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ABSTRACT

In this paper we introduce bell, a new, small programming
language included in the bach package for Max. The main
design goals of bell are ease of integration with Max and
bach and maximum compatibility with pre-existing syntaxes
and conventions bach users are already acquainted to. The
language is mainly exposed in Max through a new object
named bach.eval, but other, older objects have been up-
dated so as to take advantage of it. In this article, we
shall discuss the main choices underlying the development
of bell, and give a brief outline of its syntax and the way it
integrates within Max.

1. INTRODUCTION

The bach package 1 for Max 2 is a library of more than
200 patches and externals aimed, among the other things,
at easing work in the fields of computer-aided and algorith-
mic composition. It contains some modules for displaying
and editing graphically musical scores, but the vast major-
ity of its components are tools for manipulating a tree data
structure called llll (an acronym for Lisp-like linked list)
which somehow constitutes the backbone of bach, as vir-
tually all the bach objects exchange with each other lllls
containing pieces of information of any complexity, from
a single number to a whole score combining instrumental
notation and directives for controlling electroacoustic pro-
cesses. [1]

It has been clear since the beginning of bach that non-
trivial tasks in the aforementioned fields require the im-
plementation of potentially complex algorithms and pro-
cesses, something that the graphical, data-flow program-
ming paradigm of Max, beyond the long-standing theoret-
ical debate on whether it is a programming language or not,
is notoriously not well-suited to. [2, 3]

In fact, other systems for computer-aided composition
and related activities are either extensions of established
textual programming languages including imperative fea-
tures, or they do actually implement new visual languages,
but nonetheless incorporate imperative traits in their un-
derlying textual representation. Examples of the first kind
include OpusModus 3 and Common Music 4 (based upon

1 www.bachproject.net
2 http://cycling74.com
3 https://opusmodus.com
4 http://commonmusic.sourceforge.net
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Common Lisp) or Music21 5 and Abjad 6 (based upon
Python). In the second class we find, for instance, the Lisp-
based PatchWork family, currently composed of PWGL 7

and OpenMusic 8 . This class combines the strengths of
graphical and textual programming through the use of
graphical widgets representing custom-made portions of
textual code, something that provided the original impetus
behind the idea of augmenting bach with such a possibility.

2. LANGUAGE BINDINGS IN MAX

Max offers indeed several options for embedding tradi-
tional code in a graphical patch, as it contains out-of-the-
box bindings to Java, JavaScript and Lua. Moreover, with
somewhat greater effort, it is possible to write one’s own
external objects in C (and any other language that can be
compiled to object code linkable to C, the most obvious ex-
ample being C++). When investigating the possibile ways
to give bach users a way to express processes through tex-
tual coding, we obviously first considered these possible
language bindings. Unfortunately, it quickly became clear
that all of them had important drawbacks in the context of
what we were looking for.

2.1 C and C++

Objects in C and C++ can be very efficient, handle the na-
tive data types of Max and (through the use of a public
API) bach, and have fine-grained, low-level access to vir-
tually every aspect of the Max environment. On the other
hand, code written by the end user must be compiled and
then integrated in Max as a plugin, which requires to mas-
ter the compilation chain and increases considerably the
time needed for a write-test-debug cycle.

In addition, C and C++ have a well-deserved reputation
for being difficult languages, which very few musicians to-
day have the interest and inclination to learn (whereas ex-
tending Max in C was originally meant to be a normal part
of the Max user’s workflow [2]) and the Max and bach C
APIs require taking care of a great amount of low-level de-
tails only remotely related to the specific problem that the
object itself is intended to solve.

For these reasons, C and C++ do not appear to us as valid
choices for a language for composers willing to implement
musical operations through textual coding.

5 http://web.mit.edu/music21/
6 http://abjad.mbrsi.org
7 http://www2.siba.fi/PWGL/
8 http://repmus.ircam.fr/openmusic/home
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2.2 Javascript, Java and Lua

The JavaScript language binding (exposed by the js and
jsui objects) has the major problem of not being well inte-
grated within the threading model of Max, as code is only
allowed to run in the main thread. Moreover, the JavaScript
implementation, although higher-level than C’s, is anyway
very revealing of the low-level workings of the Max envi-
ronment, requiring users to implement methods respond-
ing to the different messages sent to the object, deal ex-
plicitly with inlets and outlets, taking care of not breaking
the Max’s conventions about evaluation order and so on.

The same, relatively low-level approach applies to the
Java and Lua bindings, respectively exposed by the
mxj/mxj˜ and jit.gl.lua objects.

2.3 Lisp

The fact that the main data structure of bach is so close
to that of Lisp suggested us Lisp itself as the way to go.
Moreover, countless composers have been writing Lisp
code over the years for implementing their own composi-
tional processes, sometimes leading to cornerstones such
as Camilo Rueda’s, Jacques Duthen’s and Tristan Mu-
rail’s Esquisse library 9 or Marco Stroppa’s OM-Chroma
project 10 . Since the only (to our best knowledge) existing
Lisp binding for Max, Brad Garton’s maxlispj 11 , seems
to be an experimental project rather than a practical one
because of its limitations, instability and apparent lack of
maintenance, we went as far as trying to embed the ECL
Embeddable Common Lisp compiler into a Max object.
It quickly became clear, though, that a true, modern Lisp
implementation has an enormous set of constraints about
threading, garbage collection (which is a curse in a real-
time system such as Max, as it can delay computation ar-
bitrarily) and more, and many other data types besides the
list. All these features and requirements, if not correctly
dealt with, would lead to a horribly crippled Lisp dialect,
consisting only of the most fastidious aspects of the lan-
guage (such as the infamous amount of parentheses and the
rather impractical, by today’s standards, prefix notation)
but deprived of all the features that make Lisp the amaz-
ingly powerful and elegant language it still is. So we even-
tually discarded the Lisp option (an interesting approach to
working in Lisp on lllls is described in sec. 8).

2.4 Other languages

We also evaluated the possibility of embedding other lan-
guages (Haskell and Python briefly enticed us), but none
of those we considered seemed apt to the task and, at the
same time, reasonably easy to integrate within Max and
bach, so we found ourself back at the starting point.

3. THE EXPR FAMILY

Max includes another programming language, or a stub
thereof, in the expr, vexpr and if objects. They provide

9 https://github.com/openmusic-project/Esquisse
10 http://forumnet.ircam.fr/product/

openmusic-libraries-en/
11 http://sites.music.columbia.edu/brad/

maxlispj/

a way to implement mathematical expressions and condi-
tionals through a form of textual coding so simple to be
easily overlooked, but expressive enough for greatly sim-
plifying small tasks that might require complicated solu-
tions if tackled otherwise. The syntax of the expr fam-
ily of objects is based on infix notation, with support for
the most common arithmetical operators and mathematical
functions. Data received from the object’s inlets are re-
ferred to via the $i1... $i9 and $f1... $f9 keywords (respec-
tively for integers and floating-point numbers). Function
arguments are surrounded by parentheses and separated by
commas. Parentheses are also used for controlling eval-
uation precedence. The expr and vexpr objects (differing
only in the ability of the latter of performing element-wise
operations upon lists of values) return the result of each
computation from their only outlet; the if object allows
choosing between two different results, optionally routing
them to two different outlets, according to the result of a
boolean expression.

Figure 1. An example of the expr and if objects.

Since its first version, bach has added to the expr family
a new member called bach.expr, essentially based on the
behavior and syntax of vexpr but capable to operate upon
rational numbers and pitches (two base data types added
by the bach library), as well as perform element-wise op-
erations through a depth-first traversal of the tree structure
of lllls.

For the simple tasks they are designed for, these objects
pose several advantages when compared to the ‘real’ lan-
guage bindings discussed above:

• The code can be typed directly in the object box, thus
making the role of the object itself in the patch much
clearer than if the code was hidden in a separate editor
window or read from a source code file.

• Inlets and outlets are managed by the object itself, with
no need to specify details concerning their management
in the code.

• There is no need to explicitly define specific methods
or functions responding to the different messages the
object can accept.

• All being considered, the code only expresses the core
of what it really has to do, with no need for any sur-
rounding infrastructure (at the other extreme, a Max
object written in C easily requires dozens of lines of
code only for managing its definition, lifecycle and
mechanism of communication with the host environ-
ment).

In summary, this architecture allows better embedding
of the textual language into the host environment with re-
spect to the traditional language bindings described above.
Objects of the expr family are usually sprinkled around a

https://github.com/openmusic-project/Esquisse
http://forumnet.ircam.fr/product/openmusic-libraries-en/
http://forumnet.ircam.fr/product/openmusic-libraries-en/
http://sites.music.columbia.edu/brad/maxlispj/
http://sites.music.columbia.edu/brad/maxlispj/


patch and take care of relatively small computational tasks,
communicating tightly with other objects in charge of the
user interface, DSP, MIDI, event scheduling and more. Al-
though their expressiveness is very limited, not supporting
variables, iterations, general conditionals and so on, it can
be seen as a starting point for a richer functional language.

These considerations led us in the direction we finally
chose to pursue: extending the syntax of the expr family,
adding to it all it takes for turning it into a real, Turing-
complete, practically usable (and hopefully easy) program-
ming language, meant to be a strong asset for allowing
users to choose the best programming style for implement-
ing their own ideas without breaking the more general
graphical paradigm of Max.

4. DESIGN PRINCIPLES

Once determined that a new language (which, from now
on, we shall call bell, standing for bach evaluation lan-
guage for lllls, but also paying homage to the Bell Labs
where Max Mathews invented the seminal MUSIC soft-
ware) had to be devised, we identified the following main
design principles:

Embedding. bell should be exposed to Max in a new, spe-
cific bach object called bach.eval. It should be possible to
type programs directly in the object box, as in the objects
of the expr family, or in a separate text editing window, as
in the standard Max language objects, or likewise to load
them from a source code file (replacing the existing code
or appending it). It should be also possible to pass new
programs in the form of Max messages. Moreover, the be-
havior of other bach objects should allow being fine-tuned
through snippets of bell code.

Retro-compatibility. The language should be fully down-
ward-compatible with bach.expr, vexpr and expr. This
means that any expression written in one of these objects
should be understood by the new language and produce the
same result (there are some minor exceptions to this, but
they are absolutely marginal and deserve no further men-
tion within the scope of this article).

Applicative style. As programs are expressions and pro-
duce results, the language should be a functional one, or
at least fully support functional-style programming. As
a consequence, all the constructs of the language should
yield a result. On the other hand, for practicality’s sake, the
language should also have a set of imperative-style con-
structs, such as variables, loops and a sequence operator.
Also, bell code should need no notion of time (and there-
fore have no event scheduling capabilities), nor of its role
in the patcher, nor of the surrounding Max environment: it
should strictly be an expression evaluator.

The final result of a program, which is an llll, should be
output from the main (and, in the simplest cases, sole) out-
let of bach.eval; it should be possible to output data from
other outlets through specific syntactic features. In the case
of other objects, the return value should be passed to the
host object for controlling its behavior.

llll algebra. lllls should be the only data type of bell, at
least in its first version: the parameters and return values of
all bell functions, operators and constructs should be lllls.
A wide set of llll primitives is already present in bach, and

most of them are exposed by specific bach objects. These
primitives should generally be exposed as bell functions
as well, retaining as much as possible the conventions and
nomenclature adopted in their bach-object form. Thus, for
example, the llll rev() C function of the bach API, whose
purpose is reversing an llll, is exposed in the bach.rev ob-
ject and should be exposed in the rev() bell function as
well.

5. THE BELL LANGUAGE

The implementation of the bell language is strictly based
upon the design principles stated above. In this section,
we shall list some of its most important features, without
aiming for completeness or thoroughness.

5.1 llll values

As hinted at before, an llll is a tree structure mostly re-
sembling a Lisp list. Its leaves can be integers, floats and
symbols (the standard data types of Max), rational num-
bers, musical pitches (expressed in terms of a degree, an
optional alteration and an octave: for more details, see [4])
and functions (only useful in the context of bell). Each
llll can recursively contain other lllls as well: in the stan-
dard textual representation, these are enclosed with pairs
of square brackets. 12 A typical llll literal value might be:

1 2.3 4/5 [Eb6 [foo bar]] 7

Besides the obvious presence of the Eb6 pitch, the most
apparent difference with respect to most Lisp dialects is
that the root level of an llll is not enclosed with brackets.
Although this may seem a mere cosmetic detail, it bears
some important structural consequences, including the fact
that there is no concept of atom: single values such as 1 are
always considered one-element lllls in the context of bach.
The rationale behind this choice is that it allows regular
Max lists and messages to be treated as flat lllls.

5.2 Expressions and arithmetical operators

A bell program is an expression, typically composed by
sub-expressions connected by operators. A valid, if sim-
plistic, bell program is therefore 1, which is an expression
returning the value 1. A slightly more interesting program
is 1 + 2, returning 3. Whitespace is optional in this case,
so the form 1+2 is equivalent to the previous one.

As in the expr family, it is possible to control evaluation
precedence through parentheses: so, 2+3*4 returns 14,
whereas (2+3)*4 returns 20.

As stated above, the final result of a bell program is out-
put from the main outlet of bach.eval.

It should be noticed that, in these examples, a number
n denotes a singleton llll, and that arithmetical operators
such as + apply point-wise in lllls.

12 Previous versions of bach used round parentheses for marking sub-
lists. Starting from forthcoming (at the time of writing) version 0.8.1, the
‘official’ sublist marker will switch to square brackets, although this will
only be mandatory in bell code, whereas in all the other situations round
parentheses will be accepted too, for backwards compatibility.



5.2.1 Implicit concatenation

Concatenation of elements into lllls is done implicitly in
bell. This means that there is no explicit operator for build-
ing a new llll out of shorter ones (or, in the simplest case,
from single elements, that is, one-element lllls): elements
or lllls just placed one after another, separated by white-
space or parentheses, be they typed in the code as literals
or results of evaluation of other constructs, are chained to-
gether. We might say that list building is performed by the
null operator.

Of course, this is true recursively, so in practice any num-
ber of expressions can be placed one after another, so as
to build long lllls. In the simplest case, the individual ex-
pressions are just literals evaluating to themselves, as in
1 2 3, returning the three-element llll 1 2 3. But things
like 1 2+3 4 (also written 1 2 + 3 4), returning 1 5
4, are also possible, showing that the + operator is applied
before concatenation, thus consuming the expression that
precedes and the one that follows it (concatenating the op-
erator itself as an element of an llll can be achieved through
the functional form of the operator, #+). The last exam-
ple also shows that +, as more generally all the unpaired
operators, has higher precedence than implicit concatena-
tion. On the other hand, parentheses can control this: so,
(1 2) + (3 4) first evaluates the two concatenations,
respectively returning 1 2 and 3 4, then sums them, thus
returning 4 6 (the addition is extended point-wise on lllls).

5.2.2 Wrapping operator

Square brackets denote a unary operator that injects a value
into an llll—that is, just like in the textual expression of
lllls, a pair of square brackets marks a sublist. Thus, [1]
actually returns [1] (a singleton llll whose only element
is in turn a singleton llll); [2*3 4] returns [6 4]; and
[[2*3] [4*5]] returns [[6] [20]], by virtue of wrap-
ping first, then concatenation, and finally wrapping again.
As a matter of fact, the combination of wrapping and con-
catenation makes it possible to see a bell program as the
textual representation of an llll with some special syntacti-
cal conventions for intermingling calculations into it.

5.2.3 Sequences

It is possible to sequence expressions, that is, make it so
that they are evaluated one after another, in the order in
which they appear in the code. This is expressed through
the ; operator. The result of a sequence is the result of the
last (that is, the rightmost) expression composing it. So,
the 1 ; 2 expression will return 2.

As with implicit concatenation, it is practically possible
to form sequences composed of any number of expres-
sions. As the ; operator groups left-to-right, 1+2 ; 3+4
; 5+6 will first evaluate the sequence 1+2 ; 3+4, re-
turning 7, and then the sequence 7 ; 5+6, returning 11.

The two last examples have no practical meaning, as se-
quences are only useful when the expressions that compose
them have side effects: this applies in particular to variable
assignment (see below).

5.3 Variables

Variables are the main construct with side effects in bell.
They do not need to be declared before using them, and

are of a single type, the llll. If a variable is read before
being assigned a value, it returns an empty llll (called null
in the bach system). Variables are either global or local.
Globals are visible by all the bell-compliant objects in the
Max session. Locals have a leading $ sign and are accessi-
ble only from their scope of definition.

Assignment to a variable is performed through the = op-
erator, not to be confused with the == equality comparison
operator. There exist a set of C-style assignment operators,
too, such as +=, *= and many more. The return value of
all the assignment operator is the assigned value and, since
they have right-to-left precedence, it is possible to set up
chains of assignments.

5.3.1 Inlets

Data received in bach.eval’s inlets can be accessed by bell
code through a set of keywords, the most general being
$x<n>, where <n> is the rank of an inlet (counted from
left to right). So, the expression $x2 returns the llll en-
tered in the second-from-left inlet of the bach.eval object.
This is consistent with bach.expr. Other forms of inlet key-
words exist, mimicking the strongly-typed ones of expr,
vexpr and if : for example, $i1 returns the llll entered in
the leftmost inlet, with all its values cast to integers (and
there are more forms for floats, rationals and pitches). This
feature is present mostly for downward compatibility, but
its usefulness is probably quite marginal.

It should be remarked that, as in the other expr family ob-
jects, the number of inlets of the objects is usually inferred
automatically from the inlet keywords. Unlike expr, vexpr
and if , though, it is also possible to set it explicitly through
the inlets object attribute: this can be necessary if the pro-
gram (and, subsequently, the number of addressed inlets)
is meant to change after the object instantiation.

5.3.2 Outlets

It is possible to output data from auxiliary (‘extra’) out-
lets of the bach.eval object by assigning them to the
$o<n> pseudovariables, where <n> is the rank of an out-
let (counted from left to right). This allows using bach.eval
for routing messages to different parts of a Max patch ac-
cording to complex conditions: in this sense, bach.eval can
behave in ways related to Max objects such as if , route and
gate. For an example, see fig. 2.

The fact that data are assigned to extra outlets does not
detract from the fact that the program has anyway one sin-
gle return value proper. So, even if extra outlets are de-
clared, bach.eval has one main outlet, distinct from them
and placed at their right, from which the actual return value
of the computation is output before all the extra outlet data,
which are subsequently output in right-to-left order (re-
gardlessly of the order in which the pseudovariable assign-
ment happens during evaluation). The rationale behind the
choice of moving the main outlet to the right is that, if
extra outlets are present, the ‘true’ return value is custom-
arily not used in the patch, thus not deserving the most im-
portant, leftmost outlet. Not less importantly, in this way
$o<n> refers to the actual nth outlet, not the (n+1)th one.



Figure 2. An example of a bach.eval with multiple outlets. As the
highest-rank outlet pseudovariable declared is $o2, two extra outlets are
created at the left of the main outlet. At the end of the computation, the
evaluation result is output from the rightmost, main outlet (for details on
the return value of conditionals, see subsection 5.4). Then, if the con-
dition is true (that is, if the number of elements of the incoming llll is
even), the reversal of the incoming llll is output from the leftmost outlet,
otherwise the incoming llll is output unmodified from the middle outlet.

Figure 3. An example of bach.eval, computing a Fibonacci sequence up
to a given term, something that would typically require a fairly compli-
cated patch. This example contains some language features that have not
been described yet: $fibo:-1 and $fibo:-2 respectively extract the
last and one-but-last element of the llll contained in the $fibo variable;
= is an assigning operator that appends new elements at the end of the llll

contained into a variable (in this case, it appends the sum of the two last
elements to the already computed sequence). @out t, on the other hand,
is not a language feature, but an attribute of the bach.eval object (and vir-
tually all the other bach objects) whose precise meaning is discussed in
[1]: suffice to say that it is required for outputting the llll produced by
bach.eval in a format that the message box below can understand.

5.4 Conditionals

In bell there is no dedicated boolean type. Thus, the fol-
lowing convention is used in constructs requiring a boolean
value: values of 0 (that is, integer 0, floating-point 0., ra-
tional 0/1 and pitch C0) and null are considered false; any
other value is considered true.

The main conditional construct in bell is if ... then ...
else. It returns the value of the evaluated branch, chosen
according to the provided conditional expression, or null if
the condition is false and no else clause is provided.

5.5 Loops

Two looping constructs are implemented in bell: the un-
bounded while iteration, repeating the evaluation of an
expression as long as a given condition is true, and the for
loop, iterating depth-first over one or more lllls according
to a rather large set of options, including the abilities of
limiting the traversal depth and setting an additional con-
dition for prematurely stopping the iteration. Both loop
constructs return the value of the loop body at the last iter-
ation performed, or null.

5.6 Functions

As hinted at above, bell provides a set of built-in functions
performing a wide array of standard operations on lists,
such as reversal, rotation, search, transposition, sorting and
so on. All functions in bell have return values, although

some, such as print(), are typically called for their side
effects. Moreover, users can define their own functions,
which can be called with exactly the same conventions as
built-in ones.

5.6.1 Function calls

Built-in functions have actual names whereas, strictly
speaking, all user-defined functions are anonymous. In
both cases, functions, from the point of view of bell, are
technically elements of lllls (usually each being the only
element of its containing llll). This means that, from a for-
mal point of view, cos(0) means ‘pass 0 to each element
of the preceding llll, whose only element is the cos func-
tion’. Thus, (sin cos)(0) would be a perfectly legiti-
mate construct, returning 0. 1.. Performing a function call
upon an llll element that is not a function is possible, but it
will return null and print a warning in the Max console. 13

We shall discuss below how user functions can be de-
fined but, for the sake of simplicity of this first implemen-
tation, we did not introduce an explicit mechanism to name
them: variables are used to refer to them instead. This
means that, once a function has been defined and assigned
to the variable $myfunc, it is possible to call it with, e.g.,
$myfunc(0). If a single-assignment rule is assumed for
these variables, there is no noticeable difference between
bell and the usual functional coding style.

All function arguments have defaults, so no argument is
mandatory. On the other hand, if the default is null, call-
ing a function without providing enough arguments (e.g.,
sin()) will return null. Multiple arguments are separated
by commas (e.g., pow(2, 3)). Moreover, all parame-
ters are named, so arguments can be given out-of-order
using their names (e.g., pow(@exponent 3, @base
2): this is especially useful in the case of functions calls
in which the user wants to change only a few parameters
from their defaults.

5.6.2 User functions

User functions are defined by the -> operator, preceded
by the comma-separated parameter names (and, optionally,
their respective defaults) and followed by the actual func-
tion body, e.g., $x, $y = 1 -> $x * $y. This is a
function literal, not differently from 1 being an integer lit-
eral. A function defined in this way can be called directly,
or, as hinted at above, be assigned to a variable and called
through it: this is the only general way for a function to be
reusable in different parts of a program. Functions not as-
signed to variables are typically passed to other functions
as lambdas.

5.6.3 Scope of local variables

Local variables have lexical scoping and dynamic extent:
this means that their lifetime is not restricted to its scope

13 A syntactical subtlety is at play here: the fact that cos(0) is treated
as a function application, rather than the concatenation of the cos function
and the 0 literal surrounded by an unnecessary, but legal, pair of parenthe-
ses, stems from the fact that there is no whitespace between the function
name and its argument list: cos (0) would have been considered the
other way. Although we are aware that this choice may appear a not very
elegant one, it seemed to us the simplest way to allow parentheses to be
used as both precedence and function application operators (thus retain-
ing compatibility with the expr family), while preserving the fundamental
principle of implicit concatenation.



Figure 4. The bach.intersection object returns the intersection of two sets
according to a custom equality comparison defined by the snippet of bell
code $x1 % 12 == $x2 % 12, called by the intersection algorithm
every time it needs to compare a pair of elements from the incoming lllls.
In this context, $x1 and $x2 do not refer to the object inlets, but more
generically to the data passed to the called bell function by the caller.

of definition, and they can be accessed, although indirectly,
from another scope. The classical example is the capture of
a local variable in a function definition, the function being
used elsewhere. Thus, in a scenario like
$a = 1 ; F = $x -> $a += $x ; F(10)

the value of local variable $a will be modified by the func-
tion referred to by F. The function can be called anywhere
else in the program, through the global variable F, lead-
ing to the assignment of the local variable $a. This cap-
ture mechanism is especially useful for specifying recur-
sion (see below) and simplifying the passing of extra pa-
rameters to anonymous lambda functions.

Function arguments hide local variables with identical
identifiers. Thus,
$a = 1 ;
($x, $a = 10 -> $a += $x)(20) $a

will return 30 1, as the value of the $a variable visible in
the outer scope has not been affected.

5.6.4 Recursion

As hinted at before, dynamic scoping makes it straightfor-
ward to implement recursive functions:
$fact = ($x -> if $x <= 1 then 1

else $x * $fact($x-1))
will work because the $fact variable, containing the re-
cursive function, is visible in the function itself.

6. IMPLEMENTATION DETAILS

6.1 Code compilation and execution

As the host object receives the source code of a bell pro-
gram, it translates all the defined functions (including the
main function, that is, the ‘main’ body of the program) to
separate abstract syntax trees, each associated to a symbol
table with its arguments.

In the case of bach.eval, code is executed when the ob-
ject receives data in its leftmost inlet; other objects may
execute the code according to their own principles of op-
eration (see, e.g., fig. 4). In any case, code execution con-
sists of the traversal of the abstract syntax tree of the main
function, from which other functions are called when nec-
essary.

The interpreter and runtime engine of bell are written in
C++ (with the help of a Flex/Bison parser) and linked to the
C-based bach and Max APIs. Although not possible yet, it
should not be difficult providing developers with a further
bell API allowing them to add new built-in functions to
the language. We are not sure, on the other hand, of the
practical interest of such a possibility.

6.2 Efficiency

Besides the llll management (which was already imple-
mented in the bach API), the function call procedure is eas-
ily the most complex task performed at runtime: dynamic
scoping and management of arguments, their defaults and
the two ways of passing them (by position and by name)
delegate to run time many operations that could otherwise
be performed during compilation. On the other hand, we
believe that, although computational speed is surely not
to be overlooked, a high-level system such as the one we
propose should generally favor ease and flexibility of use
rather than sheer efficiency. For this reason, we think that
the convenience of a richer function calling mechanism
outweights the performance penalty imposed by having to
give up some possible compile-time optimizations.

An important underlying feature of bell is that, although
variables are mutable, lllls are inherently immutable. This
means that users never need to explicitly clone lllls, as all
the cloning operations are performed transparently. Al-
though this may slow down the computation unnecessarily,
we think it is another case in which ease of use outweights
the additional work required to the machine.

Even taking into account these trade-offs, substantial
work is still needed to improve the efficiency of bell. As
of now, the speed of execution of bell programs ranges
from comparable to that of corresponding bach-based Max
patches to significantly slower. At least two important opti-
mizations are possible: avoiding the generation of interme-
diate lllls during evaluation (this can be achieved through
the deforestation algorithm [5]), and implementing scalar
data types, transparent to the user but used internally in
place of singleton lllls. Both optimizations pose no major
technical challenges, but they would require an important
development effort, whereas the goal so far has been to
produce a reasonably well-tested, working system, some-
thing that has seemingly been achieved. 14

7. FUTURE WORK

Although the framework in which this will happen is not
clear yet, there are plans for extending bell in a few essen-
tial directions.

Firstly, it will be useful to implement a number of opti-
mizations, such as tail-call optimization, dead code elim-
ination or constant folding, plus, of course, the ones de-
scribed in the above section. These may increase dramati-
cally the memory and speed efficiency of the language run-
time.

One of the original plans about bell was to allow it to di-
rectly access for both query and modification the internal,
non-llll data structures of bach.roll and bach.score, the two
main objects of the bach library devoted to the representa-
tion of musical scores. Such a feature would require the
implementation of at least a rudimentary object system for
bell: although some pieces of infrastructure for this are
already in place, it would be a massive undertaking, also

14 At the time of writing, a version of bell with all the features described
in this article and more has been thoroughly tested internally and dis-
tributed to a group of beta testers of the bach library. We plan to release
bell in a few weeks within the official version 0.8.1 of bach. It is worth
noting that bell will be distributed under an open source license, most
likely LGPL 3.0.



requiring the involvement of Daniele Ghisi (who develops
the bach system alongside author Andrea Agostini).

A smaller, but not less important, feature would be the
addition of new built-in functions, and possibly the imple-
mentation of a sort of ‘standard library’, consisting of basic
functions more apt to be represented in bell itself than in
its C++ engine. This is probably something that will hap-
pen naturally, both before and after the first release of the
language.

8. RELATED WORK

The idea of augmenting Max with textual coding capabili-
ties in ad-hoc domain-specific languages is not new.

The venerable FTM library for Max 15 contains an ob-
ject, ftm.mess, capable of constructing Max messages con-
taining mathematical expressions, variables and more, and
calling methods on other FTM objects. Although a power-
ful replacement for Max’s message box, it is not (and is not
meant to be) a ‘real’ programming language, as it does not
allow conditionals, iterations and user-defined functions.
On the other hand, ftm.mess was surely an important inspi-
ration in the early conception of bell.

The o.dot project 16 , a comprehensive system for manip-
ulating OSC messages in Max developed at CNMAT, con-
tains the o.expr.codebox module that implements a quite
rich ‘programming language in a box’, not so differently
from bach.eval.

Antescofo [6] is a large research project whose center is
a programming language for description and scheduling of
musical events, available, among the other things, as an
object bringing a full implementation of the language into
Max. The main, central notion in antescofo is time, which
is represented through very rich semantics and data struc-
tures: on the one hand, this sets it apart from bell, which
has no notion of time whatsoever; on the other hand, as
both languages focus on the symbolic representation of
music and musical scores, it might be interesting explor-
ing possible ways to put them in relation with each other.

GenExpr, a proprietary language that can be used for pro-
gramming pixel shaders, DSP algorithm and control-rate
computation, is respectively exposed by the jit.gl.gen, gen˜
and gen objects, included in the official Max distribution.
GenExpr programs really lie at the intersection of graphi-
cal and textual coding, as they can be written as traditional
code or automatically generated as translations of visual
graphs drawn in a dedicated environment, similar but dis-
tinct from the Max patch. GenExpr has number crunching
as its main goal: its only data type is the floating-point
number, and its only data structure is the array of floats.

Although based upon an almost opposite approach, Julien
Vincenot’s remarkable work of building a communication
layer between bach and the SBCL Common Lisp compiler
should be mentioned here: Lisp code for manipulating lllls,
‘transliterated’, so to speak, to Lisp lists, is generated in
Max with the help of bach objects and run in SBCL in a
separate process, after which the results are sent back to
Max via a text file. [7]

Whereas each of these tools, including bell, has its own
focus and goals, we find it interesting to remark how the

15 http://ftm.ircam.fr/index.php/Download
16 https://github.com/CNMAT/CNMAT-odot

problem of extending Max through textual coding has been
tackled in different ways in relation to different projects.

9. CONCLUSIONS

We have presented a new programming language, named
bell, meant to be used in the larger context of the bach
library for Max and conceived as a substantial extension
of some features already present in Max itself. We have
discussed the motivations behind the very idea of imple-
menting it, as well as its overarching design principles and
some basic aspects of its syntax and inner workings.

We wish to add that, for a project like this one to have
some relevance, it is important to consider how it can be
disseminated. We hope that the bach user base will re-
spond favorably to it, and that teachers mentioning bach in
their computer music classes will find it interesting to give
an introduction to bell as well. It is worth adding that the
bach package includes a complete, pedagogical (albeit not
formal) documentation of the language, accompained by a
substantial number of examples.
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