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Abstract—This paper presents a spatial approach to build
spaces of musical chords as simplicial complexes. The approach
developed here enables the representation of a musical piece as
an object evolving over time in this underlying space, leading to
a trajectory. Well known spatial transformations can be applied
to this trajectory as well as to the underlying space. These spatial
transformations induce a corresponding musical transformation
on the piece. Spaces and transformations are computed thanks
to MGS, an experimental programming language dedicated to
spatial computing.

Index Terms—MGS; musical transformation ; harmonization;
counterpoint; self-assembly; Tonnetz.

I. INTRODUCTION

Musical objects and processes are frequently formalized
with algebraic methods [1]. Such formalizations can some-
times be usefully represented by spatial structures. A well-
known example is the Tonnetz (figure 1), a spatial organization
of pitches illustrating the algebraic nature of triads (i.e., minor
and major 3-note chords) [2]. In [3] we have introduced an
original method that extends and generalizes the approach
of [4] for the building of pitch spaces using simplicial
complexes [5]. This combinatorial structure is used to make
explicit algebraic relations between notes and chords, as in
Tonnetze, or more general relationships like co-occurrences.

In such spaces, a musical sequence is represented by a sub-
complex evolving over time: a trajectory. It is then compelling
to look at the musical effect of well known spatial transforma-
tions on a trajectory. In section IV we investigate geometrical
transformations, as discrete translations and discrete central
symmetries, leading to the well known operations of musical
transpositions and inversions. Such discrete geometrical trans-
formations can be generalized, leading to a new family of
transformations with less known musical interpretation. Some
audio examples are available online1. In section V, the problem
of counterpoint is investigated from a spatial perspective. We
propose for the first time to generate the additional voice
such that the distance with other played notes in a particular
underlying space is minimized. The underlying space is a
parameter of the algorithm and by changing spaces, alternate
(families of) solutions are generated.

II. A SHORT INTRODUCTION TO MGS

MGS is an experimental domain specific language dedicated
to spatial computing [6], [7]. MGS concepts are based on well

1see the web page: http://www.lacl.fr/~lbigo/scw13

Figure 1. The original Tonnetz. Pitches are organized following the interval
of fifth (horizontal axis), and the intervals of minor and major thirds (diagonal
axis). Triangles represent minor and major triads.

established notions in algebraic topology [5] and uses of rules
to compute declaratively spatial data structures. In MGS, all
data structures are unified under the notion of topological col-
lection. Simplicial complexes defined below are an example of
topological collections. Transformations of topological collec-
tions are defined by rewriting rules [8] specifying replacement
of sub-collections that can be recursively performed to build
new spaces.

A simplicial complex is a space built by gluing together
more elementary spaces called simplices. A p-simplex is the
abstraction of an elementray space of dimension p and has
exactly p+ 1 faces in its border. A 0-simplex corresponds to
a point, a 1-simplex corresponds to an edge, a 2-simplex is a
triangle, etc. The geometric realization of a p-simplex is the
convex hull of its p + 1 vertices as shown in Figure 3 for
p-simplices with p ∈ {0, 1, 2, 3}.

For any natural integer n, the n-skeleton of a simplicial
complex is defined by the set of faces of dimension n or less.

A simplicial complex can be built from a set of simplices by
self-assembly, applying an accretive growing process [9]. The
growth process is based on the identification of the simplices
in the boundaries. This topological operation is not elementary
and holds in all dimensions. Figure 2 illustrates the process.
First, nodes E and G are merged. Then, the resulting edges
{E,G} are merged.

A simple way to compute the identification is to iteratively
apply, until a fixed point is reached, the merge of topological
cells that exactly have the same faces. The corresponding
topological surgery can be expressed as a simple MGS trans-



formation as follows:
transformation identification = {

s1 s2 / (s1==s2 & faces(s1)==faces(s2))

=>

let c = new_cell (dim s1)
(faces s1)
(union (cofaces s1)

(cofaces s2))
in s1*c

}

The expression new_cell p f cf returns a new p-cell with
faces f and cofaces cf . The rule specifies that two elements
s1 and s2, having the same label and the same faces in their
boundaries, merge into a new element c (whose cofaces are
the union of the cofaces of s1 and s2) labeled by s1 (which
is also the label of s2).

In Fig. 2, the transformation identification is called
twice. At the first application (from the left complex to the
middle), vertices are identified. The two topological operations
are made in parallel. At the second application (from the
complex in the middle to the right), the two edges from E to G
that share the same boundary, are merged. The cofaces of the
resulting edge are the 2-simplices IC and IIIC corresponding
to the union of the cofaces of the merged edges. Finally (on
the right), no more merge operation can take place and the
fixed point is reached.
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Figure 2. Identification of boundaries.

III. CHORD SPACES

A. Building Chord Spaces
A chord space is an organization in space of a collection of

musical chords. Such organizations are typically represented
by graphs [10], or more recently by orbifolds [11]. Chords are
generally represented in these spaces by vertices. A sequence
of chords, which are included in the space, can thus be
represented by a trajectory. A trajectory generalizes the notion
of path to higher dimensional simplices and a trajectory is not
necessarily connected.

We use a method presented in [12] to represent chords by
simplices. A n-note chord, viewed as a set of n notes, is rep-
resented by a (n− 1)-simplex. To simplify the presentation,
we consider pitch classes instead of notes. This abstraction is
customary in musical analysis and gathers all notes equivalent
up to an octave under the same class. For example, the notes
C1, C2, C3 . . . , all played by distinct keys on the piano, are
grouped under the pitch class C.

In the simplicial representation of chord, a 0-simplex rep-
resents a single pitch class. More generally, a n− 1-simplex
represents a n-note chord, as illustrated on figure 3.
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Figure 3. A chord represented as a simplex. The complex on the right
corresponds to the 3-note chord C,E,G and all 2-note chords and notes
included in it.

We build a chord space simplicial complex by representing
each chord of a chord collection by a simplex, then by
applying the self-assembly process described in section II. The
application of this process to a collection of n-note chords
gives rise to a n − 1-dimensional simplicial complex. For
example, the self-assembly process applied to the 24 major
and minor triads (3-note chords) builds a toroidal simplicial
complex. This complex extends the notion of Tonnetz devel-
opped in musical theory and illustrated on figure 1.

B. Chord Class Spaces

In this subsection, we present two particular types of chord
spaces that will be used in next sections.

a) Chromatic Chord Class Spaces: Musical chords can
be classified according different methods. One of the most
popular classification spreads chords in 351 pitch class sets,
called the Forte Classes [13]. Two pitch class sets belong to
the same class if they are equivalent up to a transposition.
We merge further chords equivalent up to transposition and
inversion. The resulting classes can be obtained by listing
orbits of the action of the dihedral group D12 on subsets of
the cyclic group Z12 [14]. There are 224 such classes, we
call chromatic chord classes. Chords belonging to a chromatic
chord class share the same interval structure X: a sequence
of intervals defined up to circular permutation and retrograde
inversion. We note C(X) the simplicial complex representing
the chromatic chord class associated with the interval structure
X . In the chromatic system, the elements of X are elements
of Z12.

b) Tonal Chord Class Spaces: A tonal chord class space
is obtained by assembling chords sharing the same diatonic
interval structure and including pitches of a particular tonality.
If the scale of the tonality is heptatonic, (i.e., the tonality
includes seven pitch classes), the 16 spaces associated with
the tonality can be obtained by enumerating the orbits of the
action of the dihedral group D7 on subsets of Z7. Such a space
is noted C(X) where the elements of X belongs to Z7. For
more details on these spaces, see [3].

C. Unfolding Chord Class Spaces

Chord class spaces of a same dimension can have different
topologies. For example, C(3, 4, 5) and C(2, 5, 5) are both
two-dimensional simplicial complexes but the first one has
the shape of a torus and the second one has the shape of a
strip [15]. However, chord class spaces of a given dimension
can be unfolded in topologically equivalent infinite spaces.
The unfolded representation is built as follows: an arbitrary
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Figure 4. On the top, the unfolding process is applied to C(3, 4, 5) by
extending C Major 1-simplices to infinite lines on the plane. At the bottom,
unfolding process is applied to C(2, 4, 3, 3) in the 3D space.

chord of the class is represented by the geometric realization
of its simplex. Then, 1-simplices (i.e., edges) are extended
as infinite lines. The interval labelling an edge is assigned to
the corresponding line and all its parallels. Pitch classes and
chords are organized and repeated infinitely following the lines
according their assigned intervals.

The major difference between a simplicial complex and
its unfolded representation is that in the former, notes are
represented once, and in the latter, by an infinite number
of occurrences. Moreover, the associated 1-skeleton can be
embedded in the euclidean space such that parallel 1-simplices
(representing 2-note chords) relate to the same interval class.
By considering 1-skeletons of the unfolded complexes rep-
resenting major and minor triads (Figure 4), one gets the
neo-Riemannian Tonnetz [2]. The 1-skeleton of the unfolded
complex representing seventh and half-diminished seventh
chords is equivalent to Gollin 3D Tonnetz [16]. These two
complexes are chromatic chord class spaces.

Chord class spaces resulting from the assembly of n-note
chords are unfolded as (n − 1)-dimensional infinite spaces.
From 2-note chords one gets an infinite line, from 3-note
chords an infinite triangular tessellation. Note that n-simplices
don’t systematically tessellate the n-dimensional Euclidean
space. For example, 2-simplices (triangles) tessellate the 2D
plan but 3-simplices (tetrahedra) do not tessellate the 3D space.
For this reason, the 3D unfolded representation of complexes
as the one at the bottom right of the figure 4 contains some
holes.

IV. SPATIAL TRANSFORMATIONS AND THEIR MUSICAL
INTERPRETATION

We focus on unfolded representations of chord class spaces
resulting from the self assembly of 3-note chords. These
unfoldings are infinite triangular tessellations which have the
property to preserve local neighborhoods between elements.
If two elements are neighbor in a folded space then they
are neighbor its unfolded representation, and vice versa. Note

Figure 5. Path representing the first measures of J-S. Bach choral BWV 255.
The chord class space used for the representation is obtained by unfolding
C(3, 4, 5) which is the assembly of the 24 minor and major triads.

that this property does not systematically hold at higher
dimensions. The advantage to consider unfolded representa-
tions of 3-note chords is that it preserves the neighborhood
of each simplex while enabling the specification of discrete
counterparts of euclidean transformation. This is not easily
achieved in the initial finite space.

A. Representation of a Musical Sequence in a Chord Space

As previously said, a note corresponds to an infinite number
of possible locations in an unfolded chord space. To represent
a musical sequence as a moving object in such a space, only
one of those locations has to be chosen for each played note
over time. The precise location of a note played at some date is
chosen in order to minimize the distance with both previously
and simultaneously played notes. These two criteria enable the
representation of the sequence by a trajectory “as connected
as possible”. Figure 5 illustrates such a path in C(3, 4, 5).

B. Spatial Transformations

Now we have a spatial representation of a musical sequence,
we can apply some spatial transformations to it and listen to
the musical result. We consider two kinds of transformations:

• the first one applies a geometrical transformation on the
trajectory, (i.e., on the spatial object representing the
sequence in a predefined space) as illustrated on figure 7;

• the second one applies transformations on the underlying
space of the piece, that is, the triangular tessellation (fig-
ure 8). This is possible because all such transformations
amount to change the labels of the underlying space.

Musical examples of different pieces, before and af-
ter transformations, are available in MIDI format at

http://www.lacl.fr/~lbigo/scw13 .
1) Geometrical Transformations: The regularity of the tri-

angular tessellation enables to specify a discrete counterpart
of usual geometrical operations like translations or some
rotations.

a) Translations: As previously mentioned, a direction in
an unfolded space is associated with a constant interval. Then,
a n-step translation of a path in a direction associated with
the interval i reaches to a transposition of n × i on each



Figure 6. On the top, the first measures of the melody of the song Hey
Jude. On the bottom, the same measures after three rotations in the complex
C(1, 2, 4) related to F major tonality

note of the sequence. This translation is thus interpreted as
a transposition (if the chord space is chromatic) or as a modal
transposition (if the chord space is tonal). Audio example 1
is the result of a one-step translation of the path representing
Beethoven’s piece Für Elise in C(3, 4, 5). The direction of the
translation is associated with the interval of fourth (the left
direction on figure 5). The result is the transposition of the
whole piece a fourth higher. Example 2 is the beginning of
Mozart’s 16th sonata after a translation in C(1, 2, 4) related to
C major tonality. Example 3 illustrates the same transformation
on the song Hey Jude written by Paul McCartney, in C(1, 2, 4)
related to F major tonality. This transformation corresponds to
a modal transposition. The result is that the two original pieces
switched from major mode to minor mode.

b) Rotations: Figure 7 illustrates a discrete π/3 rotation.
Around a given vertex, five different rotations are possible in
a triangular tessellation. This property is easily understandable
by seeing that a note has six neighbors into six different direc-
tions. Thus, the motion to a note to one of his neighbors can be
rotated five times around the starting note. Six rotations reach
to an entire rotation around the center and is equivalent to
identity. Three rotations are equivalent to a central symmetry.

This last operation is particularly interesting since it pro-
duces a trajectory having exactly the opposite direction from
the original one. Each interval i being mapped to his opposite
interval −i, this rotation is musically interpreted as an inver-
sion (if the chord space is chromatic) or as an operation we
could call a modal inversion (if the space is tonal).

Other rotations act as interval mappings depending on
the properties of the chord space. Audio example 4 is the
beginning of Mozart’s 16th sonata after 3 rotations (i.e. central
symmetry) in C(3, 4, 5). Examples 5 and 6 are the same
sequence after respectively 2 and 3 rotations in C(1, 2, 4)
related to C major tonality.

Examples 7, 8 and 9 result from the same operations on the
song Hey Jude. Figure 6 compares the first measures of the
melody of the song before and after the central symmetry in
C(1, 2, 4) related to F major tonality.

2) Change of Space: This operation consists in changing
the labels of the underlying space, which is a triangular
tessellation, for the labels of another unfolded two-dimensional
chord class space. Thanks to topological equivalence of the
two unfolded representations, the label mapping between the
two spaces is straightforward. In this operation, the trajec-

Figure 7. Rotation of a path in a triangular tessellation.

space 1 space 2 

Figure 8. Transformation of the support space.

tory representing the musical sequence stays “unchanged”.
Example 10 is the beginning of J.-S.Bach’s choral BWV 256
after the initial support space C(3, 4, 5) is transformed into
C(2, 3, 7). The transformation achieves a surprising use of the
pentatonic scale, giving a particular color to the transformed
sequence. Transforming a chromatic space into a tonal space
will lead to a musical sequence including notes of a unique
tonality. An atonal piece thus becomes tonal. Example 11
illustrates this phenomena with the atonal piece Semi-Simple
Variations for piano of Milton Babbit: The piece is represented
in C(1, 4, 7). Then, this complex is transformed in C(1, 2, 4)
related to the D minor tonality. The transformation, maps each
note of the piece to a note in the D minor tonality.

3) Musical Interpretation: Some of these transformations
have a natural interpretation in music. For example, the
translation in a chromatic scale corresponds to a transposition.
Our spatial approach highlights many other transformations
that are not systematically studied in music theory, like for
instance the n-rotations (with 1 ≤ n ≤ 5 and n 6= 3).

These transformations can be combined to generate new
musical results. For example, one can apply successively a
rotation, a translation and a change of space, enabling a
huge set of recombinations to generate new material from an
initial musical sequence. Notice that some of these operations
are equivalent and produce the same musical result. For
example, the central symmetry operation corresponds to the
same musical inversion in all chromatic chord spaces. Note
also that these transformations impact pitches only. However,
the representation of a musical sequence in a space that does
not include all the pitches (this is the case for tonal spaces),
will induce a loss of some notes, thus impacting the rhythm
of the sequence.
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Figure 9. The generation of the voice v4 consists in adding to the pitch set
Pt a pitch pt (or a silence) for each segment st.

V. SPATIAL COUNTERPOINT

Counterpoint consists in the writing of musical lines that
are independent from each other but sound harmonious when
played simultaneously. Numerous rules have been proposed
to determine a note on a line according to previously played
notes on the same line and simultaneously played notes of
other lines. The way these notes are chosen determine to a
large extent the musical style of the piece. Different sets of
counterpoint rules have been proposed over time by music
theorists. One of the most popular is probably the Gradus Ad
Parnassum from Joseph Fux [17], used for composition by,
among others, Haydn, Mozart, Beethoven and Schubert. This
set of rules, published in 1725, still fascinates music theorists,
and has been formalized relying on various frameworks,
agebraic [1] or spatial [18].

We propose a method to translate some counterpoint rules,
as the ones defined in Fux’s Gradus Ad Parnassum, in chord
spaces. The goal of this study is not to propose yet another
more efficient and exhaustive method for counterpoint com-
position, but to show how the spatial approach can be used
to express existing rules and can suggest some new rules for
composition.

A. Segmentation

We focus on the generation of a melodic voice, which will
be added to a pre-existing musical sequence.

First we divide the sequence in successive temporal seg-
ments. For each segment st, a pitch pt or a silence has to
be chosen and concatenated to the generated voice. If a same
pitch is generated for two successive segments, the note can be
hold or repeated. We use a simple segmentation process in this
preliminary study: Each time a note is played or stopped in the
pre-existing sequence, the previous segment stops and a new
one starts. Figure 9 illustrates this process for the generation
of a voice, in parallel with three others. The set Pt includes
other voice’s pitches sounding during the segment st. In this
example, 8 pitches have to be determined to complete the
fourth voice of this measure.

Note that this process only allows the generated voice to
move simultaneously with an other pre-existing one. More

sophisticated systems would typically allow new notes to be
generated between pre-existing notes. The approach described
here is constrained but sufficient for this preliminary study.

B. Translation of the Rules

Counterpoint rules can generally be classified in three
categories:

• Vertical (or harmonic) rules: How pt fits with pitches in
Pt;

• Horizontal (or melodic) rules: How pt fits with pt−1 (and
sometimes with pt−2 or earlier);

• Transverse rules: How {Pt, pt} fits with {Pt−1, pt−1}.
1) Vertical Rules: Vertical rules typically consist in promot-

ing, avoiding or forbidding the formation of particular intervals
or chords in {Pt, pt}. We build a chord complex V corre-
sponding to these rules by assembling simplices specifying
the permitted intervals and chords. For example, a rule that
allows the formation of minor and major chords is typically
translated by the choice of the chord class complex C(3, 4, 5).
If the rule forbids a particular interval, V contains no edge
corresponding to this interval.

Once the complex V is assembled, we use a method
presented in [3] to measure how the set of pitches defined
by {Pt, pt} fits within this space. This method consists in
measuring the compactness of the sub-complex made by the
pitches of {Pt, pt} in V . For a given V , pt is chosen in order
to maximize this compactness. Informally, for a connected set
S of simplices in a complex V , the compactness depends on
the length of the paths in V between two arbitrary simplices
of S.

An entire set of vertical rules rarely matches the structure
of a particular complex, and a compromise needs generally to
be done.

2) Horizontal Rules: Horizontal rules mostly specify al-
lowed or forbidden intervals between pt−1 and pt. Note that
some complex rules can forbid some longer pitch sequences,
for example pt may depend also on pt−2. In this preliminary
study, we focus on rules concerning only the previous gener-
ated pitch pt−1.

We build the complex H by assembling all the edges
corresponding to allowed intervals. The resulting space is
a one-dimensional complex, which is an undirected graph.
The pitches pt are successively determined by constructing
a trajectory as connected as possible in H . Notice that a pitch
transition in H is not oriented: for instance, if the notes F and
G are neighbor in H , both transitions F → G and G → F
are allowed.

3) Transverse Rules: A transverse rule consists in allowing
or forbidding particular n-pitch transitions. A n-pitch transi-
tion consists in two consecutive sets of n pitches. Here is an
example of a rule on 2-pitch transitions: If the pitches of two
voices are separated by an interval of fifth during the segment
st−1, they cannot be separated by this same interval during
st. This rule is related to the parallel fifth rule, widely used
during the baroque period.
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Figure 10. On the left, an allowed 2-pitch transition, between {C,E} and
{D,F}, represented by a square-shaped 2-cell. This 2-cell is not a simplex:
it has four edges in its border while a 2-simplex has only three edges
in its border. On the right, the 3-pitch transition between {C,E,G} and
{B,D, F}.

We represent an allowed n-pitch transition by a n-cell built
as the extrusion of a (n− 1)-simplex. Here, the extrusion is
the product of an arbitrary simplex with a 1-simplex. The
two sides of the extrusion correspond to the (n− 1)-simplices
respectively representing the pitch set {Pt−1, pt−1} and
{Pt, pt}. For example, a 2-transition is represented by a
square-shaped cell (the extrusion of an edge). A 3-transition is
represented by the extrusion of a triangle (figure 10). Notice
that the resulting cell is not a simplicial cell, it is a a simploid
i.e., the product of two simplices.

As for horizontal spaces, this representation does not specify
the direction of the transition. For example, the square cell on
the left of figure 10 represents both transitions {C,E} →
{D,F} and {D,F} → {C,E}. To specify rules on directed
transitions, n-cells representing n-transitions have to be ori-
ented, in the same way that an edge (which is a 1-cell) can be
oriented. An alternative approach would consist in updating
the structure of H at each segment according to the played
pitch set.

We build the space H by assembling the allowed n-pitch
transitions. The resulting space is a simploidal set, a slight
generalization of a simplicial complex [19].

All the notions we have presented on simplicial complexes
lift immediately on simploidal sets. Thus, the pitch pt is
chosen so that the simploid spanned by {Pt−1, pt−1} and
{Pt, pt} exists and maximizes the compactness in H .

4) Application: The respect of the rules by a potential pitch
pn is evaluated in each of the three spaces V , H and T . If
no pitch is found, rules can be weakened by relaxing some
constraint in one of the spaces, for instance by including some
additional cells. An other possibility is to put a silence.

Some traditional rules cannot be easily represented solely
by the structure of these complexes. However, we believe that
the spatial approach can be an inspiration to propose new sets
of rules for various kinds of music.

Moreover, the analyse of a set of musical pieces in a
particular style can provide elements to design customized
spaces to realize counterpoint in a similar style. For example,
one can look for the complex in which a piece (or a set of
pieces) is represented as compact as possible [3]. Using this
complex for V is a good starting point to harmonize another

piece in a similar style. Similar processes can be done to
determine H and T .

VI. CONCLUSION

The starting point of this work is the abstract spatial
representations of various musical objects defined in [4],
[12], [3]. These representations have been unified using a
simple self-assembly process, and further defined in MGS.
They have already shown their usefulness, for instance for
the computation of all-interval series [12].

In this paper we take a step further and we propose
two spatial formulations of some non trivial compositional
processes: the definition of a class of musical transformations
that includes the transposition from a major to a minor mode
and the spatial formulation of counterpoint rules, leading to a
new algorithm to generate an additional voice.

The spatial framework works here as a powerful heuristic. In
section IV we show that some straightforward spatial transfor-
mations have a well defined musical interpretation. The others,
that is the straightforward spatial transformations that do not
correspond to a well known chord or melodic transformation,
suggest alternative musical transformations that are not easily
expressed in the usual algebraic setting used in musicology.
In section V, we demonstrate how counterpoint rules can be
encoded on three cellular complexes that respectively represent
the constraints on the notes that are played simultaneously, the
possible successions of notes in a line, and the possible succes-
sion of chords in the sequence. Again, the spatial framework
suggests some alternative rules, or new rule parametrization.

All the mechanisms described here have been implemented
and the audio examples illustrating this work are accessible at
the url http://www.lacl.fr/~lbigo/scw13 . The first results are
very encouraging and open various perspectives. We mention
two of them. In another direction, the research of an adapted
space with a musical piece rarely accommodates with a unique
complex. The comparison of how complexes fit with a piece
over the time gives elements for an harmonic segmentation of
the piece. A study of the successive most adapted complexes
during a piece can be represented by another complex and
gives interesting elements on composers practices.

The building and processing of abstract spaces appears to be
a key issue for musical analysis and composition. We believe
that the path taken in this paper can help to improve and to
develop new tools.
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