various musical styles, etc., that have
occurred through a lifetime – including all life
experiences); the result is a personal musical
vocabulary.

First, we create a probabilistic module with all the sub-
models we want to take into consideration and the corre-
sponding interpolation and smoothing coefficients neces-
sary to the creation of the global probabilistic model. This
module can be trained on a substantial corpus offline, but
can also be trained (or updated) online with a musician’s
playing. In Crispell’s quote, this matches with the knowl-
edge acquired through the system’s lifetime.
Second, we create an oracle factor for which the construc-
tion of states, edges and suffix links only depends on one
dimension (usually the melody). The states can represent a
single note as in OMax or a musical fragment (for instance
a beat) as in ImproTek. In Crispell’s quote, this correponds
to the logic of the context in which the motive must be
developed. The oracle is created online with a musician’s
playing, or with a corpus (usually smaller than the one used
to create the probabilistic module).

The system is now able to improvise music, creating a
path in the factor oracle that is guided and enriched by the
knowledge from the probabilistic module. At each step,
knowing the state the system is in, all the reachable states,
and the musical contents in those states, we compute a
score for each possible transition corresponding to the in-
terpolation of the sub-models in the probabilistic module.
Thus, we are enriching with external knowledge the deci-
sion of which edge to follow. We can then normalise the
scores to obtain the probabilites of transitions and make a
random choice following the resulting probabilities.
Let Att(i) be the set of reachable states from state i follow-
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Figure 2. Using a multidimensional probabilistic model
P with an oracle factor. Let us consider that from state i,
the only reachable states are state j and state 1. Using the
context, µ1, and µi, P is able to compute a score for the
transition from state i to 1. Same thing for the transition
from state i to j using the context, µi and µj . The score
are then normalised to get P (i→ 1) and P (i→ j).

ing the heuristics explained in [16] (using suffix links and
reverse suffix links for instance). Let µi = {µMi , µCi , ...}
be the musical contents of state i, that is to say the set of
musical variables stored in state i during the oracle con-
struction (for instance, µMi represents the musical content’s
melody of state i). Then, for all j ∈ Att(i), the transition
probability in the oracle from state i to state j, knowing the
past context is :

P (i→ j|X1:t) =
P (Mt = µMj |X1:t)∑

k∈Att(i)
P (Mt = µMk |X1:t)

(9)

In practice, for X1:t, we use the musical contents from the
previous and current states of the path of the factor oracle.
Figure 2 illustrates this process for one step.

4. EXPERIMENTATION

To test the system proposed in the previous part, we gen-
erated some improvisations on Charlie Parker’s music fol-
lowing three methods.

1. Some improvisations were made with OMax with-
out any probabilistic module. The factor oracle was
constructed on one tune (theme and Parker’s impro-
visation).

2. Some improvisations were made with OMax with
a probabilistic module. The sub-models considered
are an n-gram model over the melody, and a rela-
tional model between melody and harmony. The
probabilistic module was trained on Charlie Parker’s
whole Omnibook (50 themes and improvisations),
and the factor oracle was constructed on one tune.
The Omnibook corpus was created manually using
MusicXML and includes both melodic information

and chord labels. The idea here is to have a proba-
bilistic module trained on a larger but similar corpus
to the tune used for the factor oracle.

3. Some improvisations were made with OMax with a
probabilistic module, similarly to the previous one,
but the corpus used to train the probabilistic mod-
ule is a classical music corpus of over 850 non im-
provised tunes while the factor oracle is constructed
on a Charlie Parker tune (theme and improvisation).
The classical music corpus was user-generated us-
ing MusicXML with both melodic and chord infor-
mation and was screened for improper chord labels
[12]. The idea here is to see how the system per-
forms when trained on a corpus of a different style
than the tune used for the factor oracle.

In the second and third method, the probalistic modules
were trained using both melodic and harmonic information
over all the tunes of each corpus. Three sub-models were
used:

P1(Mn|X1:n) = P (Mn|Mn−1)

P2(Mn|X1:n) = P (Mn|Cn)

P3(Cn|X1:n) = P (Cn|Cn−1)

where n is an index over the note of the melody. Mn is the
nth notes of the melody, and Cn is the chord played over
Mn.
Due to the nature of our dataset, we chose to use a small
amount of sub-models and very simple one as a proof of
concept. Better results would be expected with more sub-
models (as mentioned in 2.1) but would require more com-
plete data.

For each method, 15 improvisations were generated us-
ing 3 Charlie Parker tunes as reference : Au Private, Donna
Lee and Yardbird Suite.
The generated improvisations can be listened online at
members.loria.fr/evincent/files/smc16
and the MusicXML Omnibook corpus can be found at
members.loria.fr/evincent/files/omnibook.

First of all, the most significant difference seems to be
the harmonic stability appearing while using a probabilis-
tic module trained with either the Omnibook or a classical
music corpus. The improvisations generated using these
methods seem to follow a harmonic framework, while the
factor oracle is only constructed with the melody. For in-
stance, this can be heard on the first example of Au Private.
Second, when the probabilistic module is trained on a clas-
sical music corpus, while the harmonic stability is stronger,
Charlier Parker’s musical language looses its distinctive-
ness, as if the harmonic aspect was too strong a constraint.
For instance, this can be noticed on the third example of
Yardbird Suite. This comforts our initial idea that using
a multidimensional training over an appropriate corpus en-
ables our system to generate improvisations closer to a spe-
cific style.
Furthermore, according to listeners, the improvisations with
a probabilistic module are more diverse, fluid and creative

members.loria.fr/evincent/files/smc16
members.loria.fr/evincent/files/omnibook


than the simple oracle one. This is in part because the com-
bination of dimensions and the smoothing provide escape
mechanisms from usual mono-dimensional attractors (the
obsessive jingle phenomenon due to high conditional prob-
abilities and overfitting). For instance, this can be clearly
heard in the first example of Donna Lee.

These results are encouraging. We only tested this system
using melodic and harmonic relations, yet we can already
hear a significant improvement on how the improvisations
are guided through the factor oracle. This system could
be extended to represent other interdimensional relations,
in particular rhythm, beat phase and dynamic, with more
detailed data from live playings, and therefore can be used
for any style of music.
Moreover, this system’s modularity makes it very adapt-
able, and could be integrated in other existing systems :

• A probabilistic module could be integrated in Im-
proTek [5], where the evolution of one dimension
is predefined in a scenario. This would add some
smoothing in ImproTek’s improvisation and there-
fore expand its expressiveness.

• Similarly, a probabilistic module could be integrated
in SoMax [7] where some of the context would come
from active listening.

• Finally, this system could be adapted for PyOracle
[8] using an interpolation where the dimensions are
actually audio features.

5. CONCLUSIONS

We have shown the musical potentialities of the combina-
tion of probabilistic models with the factor oracle. This
creates a system able to follow the contextual logic of an
improvisation while enriching its musical discourse from
multidimensional knowledge in a closer way to a human
improviser. On the one hand, the probabilistic models en-
able the system to be trained on a multidimensional se-
quence and to take the relations between dimensions into
account. They also profit from advanced smoothing and
optimisation techniques which make them an efficient way
to represent the musical knowledge acquired through a life-
time by a musician. On the other hand, the factor oracle
is an efficient data structure able to represent the logic of
a musical context. This system shows good potential to
perform a better navigation in the factor oracle, generat-
ing improvisations closer to the desired style. Moreover,
this system could be easily adaptated to other existing sys-
tems (ImproTek, SoMax, PyOracle...), potentially improv-
ing their results.
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Probabilistic Factor Oracles for
Multidimensional Machine Improvisation

Abstract

This paper presents two methods using training over multidimensional sequences

for automatic improvisation. We first present a system combining interpolated

probabilistic models with a factor oracle. The probabilistic models are trained on a

corpus and provide information on the correlation between dimensions and are used to

guide the navigation in the factor oracle that ensure a logical improvisation. The

improvisation are therefore created in a way where the intuition of a context is enriched

with multidimensional knowledge. We then introduce a system creating

multidimensional improvisations based on interactivity between dimensions via

message passing through a cluster graph. The communication infers some anticipatory

behaviour on each dimension now influenced by the others, creating a consistent

multidimensional improvisation. Both systems are evaluated by a professional

improviser during listening sessions. Overall, they receive good feedback and show

encouraging results, first on how a multidimensional knowledge can help performing

better navigation in the factor oracle and second on how communication through

message passing can emulate the interactivity between dimensions or musicians.

Introduction

Our goal is to design a system able to generate multidimensional musical

improvisations. By "dimensions", we mean musical "layers" such as melody, harmony,

rhythm, timbre, etc. [Bimbot et al. (2014)]. To achieve this goal, this system must be able

to learn correlations between dimensions on a large musical corpus and, at the same
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time, be able to follow a local context constructed from a musician’s live playing or from

a smaller corpus (e.g. a single composer or a single piece) that constrains the

improvisation.

Several systems have been developed over the years for machine improvisation,

focusing first on one-dimensional improvisation with one-dimensional training, using

different methods from statistical sequence modelling such as compression-inspired

incremental parsing [Dubnov et al. (1998)], Markovian models [Pachet (2002)] and other

machine learning techniques [Dubnov et al. (2003)] or the use of a Factor Oracle

structure from the field of string processing, paving the way to the popular OMax

interactive improvisation software [Assayag and Dubnov (2004); Surges and Dubnov

(2013)]. Several ideas have spawned around the OMax project [Assayag et al. (2006)] to

approach the concept of polyphonic information in automatic improvisation. ImproteK

[Nika and Chemillier (2012)] has been developed for music based on temporal scenarios

(for instance a chord chart in jazz music). This system uses prior knowledge of a

scenario that can represent another dimension than the one being generated, to guide

the improvisation. [Donze et al. (2013)] use an automaton to control a melodic

improvisation through rule based grammars with information from other dimensions.

However, in these examples, the generated improvisations are still one-dimensional, and

the training is also one-dimensional. Indeed, Improtek focuses on co-occurrences

between the generated dimension and the specific scenario and [Donze et al. (2013)]

assumes manually specified rules, which do not generalise to other musical styles.

Training over several dimensions for one-dimensional generations has been studied

for music analysis and automatic composition. [Raczyński et al. (2013)] interpolate

probabilistic models of melody, harmony and tonality for a harmonisation task.

Methods using deep and/or recursive neural networks have also been employed to

create harmonisation [Bellgard and Tsang (1999)] and melodies over chord sequences
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[Bickerman et al. (2010)]. However, these systems are not constrained by a local frame.

More recently, multidimensional generation with multidimensional training has

been studied for automatic composition. [Padilla and Conklin (2016)] generate

counterpoint in the style of Palestrina with vertical viewpoints representing the

correlation between two voices. [Van Den Oord et al. (2016)] use deep neural network to

generate multidimensional music from raw audio. However, once again, these systems

cannot adapt to a local context.

In this article, we propose two systems. First, we present a system using training

over multidimentional sequences to guide its one-dimensional improvisation. Then, we

introduce a system generating multidimensional improvisation with a multidimensional

training. The first system was introduced in [Reference removed for anonymity(2016)]

and combines interpolated probabilistic models with a factor oracle. On the one hand,

the interpolated probabilistic models enable the system to consider the correlations

between dimensions and to benefit from advanced smoothing and optimisation

techniques. They represent the "cultural background" of the system and can be trained

on different corpora. On the other hand, a factor oracle represents the local frame of the

improvisation as per usual in OMax. This enables the system to consider a context of

variable length, similar to Variable Markov Models [Wang and Dubnov (2014)], usually

longer than the n-grams and to benefit from the expertise of the heuristics developed for

the navigation in the factor oracle in OMax [Assayag and Bloch (2007)]. By combining

these two aspects, we are able to create improvisations following the logic of a local

frame enlightened by a global multidimensional knowledge. We extend this work by

conducting an evaluation of this system with a listening session with a professional

improviser. The second system uses several agents communicating through a cluster

graph via message passing [Koller and Friedman (2009)]. Probabilistic Graphical Models

have been proven to be an efficient representation for the communication between
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musicians during a situation of free improvisation by [Kalonaris (2016)] but have not yet

been used for multi-agent music generation. Each agent represents either a dimension of

a musician and is represented by both a cultural background and a local frame. The

communication between agents makes them take a decision following their own logic

and knowledge, but influenced by the others in an interactive way. The combination of

all agents results in a multidimensional improvisation. This system is also evaluated by

a professional improviser.

In the first section we recall the theory behind probabilistic model interpolation and

smoothing techniques, then talk about the factor oracle and the heuristics used in Omax

for navigation. In the second section, we introduce the system combining probabilistic

models with the factor oracle. In the third section, we introduce the use of a cluster

graph for the communication between agents (represented in our case by factor oracles).

We first explain the theory of cluster graphs and the belief propagation algorithm and

then propose a model combining a cluster graph and probabilistic factor oracles. Finally,

we present the results of our listening session for both systems.

Probabilistic model interpolation and Factor Oracle

Probabilistic model interpolation

Method

[Raczyński et al. (2013)] used probabilistic models for automatic harmonisation on a

classical music corpus. We adapted this method for music generation ; the goal is to

create probabilistic models able to predict the evolution of one musical dimension using

information from various dimensions. For instance, let us consider the problem of

predicting the melody Mt played at time t (encoded by the pitch). We want to estimate

P (Mt|X1:t) where X1:t is a set of musical variables from various dimensions from time 1

to t. Such a model can not be computed in practice due to its high combinatorics when

4



using several dimensions on several time frames, the set of possibilities being the

Cartesian product of the set of possibilities of each dimension in each time frame.

Using probabilistic model interpolation enables us to consider several tractable

sub-models Pi depending only on a subset of musical variables Ai,t ⊂ X1:t in order to

approximate the global model. The interpolation can be linear [Jelinek and Mercer

(1980)] in which case

P (Mt|X1:t) =
I∑
i=1

λiPi(Mt|Ai,t) (1)

where I is the number of sub-models and λi ≥ 0 are the interpolation coefficients such

that
I∑
i=1

λi = 1.

The interpolation can also be log-linear [Klakow (1998)] in which case

P (Mt|X1:t) = Z−1
I∏
i=1

Pi(Mt|Ai,t)γi (2)

where γi ≥ 0 are the interpolation coefficients and Z is the normalising factor

Z =
∑
Mt

I∏
i=1

Pi(Mt|Ai,t)γi .

This method enables us to consider as many sub-models as we want. The chosen

sub-models are trained on a training corpus : the probabilities are estimated using a

counting function over all the elements appearing in the corpus. Then the interpolation

coefficients are optimised on a validation corpus in order to approximate at best the

global model. The optimisation is done using the cross-entropy metric, equivalent in this

case to the KL-divergence between the model and the validation corpus up to an

additive constant :

H(M) =
−1

T

T∑
t=1

log2P (Mt|X1:t) (3)

Cross-entropy represents the lack of understanding of the system. Therefore,

interpolation coefficients are optimised to minimise the cross-entropy. The most relevant

sub-models will be assigned large interpolation coefficients while irrelevant sub-models
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will receive interpolation coefficients close to zero. Sub-model selection [Chen et al.

(2009)] could be used in order to discard the irrelevant sub-models.

Smoothing techniques

When learning on a corpus, it is common that all the observed elements in the

training corpus do not include every single element that could appear during the test.

This especially occurs when the training corpora are limited, which is usually the case

for music improvisation where corpora cannot be expected to reach the virtually infinite

possibilities of a free improvisation. This leads to some zero-value probabilities that can

prevent some possible elements to be taken into consideration. Moreover, if the

sub-models chosen to represent the corpus are too complex, overfitting can occur.

Smoothing techniques are used to correct the probabilities estimated from a limited

corpus and prevent overfitting. Plenty of smoothing techniques have been created to fit

best to various applications. The following two techniques are among the most popular

[Chen and Goodman (1998)] :

• Additive smoothing : we consider that every possible element appears δ times more

than it actually appears in the corpus.

Padd(X|Y ) =
δ + count(X, Y )∑

X′
δ + count(X ′, Y )

(4)

where count is the function counting the number of times an element (here, a pair

of elements) appears in the corpus. This smoothing enables the model to overcome

the problem of zero-value probabilities, everything appearing at least δ times.

• Back-off smoothing : we interpolate the considered model with a lower order model.

Pback-off(X|Y ) = λP (X|Y ) + (1− λ)P (X|Z) (5)

where Z is a subset of Y . For instance, if P (X|Y ) is an n-gram, then P (X|Z) could
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be an (n− 1)-gram. This smoothing enables the model to overcome the problem of

overfitting. This smoothing technique can be used recursively. We can notice that

back-off smoothing is actually a generalisation of additive smoothing, since by

recursion we always end up with a uniform distribution of all elements (0-gram).

Using probabilistic models enable us to take into consideration several dimensions and

the correlation between them. However when used alone for generation, there is a lack

of consistence due to the fact that there is no component enforcing some kind of

repetitition and local logic to the improvisation.

Factor Oracle in the OMax paradigm

The factor oracle is a structure from the field of bioinformatics and language theory

first introduced by [Allauzen et al. (1999)] for optimal string matching and then used for

computing repeated factors and data compression by [Lefebvre and Lecroq (2000)]. It is

an acyclic automaton representing al least all the factors in a word w and for which the

construction algorithm is incremental and O(|w|) in time and space. This structure was

first adapted to music generation by [Assayag and Dubnov (2004)]. An example of factor

oracle is shown in Figure 1 on the word w = abcbacbaba. This structure offers two main

points of interest. First, it keeps the linear aspect of what is being learnt. For instance, in

Figure 1, we can notice that the word can be found following the horizontal arrows.

Second, suffix links are created during the construction of the automaton. These link

places in the memory with a similar context. For instance, in Figure 1, we can notice that

the states 5 and 8, linked by a suffix link, share the context cba. The musical idea is that it

is possible to jump from one point in the memory to another one linked by a suffix link

creating a new musical sentence but still preserving the musical style.

In [Assayag and Bloch (2007)], heuristics are developed for navigation in the factor

oracle in order to create more realistic improvisation, with for instance the use of a

continuity factor in order to avoid too many jumps, the use of a taboo list to avoid loops,
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Figure 1. Example of factor oracle constructed on the word w = abcbacbaba. Solid arrows are the
transitions and dashed arrows are the suffix links.

etc. The factor oracle showed good results for improvisation style modelling and has

since been widely used in machine improvisation systems such as OMax, ImproteK or

PyOracle. However, this structure is not appropriate for multidimensional sequences.

When considering several dimensions, the amount of possible event is drastically

increased (the alphabet would be the Cartesian product of the alphabet of each

dimension). Therefore, places in the memory with a similar context would be rare, even

perhaps inexistent, limiting the generation to something extremely similar, or an exact

replica of the memory, which would not be considered as an original improvisation.

Factor Oracle exploiting a probabilistic model

We introduce a system creating improvisations in a closer way to a human

improviser where the intuition of a context is enriched with knowledge and a cultural

background [Crispell (2000)]. The idea is to benefit from both the multidimensional

training of probabilistic models and the proficiency of the heuristics developed for the

factor oracle and its extremely efficient scheme for incrementally build up a variable

Markov type of linear memory.

On the one hand, a probabilistic module is created to represent the knowledge and

cultural background of the musician we want to emulate. We select a set of sub-models
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over the dimensions we want to take into consideration and apply interpolation and

smoothing techniques in order to compose our global probabilistic model. This

probabilistic module can be trained offline, prior to the performance, on a significant

corpus representing the multidimensional knowledge acquired through our musician

avatar’s lifetime.

On the other hand, during the performance, we construct in an online fashion a

factor oracle in a similar way as OMax from a musician’s playing or from any reduced

set of music such as a single piece following the dimension we want to generate (for

instance, the melody). This constitutes the representation of the local context of the

improvisation.

We then generate a machine improvisation creating a path in the factor oracle as

with OMax except that we guide the improvisation using the probabilistic module. The

factor oracle enforces the sequential logic and organic development of the motive being

generated and enables the system to consider a longer context than the probabilistic

module. This is thanks to the suffix links connecting each state with the previous state

with the longest common context and to the heuristics developed in OMax ensuring the

use of suffix links connecting states with at least a minimal common context. The

probabilistic module provides a deeper knowledge of music, thanks to its training on a

larger corpus, and enables the system to consider multidimensional information and

re-enforce higher level structures such as harmony over the purely sequential logic.

At each step of the navigation, if we are in state i of the factor oracle, we compute

the set of attainable states Att(i) considering the heuristics from [Assayag and Bloch

(2007)]. Then considering the musical contents of state i µi = {µMi , µCi , ...}, that is to say

the set of musical variables stored in state i during the factor oracle construction (for

instance, µMi represents the melody of state i and µCi represents the chord of state i), the

musical contents of all attainable states and possibly some information from the

environment, we compute a score for each potential transition corresponding to the
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interpolation of the smoothed sub-models from the probabilistic module. The scores are

then normalised to obtain transition probabilities. For instance, if we are generating the

melody Mt, for all j ∈ Att(i), the transition probability from state i at time t− 1to state j

at time t is :

P (i→ j|X1:t) =
P (Mt = µMj |X1:t)∑

k∈Att(i)
P (Mt = µMk |X1:t)

(6)

Finally, for generation, we chose the transition at random using those proper transition

probabilities. Figure 2 illustrates the process for one step.

The decision process for the navigation in the factor oracle is therefore enriched by

the cultural background encoded in the probabilistic module.

0 1 ... i j ...
P (i→ j)

P (i→ 1)

P

µi µjµ1

environment

Figure 2. Using a multidimensional probabilistic model P with a factor oracle. Let us consider
that from state i, the only reachable states are state j and state 1. Using the context, µ1, and µi, P
is able to compute a score for the transition from state i to 1. Similarly, for the transition from state
i to j using the context, µi and µj . The scores are then normalised to get P (i→ 1) and P (i→ j).

Cluster graphs and message passing between oracles

In this section, we propose a model where several factor oracles can communicate

through message passing. Each oracle can represent either a musical dimension or a

musician. The main idea is to get closer to multi-agent systems that are more
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representative of a real free collective improvisation scenario. The method we propose

could therefore be used to create a polyphonic and/or multidimensional improvisation,

for instance a multi-instrument improvisation, a florid counterpoint or a melody /

accompaniment duet. In the case of a multi-instrument scenario, this could represent the

interactions between musicians, all trying to anticipate what the others are going to play

in order to guide their own logic in their improvisation to have a real collective play.

This could also represent the cognitive process of an individual musician playing over

several dimensions, trying to figure out the best way to conduct their improvisation

using knowledge from all these dimensions (e.g. by improvising simultaneously over

the melodic and harmonic dimensions). The different oracles communicate with

probabilistic messages giving information about what they are about to do to inform the

others. This way every agent can make an informed decision accordingly. Message

passing is organised on a graph representing which dimension each agent is working on

and which dimensions it is listening to.

We first present the theoretical tools [Koller and Friedman (2009)] needed to use the

belief propagation algorithm and then we present our method for multidimensional

improvisation.

Cluster graph and message passing

Cluster graph

Let X be a set of random variables. A factor φ is a function from Val(X) to R. The

set of variables X is called the scope of the factor and noted Scope[φ]. Note that in our

case, the notion of factor includes both joint probabilities and conditional probabilities.

This will correspond to our sub-models.

A cluster graph U for a set of factors Φ over a set of variables X is an undirected

graph for which each vertex is associated a subset of variables Ci ⊆ X named cluster and

each edge between two clusters Ci and Cj is associated with a sepset Si,j ⊆ Ci ∩ Cj , that is
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a subset of variables shared by the two clusters about which they will communicate.

Considering a set of factors Φ = {φ1, ..., φk}, each φk is assigned to a cluster Cα(k)

such that Scope[φk] ⊆ Cα(k). The initial belief of the cluster Ci is defined by

ψ(Ci) =
∏

k;α(k)=i

φk . (7)

Figure 3 gives an example on how to distribute factors on a cluster graph. Note that, in

this example, other distributions could have been chosen, for instance φ2 could have

been assigned to C1. In this case, we would have ψ1 = φ1.φ2 and ψ2 = φ3 instead.

1: A,B,C

2: B,C,D

3: B,E

4: D,E

5: B,D,FC

B

B

D

E

B

D

ψ1 = φ1

ψ2 = φ2.φ3

ψ3 = φ4

ψ4 = φ5

ψ5 = φ6.φ7

φ1(A,B,C), φ2(B,C), φ3(B,D), φ4(B,E), φ5(D,E), φ6(B,D), φ7(B,D, F )

Figure 3. Example of factor distribution on a cluster graph.

A cluster graph must follow these properties (note that the example in Figure 3

satisfies them):

• Family Preservation : for each factor φk ∈ Φ, there must be a cluster Ci such as

Scope[φk] ⊆ Ci. This way, we make sure that every factor can be assigned to a

cluster and more generally that all the information we want to take into account

can be included in the cluster graph.

• Running Intersection Property : for each pair (Ci, Cj) of clusters and any variable

A ∈ Ci ∩ Cj , there is a unique path between Ci and Cj on which every cluster and
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sepset includes A. This is equivalent to the fact that, for any variable A, the set of

clusters and sepsets including A forms a tree. This property has two consequences.

First, the existence of this path enables the information about A to travel to every

cluster including A. Second, the uniqueness of this path prevents the situation

where the information about A goes in circle spawning false rumours.

Belief Propagation algorithm

The belief propagation algorithm is based on probabilistic message passing between

clusters. The message passed from cluster i to cluster j over the variables from the sepset

Si,j is noted δi→j(Si,j) and is defined by :

δi→j(Si,j) =
∑
Ci−Si,j

ψi
∏

k∈(Ni−{j})

δk→i (8)

where Ni is the neighbourhood of i.

For instance, in Figure 3, the messages passed between cluster 1 and 3 are :

δ1→3(B) =
∑
A,C

ψ1(A,B,C)δ2→1(C)

δ3→1(B) =
∑
E

ψ3(B,E)δ2→3(B)δ4→3(E)δ5→3(B)

Note that δi→j(Si,j) does not depend on δj→i(Si,j). This prevents the repetition of the

information we receive from a cluster to the same cluster which would result in the

spawning of false rumors.

The belief propagation algorithm follows these steps :

1. Assign each factor φk in Φ to a cluster Cα(k).

2. Compute the initial beliefs ψi(Ci) =
∏

k:α(k)=i

φk.

3. Initialise all the messages to 1.

4. Repeat message updates following formula (8).
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5. Compute final beliefs :

βi(Ci) = ψi
∏
k∈Ni

δk→i (9)

For a cluster, the final belief is a new factor based on its initial belief updated by

inference of the information from the other clusters. βi(Ci) is an approximation of the

marginal probability P (Ci).

The convergence of the belief propagation algorithm is not guaranteed for any

cluster graph. Note also that the order in which the messages are updated can have an

influence on the convergence and on how fast it is. However, there is no way to

determine the optimal order for message updates, this being completely dependent on

the cluster graph construction. Generally, cyclic message updates have been proven to

give the worst result in practice. In what follows, we have chosen to do message updates

in a random order to avoid any bias.

The only particular case for which this algorithm converges every time towards an

exact inference, for any order of message updates, is cluster trees. However, even if

theoretical convergence is not guaranteed, this algorithm shows good results in practice

[Koller and Friedman (2009)].

Communication between oracles for improvisation

Our goal is to use the combination of smoothed sub-models with the belief

propagation algorithm on a cluster graph in order to make several factor oracles

communicate with each other and therefore create a multidimensional improvisation

where several dimensions are generated at the same time. Each oracle represents a

dimension or a musician and is trained on a context accordingly. The paths on the

oracles are guided by both the probabilistic modules defining the initial potentials and

interpolation coefficients and the message passing between oracles through the cluster

graph. This way, the oracles make a general choice of their path from internal and
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1: Mn,Mn−1 2: Mn, Cn

3: Cn, Cn−14: Cn,Mn

Mn

Cn

Cn

Mn

Oracle M

Oracle C

δ1,2

δ2,3

δ3,4

δ4,1

δ2,1

δ3,2δ4,3

δ1,4

P (Mn|Mn−1)
P (Mn|Cn)
P (Cn|Cn−1)
P (Cn|Mn)

P
φ1

φ2

φ3

φ4

Figure 4. Cluster graph for multidimensional melody and harmony improvisation.

external knowledge.

In Figure 4 we show the cluster graph we used to create an improvisation with both

melodic and harmonic data. We use n-gram models for melody and for harmony,

respectively P (Mn|Mn−1) and P (Cn|Cn−1) and models representing the direct relations

between melody and harmony : P (Mn|Cn) and P (Cn|Mn). Two oracles are constructed

on the local context : Oracle M on melody and Oracle C on harmony. For each oracle two

clusters are created : a first one for the temporal aspect of the dimension, and a second

one for direct relation between the two dimensions. Note that this cluster graph respects

both the family preservation and running intersection properties and is therefore

suitable for the belief propagation algorithm.

At each step of the generation, each oracle provides its attainable states and its

musical contents. The probabilistic module computes the factors φi corresponding to the

smoothed sub-models. This provides the initial potential for each cluster of the graph.

The messages δi,j for the belief propagation are then updated ten times in a random
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order. We then compute the final beliefs βi(Ci) for each cluster. Therefore, we can, on the

one hand, estimate P (Mn) from β1(C1) = β(Mn,Mn−1) or β2(C2) = β(Mn, Cn). For

instance :

P (Mn) '
∑
Cn

β(Mn, Cn). (10)

In theory, if the algorithm converged and produced exact inference :

∑
Cn

β(Mn, Cn) =
∑
Mn−1

β(Mn,Mn−1) = P (Mn). (11)

On the other hand, we can estimate P (Cn) from β3(C3) = β(Cn, Cn−1) or

β4(C4) = β(Cn,Mn). The estimated P (Mn) and P (Cn) are normalised to obtain transition

probabilities respectively in Oracle M and Oracle C, as in the previous section. Each

oracle then takes a decision regarding its own transition following these transition

probabilities.

This model can be extended to a higher number of dimensions, musicians or a

higher number of sub-models as long as the constructed cluster graph follows the family

preservation and running intersection properties. Moreover, one of the main interest of

this method is that it would be possible to use several probabilistic modules (one per

oracle) trained on different corpora to emulate the style of different musicians, creating

an individuality for each agent, and making this system more versatile than a system

using a centralised knowledge with joint probabilities.

Experimentation

To evaluate the methods presented in this paper, we have generated improvisations

using Charlie Parker’s Omnibook [Parker and Aebersold (1978)] as a corpus. This

corpus consists of 50 tunes composed, played and improvised on by Charlie Parker with

symbolic melodic and harmonic data. This corpus can be found at [url hidden for
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submission anonimity]. This bebop jazz musician has a fairly distinctive style and is

therefore a good choice to assess the style modelling of our methods. We divided this

corpus into three sub-corpora : a training corpus consisting of 40 tunes and

improvisations in order to train the different sub-models; a validation corpus consisting

of 5 tunes and improvisations in order to optimise the interpolation and smoothing

coefficients ; a test corpus consisting of 5 tunes and improvisations used to create the

factor oracles during generation.

We conducted listening tests with Pascal Mabit, a professional jazzman, saxophonist

and jazz teacher, graduated with a Master’s Degree from the Conservatoire National

Supérieur de Musique et de Danse de Paris in order to have a formal evaluation of the

generated improvisation. As a jazz saxophonist, he is very familiar with the music of

Charlie Parker and therefore able to provide us valuable feedback. Examples of

generation for the different experiments are available at [url hidden for submission

anonimity].

Factor oracle and probabilistic model

Guiding improvisation with a probabilistic model

In order to evaluate our model with a Factor Oracle exploiting a probabilistic model,

we conducted two experiments. First, we generated free improvisations in order to

compare the improvisation generated with a Factor Oracle alone and with a Factor

Oracle combined with a probabilistic model. We chose to use two sub-models :

• a bigram on the melody P1(Mt|X1:t) = P (Mt|Mt−1),

• a model representing the correlations between melody and harmony

P2(Mt|X1:t) = P (Mt|Ct).

Those sub-models and the interpolation and smoothing coefficients are trained on the

Omnibook corpus, respectively on the training corpus and the validation corpus. In this
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experiment, the harmony is not played. However, the chord chart of the original tune is

followed when generating an improvisation with the probabilistic module. We

generated a dozen of improvisations by both methods on two tunes: Anthropology (a

rhythm change), and Donna Lee.

Mabit noticed a clear difference between the two methods in terms of harmonic

progression. Without the probabilistic model the harmony wasn’t clear, or arranged in a

random way (except when the improvisation was direct quotes from the theme).

"Harmony makes sense in a continuity. [...] At the moment, it doesn’t take that into

account, or it is juxtaposing them in a random manner. We don’t really hear

harmony. We hear note after note, or sentences after sentences. And even inside

sentences, there is not necessarily any harmonic sense."

When using a probabilistic model, he was at some times able to say which chord the

improvisation was playing on, despite it not being played. Moreover, he found that

there was a clear sense of the succession of tonal centres. Despite that, the improvisation

preserves the global style of Charlie Parker thanks to the local context provided by the

Factor Oracle. On Donna Lee, Mabit also noticed that this method is not too constrained

by the harmony and is able to play the whole range of a tonality.

"First of all, we can hear more of a chord progression, or rather of the tonal centre.

All the beginning was in Bb Major, with turns of phrase, ornaments, things like that,

that correspond to the be-bop or Charlie Parker’s style.[...] We can really hear when it

goes to the fourth degree, it plays the minor fourth degree, and then comes back..."

However, on top of some harmonic mistakes, there are still some hazy moments in the

improvisation, especially on the bridge of Anthropology due to a lack of understanding

of the global form of the chord chart. More generally, the improvisations make sense

from a harmonic point on view on a local scale, but lack of construction and logic with

regard to the position in the chord chart. This comment was expected since this problem

18



exists in every system in the OMax paradigm and our method did not intend to solve

this particular problem.

"When it will understand the idea of a global form, it will be even better, because at

the moment, I feel like it takes the chords one after the other. [...] What it does works

with the chords but it doesn’t always make sense."

This first experiment showed good results overall. The impact of probabilistic model can

be noticed by a professional jazzman and the generated improvisations are preferred

when using one. Some limitations of both systems were pointed out by Mabit, especially

about the lack of global form.

About the corpus choice

We then conducted a second experiment to see if differences could be heard when

using probabilistic models trained on different corpora. We generated several

improvisations on Anthropology and Donna Lee without any rhythmic information

(only quarter notes and quarter rests were played) to avoid rhythmic offseting on the

respective chord charts that are now being played along with the improvisation to

highlight the melody/harmony relations. We first generated improvisations using the

Omnibook corpus for training, and then using a training corpus consisting of about a

thousand classical music tunes from all period instead. The Factor Oracles are in both

cases constructed on Charlie Parker’s tune.

At first, Mabit did not notice a big difference between the two corpora due to the

dominance of the local context provided by the Factor Oracle. The elements of

improvisations from Charlie Parker are strong and are the main focus, therefore the

influence from classical music is less clear. But after a while, Mabit concluded that when

using the classical music corpus, the improvisations seemed to aim more for the notes in

the chords than when using the Omnibook corpus. The improvisation seemed more

careful, and therefore sounded better from a harmony point of view.
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"The most credible method in my opinion is the last one. The one with the classical

music corpus. It works better because there is a better consideration of the harmonic

spaces, it takes more into consideration what is going on on each chord. [...] It sounds

like someone who plays with the harmony and takes some liberties. With just Charlie

Parker, it follows the chord chart but it takes turns that don’t always make sense."

At the end of this experiment, we can say that a difference can be noticed when using

different corpora. However, unlike what we first thought, probabilistic training over a

Charlie Parker corpus does not necessarily provide more realistic improvisation. This is

mainly due to the fact that both methods share the same Factor Oracle providing a

strong local context. Moreover, the classical music corpus provides harmonic

information that is stricter and might be more realistic considering Charlie Parker’s

musical influences (Buster Smith, Lester Young, Stravinsky, and a lot of classical music).

Cluster graph and communication

To evaluate our interactivity model with cluster graph and message passing, we

used the cluster graph previously shown in Figure 4 to generate both melody and

harmony. Once again, no rhythmic information was considered for the melody which

plays only quarter notes and quarter rests. The probabilistic model was trained on the

Omnibook corpus. We generated multidimensional improvisations on Anthropology

and Donna Lee, on which the melodic and harmonic Factor Oracles were constructed.

Both dimensions were played.

Mabit thought that the generated improvisation were quite realistic, and could even

represent a real life situation. The generated harmonic progression wasn’t exactly the

real chord chart but was logical and sounded like a real jazz song, and could have easily

been played upon.

"It’s funny, it really sounds like a wacky idea from the CNSM experimental

improvisation class. Like, we work one month on Donna Lee, just Donna Lee, and
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now we know the chords and play Donna Lee but in an unstructured way."

Mabit noticed that the melody followed the harmony properly, but might be too

subordinated to the harmony, and therefore was less convinced by the generated melody

that felt a bit bland at times and was not enough reactive.

"It seems like the two voices kind of know, or exactly know what is going on with

each other at all time, so it is the point where they know too much and it restricts

them. [...] In improvisation, there is also a concept of reactivity, not just anticipation.

There, it feels like there is only anticipation."

Generally, the generated multidimensional improvisation seemed quite realistic and

musical. Even if feeling a bit constrained by too much anticipation and a limited local

context, this system improvises several dimensions with both a horizontal and vertical

logic, and provides encouraging results.

Conclusion and discussion

We presented two methods able to learn multidimensional information in order to

generate musical improvisations. First, we have shown the musical potentialities of

combining probabilistic models with a factor oracle to guide the improvisation. The

probabilistic models provide an efficient way to represent the relation between

dimensions and can benefit from advanced smoothing techniques and optimisation for

interpolation that make them an efficient and comprehensive way to model the cultural

background of a musician. The Factor Oracle is a structure that exploits efficient

heuristics to represent the local context and the logic behind the development of a

motive played by a musician. Therefore the proposed method is able to follow the

contextual logic of an improvisation while enriching its musical discourse from

multidimensional knowledge in a closer way to a human improviser.

Second, we have introduced a method modelling the interactivity between several
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musicians, or between several dimensions in an improviser’s mind. This method is able

to generate actual multidimensional improvisations. The communication between

agents is conducted via a cluster graph. Smoothed probabilistic models are used as prior

knowledge, and a belief propagation algorithm with message passing is used. Once

again, the local context of each dimension is represented by a Factor Oracle. This way

each agent is able to make a global decision regarding its own generation using both

internal and external knowledge.

Both methods were evaluated with a listening test conducted with a professional

jazz saxophonist. Both methods received overall good feedback and seemed to be able to

generate quite realistic improvisations. Some limitations of the current status of these

methods were raised during the listening session, especially about the lack of global

form for the melodic improvisations. This could be studied for instance with the use of

recurrent neural networks (for the probabilistic aspect) [Eck and Lapalme (2008)] or with

a generative grammar describing the multi-scale organisation of the improvisation (for

the deterministic aspect) [Lerdahl and Jackendoff (1983); Chomsky (1996)].

These methods could be adapted to work with other existing improvisation systems

such as ImproteK, PyOracle, etc. in order to improve their results. This work also open

the doors to musicology research to create more realistic avatars of musicians, trying to

find out what were the influences of a musician and by training probabilistic models on

a corpus comprising these influences, while focusing generation on the musician’s own

music through its factor oracle.
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