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Spaces for musical representations
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Context

=

® Musical theory and computer science

B Spatial computing for musical theory and analysis
0 Compute in space
0 Compute space

m MGS

0 Unconventional programming language for spatial computing

Intuitive (natural) way to express computations on/in space
0 Introduction of topological concepts in a programming language
0 Two main principles

B Space: topological collection
B Computation: transformation
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Otitline

®m Space and Collection of Chords

®m Applications
0 Harmonization
0 Geometrical Transformations in Chord Spaces
0 Spatial Counterpoint

®m Conclusion
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Outline

®m Space and Collection of Chords
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Spatial Representation of Chords

T SR

B Chords in Music
A collection of notes played “simultaneously”

m A set of pitches (event on a staff)

Prelude
Op. 28, No. 7
Frederic Chopin
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Spatial Representation of Chords
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B Chords in Music
A collection of notes played “simultaneously”

m A set of pitches (event on a staff)
®m A sequence of pitches (choral voices)

Molto Legato, Tempo rubato (-=64)
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‘Spatial Representation of Chords

m Chords in Music

A collection of notes played “simultaneously”
m A set of pitches (event on a staff)
B A sequence of pitches (choral voices)
®m An ordered set of pitch classes (chord progression)

A7 A7 A7 A7
| /111 1111]1111|1111]|the first 4 bars

P DT Al A7 A7: {tonic = A, third = CH, fifth = E, seventh = G# }
| 7117|7771 11717 | the second 4 bars| D7:{ tonic = D, third = F#, fifth = A, seventh = C# }
E7: { tonic = E, third = G#, fifth = B, seventh = D# }

EY Bfr ¥ EY
| 7177171117177 1117]the third 4 bars
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Spatial Representation of Chords

m Chords in Music

A collection of notes played “simultaneously”

m A set of pitches (event on a staff)

B A sequence of pitches (choral voices)

®m An ordered set of pitch classes (chord progression)
m A set of pitch classes (Set Theory in music)
]

C
|
®m p-Chords as (p - 1)-simplexes
Representation of a chord and all its subchords
B 1-chord (a pitch class): O-simplex (vertex)
m 2-chord: 1-simplex (edge) Cmaj

m 3-chord: 2-simplex (triangle)




Spatial Representation of Chords

m Chords in Music

A collection of notes played “simultaneously”

m A set of pitches (event on a staff)

B A sequence of pitches (choral voices)

®m An ordered set of pitch classes (chord progression)
m A set of pitch classes (Set Theory in music)
]

C
|
®m p-Chords as (p - 1)-simplexes

Representation of a chord and all its subchords
B 1-chord (a pitch class): O-simplex (vertex)
2-chord: 1-simplex (edge) Cmaj7

@ =

N
m 3-chord: 2-simplex (triangle)
B 4-chord: 3-simplex (tetrahedron) ‘
N




‘Building a Chord Space

m Self-assembly of cellular complexes

Reaction of the sub-complexes between themselves

X Y
B X
/ sre \ /
[ ) (] [ )
\ Pred /
x Yy
Trans Self-Assembly]| , ] = {
xv / ( x y) and (faces x = faces vy)
=>

let ¢ = new_cell (dim x)
(faces x)
(union (cofaces x)
(cofaces vy))
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‘Building a Chord Space

®m Application of transformation Self-Assembly
0 Basic elements: a population of chords

0 Assembly predicate ( ): same pitch-class subset
0 New label ( ): the pitch-class subset
E . E E E
/’ '\ /'\ ?
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K % o’ o
¢ G G G
Xy = (x=Vy)
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Examples: Degrees of a Tonality

T

B Degrees of the diatonic scale
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Examples: Chords of a Mu5|cal Plece
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m Extract of the Prelude No. 4 Op. 28 of F. Chopin
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120 (2,1)-Hamiltonian paths
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Examples: Chord Classes
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(i.e., a chord and a set of operations) G#é
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Simplicial Representation
(24 minor and major triads)
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Examples Chord CIasses

| e werae

m Chord classes modulo inv./trans. for 3-chords

| C(ny,n2,nz) | Simplicial Complex . Representative Trichord

- C(1,1,10) | cylinder | {0.1,2} = {C.C%, D)
C(1,2,9) torus {0,1,3} = {C,C%, D*}
C'(1.3,8) torus {0,1,4} = {C,C* E}
C(1,4,7) torus {0,1,5} = {C,C* F}
C'(1.5,6) circle of 6 tetrahedra boundaries {0,1,6} = {C,C*, F*}
'(2.2,8) two disjoint cylinders {0,2,4} = {C,D, E}
C(2,3,7) torus {0,2,5} = {C, D, F}
'(2,4,6) two disjoint circles of 3 tetrahedra boundaries | {0,2,6} = {C, D, F*}
C'(2,5,5) cylinder {0,2,7} = {C, D, G}
'(3.3,6) three disjoint tetrahedra boundaries {0,3,6} = {C, £, G"}
C'(3,4,5) torus {0,3.7} = {C, E’, G}
C(4.4,4) four disjoint 2-simplices {0,4,8} = {C, E.G*%}

m Chord classes modulo inv./trans. for n-chords

224 class complexes
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Classification of Chord Spaces
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® Which chord space for which application?

Two dimensions
m Regularity of the geometry
®m Origin of the initial population of chords

ceoular Algorithmic
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arbitrary Analysis
composition genericity musical theory
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Outline

\

®m Applications
0 Harmonization
0 Geometrical Transformations in Chord Spaces
0 Spatial Counterpoint
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Outlin

®m Applications

0 Geometrical Transformations in Chord Spaces
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‘Geometrical Transformation of Musical Space

® Motivation
0 Spatial representations of chord classes

B Strong algebraic support
m Regular geometry
0 Geometrical transformations

®m Function from a space to itself preserving the structure
B Translation, rotation, scaling, etc.

0 Musical meaning of such geometrical transformations?

B Proposition
0 Application to chord classes modulo inversion/transposition
0 Three steps work
B Unfolding of a class complex

®m Trajectory computation
B Transformation application
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Step 1: Unfolding

® Unfolding of Class Complexes
0 Folding of an infinite hexagonal grid
0 Natural embedding in E?
0 Local conservation of neighborhood relationships

V/AVAVA

| AV/ETAV
=it AVAVA

unfolding
>
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Step 2: Trajectory of a computation

B Main Drawback of the unfolding
0 Multiple (infinite) locations for the same object

Infinite possible representations of a chord sequence
0 Some equivalent locations can be transformed in non-equivalent locations

E.g., rotations keeps the center unchanged but moves other instances
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Step 2: Trajectory of a computation

B Main Drawback of the unfolding
0 Multiple (infinite) locations for the same object

Infinite possible representations of a chord sequence
0 Some equivalent locations can be transformed in non-equivalent locations

E.g., rotations keeps the center unchanged but moves other instances

® Trajectory generation algorithm

0 Principles

m Start from an arbitrary position

B For each chord, choose the closest position from the previous one
0 Visualization of a chord sequence

B Based on the notion of neighborhood

B Respect to the underlying chord class




Step 2: Trajectory of a computation

B Main Drawback of the unfolding
0 Multiple (infinite) locations for the same object

Infinite possible representations of a chord sequence

0 Some equivalent locations can be transformed in non-equivalent locations

E.g., rotations keeps the center unchanged but moves other instances
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B Main Drawback of the unfolding

0 Multiple (infinite) locations for the same object

Step 2: Trajectory of a computation

Infinite possible representations of a chord sequence

0 Some equivalent locations can be transformed in non-equivalent locations

E.g., rotations keeps the center unchanged but moves other instances
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Step 3

Geometrical Transformation
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Step 3: Geometrical Tlra'nsform_ation
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B From a class complex to another
Scaling

May 2013 - Spatial Computing for Musical Transformations and Counterpoint



wlies A€ S o S0 - -

. T my
S8 RS

W RIS

Geometrical Transformation

Step 3:
P 5.

B From a class complex to another

Scaling
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Step 3: Geometrical Transformation

| e e

B Some audio results

.. -
original
in C(3,4,5)
T(1,-2) ©
in C(1,2,4) 0
R(m) ~
in C(1,2,4) Q
W.A. Mozart

Piano Sonata No. 16 - Allegro

/—\
original Q
in C(3,4,5)

R(27/3) ~
in C(3,4,5) Q
C(2,3,7) PN

/
C(l,2,4)
C. Corea
Eternal Child

.. -
original
R(m) /
in C(3,4,5) 0
1(1,-2) ~
in C(1,2,4) Q
C(1,2,9) PN

*
C(l,2,4)
The Beatles
Hey Jude
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‘Step 3: Geometrical Transformation

B Musical interpretation of some spatial transformations

Trajectory transformation Musical meaning
Translation in a chromatic space Transposition
7t — Rotation in a chromatic space Inversion

Translation in a diatonic space Modal transposition
71— Rotation in a diatonic space Modal Inversion
¢ — Rotation in a chromatic space 5
(with ¢ = m) '
¢ — Rotation in a diatonic space 5
(with ¢ = m) '
Transformation of the underlying 5

space
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Outline
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®m Conclusion
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Conclusion & Perspectives

®m Spatial Computing for Musical Purpose
0 Use spatial representations of musical objects
0 Neighborhood, locality < Musical Property
0 Contribution to spatial computing

Abstract symbolic spaces, not only a population of devices (personal opinion)

B Current and Future Developments

0 Others applications
B Harmonization (generation of extra-voices in a choral from spatial constraints)
B Counterpoint rules rephrased in spatial terms

0 Feedbacks with musicologists and composers
0 Tools (Hexachord, PAPERTONNETZ)
0 Short term rendez-vous: Louis’ PhD defense!




Questions?
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