
1. A Topological Framework for
Modeling Diagrammatic Reasoning Tasks

We propose to model some diagrammatic reasoning tasks within a topological
framework. We only focus on problems that require a specific diagrammatic
reasoning procedure to be solved rather than on reasoning on diagrams. To
model such cognitive tasks, we propose to represent the problem with topo-
logical objects and to model the diagrammatic operations performed on them
as topological operations. The idea underlying this proposition is that combi-
natorial algebraic topology is an adequate and unifying framework to specify
and analyse diagrammatic representations and reasoning.

To illustrate such a proposal, we present here three applications of this
topological framework: the first concerns a categorization problem, the second
deals with hierachy restructuring, and the last one is the ESQIMO system
for simple intra-domain analogy solving in unsupervised IQ-tests.

1.1 Introduction

Several issues are addressed in the fields of diagrammatic reasoning (see
[GNC95] for an excellent introduction) e.g.: visual formalism [Har95], dia-
grammatic inference [GPP95, Lin95], diagrammatic approach of logic [Shi91,
BE95], qualitative physics [For95], cognitive issues [Gar83, Arn69, GNC95],
logical formalisation of spatial relationships [Got94, LP97, Ham97, Ben94].

The last example accounts for the search of a formal theory of diagram-
matic representations. A unique conceptual framework cannot encompass
simultaneously all the issues investigated in the field of diagrammatic rea-
soning. However, it is possible to develop a formal framework to describe the
basic objects and processes that are specific to it.

We are interested in reasoning on a problem with an internal diagram-
matic representation of knowledge. More precisely, we are not interested in
reasoning on diagrams but with (some kind of) diagrams on various kind of
problems1. The formal framework that we explore here comes from combina-
torial algebraic topology, and will be called CAT in this paper.
1 We will not enter into the debate concerning the distinction of internal and ex-

ternal diagrammatic representations (see for example the discussion at TWD97).
We only propose to explore a representational system in which we develop con-
ceptual models of cognitive tasks.
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Instead of rephrasing well-known diagrammatic applications in the CAT
framework, we have found more illuminating to present a topological mod-
eling of cognitive tasks that can be diagrammatically solved (they involves
lattice graph and geometric configuration) but that have not received until
now a specific diagrammatic treatment.

The first application is a categorisation problem. The second one concerns
the taxonomic reasoning and the problem of restructuring ontologies. The
third application, more widely presented, has raised the development of the
ESQIMO system [VGS98, VG98] for solving analogies in unsupervised IQ-
tests.

1.2 Algebraic Topology for Knowledge Representation

We were guided towards topological tools for several reasons. First, we are in-
terested in diagrammatic reasoning as the use of spatial relationships such as
neighbourhood, border, dimension, path, hole, . . . , to represent and structure
knowledge.

Although geometry studies these relations, we are not interested in the
continuous and metric structure of geometrical objects. The primitive objects
and relations involved in diagrams have a finite and discrete nature. For in-
stance, a graph involves edges represented as line segments. A line segment
has a continuous nature but this is irrelevant for the graph structure: the
precise shape of the edges does not matter, only the connection implied be-
tween two nodes does. The same remark holds for Venn diagram, state-charts,
symbolic maps where it is only the configuration of finite sets of objects that
is relevant. When metric aspects turn out to be important, they are often
restricted to represent partial order relationships: A is bigger that B, C is
closer from D than E, path F is shorter that path G, etc.

Moreover, we cannot restrict diagrams to plane geometry. For example,
the realisability of a Venn diagram representing an arbitrary predicate re-
quires working in a 3 dimensional space [LP97]. Path equivalence depends of
the underlying structure of space (e.g. all closed paths are equivalent on the
plane, but not on a torus). So we have to consider general spatial structures
in many dimensions.

Hence, if we neglect quantitative diagrammatic representations (like bar-
chart, geological survey map, etc.) we can focus on n-dimensional combi-
natorial algebraic topology. Algebraic topology develops the application of
algebraic tools to topological problems. Such an approach is very attractive
because we are particularly interested in the development of “constructive”
objects, i.e. objects that can be tractable by a computer program.
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1.2.1 Simplicial Complexes (SC)

Simplicial complexes are topological abstract structures that generalise the
notion of graph[Hen94, HY88]. Indeed, all complexes of dimension less than 2
are graphs. We find it interesting to consider some spatial properties of graphs
and then generalise them to many dimension to express more information.
Simplicial complexes are the abstract objects that realises this generalisation.
The following definition is standard in algebraic topology.

Definition 1.2.1. An abstract simplicial complex [Hen94, HY88] is a couple
(V, K) where V is a set of elements called vertices of the complex and K is
a set of finite parts of V such that if s ∈ K, then all the parts s′ ⊆ s belong
also to K. The elements of K are called abstract simplexes. The dimension
of a simplex s is equal to Card(s)− 1. The dimension of the complex is the
dimension of its biggest simplex.

All p-complexes with p < 2 are graphs. Indeed, graphs are composed of
edges and vertices of dimension 1 as shown on figure 1.1(b). Simplicial com-
plexes are particularly attractive to generalise semantic networks by keeping
the possibility to express hierarchies like in a relational graph [Hir97].

Definition 1.2.2. Let α = (σ0, σ1, . . . , σn) be a sequence of simplexes be-
longing to a complex K. The sequence α is called a polygonal n-chain of
origin σ0 and end σn if for all couples (σi, σi+1), σi ∩ σi+1 6= ∅. The dimen-
sion of α is the smallest dimension of σi ∩ σi+1.

(a) 0-simplex
(b) 1-simplex, it is
also an edge in a
graph.

(c) 2-simplex

Fig. 1.1. Geometrical representation of p-simplexes for p varying from 0 to 2.

A p-simplex s is noted: s = 〈v0v1 . . . vp〉, where vi ∈ V . The figure 1.1
shows the geometrical representation of 0, 1 and 2-simplexes. We say that
two simplexes σ1 and σ2 are q-connected if there is a polygonal chain of
dimension q that connects σ1 with σ2. Any p-simplex is p-connected to itself
with a 0-chain.

Now, we propose to use simplicial complexes to represent knowledge.
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1.2.2 Representing Binary Relations with Simplicial Complexes:
Q-analysis

Atkin already proposed to represent binary relations with simplicial com-
plexes: it is the Q-Analysis [Atk77, Atk81, Joh91a]. Q-Analysis has been
used to model traffics [Joh91b], interactions between agents [Dor86, PLC91,
Cas94, chap. 8], position analysis at chess [Atk76] and social relationships
[Atk77, Gou80, Cas94].

Let Λ be the incidence matrix of a binary relation λ ⊂ A×B. Let a ∈ A,
and the set Ba of elements bi ∈ B such that (a, bi) ∈ λ. The set Ba can be
directly read from Λ, as the a-column (see table 1.1).

We represent the elements bi of Ba as vertices and a as a simplex build
on these vertices. The dimension of the simplex Sa representing a depends
on the number of vertices in Ba.

The whole matrix Λ can then be represented as a simplicial complex
containing all the simplexes representing each element ai ∈ A, we note it
KA(B, λ) (see figure 1.2(a)).

Likewise, we represent Λ−1 with the dual simplicial complex KB(A, λ−1).
In this case, the elements ai are taken as vertices and the elements bi are repre-
sented as simplexes (see figure 1.2(b)). We say that KA(B, λ) and KB(A, λ−1)
are conjugates, they contain the same information but present it in a different
and complementary way.

We extended Q-Analysis to allow the representation of sets of pred-
icates as a simplicial complex too [Val97]. We take a set of predicates
P = {p1, p2, . . . , pn} and represent the binary relation µ ⊂ A × P such that
(ai, pj) ∈ µ if pj(ai) holds.

Take for example the set of integers A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the
set of predicates P = {p1, p2, p3, p4} = {parity, oddity, primality,multiple of 3}.
The incidence matrix of µ is then obviously the one given in figure 1.2.2. We
can represent the dual complex of µ, each element ai ∈ A being a simplex
build with vertices pi ∈ P . This dual representation enlighten the fact that
elements 4, 8, 10 have exactly the same representation when taking these few
predicates.

A representation based upon simplicial complexes associates the same
simplex to elements of A that cannot be distinguished. In other words, two
elements will be separated only if there is at least one predicate that allows
the differentiation. The same situation occurs with the dual complex.

Two simplexes that have a smaller k-simplex in common are said to share
a k-face. In terms of representation, it means that they have k features in
common. As Freska emphasised it, we call here for the use of discriminat-
ing features rather than for precise characterisation in terms of universally
applicable reference system [Fre97].

We can say that the identity of an element is represented by the features
he shares with others and also by the ones that are specific to it [HE97].
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Table 1.1. Incidence matrix associated with λ. The elements bi ∈ B that are λ-
related to aj can be directly read from the matrix as the aj-column (the jth column).

λ a1 a2 a3

b1 1 0 0
b2 0 1 1
b3 1 1 0

b3

b1

a1

b2

a3

a2

(a) Simplicial representation of λ
taking bi as vertices and ai as sim-
plexes. We have λ(a1) = {b1, b2}. So
we represent a1 as a 1-simplex, b1

and b2 being its two vertices.

b2

b1

a1

b3

a3a2

(b) Dual simplicial representation of
λ taking ai as vertices and bi as sim-
plexes.

Fig. 1.2. Simplicial representation of the binary relation λ using column (a) or row
(b) of the incidence matrix as simplices.

p1 p2 p3 p4

1 0 1 0 0

2 1 0 1 0

3 0 1 1 1

4 1 0 0 0

5 0 1 1 0

6 1 0 0 1

7 0 1 1 0

8 1 0 0 0

9 0 1 0 1

10 1 0 0 0

p3

p4

3
9 6, 7

25

4, 8, 10

p2

1

p1

Fig. 1.3. Incidence matrix associated with µ in the numbers example and dual
complex associated with µ ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {p1, p2, p3, p4} where we
can see that the integers 4, 8 and 10 are identical with respect to these criteria.
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1.3 A Categorisation Problem

Holland [HHNT86] gives a simple model of the process of categorisation for
the construction of a homomorphic representation that maps many elements
of the world to one element of the representation. We present now the con-
struction of a simplicial representation by a categorisation task according to
Holland’s model.

Let C be the categorisation function that maps the states of the world
onto a smaller number of categories. The categorisation is made with the
detection of the states of the world through detectors. Let d1, . . . , dn be the
binary detectors, that can take the value 0 if they are off or 1 if they are on.

When a state S1 is perceived, the detectors take with values 0 or 1. We
can represent the values of the detectors for this state by the vector V1 =
(V d1

1 , . . . , V dn
1 ) of length n where V d1

1 is the value of d1 and so on. Then V1

represents the state S1.
We can now consider many successive states S1, . . . , Sp and their encoding

into binary vectors V1, . . . , Vp of length n. If we write the vectors representing
this list of states, we construct the matrix of table 1.2 of the relationship ν
between the detectors and the states.

Table 1.2. Incidence matrix of the relationship ν between the n detectors of a
system and a succession of p states detected and encoded as vectors Vi.

d1 . . . dn

V1 1 . . . 1

. . . . . . . . . . . .

Vp 1 . . . 1

Starting from this matrix, we can now build a simplicial representation
of the states encoded. Indeed, we build the matrix by writing the lines Vi

corresponding to the encoding of each state Si, but we can now see that each
detector has a representation as a column of the matrix. Thus, each detec-
tor, that detects a particular feature, can be represented as a simplex. The
representation of the whole matrix as a complex and its dual representation,
will show the categories extracted through this perception. Indeed, two states
undistinguishable by the detectors will be represented as equivalent.

Analysing the Little Red Riding Hood Tale

We illustrate now this construction model with a concrete example. We try to
extract an ontology from the perception of the successive states that describe
the Little Red Riding Hood tale.

To represent the objects of the The Little Red Riding Hood, we chose for
example the detectors: alive, animal, good, bad, place, small, several, motor,
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exterior, interior that encode the principal characters, objects and concepts
of the story according to table 1.3 (left). These encodings are of course arbi-
trary, but the important thing here is that we have a finite number of detec-
tors that can encode the states of the world and that allow the distinction
between different objects of the world.

Note that, this analysis is held at a naive level. The story can be told for
example in the 11 states of the world presented table 1.3 (right), also called
images.

Several strategies are possible to extract the simplexes considered as cate-
gories, we implemented two [Val97] in the Mathematica [Wol88] programming
language. The first one extracts concepts incrementally from the first image
to the last one. This means that a base of categories is extracted from the
first image. Then if this base is not sufficient to express the second image as
a linear combination of the simplexes of the base, we add to the base the sim-
plexes necessary to express it and so on. This is done with a Mathematica
function, that we called Incremente2. We illustrate briefly its functioning
with an abstract example before using it on the images of the tale.

If we take the abstract sequence l of images:

l = {{1, 2, 3}, {3, 4}, {5, 6}, {1},
{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 3}}

where an image is written between { } and the story itself, composed of
images is also written between { }. When we ask for the incremental base,
we get the simplexes:

Incremente[l]
cSimplex[{1, 2, 3}, {3, 4}, {5, 6}, {1}]

The base is expressed with simplexes (a list with head cSimplex[]). The first
elements of the base is the first image itself, since it is perceived alone with no
“history”, and thus no base to express it. When the second, third and fourth
images are perceived, they are also entirely added to the base since they are
necessary to express themselves. But then, these simplexes are sufficient to
express the last three images as intersections and unions of the previous ones.

The other strategy builds immediately a taxonomy from the 11 images
detected as a whole. This means that we get a minimal basis necessary to
express all the categories. This strategy is implemented with the function
SimplexBase. If we take the same succession of images l, we will not get the
same base:

SimplexBase[l]
cSimplex[{1}, {2}, {3}, {4}, {5,6}]

where only the objects 5 and 6 can not be distinguished since they appear
together each time they appear in an image. For all the other objects, there
is an image (a state) that makes possible their distinction by the detectors.
2 The function names are in French.
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Table 1.3. Left : Detectors encoding the objects of the world. Right : The Little
Red Riding Hood told in 11 scenes or states of world.

Objects Encoding

Red alive, good, small
Humans alive, good
Wolf alive, animal, small
Trees alive, place, several, bad
House place
Basket small
Give motor, exterior
Sleep motor, good
Eat motor,interior, good
Walk motor
Talk motor, exterior

Detectors activated

1. Red, Mother, talk, house
2. Red, Mother, give, basket, house
3. Red, walk, tress, basket
4. Red, Wolf, talk, trees, basket
5. Red, walk, trees, basket
6. Wolf, walk, trees
7. Grandma, sleep, house, bed
8. Grandma, Wolf, talk, house, bed
9. Wolf, eat, house, bed
10. Red, Wolf, talk, house, basket, bed
11. Wolf, eat, house, bed, basket

[alive][motor] [several][animal] [place] [good] [small] [int] [ext]

[small, int]

[several, bad]

[bad]

[place, motor, alive]

[place, motor, alive, good, several, bad, small]

good, small, ext]
[place, motor, alive, 

[place, motor, several, alive, bad, small]

[place, motor, alive, good]

Fig. 1.4. Two ontologies extracted from the Little Red Riding Hood story. The
ontology extracted instantaneously is represented top-down on the higher part of
the figure; the one extracted incrementally is represented bottom-up on the lower
part of the figure.
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The incremental and instantaneous ontologies extracted from the Little
Red Riding Hood 11 images are given in figure 1.4 where we can only see the
maximal simplexes represented in a Hasse diagram3. In this representation,
each point is a simplex and the vertices represent inclusion relationships.
The concepts represented at level n, are ontologically precedent to the ones
represented on the level n + 1 (the atomic simplexes of the inner layers are
at level 0).

1.4 Inheritance Restructuring

We present now an algorithm for inheritance hierarchy restructuring proposed
by [Moo96] in the field of object oriented programming. The aim of this
algorithm is to infer or restructure the inheritance hierarchy of classes to
achieve smaller, consistent data structure and better code re-use. We chose
this example because it is simple to explain and well formalised. The CAT
framework provides a concise and clear language to specify this algorithm
and exhibit its diagrammatic nature.

We will call features any property, behaviour, instance variable or method
that can be used for the description of objects. A class corresponds to the
description of a type of objects sharing a set of features. Using inheritance to
specify classes, we express explicitly the hierarchy relationships between the
classes.

Moore [Moo96] proposes an algorithm, called IHI, to infer automatically
the inheritance hierarchy from the flat description of the objects by their
features. In the computed hierarchy, there must be a class corresponding
to each concrete object (see. fig 1.5). Further criteria must be specified to
constrain the possible hierarchies:

1. Every feature should appear in only one class (maximal sharing of fea-
tures between classes).

2. Minimal number of classes.
3. All inheritance links that are consistent with the objects structure must

be present.
4. The number of explicit inheritance links must be minimised
5. The concrete objects should correspond to leaves of the inheritance hier-

archy tree.

These criteria all together are sufficient to specify a unique solution as showed
by Moore in [Moo96].

3 The extraction of categories from the Little Red Riding Hood is being re-thinked
more rigorously and applied to the analysis of hypertexts structures. See the
web sites http://www.lri.fr/˜giavitto/UTopoIa and http://www.limsi.fr/
Individu/erika for future developments.
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The problem of inferring a hierarchy from a set of concrete objects can
now be rephrased into the CAT framework. We represent the features by
vertices, and the classes by different simplexes built with the vertices cor-
responding to the features that define the class. The inheritance relation of
classes in the hierarchy is then simply modeled as the inclusion relation of the
simplexes. Finally, the inheritance graph is the minimal complex containing
all the representations of the classes.

B CA

CBA
f1, f2, f3 f1, f5 f1, f2, f4

f3 f4 f5

f2

f1

Fig. 1.5. From a collection of concrete objects to an inheritance hierarchy. A set of
concrete objects (A, B and C) is given on the left. A possible hierarchy that accepts
this set of objects is given on the right. The features linked to a class are the set of
features defined for this class merged with the features inherited (recursively) from
the parent classes. A class without name is called an abstract class in the object
oriented programming terminology [Boo91] and corresponds to an internal node of
the inheritance graph (hierarchies with multiple inheritance will be graphs rather
than trees [dBY95]).

The five criteria used by Moore to constrain the class hierarchy are now
topological constraints that have a simple and intuitive meaning. The corre-
sponding topological constraints are respectively:

1. Every feature appears in a distinguished simplex.
2. A minimal number of simplexes are distinguished.
3. The third property is automatically achieved within our translation.
4. A class inherits from the maximal classes it contains.
5. Concrete objects are simplex of maximal dimension.

The problem of inferring an inheritance hierarchy is now simply to find sim-
plexes satisfying the previous properties in the complex made by the concrete
objects.

1.5 Analogy Solving with the ESQIMO System

We explore now the possibility of a topological representation to support
analogy [VGS98]. The analogy solving between a source and a target domain
is modeled as a topological transformation of the representation of the source
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into the representation of the target in some underlying abstract space of
knowledge representation.

The task is to answer a typical IQ-test by giving an element called D
such that it completes a four-term analogy with three other given elements
A,B and C: “find D such that it is to C what B is to A”. This kind of
analogy solving has already been studied by Evans [Eva68], but in our work
the solution has to be build from scratch since no set of possible solutions is
given to choice. We call this kind of problems, non supervised IQ-tests. This
four-term analogy solving is usually decomposed into four steps [Eva68]:

• Find the possible relations RAB between A and B.
• Find the possible relations RAC between A and C.
• Apply RAB to C only on a domain determined with RAC .
• Verify the symmetry by applying RAC to B.

1.5.1 Diagrammatic Representation of the problem

Usually, IQ-tests are given in terms of geometrical elements so that they
can express many different properties at the same level and still stay simple.
We chose a geometrical universe similar to the one investigated in [WS90]
of twelve basic elements E = {e1, . . . , e12}, as shown on figure 1.6(a). These
elements are all the possible combinations of the seven properties (or predi-
cates): P = {p1, . . . , p7} = {round, square, triangle, white, dark, big, small}.

These two sets are the only knowledge used by ESQIMO to solve the
tests. We can represent this knowledge with a simplicial complex K(Ω) or
its conjugate K ′(Ω) (see figure 1.6(b)) by representing the binary relation
λ ⊂ A× P such that (ai, pj) ∈ λ if pj(ai) holds.

1.5.2 Algorithm based on a SC Representation

When a problem is presented, each figure A, B and C is composed of one
or more elements ei ∈ E. Each element ei can be represented as a simplex
of K(Ω), the properties pj such that pj(ei) holds, being its vertices. Thus, a
simple figure (composed of only one element) will be represented as a simplex
and a composed figure (more than one element) will be represented with a
set of simplexes. The problem is now to find a relation between the (set of)
simplex(es) representing A and the (set of) simplex(es) representing B and
apply it to the (set of) simplex(es) representing C.

Case of simple figures. In the case of simple figures, the transformation
TAB is seen as a polygonal chain from SA to SB in K(Ω). An elementary step
linking Si to Si+1 in a chain is then viewed as an elementary transformation
TSi,Si+1 . A polygonal chain from SA to SB is then a transformation of A into
B given by: TSl,SB ◦ . . . ◦ TSA,S1 .

If there are several chains, then we say that there are several possible
relations between A and B. We can select a best solution giving a higher
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e12e11e10

e7 e8 e9

e6e5e4

e3e2e1

(a) Elements of the uni-
verse Ω of ESQIMO, re-
spectively called e1 to
e12 starting from the
top left element.

SparsenessRoundness

Blackness

Squareness

Triangleness

(b) A 2D view of the dual complex K′(Ω), the
elements of E are the vertices and the properties
pi ∈ P are simplexes of K′(Ω). Notice that the
6-simplex representing the property of blackness
is normally 5-dimensional.

Fig. 1.6. Elements manipulated by ESQIMO and their representation as a simpli-
cial complex.

priority to polygonal chains that are short and of higher dimension, to choose
a transformation that requires less steps and that preserves more properties.

To apply TAB to SC we have to extend the domain of TAB , and so ex-
tend TAB to T ′AB such that T ′AB(SC) = SD and T ′AB(SA) = SB , T ′ is then a
simplicial application [Hen94]. There are different possible strategies to deter-
mine the domain of S(C) on which we can apply TAB , and we implemented
three of them, presented in [Val98] (unfortunately, we do not have enough
space to develop them here).

Case of composed figures. For composed figures, the transformations can
be of several types: destruction, creation, metamorphosis, division, junction
(like in the changes introduced by Hornsby [HE97]). We first pair the sim-
plexes of {SA} with those of {SB} and look for transformations between the
simplexes of each pair. The transformation TAB is then the parallel appli-
cation of the transformation found for each pair. There are many possible
pairings leading to different or to the same solution [Val98]. The only con-
straint we need is that all the vertices and faces of S(B) are paired with
vertices from S(A).
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1.5.3 Examples of Analogy Solving with ESQIMO

We give three examples of IQ-test solving with ESQIMO on figure 1.7. In
the first example, we ask ESQIMO to solve the IQ-test with the call of the
function Resolve with the pairing parameters App2 and AppApp2 (they are
pairing strategies) as shown below (for more details see [Val98]). The three
given figures A, B and C are defined in terms of ei elements of E. As seen
on the first example of figure 1.7, A is composed of a white small circle plus
a white small square.

A={e1,e2}; B={e7,e5}; C={e3,e1};
Resolve[A,B,C,App2,AppApp2]

Here, A is a composed figure, its representation corresponds to the set of sim-
plexes SA = {〈p1, p4, p7〉, 〈p2p4p7〉} = {〈S1

A, S2
A〉}. Likewise, the representa-

tions of B and C are respectively, SB = {〈p1, p4, p6〉, 〈p2p5p7〉} = {〈S1
B , S2

B〉}
and SC = {〈p3, p4, p7〉, 〈p1p4p7〉} = {〈S1

C , S2
C〉}.

App2 is a strategy for the pairing between the set of simplexes of A, and the
set of simplexes of B that gives the following pairing: (S1

A → S1
B), (S2

A → S2
B)

ESQIMO gives output about intermediate results such as pairings, the result
of applying strategy App2 is given by the following output:

Choose[AssocSet[FromTo[1,{1}],FromTo[2,{2}]],
AssocSet[FromTo[1,{1}],FromTo[2,{2}]]]}

where an AssocSet is a set of pairings and FromTo is a pairing, which means
also an elementary transformation From the first element of the pair To the
second one. For each paring, an elementary transformation is proposed, de-
pending on the heuristic used which is another parameter (that is internally
settled until now [Val98]). We call them respectively T1 and T2. Then, the
pairing strategy AppApp2 is used to apply these elementary transformations
to the elements of the set of simplexes representing C, it proposes to apply
in parallel: T1(S1

C)//T2(S2
C) The corresponding output is:

Par[Domain[1,Seq["D-elem"[SmallQ->0,BigQ->1]],{e3}],
Domain[2,Seq["D-elem"[WhiteQ->0,BlackQ->1]],{e1}]]}

where Par means a parallel application and Seq a sequential application of
the elementary transformation described in terms of change of properties (or
predicates). Finally the solution is composed of two elements represented by
the simplexes SD = {〈p3, p4, p6〉, 〈p1, p5, p7〉} = {e9, e4} (see figure 1.7 first
example), the corresponding output is:

Choose[{e9,e4}]

All along the solving process, ESQIMO uses the prefix Choose in all its
outputs. That is because many different solutions are possible and acceptable
for a psychological plausibility. ESQIMO can compute many solutions in
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parallel without selecting a best one, in that case there are many solutions
that the user can Choose at the end.

The two other examples are solved with the same pairing strategies and
are not detailed here.

(a) (b) (c) (d)

The first element becomes bigger and the second becomes black.

(e) (f) (g) (h)

The first element becomes black and the second becomes white, is
duplicated and one of the duplicates is bigger.

(i) (j) (k) (l)

The first element is duplicated and one duplicate is squared. When
squared, the property of triangleness is not taken off, this creates
then an unstable solution, called a monster.

Fig. 1.7. Three examples of analogy resolution with ESQIMO.

Many choices made in ESQIMO’s algorithm can be discussed. In fact, they
can be seen as additional strategies parameterizing the ESQIMO kernel. For
example:

• The description of the properties of each figure in terms of predicates can
be a problem for properties such as position. We could give each possible
position a predicate that could be true or false.

• The way we associate a transformation to a given polygonal chain is not
unique. In particular, our transformations could be called 0−degree since
they preserve the minimum of topological properties along a chain. The
next step consists in pairing higher-order structures between the sets of
simplexes.
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• The way we determine the domain of SC on which to apply TAB can also
lead to different strategies depending on whether we consider only the
intersection between SA and SC or the whole SC .

• The measure of satisfaction to select a best solution is here to take the
shorter and wider polygonal chain between the two complexes. Other mea-
sures of satisfaction can be tested.

Furthermore, note that our formalization of IQ-test problems does not
depend on their geometrical nature. Indeed, only the representational level is
based on topology while the objects manipulated by the system could have
been non geometrical. We could, for example try ESQIMO on verbal IQ-tests
more like in the Copycat system [Hof84].

Even if the ESQIMO system can be considered as very simple, we are
convinced that a topological representational structure is well-adapted to
support analogy modeling. We find the results presented here already sur-
prisingly satisfying with respect to the simplicity of the underlying machinery
and this motivates further investigation.

1.6 Conclusions

The idea developed here is that combinatorial algebraic topology is an ade-
quate and unifying framework to specify and analyse diagrammatic represen-
tations and diagrammatic reasoning.

It is important to notice that we have only used elementary CAT notions:
simplicial complexes generalise the concept graph and polygonal chains ex-
tend the concept of path. These two notions have an immediate and intuitive
meaning, even in higher dimensions and are obviously diagrammatic. Fu-
ture work must include the use of further CAT constructions (like simplicial
applications, homotopy group, homology classes, etc.) to handle more sophis-
ticated diagrammatic situations.



16 References



References

[Arn69] Rudolh Arnheim. Visual Thinking. University of California Press, 1969.
trad. française : “La pensée visuelle”, Champs-Flammarion, 1976.

[Atk76] Atkin & al. Fred CHAMP positional chess analyst. International Journal
of Man-Machine Studies, 8:517–529, 1976.

[Atk77] R. H. Atkin. Combinatorial Connectivities in Social Systems. Verlag, 1977.
[Atk81] R. H. Atkin. Multidimensional Man. Penguin, 1981.
[BE95] Jon Barwise and John Etchemendy. Heterogenous logic. In Diagrammatic

Reasoning, chapter 7, pages 211–234. AAAI Press, 1995.
[Ben94] Brandon Bennet. Spatial reasoning with propositional logics. In P. Torasso

J. Doyle, E. Sandewall, editor, Proc. of th fouth Int. Conf. on Principles of
knowledge representation and reasoning (KR94), San Francisco, 1994. Morgan
Kaufmann Publishers.

[Boo91] Grady Booch. Object Oriented Design. Benjamin/Cummings Publishing
Company, 1991.

[Cas94] J. L. Casti. Complexification. Harper Perennial, 1 edition, 1994.
[dBY95] Jean daniel Boissonnat and Mariette Yvinec. Gomtrie Algorithmique.

Ediscience International, 1995.
[Dor86] P. Doreian. Analysing overlaps in food webs. J. Soc. & Biol. Structures,

9:115–139, 1986.
[Eva68] Thomas G. Evans. A program for the solution of a class of geometric anal-

ogy intelligence-test questions. In Semantic Information Processing, chapter 5,
pages 271–353. The MIT Press, 1968.

[For95] Kenneth D. Forbus. Qualitative spatial reasoning framework and frontiers.
In Janice Glasgow, editor, Diagrammatic Reasoning. AAAI Press/MIT Press,
1995.

[Fre97] Christian Freska. Spatial and temporal structures in cognitive processes. In
C. Freska, M. Jantzen, and R. Valk, editors, Foundations of Computer Science,
volume 1337 of LNCS. Springer-Verlag, 1997.

[Gar83] Howard Gardner. Frames of mind. Basic Books, New York, 1983. (chapter
7 on spatial intelligence).

[GNC95] Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran. Diagram-
matic reasoning : Cognitive and Computational Perspectives. AAAI Press/MIT
Press, 1995.

[Got94] N. M. Gotts. How far can we ‘C’? defining a ‘doughnut’ using connection
alone. In Pietro Torasso Jon Doyle, Erik Sandewall, editor, Proceedings of the
4th International Conference on Principles of Knowledge Representation and
Reasoning, pages 246–257, Bonn, FRG, May 1994. Morgan Kaufmann.

[Gou80] P. Gould. Q-analysis, or a language of structure : An introduction for social
scientists, geographers and planners. International Journal of Man-Machine
Studies, 13:169–199, 1980.



18 References

[GPP95] Michelangelo Grigni, Dimitris Papadias, and Christos Papadimitriou.
Topological inference. In Topological Inference, pages 901–907, 1995.

[Ham97] Eric Hammer. Logic and visual information. Journal of Logic, Language,
and Information, 6(2):213–216, 1997.

[Har95] David Harel. On visual formalism. In Janice Glasgow, editor, Diagram-
matic Reasoning. AAAI Press/MIT Press, 1995.

[HE97] Kathleen Hornsby and Max J. Egenhofer. Qualitative representation of
change. In D.Lukose, H.Delugach, M. Keeler, L. Searle, and J. Sowa, editors,
Spatial Information Theory, volume 1257 of LNCS. Springer-Verlag, 1997.

[Hen94] M. Henle. A combinatorial introduction to topology. Dover publications,
New-York, 1994.

[HHNT86] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R.
Thagard. Induction – Processes of Inference, learning, and Discovery. The MIT
Press, 1986.

[Hir97] Stephen C. Hirtle. Representational structures for cognitive space : Trees,
ordered trees and semi-lattices. In D.Lukose, H.Delugach, M. Keeler, L. Searle,
and J. Sowa, editors, Spatial Information Theory, volume 1257 of LNCS.
Springer-Verlag, 1997.

[Hof84] D. R. Hofstadter. The Copycat Project: an experiment in nondeterminim
and creative analogies. A.I. Memo 755, MIT Artificial Intelligence Laboratory,
Cambridge Massachusetts, 1984.

[HY88] J. G. Hocking and G.S. Young. Topology. Dover publications, New-York,
1988.

[Joh91a] J. Johnson. The mathematical revolution inspired by computing, chapter
The mathematics of complex systems, Johnson J. and Loomes M. eds., pages
165–186. Oxford University Press, 1991.

[Joh91b] J. Johnson. Transport Planning and Control, chapter The dynamics of
large complex road systems, Griffiths J. ed., pages 165–186. Oxford University
Press, 1991.

[Ler93] X. Leroy. The Caml Ligth system release 0.6. INRIA, September 1993.
[Lin95] Robert K. Lindsay. Images and inferences. In Diagrammatic Reasoning,

chapter 4, pages 111–135. AAAI Press, 1995.
[LP97] Oliver Lemon and Ian Pratt. Spatial logic and the complexity of diagram-

matic reasonning. Graphics and Vision, 6(1):89–109, 1997.
[Moo96] Ivan Moore. A simple and efficient algorithm for onferring inheritance

hierarchies. In TOOLS 96. TOOLS Europe, Prentice-Hall, 1996.
[PLC91] J. Pimm, J. Lawton, and J. Cohen. Food web patterns and their conse-

quence. Nature, 350:669–674, 25 April 1991.
[Shi91] Sun-Joo Shin. An information-theoretic analysis of valid reasoning with

venn diagrams. In Jon Barwise et al., editor, Situation Theory and its Applica-
tions, volume Part 2. Cambridge University Press, 1991.

[Val97] Erika Valencia. Un modle topologique pour le raisonnement diagram-
matique. Rapport pour le DEA Sciences Cognitives, LIMSI. See also
http://www.lri.fr/˜erika/, August 1997.

[Val98] Erika Valencia. Hitch hiker’s guide to esqimo. RR 1173, LRI, ura 410
CNRS, Universit Paris-Sud, 91405 Orsay, France, May 1998.

[VG98] Erika Valencia and Jean-Louis Giavitto. Algebraic topology for knowl-
edge representation in analogy solving. In ECCAI, editor, European Conference
on Artificial Intelligence (ECAI98), pages 88–92, Brighton, UK, 23–28 August
1998. Christian Rauscher.

[VGS98] Erika Valencia, Jean-Louis Giavitto, and Jean-Paul Sansonnet. Esqimo:
Modelling analogy with topology. In Franck Ritter and Richard Young, editors,



References 19

Second European Conference on Cognitive Modelling (ECCM2), pages 212–213,
Nottingham, UK, 1–4 April 1998. Nottingham University Press.

[Wol88] Stephen Wolfram. Mathematica. Addison-Wesley, Redwood City, CA,
1988.

[WS90] S. H. Weber and A. Stolcke. l0 : A testbed for miniature language acqui-
sition. International Computer Science Institute, 1990.


