Spatial Computing for Musical Transformations and Counterpoint

Louis Bigo & Jean-Louis Giavitto & Antoine Spicher

mgs.spatial-computing.org

LACL, Université Paris Est Créteil – IRCAM Spatial Computing Workshop 2013 Saint Paul Minnesota USA – May 6th - 10th 2013

Spaces for musical representations

Speculum Musicum [Euler]

Chicken Wire Torus [Douthett & Steinbach]

Model Planet [Barouin]

Context

- Musical theory and computer science
- Spatial computing for musical theory and analysis
 - Compute in space
 - Compute space

MGS

- Unconventional programming language for spatial computing
 Intuitive (natural) way to express computations on/in space
- Introduction of topological concepts in a programming language
- Two main principles
 - Space: topological collection
 - Computation: *transformation*

Outline

Space and Collection of Chords

Applications

- Harmonization
- Geometrical Transformations in Chord Spaces
- Spatial Counterpoint

Conclusion

Outline

Space and Collection of Chords

- Applications
 - Harmonization
 - Geometrical Transformations in Chord Spaces
 - Spatial Counterpoint

Conclusion

Chords in Music

A collection of notes played "simultaneously"

A set of pitches (event on a staff)

Op. 28, No. 7

{ E3, E4, D4, G#4, B4 }

Chords in Music

A collection of notes played "simultaneously"

- A set of pitches (event on a staff)
- A sequence of pitches (choral voices)

[C3, Bb4, Eb4, G4]

Chords in Music

A collection of notes played "simultaneously"

- A set of pitches (event on a staff)
- A sequence of pitches (choral voices)
- An ordered set of pitch classes (chord progression)

```
A7: { tonic = A, third = C#, fifth = E, seventh = G# }
D7: { tonic = D, third = F#, fifth = A, seventh = C# }
E7: { tonic = E, third = G#, fifth = B, seventh = D# }
```

Chords in Music

A collection of notes played "simultaneously"

- A set of pitches (event on a staff)
- A sequence of pitches (choral voices)
- An ordered set of pitch classes (chord progression)
- A set of pitch classes (Set Theory in music)

...

p-Chords as (p - 1)-simplexes

Representation of a chord and all its subchords

■ 1-chord (a pitch class): 0-simplex (vertex)

2-chord: 1-simplex (edge)

3-chord: 2-simplex (triangle)

Chords in Music

A collection of notes played "simultaneously"

- A set of pitches (event on a staff)
- A sequence of pitches (choral voices)
- An ordered set of pitch classes (chord progression)
- A set of pitch classes (Set Theory in music)

...

p-Chords as (p - 1)-simplexes

Representation of a chord and all its subchords

■ 1-chord (a pitch class): 0-simplex (vertex)

- 2-chord: 1-simplex (edge)
- 3-chord: 2-simplex (triangle)
- 4-chord: 3-simplex (tetrahedron)

...

Building a Chord Space

Self-assembly of cellular complexes

Reaction of the sub-complexes between themselves

Building a Chord Space

- Application of transformation Self-Assembly
 - Basic elements: a population of chords
 - Assembly predicate (*Pred*): same pitch-class subset
 - □ New label (*Label*): the pitch-class subset

Pred
$$x y = (x=y)$$
Label $x y = x$

Examples: Degrees of a Tonality

Degrees of the diatonic scale

Tonality with four note degrees

[SCW10]

Examples: Chords of a Musical Piece

Extract of the Prelude No. 4 Op. 28 of F. Chopin

120 (2,1)-Hamiltonian paths

[SCW10]

Examples: Chord Classes

Examples: Chord Classes

Chord classes modulo inv./trans. for 3-chords

$C(n_1, n_2, n_3)$	Simplicial Complex	Representative Trichord
C(1, 1, 10)	cylinder	$\{0,1,2\} = \{C,C^{\sharp},D\}$
C(1, 2, 9)	torus	$\{0,1,3\} = \{C,C^{\sharp},D^{\sharp}\}$
C(1, 3, 8)	torus	$\{0,1,4\} = \{C,C^{\sharp},E\}$
C(1,4,7)	torus	$\{0,1,5\} = \{C,C^{\sharp},F\}$
C(1, 5, 6)	circle of 6 tetrahedra boundaries	$\{0, 1, 6\} = \{C, C^{\sharp}, F^{\sharp}\}$
C(2, 2, 8)	two disjoint cylinders	$\{0,2,4\} = \{C,D,E\}$
C(2, 3, 7)	torus	$\{0,2,5\} = \{C,D,F\}$
C(2, 4, 6)	two disjoint circles of 3 tetrahedra boundaries	$\{0,2,6\} = \{C,D,F^{\sharp}\}$
C(2, 5, 5)	cylinder	$\{0,2,7\} = \{C,D,G\}$
C(3, 3, 6)	three disjoint tetrahedra boundaries	$\{0, 3, 6\} = \{C, E^{\flat}, G^{\flat}\}$
C(3, 4, 5)	torus	$\{0,3,7\} = \{C, E^{\flat}, G\}$
C(4, 4, 4)	four disjoint 2-simplices	$\{0,4,8\} = \{C,E,G^{\sharp}\}$

Chord classes modulo inv./trans. for n-chords 224 class complexes

Classification of Chord Spaces

Which chord space for which application?

Two dimensions

- Regularity of the geometry
- Origin of the initial population of chords

Outline

Space and Collection of Chords

Applications

- Harmonization
- Geometrical Transformations in Chord Spaces
- Spatial Counterpoint

Conclusion

Outline

Space and Collection of Chords

Applications

- Harmonization
- Geometrical Transformations in Chord Spaces
- Spatial Counterpoint

Conclusion

Geometrical Transformation of Musical Space

Motivation

- Spatial representations of chord classes
 - Strong algebraic support
 - Regular geometry
- Geometrical transformations
 - Function from a space to itself preserving the structure
 - Translation, rotation, scaling, etc.
- Musical meaning of such geometrical transformations?

Proposition

- Application to chord classes modulo inversion/transposition
- Three steps work
 - Unfolding of a class complex
 - Trajectory computation
 - Transformation application

Step 1: Unfolding

Unfolding of Class Complexes

- Folding of an infinite hexagonal grid
- Natural embedding in E²
- Local conservation of neighborhood relationships

Main Drawback of the unfolding

- Multiple (infinite) locations for the same object Infinite possible representations of a chord sequence
- Some equivalent locations can be transformed in non-equivalent locations
 E.g., rotations keeps the center unchanged but moves other instances

Main Drawback of the unfolding

- Multiple (infinite) locations for the same object Infinite possible representations of a chord sequence
- Some equivalent locations can be transformed in non-equivalent locations
 E.g., rotations keeps the center unchanged but moves other instances

Trajectory generation algorithm

- Principles
 - Start from an arbitrary position
 - For each chord, choose the closest position from the previous one
- Visualization of a chord sequence
 - Based on the notion of neighborhood
 - Respect to the underlying chord class

Main Drawback of the unfolding

- Multiple (infinite) locations for the same object Infinite possible representations of a chord sequence
- Some equivalent locations can be transformed in non-equivalent locations
 E.g., rotations keeps the center unchanged but moves other instances

Main Drawback of the unfolding

- Multiple (infinite) locations for the same object Infinite possible representations of a chord sequence
- Some equivalent locations can be transformed in non-equivalent locations
 E.g., rotations keeps the center unchanged but moves other instances

In the same class complex

Translation (= transposition) & rotation

From a class complex to another

Scaling

From a class complex to another
Scaling

Some audio results

original	
$R(\pi)$ in $C(3,4,5)$	
T(1,-2) in $C(1,2,4)$	
$R(\pi)$ in $C(1,2,4)$	

W.A. Mozart Piano Sonata No. 16 - Allegro

C. Corea Eternal Child

The Beatles Hey Jude

Musical interpretation of some spatial transformations

Trajectory transformation	Musical meaning
Translation in a chromatic space	Transposition
π – Rotation in a chromatic space	Inversion
Translation in a diatonic space	Modal transposition
π – Rotation in a diatonic space	Modal Inversion
ϕ – Rotation in a chromatic space (with $\phi \neq \pi$)	,
ϕ – Rotation in a diatonic space (with $\phi \neq \pi$)	,
Transformation of the underlying space	Ş

Outline

Space and Collection of Chords

Applications

- Harmonization
- Geometrical Transformations in Chord Spaces
- Spatial Counterpoint

Conclusion

Conclusion & Perspectives

Spatial Computing for Musical Purpose

- Use spatial representations of musical objects
- Neighborhood, locality

 Musical Property
- Contribution to spatial computing
 Abstract symbolic spaces, not only a population of devices (personal opinion)

Current and Future Developments

- Others applications
 - Harmonization (generation of extra-voices in a choral from spatial constraints)
 - Counterpoint rules rephrased in spatial terms
- Feedbacks with musicologists and composers
- □ Tools (Hexachord, PAPERTONNETZ)
- Short term rendez-vous: Louis' PhD defense!

Questions?

Acknowledgements
Olivier Michel (UPEC), Moreno Andreatta, Carlos Agon, Jean-Marc Chouvel,
Mikhail Malt (IRCAM)