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Abstract. This paper describes the temporal model of a scheduler geared to-
wards show control and live music applications. This model relies on multiple
inter-related temporal axes, called timescales. Timescales allow scheduling com-
putations using abstract dates and delays, much like a score uses symbolic posi-
tions and durations (e.g. bars, beats, and note values) to describe musical time.
Abstract time is ultimately mapped onto wall-clock time through the use of time
transformations, specified as tempo curves, for which we provide a formalism
in terms of differential equations on symbolic position. In particular, our model
allows specifying tempo both as a function of time or as a function of symbolic
position, and allows piecewise tempo curves to be built from parametric curves.
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1 Introduction

Timing is of utmost importance in performing arts. Among them, music has developed
particularly fine-grained temporal constructs, using both continuous and discrete ab-
stract representations of time. As such, it presents specific and interesting challenges
with regard to the composition and interpretation of time at multiple scales, and across
multiple independent time-flows.

In this paper we present the temporal model of Jiffy, a polytemporal scheduler which is
part of an ongoing effort to build a programmable show-controller system for perform-
ing arts and interactive multimedia installations1. In particular, our temporal model al-
lows specifying tempo either as a function of time or as a function of symbolic position,
and allows piecewise tempo curves to be built from parametric curves such as Béziers
curves, which are both versatile and intuitive. The scheduler exposes an interface based
on fibers, that makes it easy to organize inter-dependant streams of related events.

We first highlight the importance of symbolic time in musical applications (section 2).
We then cover the notion of time transformations, and give a differential equation for-
mulation to tempo curves (section 3). We then show how tempo curves equations are
solved in Jiffy (section 4). Finally, we present the interface of the scheduler (section 5).

1 The source code of the scheduler as of the time of writing can be found at
https://github.com/martinfouilleul/jiffy_scheduler_standalone/
tree/fff78cd5ca6ab895ba3107439e8ac9541811590a.
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2 Symbolic Time in Musical Applications

2.1 Common Paradigms in Show-Control Applications

Show controllers are programs used by sound and lighting engineers to create and run
temporal scenarios synchronized to the actions of performers on stage. They allow users
to launch sound and video samples, control mixing and lighting desks, operate motors
for mechatronic stage props, and so on. Several approaches can be identified as to how
they present and organize the temporal relations between the cues of the show:

– Timelines, which organize cues on a common, static time axis. Most sequencers,
such as ProTools2 or Cubase3 fall in that category.

– Cuelists, which organize cues in nested lists with associated timing semantics. No-
table examples are QLab4 or Linux Show Player5.

– Hybrid models offer both cuelists and timelines, either through separate modes of
operation, as in Medialon6 or Smode7, or as dual views of the same cues, as in
Ableton Live8.

– Graphical planning environments that allow users to position cues in some abstract
space, which maps to time through the use of trajectories, as in Iannix [6], or flow
graphs, as in Ossia Score [5].

Despite the diversity of approaches, most show controllers lack an abstract notion of
musical time, as they directly map cues to wall-clock dates or to external triggers. Fur-
thermore, musical time is often deployed throughout a work at different scales (e.g.
movements, phrases, cells, notes. . . ), and not every scale is tied to the same global
tempo, e.g. ornaments such as grace notes and appogiatura are not affected in the same
way by a change of tempo as a main melody line. Hence it would be more appropriate
to consider several abstract musical times, or timescales.

2.2 Abstract Timescales

The above discussion emphasizes the need of strong temporal models in composition
and performance softwares and highlights the adequacy of polytemporal abstract time
scheduling, i.e. the ability to organize concurrent computations along multiple logical
timescales, that can later get mapped to wall-clock time.

2 https://www.avid.com/pro-tools
3 https://new.steinberg.net/cubase/
4 https://qlab.app/docs/QLab_4_Reference_Manual.pdf
5 https://linux-show-player-users.readthedocs.io/en/latest/
index.html

6 https://medialon.com/wp-content/uploads/2019/07/
M515-1-Medialon-Control-System-Manual.pdf

7 https://smode.fr
8 https://www.ableton.com/en/live/what-is-live/
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The notion of abstract timescales has been tackled before by computer music environ-
ments or score followers. For instance, FORMULA [1] allows applying independent
time deformations on groups of concurrent tasks. David A. Jaffe [9] proposed a recur-
sive scheduler for hierarchical timing control, using explicit time maps. Antescofo [7]
allows users to compose independent abstract times through the use of time scopes and
tempo curves.

In Jiffy, a timescale is a data structure used to maintain a notion of logical time, ex-
pressed as a rational number of symbolic time units9 (STU), and to schedule events at
specific logical dates. It is analogous in this respect to a score, which organizes musical
events in terms of a musical time, that needs to be translated into wall-clock time by a
musician according to tempo indications and interpretative choices.

Fig. 1. Composing time deformations using tempo curves.

However, whereas the tempo indication of a score usually prescribes some idealized
mapping from musical-time to wall-clock time, a timescale’s logical time does not nec-
essarily map directly to wall-clock time. Instead, each timescale has a time source,
which can be either the wall-clock time or another timescale. A timescale is also as-
sociated with a time transformation, which maps its internal time to the time of its
source. Thus, the scheduler can handle multiple notions of logical time and map dates
to wall-clock time through a hierarchy of time transformations.

Figure 1 illustrates a time deformation between a timescale and its source. The time
map plots for each timescale show the position of the timescale with respect to wall-
clock time. The effect of the first tempo curve (tempo 1) is to warp the time map of

9 We deliberately avoid the term beats here. We think it would bring some confusion by con-
flating the notion of time unit with the notion of meter, and by suggesting that all beats are of
equal conceptual length. This is, in fact, rather a Western exception than a universal norm.
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timescale 0 (which represents wall-clock time) into that of timescale 1 (which represent
some abstract musical time). Timescale 1 is then transformed by another another tempo
curve (tempo 2), to produces the time map of timescale 2.

3 Time Transformations

Jiffy’s scheduler must be able to transform timescale-local positions to and from wall-
clock time. These transformations are specified by the means of tempo curves, which
describe the speed of a timescale’s “playhead” with respect to the source time, much
like tempo indications in a score prescribe an idealized conversion from durations in
beats to durations in wall-clock time10.

Several methods have been proposed to represent time transformations and to integrate
tempo curves to map symbolic position to time. Jaffe [9] proposes to directly use time
maps constructed from a collection of predefined time warping functions. Berndt [2]
chooses to represent tempo curves by potential functions of symbolic position, match-
ing some specified mean tempo condition. Timewarp [10] is a tool that uses regularized
beta functions to define tempo curves satisfying polyrhythmic constraints. Antescofo
uses a variety of tweening functions11 to express tempo as a function of time, and uses
closed form expressions to compute time transformation based on tempo curves. When
there is no analytical solution to a tempo curve integration, Antescofo samples the curve
to produce a piecewise linear approximation, which is then integrated analytically. An-
tescofo can also use arbitrary expressions to define tempo, although these expressions
are not integrated: they are reevaluated each time a variable is updated, and considered
constant between updates. As such, they can only represent tempo as step functions.

In Jiffy, we allow users to specify a tempo curve either as a function of a timescale’s
source time, or as a function of symbolic position (which is closer to the way tempo is
specified in a score). We use piecewise tempo curves where each piece can be defined
by parametric curves. A variable-step numerical method is used to integrate the tempo
curves when simple analytical solutions are not readily available.

3.1 Differential Equation Formulation

In the following we will use the variable p to denote the position in a timescale, i.e. the
logical time in this timescale’s reference frame. The variable t will be used to denote
the source time (or simply, time), i.e. the time in the timescale’s parent reference frame
(which could be the wall-clock time).

The function position function, P (t), transforms the source time into the internal posi-
tion of the timescale. The time function, T (p), transforms the position into the source
time. Obviously, P = T−1.

10 One difference, however, is that we use the word tempo here to refer to the ratio of internal
STUs over source STUs, rather than the number of beats per minutes, since the latter could
depend on the musical meter of the timescale.

11 https://antescofo-doc.ircam.fr/Reference/compound_curve/
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A tempo curve T can be either a function of time or position. It maps its parameter to
the value of the derivative of the position function at this instant. In the following we
will refer to a tempo curve defined as a function of position as an autonomous tempo
curve, whereas a tempo curve defined as a function of time will be referred to as a non-
autonomous tempo curve. This naming stems from the formulation of the tempo curve
as the right-hand side of an autonomous or non-autonomous differential equation:

dP

dt
(t) = T (P (t)) (autonomous) , or

dP

dt
(t) = T (t) (non autonomous) ,

with initial condition P (0) = 0 .

(1)

4 Tempo Curves Integration

Tempo curves in Jiffy are defined as piecewise functions. For the sake of brevity, we
may refer to an interval and its associated sub-function as a tempo curve segment, or
simply as a curve, where the meaning should be clear from context. Each segment
is defined by a start tempo and an end tempo, a duration, an interpolation mode and
optional interpolation parameters. We implemented three interpolation modes, namely
constant, linear and parametric.

4.1 Integration of Constant and Linear Tempo Curves

Constant and linear tempo curves can be solved analytically. We show below the differ-
ential equation of tempo, and the position and time functions for each case.

Constant Tempo.
T (p) = T 0 . (2)

T (p) =
p

T 0
, P (t) = t× T 0 . (3)

Autonomous Linear Tempo.

T (p) = T 0 + αp , where α =
T 1 − T 0

L
. (4)

P (t) =
T 0

α
(eαt − 1) , and T (p) =

1

α
log(1 +

αp

T 0
) . (5)

Non-autonomous Linear Tempo.

T (t) = T 0 + αt , where α =
T 1 − T 0

L
. (6)

P (t) = T 0t+
α

2
t2 , and T (p) =

√
T 2

0 + 2αp− T 0

α
. (7)
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Numerical Considerations Some of the above time and position functions are inde-
terminate forms for α → 0. To avoid that problem, we approximate these expressions
by a series expansions in α when |α| is smaller than a given threshold. For instance, our
approximation of the position function for the autonomous case when is |α| < 10−9 is:

P (t) ≈ T 0(t+
α

2
t2 +

α2

6
t3 +

α3

24
t4 +

α4

120
t5) . (8)

4.2 Parametric tempo curves.

In this section we will give a definition of a parametric tempo curve, and show the
differential equations that need to be solved in order to compute the time and position
functions. These equations are then solved by a numerical solver.

An autonomous (resp. non-autonomous) parametric tempo curve segment is defined as
a function C of the position p (resp. of the time t), which describes the same curve in
the plane (p,T ) (resp. (t,T )) as a parametric curve B(s) with components Bx(s) and
By(s).

Autonomous Parametric Tempo. The differential equation corresponding to an au-
tonomous tempo curve can be written as

dP

dt
(t) = C(P (t)) . (9)

Position function P (t). The derivative of the position with respect to time is directly
expressed by the autonomous tempo curve,

dP

dt
(t) = By(s) , where s = B−1

x (P (t)) . (10)

Time function T (p). We operate the change of variable s = B−1
x (p) on Equation 9.

Finding the time function is then a matter of solving the differential equation

dT̃

ds
(s) =

B′
x(s)

By(s)
, with T̃ (s) = T (p) . (11)

Non-autonomous Parametric Tempo. The definition of the non-autonomous para-
metric tempo curves can be written as

dP

dt
(t) = C(t) . (12)

Position function P (t). Using the change of variable s = B−1
x (t) and the chain rule,

we can write the differential equation for the position function as

dP̃

ds
(s) = By(s)B

′
x(s) , with P̃ (s) = P (t) . (13)
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Time function T (p). Using the formula for the derivative of inverse functions on Equa-
tion 12, we get

dT

dp
(p) =

1

C(T (p))
=

1

By(s)
, where s = B−1

x (T (p)) . (14)

Numerical Resolution. Although some of the above equations can be solved analyti-
cally, using a numerical solver has the advantage of allowing us to control the tradeoff
between accuracy and speed, and opens up the possibility of supporting other arbitrary
functions to define tempo curves. We use a Cash-Karp [4] solver to numerically solve
the tempo curve equations. We follow the general architecture proposed in [11], op-
timized further by leveraging the fact that these equations are either autonomous or
directly integrable.

Bézier Tempo Curves. The above formulation allows the use of any parametric curve,
provided that it describes a derivable, non null function. Our specific implementation
uses cubic Bézier curves, which are especially versatile, as they allow putting con-
straints on both endpoints and their first derivative, while ensuring that the curve re-
mains contained inside its control points’ convex hull. They are also intuitive to manip-
ulate and map well to the curve-editing interfaces commonly used in animation, audio,
and video applications.

An autonomous (resp. non-autonomous) Bézier tempo curve segment is defined by the
parametric curve

B(s) = C3s
3 +C2s

2 +C1s+C0 , (15)

where the Ci are the power basis coefficients computed from the Bézier curve’s control
points. To ensure that the curve describes a function, the cubic function Bx(s) must be
monotonous, i.e. if the xi are the abscissae of the Ci, the condition c21 − 3c0c2 ≤ 0
must hold.

Bézier curves evaluation. We should stress out that, although each coordinate of the
parametric Bézier curve is cubic with respect to its parameter s, the second coordinate
is not a cubic function of the first, i.e. the tempo is not a cubic function of position (resp.
time). Analytically finding the tempo for a given position (resp. time) indeed requires
solving a third order equation.

A faster method is to numerically find the parameter s for a given position (resp. time),
up to some desired precision, and then compute the tempo from s. Our implementation
first uses the Newton-Raphson root-finding method up to a fixed number of iterations,
and falls back to a bisection algorithm if either the value of the derivative falls behind
some threshold, or the desired precision is not reached within the maximum iteration
count.

An example of a time map produced by tempo curve composed of two Bézier segments
is shown in Figure 2. The blue curve shows position as a function of time. The orange
stems mark the timeline STUs. The red curve shows the tempo curve, as a function of
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Fig. 2. Time map and beats trace for a tempo curve defined by two Bézier curves.

time (on the left), or as a function of position (on the right). The figure is produced by
computing the positions corresponding to a regularly spaced time grid.

5 Scheduler Interface

The Jiffy scheduler is designed to run user code in fibers12. Compared to callback-
based scheduling APIs (such as [3], [13] or [12]), this doesn’t compel the user to break
down the control flow of their code into lots of small functions, keeps logically related
computations in the same local context, and allows users to easily express dependencies
between several workloads. Fibers can also be migrated between threads, allowing a
very streamlined way to handle blocking calls without hanging the scheduler.

The scheduler uses the notion of tasks to represent a group of fibers executing within the
same timescale. Tasks, like timescales, are organized in a parent-children relationship.
The API exposes functions to launch new tasks and fibers, to yield and reschedule the
current fiber to a future date, or to wait on the completion of other tasks or fibers. It also
features functions to move fibers into background jobs to perform blocking operations
without blocking the scheduler, and bringing them back to the foreground once done.

Listing 1.1 shows a simple example that launches a task to print a message at regular
symbolic intervals with a varying tempo. This task lives for 40 time units unless it is
canceled from another fiber, which waits for user input in the background.

6 Conclusion and Future Work

In this paper, we highlighted the need for symbolic time scheduling in show-control
software and musical applications. We then described a temporal model based on time

12 The notions of fiber, coroutine, or green thread are so closely related that the distinction be-
tween them, if any, is amenable to debate. One could argue that green thread is more appro-
priate in the context of a virtual machine or runtime environment, while coroutine originates
from programming language design. The term fiber may capture a more general view of the
concept.
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i64 my_task_proc(void* userPointer)
{

// main task: print a message at each symbolic time unit
for(int i=0; i<40; i++)
{

printf("Hello, world: %i\n", *count);
sched_wait(1);

}
return(0);

}

i64 user_cancel_fiber(void* userPointer)
{

// go to background so we don’t block the scheduler, and wait user input,
// then bring the fiber to the foreground and cancel the main task
sched_background();
while(getchar() != ’q’) /* wait ’quit’ command */ ;
sched_foreground();
sched_task_cancel(*(sched_task*)userPointer);
return(0);

}

int main()
{

// launch our main task and apply a tempo curve to it, then launch the
// user canceling fiber, and wait for the main task to complete.

sched_curve_descriptor_elt elements[2] = {
{.type = SCHED_CURVE_BEZIER,
.startValue = 2, .endValue = 8, .length = 20,
.p1x = 0.5, .p1y = 0, .p2x = 0.5, .p2y = 1},

{.type = SCHED_CURVE_BEZIER,
.startValue = 8, .endValue = 2, .length = 20,
.p1x = 0.5, .p1y = 0, .p2x = 0.5, .p2y = 1}};

sched_curve_descriptor desc = {.axes = SCHED_CURVE_POS_TEMPO,
.eltCount = 2, .elements = elements};

sched_init();
sched_task task = sched_task_create(my_task_proc, 0);
sched_task_timescale_set_tempo_curve(task, &desc);

sched_create_fiber(user_cancel_fiber, &task, 0);

sched_wait_completion(task);
sched_end();
return(0);

}

Listing 1.1. An example of Jiffy’s scheduling API.

transformations expressed through tempo curves, and gave a formalism of such curves.
We then described how these curves are implemented in the Jiffy scheduler, and pre-
sented the API of the scheduler.

In its current form, the scheduler is a local system, only maintaining proper time flow
for its host process. Synchronizing timescales across multiple scheduler instances (po-
tentially running on different machines) is the subject of ongoing work.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

204

The kind of synchronization we considered in this paper was only concerned about
relative speeds. However, when dealing with ensemble music, the notion of synchro-
nization is really about the relative phase of each musician. We could refer to this type
of synchronization as metric synchronization. Ableton Link [8] is one of the tools that
tackle this problem, and offers an elegant model to build musical structure on top of
beat synchronization. However it has some limitations when it comes to multiple tem-
pos and complex polyrhythms. Addressing these scenarios will be the subject of further
research.
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