
Somax 2: A Real-time Framework for Human-Machine

Improvisation

Joakim Borg

19 December 2019

Abstract

In this paper a modular framework for real-time, human-machine
improvisation is presented. The framework improvises over an au-
dio or MIDI corpus by recombining its content, while listening and
adapting to incoming audio or MIDI signals. The adaptation model
consists of multiple layers in a tree-like structure, where each layer
listens to a specific parameter (hard-filtering) and the matches in
each layer are merged and scaled (soft-filtering) based on further
parameters. The structure of the tree and choice of parameters is
fully customisable by the user through a modular front-end written
in MaxMSP.

1 Introduction

Over the past two decades, several real-time systems
for machine improvisation that, to some extent, inter-
acts or relates to a human musician have been devel-
oped. The term machine improvisation stems from
the fact that the system has some sort of musical
”understanding” of the content it is performing and
that the output is being generated on the fly.

Among the more impactful examples of such a sys-
tem is OMax [2], [3], which listens to an input, anal-
yses its content and then improvises over it by re-
combining its content while maintaining its internal
structure. Several systems for human-machine im-
provisation have been developed that to some extent
stems from OMax. Among these are Somax [5], [6],
which adds the concept of reactivity to the OMax
model, allowing the system not only to draw its mate-
rial from an input, but to react to a musician in real-
time, hence creating a situation of co-improvisation.
Another system, Improtek [10], [11], adds the con-

cept of temporal scenarios and contextual awareness
to the model. Recently, the DYCI2 project [12] was
designed with the intention to merge these three sys-
tems into a single framework, but several other sys-
tems that to some extent stem from OMax have been
developed over the years as well, for example the Py-
Oracle [14] and Mimi [9].

In this paper, an updated implementation of the
Somax system is presented. Here, the original ar-
chitecture of the system has been modularised into
a set of building blocks, allowing the user to con-
struct a custom model for listening and reacting and
even implement new behaviour. Section 2 outlines
the theoretical framework of the system and largely
reiterates the content of [6], but with a higher fo-
cus on implementation details. Section 3 presents
the new architecture, which consists of a server writ-
ten in Python and a set of MaxMSP objects used
to construct a front-end, where the Python server
and MaxMSP front-end are communicating with each
other over the OSC-protocol [16].

1



2 The Somax Model

The architecture of Somax consists of three main
components: a corpus or data model, created from
one or multiple audio and/or midi files, from which
the output will be generated, a set of listening mod-
ules, which analyses and mixes the input from one
or multiple audio/and or midi sources, and a set of
matching modules, that determines how the output
generated from the corpus will be matched to the in-
put.

2.1 The Corpus

The corpus is the data model from where Somax ex-
tracts its output. A corpus C is constructed from
a set of (by the user provided) audio and/or midi
files by segmenting the content of the file(s) along the
time axis into a set of slices


S(1), . . .S(U)


, where

for midi slicing is done at each note-on (see figure
1), and for audio the slicing is done at each beat,
where the positions of the beats are estimated with
the dynamic programming approach described in [8].
For each slice, the onset time, duration, tempo, pitch
and soft harmonic context is calculated and stored in
the corpus.

Figure 1: Example of temporal segmentation of midi
notes into slices.

The soft harmonic context is computed by calcu-
lating the chromagram of the file and applying a low-
pass filter along the time-axis, so that notes from
each slice maintain a degree of impact on the con-
secutive slices. For audio files, a constant-Q chro-
magram C ′ = [c′0, . . . , c

′
N−1] ∈ R12×N is calculated

with a hop length of γ seconds and then filtered with
a one-zero filter so that the soft harmonic context

C = [c0, . . . , cN−1] is given by

cn =
1− γ

τ
c′n−1 +

γ

τ
c′n (1)

where τ is the decay rate of the soft harmonic context.

For a midi corpus consisting of Q midi notes, a
pseudo-chromagram is computed. Firstly, an ampli-

tude (or score) h
(q)
0 [t] is computed for each midi note

M(q) , with note number m
(q)
0 ∈ [0, 127], note-on at

time t
(q)
on and note-off at time t

(q)
off :

h
(q)
0 [t] =






1− e−
t−t

(q)
on

τa if t ∈

t
(q)
on , t

(q)
off



h
(q)
0


t
(q)
off


e−

t−t
(q)
off

τr if t ∈

t
(q)
off , t

(q)
end



0 otherwise,

(2)

i.e. as an attack-release envelope over time t ∈
t
(q)
on , t

(q)
end


, where τa and τr are parameters control-

ling the slope of the attack and release respectively

and t
(q)
end is the end of the time interval from the note-

off during which the note still influences the harmony,
given by

t
(q)
end = t

(q)
off − τr ln

0.05

h
(q)
0


t
(q)
off

 . (3)

For each note M(q), K harmonics are created with
amplitudes

h
(q)
k [t] = 0.5kh

(q)
0 [t] k = 1, . . . ,K (4)

and note numbers

m
(q)
k = m

(q)
0 + round (12 log2 k) . (5)

A MIDI pitch matrix P ∈ R128×N is created and
iteratively updated for each note M(q) by inserting

the amplitudes h
(q)
k [t] as rows in P , i.e.

(P )
m

(q)
k ,n

:= max

(P )

m
(q)
k ,n

, h
(q)
k [n]


(6)

k = 0, . . . ,K, n = 0, . . . N − 1, q = 1, . . . , Q.

2



Finally, the chromagram C ∈ R12×N is computed
by summing all rows corresponding to each pitch
class, i.e.

C = IP , (7)

where I ∈ Z12×128 and

(I)i,j =


1 if j ≡12 i
0 otherwise.

(8)

For each slice S(u) in the corpus, its soft harmonic
context c(u) is set to the column of C corresponding
to the time of the note-on (in the case of midi) or to
the element-wise mean of the columns corresponding
to the time interval of the slice (in the case of audio).

Each slice is assigned a chroma label θ
(u)
c ∈ [0, 121] by

comparing it with a pre-labelled set of chroma vectors
(see [6] for details on the labelling), where the label
of S(u) is given by the label of the vector in the set
that minimises the euclidean distance to c(u).
Finally, the slice is assigned a pitch label θ

(u)
p . For

audio corpora, θ
(u)
p ∈ [0, 11] and

θ(u)p = argmax

c(u)


. (9)

For MIDI corpora, θ
(u)
p ∈ [0, 140] where the range

[0, 127] correspond to MIDI note numbers, the range
[128, 139] correspond to virtual fundamentals [15] of
pitch classes [0, 11] and 140 correspond to silence.
The label is determined by the number of notes in
the slice. If the slice contains zero notes, it will be
assigned the label 140. If the slice contains a single

note, θ
(u)
p = m, where m ∈ [0, 127] is the note num-

ber. If the slice contains multiple note, the virtual
fundamental will be used. It is also possible for the
user to bypass the virtual fundamental and use the
top note in the slice as pitch label.

2.2 Listening

The listening modules analyses one or multiple in-
coming MIDI and/or audio signals in real-time and
uses the results of the analysis to determine which
slice of the corpus to output at a given time. The
incoming signals are analysed with respect to pitch,
chroma, onset and tempo.

For pitch, the procedure is identical to above for
MIDI signals, but uses the Yin algorithm [7] for au-
dio, as it assumes each incoming signal is mono-
phonic. The generated analysis will be segmented
into discrete pitch labels when the quality of the es-
timation is above a certain threshold. The procedure
of estimating chroma is identical to the soft harmonic
context outlined in section 2.1. Onsets are detected
from either the Yin onsets or bonk [13] for audio,
while for MIDI each note-on triggers a new onset. Fi-
nally, tempo is computed by the beat tracking module
described in [4].

2.3 Mapping Listening to the Corpus

The mapping is done by matching the incoming labels
from the listening modules to corresponding labels in
the corpus. The matching model consists of multiple
layers, where each layer matches a single label type
(for example chroma or pitch) to corresponding labels
in the corpus. At each match in the model, a peak is
generated with a temporal position corresponding to
the relative time of the slice in the corpus. The peaks
of each layer are scaled, weighted and finally merged
together based on parameters specified by the user,
where the merged peaks are used to determine which
slice in the corpus to output. A simplified description
of the entire procedure is given below.
(1) A corpus C is constructed according to the pro-

cedure described in section 2.1. The corpus has a
duration of Ξ ∈ R+ beats and consists of U ∈ Z+

slices, where each slice S(u), u = 1, . . . , U is assigned
a temporal position ξ(u) ∈ [0,Ξ).
(2) While the system is running, an internal sched-

uler with beat t ∈ R+ is continuously updated based
on a tempo set either by the user or by the beat
tracker. Note that there is no relation between two
temporal positions t (scheduler time domain) and ξ
(corpus time domain), but the corpus time domain is
scaled by the tempo of the scheduler so that ∆t = ∆ξ
for an elapsed interval ∆t. In both cases, an interval
of ∆t = ∆ξ = 1 correspond to one beat.
(3) When a label θ is received from the listener at

scheduler time t, each layer will attempt to match θ
to its data model, should the type (for example pitch
or chroma) correspond to the type of that layer, and

3



at each match generate an influence λ. The data
model used is an n-gram, matching the labels of the
n previous influences to corresponding sequences of
labels in C, returning the last slice S(u) of the se-
quence matched. For more details on the n-gram
implementation, refer to [6].
(4) In each layer, at time ξ(u) of each matched influ-

ence S(u), a peak with coordinates

ξ(u),α


is created

and inserted, where the amplitude α = 1. Any ex-
isting peak from previous influences λprev are at this
point decayed and shifted with an interval ∆t cor-
responding to the elapsed scheduler time since last
influence, so that

αλprev
:= αλprev

e−∆t/τ (10)

ξλprev := ξλprev +∆t, (11)

where τ is set by the user to control the slope of the
decay. If any previous peak occur at the same time
as an inserted peak, these will be merged into a single
peak with amplitude

α := α+ αλprev . (12)

This behaviour ensures that previous influences
maintains an impact on the output for a certain
amount of time and that consecutive matches in the
same region accumulates into larger peaks, hence
enhancing the otherwise rather primitive matching
model of the n-gram.
(5) The peaks from each layer are merged into a

single set of peaks, where once again peaks occur-
ring simultaneously are summed together so that in-
fluences occurring in multiple layers result in larger
peaks than those that occur in only a single layer, and
all peaks in each layer are scaled according to a (user-
controlled) weight specific for each layer, effectively
allowing the user to control the relative balance be-
tween different layers, for example between harmonic
and melodic influences.
(6) The merged peaks are further scaled according

to a set of user-defined functions. An example of
such a function is the phase adjustment function Φ,
defined as

Φ(α, t, ξ) = α · exp [cos (2π (t− ξ))− 1] (13)

where α is the amplitude of the peak, t the scheduler
time when the function is called and ξ the temporal
position in the corpus time domain of the peak. As
this function is periodic over the fractional part of
the differences between the time domains, i.e. {t −
ξ} ∈ [0, 1], and the length of a beat correspond to
a duration of 1, this de-emphasises peaks occurring
at a different subdivision level (or phase) of the beat
than the scheduler’s current beat.

(7) Finally, a peak is selected and the content of
the slice corresponding to the largest peak is output.
By default, the slice S(u) whose time ξ(u) minimises
the distance to the largest peak is used to generate
the output, i.e.

min
u∈[1,U ]

ξ(u) − ξmax

 , (14)

where ξmax is the temporal position of the largest
peak. If S(u) is an audio slice, the original audio file
is played from the time corresponding to the onset
ξ(u) to its end ξ(u+1), time-stretched with respect to
the scheduler’s time. for a MIDI slice, any note-on
or note-off occurring within the slice will be played
at its original position (scaled with respect to the
scheduler’s tempo). As a slice may contain multiple
notes and some of these may be held from a previous
slice (for example the D in the third slice of figure
1) or held into the next slice (same D but from the
perspective of the second slice), this will be accounted
for by triggering note-offs for any notes held from
a previously played slice and triggering note-ons for
any note occurring in the slice but not held by the
previously played slice. In other words, each slice
S(u) has four types of note information: a set of note-

ons, N (u)
on a set of note-offs N (u)

off a set of notes held

from the (in the corpus) previous slice S(u−1): N (u)
from

and a set of notes held into (in the corpus) the next

slice S(u+1): N (u)
to . When the system is transitioning

from slice S(v) to slice S(w), v, w ∈ [1, U ], the output
can be described by

note-ons = N (w)
on ∪


N

(w)
to \N (v)

from


(15)

note-offs = N (w)
off ∪


N

(v)
from \N (w)

to


(16)

4



Figure 2: Simplified class diagram of the Python architecture.

Note that steps 2-7 describes the procedure to out-
put a single slice based on an input, but this proce-
dure is repeated as soon as a slice is finished playing,
which in most cases means several times per second,
hence creating a recombined output of the original
corpus C based on where the peaks generated from
the input occur. Also note that in the actual system,
steps 2-4 (input, i.e. influencing and peak generation)
are decoupled from steps 5-7 (output, i.e. selecting
and outputting slices) to allow multiple modes of in-
teraction between input and output.

3 Somax as a Framework

While the system described in section 2 largely mim-
ics the Somax implementation described in [6], the
main contribution in this article is the redesign of
the architecture from a fixed system into a toolbox of
objects and functions that can be combined dynami-
cally. The toolbox consists of two main components:
(a) a server, written in Python, handling the offline
construction of the corpus described in section 2.1 as
well as real-time mapping described in section 2.3,
and (b) one or multiple clients, written in MaxMSP,
handling the real-time analysis described in section
2.2 as well as the final audio/MIDI output. Each of
those have a highly modular design, allowing the user
to freely recombine the modules within a fixed ar-
chitecture and easily extend them to implement new
behaviour.

3.1 Python Architecture

Figure 2 shows a simplified view of the class archi-
tecture of the Python implementation. The core of
the architecture is the Player, which contains any
number of StreamViews, which in turn contain any
number of StreamViews and any number of Atoms.
This corresponds to the multiple layers referred to in
section 2.3, but should rather be described as a tree
(with Player as the root, StreamView as branches
and Atom as leaves). Around them are five abstract
classes, (MergeAction is duplicated in the figure),
each of those roughly corresponding to the behaviour
described in each step in section 2.2 and open for the
user to extend to create new behaviour. At runtime,
the user can specify the structure of the three and
which instances of the abstract classes to use at each
depth. This section will once again describe the steps
3-7 from section 2.3, but in terms of the architecture.

(3.1) When a piece of label information is received,
each implemented Label class will attempt to cate-
gorise it accordingly. There are currently three im-
plemented labels: MelodicLabel, corresponding to
labels θp ∈ [0, 140], PitchClassLabel, correspond-
ing to labels θp ∈ [0, 11] and HarmonicLabel, cor-
responding to labels θc ∈ [0, 121]. The Label class
could also be extended to implement matching (hard-
filtering) of other discretisable parameters, for exam-
ple instrumentation (which could be discretised as
MIDI channel or for audio as a MFCC-based labelling
algorithm), articulation, dynamics, etc. The user can
choose to influence a specific Atom in the tree or (by

5



Figure 3: Simplified diagram of the objects used to model the previous version of Somax.

default) influence all Atoms in the tree whose Label

class correspond to the incoming label.

(3.2) The incoming label is matched, together
with previously received labels, to the data model
of the Atom implemented in the MemorySpace

class, forwarding a list of matched slices to the
ActivityPattern of the atom. Currently, the only
data model implemented is the NGramMemorySpace

class outlined in section 2.3, but more sophisticated
models such as suffix trees, the factor oracle [1] or
even deep-learning based models could be used to
extend the framework.

(4) The ActivityPattern determines how slices
matched from the MemorySpace of each atom are con-
verted into peaks and how the peaks are shifted (cor-
responding to equation 11) and decayed (equation
10).

(5, 6) At each StreamView (each branch in
the tree), the peaks are merged and scaled (soft-
filtered) according to the MergeActions declared in
the StreamView. The merging is done with the
DistanceMergeAction and two other classes have
been implemented for scaling: PhaseMergeAction,
described in equation 13, and StateMergeAction,
which slightly boosts peaks close (in the corpus time
domain) to the temporal position of the previously
output slice. While not yet implemented, technically
the MergeAction class could allow any type of para-
metric soft-filtering of peaks, for example on velocity,
duration, register or note density.

(7) Finally, the PeakSelector class is implemented
to allow the user to choose which slice to output
from the final set of peaks. Currently, only the
MaxPeakSelector, which selects the slice closest to

the largest peak (equation 14) has been implemented.

The general idea is that the combination of mul-
tiple layers of hard-filtering slices to input data, in
combination with soft-filtering of the results based a
set of musical parameters, should allow the user to
create a specific model for matching, as well as give
the user detailed real-time control of the parameters
of the model to allow the performer(s) expressive con-
trol of the generated output. While only a few filters
(MergeActions) have been implemented so far, the
core architecture parses any information needed with
python’s inspect module, so that implementing a
custom MergeAction can be done without any mod-
ification to the original code, and its parameters will
be available in the MaxMSP interface.

3.2 MaxMSP Architecture

The MaxMSP architecture consists of a set of ab-
stractions for communicating with the Python server
as well as analysing incoming audio and midi sig-
nals, as described in section 2.2. Each abstraction
has a graphical user interface implemented, but can
also be used with a custom interface and controlled
with normal Max messages. The implemented ab-
stractions are: somax.audioinfluencer, which anal-
yses an incoming audio signal with respect to pitch,
chroma and onsets, somax.midiinfluencer, which
similarly analyses an incoming midi signal with re-
spect to these parameters, somax.player which di-
rectly corresponds to a Player object on the server
(see figure 2), somax.targetselector which is used
to route and mix messages from the influencers to
a corresponding player (or a specific StreamView

6



or Atom in the player’s tree), somax.beattracker,
which implements the beat tracker described in
[4] to control the scheduler’s tempo, and finally
somax.paramselector, which exposes all parameters
of each player on the server, and is used to modify
these in real-time.

These objects are designed to allow the user to
quickly create an interface matching the wanted the
interaction between audio sources, midi sources and
players. In the original Somax model (again, see [6]),
the interface consisted of one input (audio or midi)
and two players, where the players could be influ-
enced by the input as well as by each other. A sim-
ilar structure with the new architecture can be seen
in figure 3. This structure has been implemented as
part of the new toolbox for evaluation and demo pur-
poses.

4 Conclusion

This paper presented a modular framework for real-
time human-machine improvisation. Based on the
reactive system in [6], the new framework allows the
user to create a highly customisable model for listen-
ing and reacting to human-controlled audio or MIDI
input in multiple layers.

All components of the framework are modular
and extendable so that the user can implement new
modes of parameter matching, either through soft-
or hard-filtering, as well as control other aspects of
the model. While implementing new parameters is
done in the Python code base, all other aspect of
the system, including customising the model and con-
trolling any parameter, can be done directly through
the MaxMSP front-end, which also is highly modular,
thus requiring no other programming skills.

References

[1] Cyril Allauzen, Maxime Crochemore, and Math-
ieu Raffinot. Factor oracle: A new structure
for pattern matching. In International Confer-
ence on Current Trends in Theory and Practice

of Computer Science, pages 295–310. Springer,
1999.

[2] Gérard Assayag, Georges Bloch, Marc Chemil-
lier, Arshia Cont, and Shlomo Dubnov. Omax
brothers: a dynamic topology of agents for im-
provization learning. In Proceedings of the 1st
ACM workshop on Audio and music computing
multimedia, pages 125–132. ACM, 2006.

[3] Gérard Assayag and Shlomo Dubnov. Using fac-
tor oracles for machine improvisation. Soft Com-
puting, 8(9):604–610, 2004.

[4] Laurent Bonnasse-Gahot. Donner à omax le sens
du rythme: vers une improvisation plus riche
avec la machine. École des Hautes Études en
sciences sociales, Tech. Rep, 2010.

[5] Laurent Bonnasse-Gahot. Prototype de logiciel
d’harmonisation/arrangement à la volée: Somax
v0. 2012.

[6] Laurent Bonnasse-Gahot. An update on the so-
max project. Ircam-STMS, Tech. Rep, 2014.

[7] Alain De Cheveigné and Hideki Kawahara. Yin,
a fundamental frequency estimator for speech
and music. The Journal of the Acoustical So-
ciety of America, 111(4):1917–1930, 2002.

[8] Daniel PW Ellis. Beat tracking by dynamic
programming. Journal of New Music Research,
36(1):51–60, 2007.

[9] Alexandre RJ François, Elaine Chew, and Den-
nis Thurmond. Performer-centered visual feed-
back for human-machine improvisation. Com-
puters in Entertainment (CIE), 9(3):13, 2011.

[10] Jérôme Nika and Marc Chemillier. Improtek: in-
tegrating harmonic controls into improvisation
in the filiation of omax. In International com-
puter music conference (ICMC), pages 180–187,
2012.

[11] Jérôme Nika, Marc Chemillier, and Gérard As-
sayag. Improtek: introducing scenarios into
human-computer music improvisation. Comput-
ers in Entertainment (CIE), 14(2):4, 2016.

7



[12] Jérôme Nika, Ken Déguernel, Axel Chemla, Em-
manuel Vincent, Gérard Assayag, et al. Dyci2
agents: merging the” free”,” reactive”, and”
scenario-based” music generation paradigms.
2017.

[13] Miller S Puckette, Miller S Puckette Ucsd,
Theodore Apel, et al. Real-time audio analysis
tools for pd and msp. 1998.

[14] Greg Surges and Shlomo Dubnov. Feature selec-
tion and composition using pyoracle. In Ninth
artificial intelligence and interactive digital en-
tertainment conference, 2013.

[15] Ernst Terhardt. Calculating virtual pitch. Hear-
ing research, 1(2):155–182, 1979.

[16] Matthew Wright. Open sound control: an en-
abling technology for musical networking. Or-
ganised Sound, 10(3):193–200, 2005.

8


