

136 137 138 139 140 141 142 143	<i>Editors</i> Dr. Paul Bourgine CREA Ecole Polytechnique Rue Descartes 1 75005 Paris France paul.bourgine@polytechnique.edu	Dr. Annick Lesne Université Paris VI Labo. Physique Théorique de la Matière Condensée (LPTMC) place Jussieu 4 75252 Paris CX 05 France lesne@lptmc.jussieu.fr
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
157		
158		
159		
160		
161		
162		
163		
164 165 166	ISBN 978-3-642-13173-8 e-ISBN 978-3-6 DOI 10.1007/978-3-642-13174-5 Springer Heidelberg Dordrecht London New York	42-13174-5
167	Library of Congress Control Number: 2010936323	
168	© Springer-Verlag Berlin Heidelberg 2011	
169	This work is subject to copyright. All rights are reserved	, whether the whole or part of the material is
170	concerned, specifically the rights of translation, reprinting,	reuse of illustrations, recitation, broadcasting,
171	or parts thereof is permitted only under the provisions of	the German Copyright Law of September 9.
172	1965, in its current version, and permission for use must	always be obtained from Springer. Violations
173	are liable to prosecution under the German Copyright Law	7. tradamarks at in this publication does not
174	imply, even in the absence of a specific statement, that such	names are exempt from the relevant protective
175	laws and regulations and therefore free for general use.	
176 177	Cover design: eStudio Calamar S.L., Heidelberg	
178	Printed on acid-free paper	
179 180	Springer is part of Springer Science+Business Media (ww	w.springer.com)

190681 ChapterID 0 September 7, 2010 Time: 05:21pm spr-t1-v1.7

⁰¹ **Preface**

12 This book has been first published in French by Belin in 2006. It originates in an 13 interdisciplinary Spring School devoted to morphogenesis and held in Berder Island 14 (Morbihan, France) in March 2002. Although the topics were not directly focused on 15 morphogenesis, we should also mention the ensuing annual sessions of this Berder 16 CNRS Thematic School, organized by one of the editor of the book (A.L.), where 17 most of the authors of the book met and interacted. This initial event has been fol-18 lowed by two 1-day meetings, "Journées Complexité" that we organized in Paris 19 at the Institut Henri Poincaré in November 2003 and November 2004, and again 20 specially devoted to morphogenesis and the specific interdisciplinary approaches 21 required to reach a full understanding. These meetings have been among the launch-22 ing events founding the Institut des Systèmes Complexes de Paris-Ile-de-France. 23 Several other events, mostly organized by ISC-PIF, reinforced the links between the 24 authors and the motivation to put on the paper and share with readers all the benefits 25 and challenges of an interdisciplinary approach of morphogenesis and pattern for-26 mations. The collective enterprise that led to the present book is exemplary of the 27 spirit of this institute and its activities. 28

Morphogenesis has been specially focused among the main issues arising in the 29 science of complex systems, due to the intrinsic interdisciplinarity of the topic. The 30 reader will discover in this book the range of objects where similar questions about 31 the formation and persistence of their shape arise, and the wealth of complementary 32 concepts and methods involved in their study. All the different facets have been 33 considered together to really grasp what is morphogenesis. The ambition of this 34 book is to offer such a multiple account. It aims to present a collective work rather 35 than a compilation of independent papers, in which authors interacted and mutually 36 influenced each other, and shared a similar vision about morphogenesis although 37 substantiated in (very) different instances and contexts. To complete the cohesion 38 and scope of the book, we propose an overview of the central questions raised by 39 morphogenesis and a presentation of the contents in the introduction (Chap. 1). 40

We acknowledge the support of the European Community for the translation of this book, as being one of the outcome of BioEmergences, a *NEST-Measuring the impossible* project coordinated by one of us (P.B.) and of Embryomics, a *NEST-Adventure* project coordinated by Nadine Peyriéras, author of Chap. 9. We are much grateful to the wonderful job done by Richard Crabtree, who has to face the vi

Preface

challenge of translating 18 chapters with different styles and technical terms from
as many different disciplines. It was a pleasure to work with him. We hope that both
the authors and the readers will appreciate the result!

49 50	Paris, July 2010	Paul Bourgine
51		Annick Lesne
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
85		
86		
87		
88		
89		
90		

⁰¹ Contents

03			
04			
05			
06			
07			
08			
09			
10			
11			
12			
13	1	Intro	duction
14		Annic	k Lesne and Paul Bourgine
15		1.1	Fundamental Issues 1
16			1.1.1 The Notion of Shape 1
17			1.1.2 Some Paths to Explore the World of Shapes 2
18			1.1.3 Shapes and Their Causes 3
19			1.1.4 Modelling Morphogenesis 3
20		1.2	Morpho-Genesis
21			1.2.1 Shape-Generating Mechanisms
22			1.2.2 Equilibrium, Out-of-Equilibrium and
23			Far-from-Equilibrium Shapes
24			1.2.3 Irreversibility 5
25			1.2.4 Self-Assembly and Self-Organisation
26		1.3	Instabilities, Phase Transitions and Symmetry Breaking
27			1.3.1 Phase Transitions, Bifurcations and Instabilities
28			1.3.2 Symmetry Breaking 77
29			1.3.3 Emergence
30			1.3.4 Fractal Shapes 8
31		1.4	Inanimate or Living Shapes
32			1.4.1 Some Questions 9
33			1.4.2 Are Living Shapes Special? 10
34			1.4.3 Functional Shapes 10
35			1.4.4 Genetic Programme, Self-Organisation and Epigenomics 11
36			1.4.5 The Robustness and Variability of Living Shapes 12
37		1.5	Book Overview 12
38		Refere	ences
39			
40			
41	2	Ferro	fluids: A Model System of Self-Organised Equilibrium
42		Jean-	Claude Bacri and Florence Elias
43		2.1	Introduction: Situation with Regard to the Other Chapters 15
44		2.2	Physical Systems in Self-Organised Equilibrium
45			2.2.1 Examples of Self-Organised Physical Systems 16
			• •

viii

Contents

46			2.2.2 The Origin of Order	19
47			2.2.3 The Bond Number	21
48			2.2.4 Domain Size and Choice of Pattern	21
49			2.2.5 Summary	22
50		2.3	Morphologies in Ferrofluids	22
51			2.3.1 Ferrofluids: A Model System for Studying Structures	22
52			2.3.2 Stripes and Bubbles, Foams and Rings in Ferrofluids	26
53			2.3.3 The Influence of History: Initial Conditions and	
54			Conditions of Formation	28
55			2.3.4 The Source of Patterns: Instabilities	31
56		2.4	Conclusion	37
57		Refere	ences	38
58				
59	3	Hioro	archical Fractura Natworks	/1
60	5	Steffe	n Bohn	71
61		3.1	Introduction	41
62		3.2	The Formation of Hierarchical Fracture Networks	42
63		3.3	The Fracture Network as a Hierarchical Division of Space	44
64		3.4	A Characteristic Scale	45
65		3.5	Conclusion	47
66		0.0		• /
67				
68	4	Liqui	d Crystals and Morphogenesis	49
69		Y ves	Bouligand	10
70		4.1	Shells and Series of Arches	49
71		4.2	Helicoidal Plywood	51
72		4.3	Cholesteric Liquid Crystals and Stabilised Analogues	53
73		4.4	Specificity and Diversity of Liquid Crystals	54
74			4.4.1 Mesogenic Molecules	55
75			4.4.2 Structure of Liquid Crystals	56
76			4.4.3 Phase Transitions	57
77		4.5	Liquid Crystals and Stabilised Analogues in Biology:	
78			A Widespread Phenomenon	58
79			4.5.1 Muscles	58
80			4.5.2 Myelinic Figures and Fluid Cell Membranes	59
81			4.5.3 Stabilised Membranes	60
82			4.5.4 Nematic and Cholesteric Analogues	60
83			4.5.5 The Limits of a Widespread Phenomenon	60
84		4.6	Liquid Crystalline Self-Assemblies	61
85		4.7	Curvature and Structure	62
86			4.7.1 Diversity of Curvatures in Liquid Crystals and Their	
87			Analogues	62
88			4.7.2 Geometry of the Different Curvatures	64
89			4.7.3 Elastic Coefficients and Spontaneous Curvatures	68
90		4.8	Lyotropic Systems and Cell Fluidity	69

Contents

94 4.10 Germs and Textures of Liquid Crystals: Their Biological Analo 95 4.11 Topological Nature of Liquid Crystalline Textures 96 4.11.1 Möbius Strips 97 4.11.2 Pairs of Interlocking Rings 98 4.12 Liquid Crystals and Mechanical Clock Movements 98 4.12 Liquid Crystals and Mechanical Clock Movements 99 8 A.12 Liquid Crystals and Mechanical Clock Movements 99 8 A.12 Liquid Crystals and Mechanical Clock Movements 99 8 Biological Self-Organisation by Way of the Dynamics of Reactive Processes 90 5.1 Self-Organisation by Dynamic Processes in Physical Systems 910 5.1 Self-Organisation by Reaction and Diffusion: Stripes in a Test-T 910 5.3 Self-Organisation by Reaction and Sand, or: Are Dune: 911 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dune: 911 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dune: 911 Discovery	gues 77 81 82 84 84 87 90 92 ube 93 97 103
 4.11 Topological Nature of Liquid Crystalline Textures	81 81 82 84 84 87 90 92 Yube 93 97 103
96 4.11.1 Möbius Strips 97 4.11.2 Pairs of Interlocking Rings 98 4.12 Liquid Crystals and Mechanical Clock Movements 99 References	81 82 84 84 87 90 92 Yube 93 97 103
97 4.11.2 Pairs of Interlocking Rings 98 4.12 Liquid Crystals and Mechanical Clock Movements 99 References 99 References 100 5 Biological Self-Organisation by Way of the Dynamics of Reactive Processes 101 5 Biological Self-Organisation by Dynamic Processes in Physical Systems 102 5.1 Self-Organisation by Dynamic Processes in Physical Systems 103 5.2 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 104 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 105 5.4 Microtubule Self-Organisation 106 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 107 5.4 Microtubule Self-Organisation 108 References 109 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 109 Stéphane Douady and Pascal Hersen 110 Discovery 121 Car The Wind Drives the Sand Which Steals the Wind's Force 132 Stéphane Douady and Pascal Hersen 143 6.3 The Minimal Dune 6.4 The Wind Runs Over the Dune and Pushes It Along 133 6.5 Does the Wind Flow Make the Dune? 6.6 Understanding	82 84 84 87 90 92 Yube 93 97 103
9% 4.12 Liquid Crystals and Mechanical Clock Movements 9% References 100 5 Biological Self-Organisation by Way of the Dynamics of Reactive Processes 101 5 Biological Self-Organisation by Dynamic Processes in Physical Systems 102 5.1 Self-Organisation by Dynamic Processes in Physical Systems 103 5.1 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 104 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 105 5.4 Microtubule Self-Organisation 106 Bunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 110 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 111 Living Beings? 112 Stéphane Douady and Pascal Hersen 113 6.1 Discovery 114 6.2 The Wind Drives the Sand 115 6.3 The Minimal Dune 116 6.4 The Wind Runs Over the Dune 117 6.4 The Wind Flow Make the Dune? 128 6.6 Understanding the Barchan Shape 129 6.7 The Paradox of Corridors 120 6.8 The Wind is Never Constant 121 6.8 The Wind is Never Constant	84 84 87 90 92 Yube 93 97 103
P99 References 100 5 Biological Self-Organisation by Way of the Dynamics of Reactive Processes 101 5 Biological Self-Organisation by Dynamic Processes in Physical Systems 102 James Tabony 103 5.1 Self-Organisation by Dynamic Processes in Physical Systems 105 5.2 Self-Organisation in Colonies of Living Organisms 106 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 107 5.4 Microtubule Self-Organisation 108 References	84 87 90 92 Yube 93 97 103
 ¹⁰¹ 5 Biological Self-Organisation by Way of the Dynamics of Reactive Processes	87 90 92 Yube 93 97 103
102 Processes 103 James Tabony 104 5.1 Self-Organisation by Dynamic Processes in Physical Systems 105 5.2 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 106 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 107 5.4 Microtubule Self-Organisation 108 References	87 90 92 Yube 93 97 103
103 James Tabony 104 5.1 Self-Organisation by Dynamic Processes in Physical Systems 105 5.2 Self-Organisation in Colonies of Living Organisms 106 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-T 107 5.4 Microtubule Self-Organisation 108 References	90 92 Yube 93 97 103
 5.1 Self-Organisation by Dynamic Processes in Physical Systems	90 92 Yube 93 97 103
105 5.2 Self-Organisation in Colonies of Living Organisms 106 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-T 107 5.4 Microtubule Self-Organisation 108 References	92 Yube 93 97 103
106 5.3 Self-Organisation by Reaction and Diffusion: Stripes in a Test-7 107 5.4 Microtubule Self-Organisation 108 References	ube 93 97 103
107 5.4 Microtubule Self-Organisation 108 References References 109 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 110 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 112 Stéphane Douady and Pascal Hersen 6.1 113 Stéphane Douady and Pascal Hersen 6.1 114 6.2 The Wind Drives the Sand Which Steals the Wind's Force 115 6.2 The Minimal Dune 116 6.3 The Minimal Dune 117 6.4 The Wind Runs Over the Dune and Pushes It Along 118 6.4 The Wind Flow Make the Dune? 119 6.5 Does the Wind Flow Make the Dune? 120 6.6 Understanding the Barchan Shape 121 6.7 The Paradox of Corridors or the Problem of Dunes Among Themselves 122 6.8 The Wind is Never Constant 123 6.8 The Wind is Never Constant	97
108 References 109 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 110 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 111 Living Beings?	103
109 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 111 Living Beings?	
110 6 Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes 111 Living Beings? Stéphane Douady and Pascal Hersen 113 6.1 Discovery 114 6.2 The Wind Drives the Sand Which Steals the Wind's Force 115 6.2 The Wind Drives the Sand Which Steals the Wind's Force 116 6.3 The Minimal Dune 117 6.4 The Wind Runs Over the Dune and Pushes It Along 118 6.5 Does the Wind Flow Make the Dune? 120 6.6 Understanding the Barchan Shape 121 6.7 The Paradox of Corridors or the Problem of Dunes Among Themselves 122 6.8 The Wind is Never Constant	
111 • Dates, the concentre benched of white the card, of the band, of the ba	10-
112 Stéphane Douady and Pascal Hersen 113 6.1 Discovery 114 6.2 The Wind Drives the Sand Which Steals the Wind's Force 115 6.2 The Wind Drives the Sand Which Steals the Wind's Force 116 6.3 The Minimal Dune 117 6.3 The Minimal Dune 118 6.4 The Wind Runs Over the Dune and Pushes It Along 119 6.5 Does the Wind Flow Make the Dune? 120 6.6 Understanding the Barchan Shape 121 6.7 The Paradox of Corridors or the Problem of Dunes Among 122 6.8 The Wind is Never Constant	107
113 6.1 Discovery 114 6.1 Discovery 115 6.2 The Wind Drives the Sand Which Steals the Wind's Force 116 as It Flies 117 6.3 The Minimal Dune 118 6.4 The Wind Runs Over the Dune and Pushes It Along 119 6.5 Does the Wind Flow Make the Dune? 120 6.6 Understanding the Barchan Shape 121 6.7 The Paradox of Corridors or the Problem of Dunes Among 122 6.8 The Wind is Never Constant	
114 6.1 Distriction of the first th	107
116as It Flies1176.3The Minimal Dune1186.4The Wind Runs Over the Dune and Pushes It Along1196.5Does the Wind Flow Make the Dune?1206.6Understanding the Barchan Shape1216.7The Paradox of Corridors or the Problem of Dunes Among Themselves1226.8The Wind is Never Constant1236.9Dunes are Not Isolated	
1176.3The Minimal Dune1186.4The Wind Runs Over the Dune and Pushes It Along1196.5Does the Wind Flow Make the Dune?1206.6Understanding the Barchan Shape1216.7The Paradox of Corridors or the Problem of Dunes Among Themselves1226.8The Wind is Never Constant1236.9Dunes are Not Isolated	107
1186.4The Wind Runs Over the Dune and Pushes It Along1196.5Does the Wind Flow Make the Dune?1206.6Understanding the Barchan Shape1216.7The Paradox of Corridors or the Problem of Dunes Among Themselves1226.8The Wind is Never Constant1236.9Dunes are Not Isolated	108
1196.5Does the Wind Flow Make the Dune?1206.6Understanding the Barchan Shape1216.7The Paradox of Corridors or the Problem of Dunes Among Themselves1226.8The Wind is Never Constant1236.9Dunes are Not Isolated	109
120 6.6 Understanding the Barchan Shape 121 6.7 The Paradox of Corridors or the Problem of Dunes Among 122 Themselves Themselves 123 6.8 The Wind is Never Constant 123 6.9 Dunes are Not Isolated	109
121 6.7 The Paradox of Corridors or the Problem of Dunes Among Themselves 122 6.8 The Wind is Never Constant 123 6.9 Dunes are Not Isolated	111
122 6.8 The Wind is Never Constant 123 6.9 Dunes are Not Isolated	
¹²³ 6.8 The Wind is Never Constant	114
6 U Dunag ara Nat Igalatad	114
$\frac{124}{124}$	115
¹²⁵ 6.10 The Grain of Sand, the Dune and the Corridor of Dunes What	t 110
About the Individual, the Flows and the Form?	110
127 Keierences	118
7 Morphodynamics of Secretory Endomembranes	
¹³⁰ François Képès	119
7.1 Some Preliminary Reminders	119
¹³² 7.2 Introduction	119 119
¹³³ 7.2.1 Cell Membrane and Translocation	119 119 120
¹³⁴ 7.2.2 Eukaryotic Secretory Pathway	119 119 120 120
135 7.2.3 Other Eukaryotic Compartments	119 119 120 120 121

136			7.2.4 Cytoplasm, Cytoskeleton a	nd Compartmentalisation 123
137		7.3	Morphodynamics of Membranes	
138			7.3.1 Biological Membranes	
139			7.3.2 Segregation	
140			7.3.3 Fission	
141			7.3.4 Fusion	
142		7.4	Functional Models	
143		7.5	Conclusions	
144			7.5.1 Themes	
145			7.5.2 Evolutionary Perspectives	
146			7.5.3 Questions	
147			7.5.4 Prospects	
148		Refere	nces	
149 150				
151	8	From	Epigenomic to Morphogenetic Em	ergence
152		Caroli	ne Smet-Nocca, Andràs Paldi, and A	rndt Benecke
153		8.1	Genetic Inheritance, Regulation of	Gene Expression,
154			and Chromatin Dynamics	
155			8.1.1 Gene Transcription and the	Regulation of Gene Expression 145
156			8.1.2 Genomic Structure and its	Impact on Transcriptional
157			Regulation	
158		8.2	Epigenetic Mechanisms, Epigeneti	c Inheritance
159			and Cell Differentiation	
160			8.2.1 DNA Methylation: Epigene	etic Marker of Transcriptional
161			Repression	149
162			8.2.2 Structural and Functional C	Organisation of Chromatin:
163			Spatio-Temporal Regulatio	n 152
164		8.3	The Link Between Epigenetic Inform	mation and the Regulation of
165			Gene Expression	
166			8.3.1 The Link Between DNA Re	epair and Transcription 158
167			8.3.2 CBP/p300, HAT's Involved	d in Cell Growth,
168			Differentiation and Develop	pment 160
169		0.4	8.3.3 Epigenetics and Oncogenes	SIS 161
170		8.4 D.f	Morphogenomics	
171		Refere	nces	
172				
173	Δ	A	IM	1(7
174	9	Anim	a Morphogenesis	
175			The Acquisition of Coll Diversity	160
176		7.1	0.1.1 Heterogeneity of the Egge	What Is Determined
177			from the Moment of Fertili	sation?
170			912 The Interaction Retween C	ells and Their Environment
1/9			and the "Inside-Outside" H	vnothesis 171
100			and the monte-Outside H	

х

Contents

181		9.2	The Anatomical Tradition of Embryology, Identification	
182			of Symmetry Breaking and Characterisation of Morphogenetic	
183			Fields	171
184			9.2.1 Symmetry-Breaking in Early Embryogenesis	172
185			9.2.2 Formation of Boundaries and Compartments During	
186			Organogenesis	175
187		9.3	The "Bottom-Up" Approach of Developmental Biology	176
188			9.3.1 Dynamics of Molecular and Genetic Interactions	
189			in the Formation of Patterns	178
190			9.3.2 The Concept of Morphogen and Pattern Generation	
191			Through the Threshold Effect	179
192			9.3.3 The Formation of Somites in Vertebrates: A Model	
193			of Coupled Oscillators	181
194		9.4	The Reconstruction of Cell Morphodynamics and the Revival of	
195			the Anatomical Tradition of Embryology	184
196			9.4.1 Cell Movements and Deformations in Morphogenesis	184
197			9.4.2 Cell Adhesion and Biomechanical Constraints in the	
198			Embryo	185
199			9.4.3 The Tensegrity Model	185
200		Refere	ences	187
201				
202	10	Phyllo	otaxis, or How Plants Do Maths When they Grow	189
203		Stépha	ane Douady	
204		10.1	Discovery	189
205		10.2	Why?	190
206		10.3	How?	192
207		10.4	Van Iterson's Tree Pruned!	194
208		10.5	Dynamics	196
209		10.6	Conclusion	197
210		Refere	ences	198
211				
212	11	The I	Logic of Forms in the Light of Developmental Biology and	
213		Palae	ontology	199
215		Didie	r Marchand	177
216		11.1	Introduction	199
217		11.2	Palaeontology and Time	200
218		11.3	From the Cell to the Multicellular Organism: An Ever More	
219			Complex Game of "Lego"	201
220		11.4	The Major Body Plans: In the Early Cambrian, Everything Was	
221			Already in Place	202
222		11.5	The Phylum of Vertebrates: A Fine Example of Peramorphosis	204
223		11.6	The Anomalies of Development: An Opening Towards New	
224			Morphologies	205
225		11.7	The Brain as the Last Space of Freedom	207

xii

		11.0 0 1 1
226		11.8 Conclusion
227		References
228		
229	12	Forms Emerging from Collective Motion 213
230	14	Hugues Chaté and Guillaume Grégoire
231		12.1 Introduction 213
232		12.1 Introduction
233		12.2 Towards a Minimum Model
234		12.2.1 The ingredients
235		$12.2.2 \text{Formalisation} \qquad 210$
235		12.2.3 The Results of Vicsek et al
230		12.3 Forms in the Absence of Cohesion
237		12.3.1 Moving in Self-Organised Groups
238		12.3.2 Microscopic Trajectories and Forms
239		12.4 When Cohesion Is Present: Droplets in Motion 222
240		12.4.1 Phase Diagrams and Form of Droplets
241		12.4.2 Cohesion Broken During the Onset of Motion
242		12.5 Back to Nature
243		References
244		
245	12	Sustana of Cities and Lougla of Organization
246	13	Systems of Cities and Levels of Organisation
247		Denise Pumain
248		13.1 Three Levels of Observation of the Urban Fact
249		13.1.1 Emergent Properties at the City Level
250		13.1.2 The Structure of the System of Cities
251		13.2 A Functional Interpretation of the Hierarchical Ordering
252		13.2.1 Daily Life in the City
252		13.2.2 The Functions of the System of Cities
255		13.3 The Interactions that Construct the Levels
254		13.3.1 The Constituent Interactions of City Forms
255		13.3.2 The Constituent Interactions of Systems of Cities
256		13.4 Complex Systems Models for Urban Morphogenesis
257		13.4.1 Cities as Spatial Objects
258		13.4.2 Cities and Fractal Objects 246
259		13.4.3 From Support Space to Relational and Conforming Space 247
260		References 248
261		Kererences
262		
263	14	Levels of Organisation and Morphogenesis from the Perspective
264		of D'Arcy Thompson
265		Yves Bouligand
266		14.1 Games of Construction
267		14.1.1 Chemical Syntheses and Biosyntheses
268		14.1.2 Networks of Supramolecular Assemblies
269		14.1.3 Molecular and Supramolecular Models
270		14.2 Water Games
-		

Contents

14.2.1 Hydrodynamic Figures. 14.2.2 Hydrodynamic Figures. 14.3 The Fragile Architectures of Diffusion 14.3 The Fragile Architectures of Diffusion 14.3 The Fragile Architectures of Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.2 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.2 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.1 Hydrodynamic Diffusion 14.5.2 Hydrodynamic Diffusion 14.5.4 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability	250
14.2.2 Hydrodynamic Pigures. 14.2.3 Morphological Adaptations to the Hydrodynamics of the Environment 14.3 The Fragile Architectures of Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.2 Hydrodynamic Diffusion 14.3.3 Hydrodynamic Diffusion 14.4 Stabilisation and Reorganisation of Forms 14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis Morphogenesis 14.6.3 New Prospects in Morphogenesis and the Concept of Viability of Viability References 14.6.3 15.1 General Content of the Model 15.2 Morphogenesis and Structural Stability 15.3 The Theory of Singularities and "Elementary" Morphogenetic Models Models 15.5 The Principles of Morphogenesis 15.6 The Models of Morphogenesis 15.6 The Correspondence 15.7 The Principles of Morphogenetic Field 16.1 The Correspondence <t< th=""><th></th></t<>	
14.2.3 Morphological Adaptations to the Hydrodynamics of the Environment 14.3 The Fragile Architectures of Diffusion 14.3.1 Hydrodynamic Diffusion 14.3.2 Hydrodynamic Diffusion 14.3.3 The Fragile Architectures of Diffusion 14.4 Stabilisation and Reorganisation of Forms 14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability 15.4 The Morphogenetic Models of René Thom 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Singularities and "Elementary" Morphogenetic Models	
274 of the Environment 14.3 The Fragile Architectures of Diffusion 14.3.1 Hydrostatic Diffusion 175 14.3.2 14.4 Stabilisation and Reorganisation of Forms 14.4 Stabilisation and Reorganisation of Forms 14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6 Particular and General Morphogenetic Theories 14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability 14.6.3 New Prospects in Morphogenesis and the Concept 15.6 General Content of the Model 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Singularities and "Elementary" Morphogenetic Models 15.4 The Principles of Morphodynamic Models 15.5 The Models of Morphogenesis 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenes	
14.3 The Fragile Architectures of Diffusion 14.3.1 Hydrostatic Diffusion 14.3.2 Hydrostatic Diffusion 14.3.2 Hydrostatic Diffusion 14.4 Stabilisation and Reorganisation of Forms 14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6 Particular and General Morphogenetic Theories 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability 14.6.3 New Prospects in Morphogenesis and the Concept of Viability 15.4 General Content of the Model 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Orphogenesis 15.5 The Principles of Morphogenesis 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis 16 Morphogenesis, Structural Stability and Epigenetic Landscape 16.3 Structural Stability and Morphogenetic Field	261
14.3.1 Hydrodynamic Diffusion	
14.3.2 Hydrodynamic Diffusion	
14.4 Stabilisation and Reorganisation of Forms 14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability	
14.5 The Problem of Strong Local Curvature and New Prospects 14.6 Particular and General Morphogenetic Theories 14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis Morphogenesis 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability The Morphogenetic Models of René Thom 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 The Principles of Morphogynamic Models 15.6 The Models of Morphogenesis 78 The Correspondence 79 16 16.1 The Correspondence 70 Structural Stability and Morphogenetic Field 70 I.6.3 71 Morphological and Mutational Analysis: Tools for the Study 72 Morphologenesis 73 The Theory of Co-Viability 74 Morphologenesis	264
14.6 Particular and General Morphogenetic Theories 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis Morphogenesis 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability of Viability References	
14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis 14.6.2 14.6.3 New Prospects in Morphogenesis and the Concept of Viability of Viability References 9 15 The Morphogenetic Models of René Thom 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models Morphogenesis 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis 16 Morphogenesis, Structural Stability and Epigenetic Landscape 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of Wha 16.5 Interpretations References Interpretations 17 Morphogenesis 18 Theory of Co-Viability 19 Morphogenesis <	
Morphogenesis 14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability 14.6.3 References 6 References 15 The Morphogenetic Models of René Thom 15.1 General Content of the Model 15.1 General Content of the Model 15.1 General Content of the Model 15.2 15.3 The Theory of Dynamical Systems 15.3 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.6 15.5 The Principles of Morphogenesis 15.6 15.6 The Models of Morphogenesis 16.3 16.1 The Correspondence 16.3 16.2 Delbrück's Model 16.3 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of Wha 16.5 Interpretations 16.4 17 Morphogenesis Jean-Pierre Aubin and Annick Lesne 17.1 Objectives 17.2 17.2 Biological Morphogenesis 17.2.1 17.2 Biological Morphogenesis 17.2.1	
14.6.2 Symmetry Breaking and Differentiation 14.6.3 New Prospects in Morphogenesis and the Concept of Viability References 15 The Morphogenetic Models of René Thom 16.1 The Content of the Model 17 Morphogenetic of Dynamical Systems 18.1 The Theory of Dynamical Systems 19.2 15.4 15.5 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Epigenetic Landscape 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 17 Morphogenesis 17.1 Objectives 17.2 Problems of Co-Viability 17.2 Biological Morphogenesis 17.2 Biological Morphogenesis	267
14.6.3 New Prospects in Morphogenesis and the Concept of Viability	
ass of Viability 1 ass References 1 ass IS The Morphogenetic Models of René Thom 1 ass Jean Petitot 1 15.1 General Content of the Model 1 ass Jean Petitot 15.1 General Content of the Model 1 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 1 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 The Principles of Morphodynamic Models 1 15.5 The Principles of Morphogenesis 1 15.6 The Models of Morphogenesis 1 15.6 The Models of Morphogenesis 1 16.1 The Correspondence 1 16.1 The Correspondence 1 16.3 Structural Stability and Morphogenetic Field 1 16.3 Structural Stability and Morphogenetic Field 1 1 1 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of What 1 16.5 Interpretations 1 1 1 17 Morphological and Mutational Analysis: Tools for th	
References References I5 The Morphogenetic Models of René Thom Jean Petitot 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.3 The Theory of Singularities and "Elementary" Morphogenetic Models 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 15.6 The Morphogenesis, Structural Stability and Epigenetic Landscape Sara Franceschelli 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of What 16.5 16.5 Interpretations References 17 Morphological and Mutational Analysis: Tools for the Study of Morphogenesis 17.1 Objectives 17.2 17.2 Problems of Co-Viability 17.2.1 17.2 Biological Morphogenesis 17.2.2	
 15 The Morphogenetic Models of René Thom	
 15 The Morphogenetic Models of René Thom	
Jean Petitot Jean Petitot 15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 15.6 The Models of Morphogenesis References 16 Morphogenesis, Structural Stability and Epigenetic Landscape 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 17 Morphogenesis 18 19 17.1 Objectives 17.2 Motivations 17.2 Biological Morphogenesis 17.2 Biological Morphogenesis	075
15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 76 The Models of Morphogenesis 77 References 78 Sara Franceschelli 70 Sara Franceschelli 71 16.1 72 Delbrück's Model 73 16.2 74 Epigenetic Landscape 75 Interpretations 76 Interpretations 77 References 78 Pigenetic Landscape: A Mental Picture, a Metaphor 79 Interpretations 70 References 70 Interpretations 71 Morphogenesis 72 Interpretations 73 Interpretations 74 Interpretations 75 Interpretations 76 Inte	
15.1 General Content of the Model 15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.5 Interpretations 17 Morphogenesis 18	075
15.2 Morphodynamics and Structural Stability 15.3 The Theory of Dynamical Systems 15.4 The Theory of Singularities and "Elementary" Morphogenetic Models Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis 7 References 8 References 90 16 16 Morphogenesis, Structural Stability and Epigenetic Landscape 17 Morphological Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.6 Interpretations 16.7 Morphological and Mutational Analysis: Tools for the Study 16 Morphogenesis 17 Morphological and Annick Lesne 17.1 Objectives 17.2 Biological Morphogenesis 17.2 Biological Morphogenesis	
 15.3 The Theory of Dynamical Systems	
15.4 The Theory of Singularities and "Elementary" Morphogenetic Models Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis References References 16 Morphogenesis, Structural Stability and Epigenetic Landscape 16 Morphogenesis, Structural Stability and Epigenetic Landscape 17 Morphogenesis 18 Morphogenesis 19 Interpretations 10 Structural Stability and Morphogenetic Field 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.5 Interpretations 17 Morphogenesis 18 Jean-Pierre Aubin and Annick Lesne 17.1 Objectives 17.2 Motivations 17.2 Biological Morphogenesis	
Models Models 15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis References References 16 Morphogenesis, Structural Stability and Epigenetic Landscape 17 Morphogenesis 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.5 Interpretations 16.6 Worphological and Mutational Analysis: Tools for the Study 17 Morphological and Annick Lesne 17.1 Objectives 17.2 Motivations 17.2 Biological Morphogenesis	10
15.5 The Principles of Morphodynamic Models 15.6 The Models of Morphogenesis Principles References References References 16 Morphogenesis, Structural Stability and Epigenetic Landscape Sara Franceschelli 16.1 16.1 The Correspondence 16.2 Delbrück's Model 16.3 Structural Stability and Morphogenetic Field 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 16.5 Interpretations 16.5 Interpretations 17 Morphological and Mutational Analysis: Tools for the Study 16 Morphologenesis 17.1 Objectives 18 17.2 17.2 Problems of Co-Viability 17.2 Biological Morphogenesis	
256 15.6 The Models of Morphogenesis 277 References 288 299 300 16 301 Sara Franceschelli 302 16.1 The Correspondence 303 16.2 Delbrück's Model 304 16.3 Structural Stability and Morphogenetic Field 305 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor 306 16.5 Interpretations 307 References 308 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 309 17 301 17.2	
297 References 298 16 Morphogenesis, Structural Stability and Epigenetic Landscape 301 Sara Franceschelli 302 16.1 The Correspondence 303 16.2 Delbrück's Model 304 16.3 Structural Stability and Morphogenetic Field 305 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of What 306 16.5 Interpretations References of What 308 17 Morphological and Mutational Analysis: Tools for the Study of Morphogenesis 309 17 Morphological and Annick Lesne 311 Jean-Pierre Aubin and Annick Lesne 312 17.2 Motivations 313 17.2.1 Problems of Co-Viability 314 315 17.2.2 Biological Morphogenesis 315 317.2	
 16 Morphogenesis, Structural Stability and Epigenetic Landscape Sara Franceschelli 16.1 The Correspondence	
300 Sara Franceschelli 301 16.1 302 16.2 303 16.2 304 16.3 305 16.3 306 16.3 307 16.4 308 16.5 309 17 Morphological and Mutational Analysis: Tools for the Study 309 17 Morphological and Mutational Analysis: Tools for the Study 309 17 Morphological and Annick Lesne 311 Jean-Pierre Aubin and Annick Lesne 312 17.1 Objectives 313 17.2 314 17.2.1 315 17.2.2	
 16.1 The Correspondence	
302 16.2 Delbrück's Model 16.3 304 16.3 Structural Stability and Morphogenetic Field 16.4 305 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of What 306 16.5 Interpretations 16.5 307 References References 16.5 308 17 Morphological and Mutational Analysis: Tools for the Study 0 309 17 Morphological and Annick Lesne 17.1 Objectives 311 Jean-Pierre Aubin and Annick Lesne 17.2 Motivations 17.2.1 314 17.2.1 Problems of Co-Viability 17.2.2 Biological Morphogenesis	
303 16.3 Structural Stability and Morphogenetic Field	
16.4 Epigenetic Landscape: A Mental Picture, a Metaphor of Wha 16.5 Interpretations	
305 16.1 Lprgenere Lanceup en lanceup	What? . 290
306 Field Predations 307 References 308 309 17 Morphological and Mutational Analysis: Tools for the Study 309 0 Morphogenesis	294
307 Itereforees for the study 308 309 17 Morphological and Mutational Analysis: Tools for the Study 309 of Morphogenesis	294
 Morphological and Mutational Analysis: Tools for the Study of Morphogenesis Jean-Pierre Aubin and Annick Lesne 17.1 Objectives 17.2 Motivations 17.2.1 Problems of Co-Viability 17.2.2 Biological Morphogenesis 	
of Morphogenesis	
Jean-Pierre Aubin and Annick Lesne 17.1 Objectives	
312 17.1 Objectives 313 17.2 Motivations 314 17.2.1 Problems of Co-Viability 315 17.2.2 Biological Morphogenesis	
313 17.2 Motivations	
31417.2.1 Problems of Co-Viability31517.2.2 Biological Morphogenesis	
17.2.2 Biological Morphogenesis	
	301

lon	ter	its
	Con	Conter

316			17.2.3 Image Processing	302
317			17.2.4 Shape Optimisation	302
318			17.2.5 Dynamic Economics	302
319			17.2.6 Front Propagation	303
320			17.2.7 Visual Robotics	303
321			17.2.8 Interval Analysis	303
322		17.3	The Genesis of Morphological Analysis	303
323		17.4	From Shape Optimisation to Set-Valued Analysis	304
324		17.5	Velocities of Tubes as Mutations	308
325		17.6	Mutational Analysis	308
326		17.7	Morphological Equations	310
327		17.8	Embryogenesis of the Zebrafish	313
328		Refere	ences	314
329				
330	18	Comp	outer Morphogenesis	317
331		Jean-L	Louis Giavitto and Antoine Spicher	
332		18.1	Explaining Living Matter by Understanding Development	317
333			18.1.1 The Animal-Machine	317
334			18.1.2 From Self-Reproduction to Development	319
335			18.1.3 Development as a Dynamical System	320
336			18.1.4 What Formalism for Dynamical Systems with Dynamical	
337			Structure?	323
338		18.2	Rewrite Systems	325
339			18.2.1 Introduction	325
340			18.2.2 Rewrite Systems and the Simulation of Dynamical Systems	327
341		18.3	Multiset Rewriting and Chemical Modelling	328
342			18.3.1 Some Examples of Application	330
343			18.3.2 Paun Systems and Compartmentalisation	331
344		10.4	18.3.3 In Parenthesis: The Application to Parallel Programming	333
345		18.4	Lindenmayer Systems and the Growth of Linear Structures	334
346			18.4.1 Growth of a Filamentous Structure	334
347		10.5	18.4.2 Development of a Branching Structure	336
348		18.5	Beyond Linear Structures: Calculating a Form in Order	227
349			10 5 1 Circulation and Employed in	331
350			18.5.1 Simulation and Explanation	331
252		Defen	18.5.2 Giving Form to a Population of Autonomous Agents	220
352		Keiere		339
354	In	dex		343
355				515
356				
357				
358				
359				
360				

xiv

01	About the Authors
02	
04	
05	
06	
07	
08	
10	
12	
13	Jean-Pierre Aubin is emeritus professor at the University of Paris-Dauphine, researcher at the CREA and the LASTRE (Applied Controlled Typhastic Systems
14	Laboratory), and a specialist in viability theory and its applications.
16	aubin.jp@gmail.com
17	Loon Cloude Paeri is professor at the University of Davis Dideret. His research lies
18	in the field of soft matter: instabilities and structures flows in porous media and the
19	physical properties of ferrofluids, particularly their use in the biomedical domain.
20 21	jean-claude.bacri@univ-paris-diderot.fr
22	Arndt Benecke is an experimenter and theorist working on genomic plasticity. He
23	is principal investigator of Systems Epigenomics Group at the Institut de Recherche
24 25	Interdisciplinaire and the Institut des Hautes Etudes Scientifiques.
26	arndt@ihes.fr
27	Steffen Bohn is a CNRS researcher at the Complex Matter and Systems Laboratory
28	(UMR 7057 CNRS-Paris-Diderot) of the University of Paris-Diderot. His work in
29	experimental and theoretical physics is centred on plant growth and more generally
30	on the formation of structures. stoffen behn@univ.neris.didgret fr
32	stellen.bohn @ univ-pans-uderot.h
33	Yves Bouligand directed one of the teams at the Centre de Cytologie Expérimentale
34	of the CNRS in Ivry-sur-Seine. He is now emeritus director at the Ecole Pratique
35	talling phases including chromosomes and membranes and stabilised analogues of
36	a composite nature, components of skeletal formations.
37	yves.bouligand@univ-angers.fr
39	Doul Dounging founded the Complex Systems Institute of Davis IIs de France IIs
40	is director of the CREA at the École Polytechnique
41	paul.bourgine@polytechnique.edu
42	
43 44	Hugues Chaté is a physicist at CEA-Saclay. He specialises in collective behaviour in non-aquilibrium systems
45	Hugues Chate@cea fr
	naguos. citato e outan

xvi

Stéphane Douady is CNRS research director at the Complex Matter and Systems
 Laboratory (UMR 7057 CNRS–Paris-Diderot). His research is focused on dynamic
 systems, granular media, and morphogenesis, particularly in biology and geology.

49 douady@lps.ens.fr

Florence Elias is a lecturer at the University of Paris 6. Her research is focused on the physical properties of complex fluids: morphologies of systems containing interacting particles, and the macroscopic properties of liquid foams in relation to their internal structure.

florence.elias@univ-paris-diderot.fr

Sara Franceschelli is a lecturer at the École Normale Supérieure des Lettres et
 Sciences Humaines and associated researcher at the REHSEIS Laboratory. She spe cialises in the history of non-linear physics and its interaction with other disciplines.
 sfrances@ens-lsh.fr

Jean-Louis Giavitto is a computer science researcher at the CNRS and director of the IBISC (Computer Science, Integrative Biology and Complex Systems) Laboratory at the University of Évry. His work centres on new computational models (especially those inspired by biological processes): the representation of time and space and the use of concepts of combinatorial topology in programming languages. giavitto@ibisc.univ-evry.fr

67

Guillaume Grégoire is a lecturer at the University of Paris-Diderot. He is a
 researcher in the Complex Matter and Systems Laboratory (UMR 7057 CNRS–
 Paris-Diderot), where he uses statistical physics to study non-equilibrium physical
 systems.

- Pascal Hersen is a CNRS researcher in the Complex Matter and Systems Laboratory (UMR 7057 CNRS–Paris-Diderot). His research interests include dune morphogenesis, the dynamics of signaling pathways of eukaryotic cells and animal locomotion.
- pascal.hersen@univ-paris-diderot.fr

François Képès, CNRS research director, co-founder and scientific director of the
 Epigenomics Project of Genopole[®] (Évry), and former professor of biology at the
 École Polytechnique, is a cell and systems biologist.

- ⁸¹ Francois.Kepes@epigenomique.genopole.fr
- 82

Annick Lesne is a CNRS researcher at the Theoretical Physics of Condensed Matter
 Laboratory (UMR 7600 CNRS-Paris 6) and the Institut des Hautes Études Scien tifiques. Her research speciality is the mathematical and physical modelling of the
 regulation mechanisms of living systems.

⁸⁷ lesne@ihes.fr

⁸⁸ **Didier Marchand** is a paleontologist at the Biogeosciences Laboratory (UMR 5561 CNRS-University of Burgundy). He specialises in the relationship between

About the Authors

- ⁹¹ morphological evolution and embryogenesis and hence in the formation of bauplans.
- 92 didoux.marchand@gmail.com

Andras Paldi is a research director at the École Pratique des Hautes Études and
 a researcher at Généthon. His main field of research is the epigenetic mechanisms
 regulating gene expression and epigenetic phenomena.

- ⁹⁶ regulating gene expression and epig
- paldi@genethon.fr

Jean Petitot is a research director at the École des Hautes Études en Sciences
 Sociales and former director of the CREA (École Polytechnique). His research is
 focused on mathematical models in cognitive neuroscience.

- jean.petitot@polytechnique.edu
- Nadine Peyriéras is a CNRS researcher at the DEPSN laboratory of the Institut
 Alfred Fessard in Gif-sur-Yvette. Her chief interest is the embryogenesis and devel opment of the *Zebrafish*
- ¹⁰⁵ opment of the *Zebrafish*.
- ¹⁰⁶ nadine.peyrieras@inaf.cnrs-gif.fr

Denise Pumain is a professor at the University of Paris I, member of the Institut Universitaire de France, geographer, founder member of the Géographie-cités laboratory and director of the Cybergeo electronic journal, European Journal of Geography.

112 pumain@parisgeo.cnrs.fr

Caroline Smet-Nocca is an assistant professor at the University of Lille 1. She has
 worked with Arndt Benecke at the Interdisciplinary Research Institute on the decoupling of epigenetic signaling and transcriptional regulation in genetic diseases and
 myeloid leukaemia. Her research interests are focused on the regulation of protein
 structure and function by posttranslational modifications.

caroline.smet@iri.univ-lille1.fr

Antoine Spicher is a computer science assistant professor at the University of Paris
 XII – Val de Marne and is a member of the LACL (Laboratory of Algorithmic,
 Complexity and Logic). His research focuses on the use of concepts of combina torial topology in programming languages for the modeling and the simulation of
 dynamical systems.

- ¹²⁵ antoine.spicher@univ-paris12.fr
- 126

- James Tabony is research director at the Commissariat à l'Énergie Atomique, Direction des Science du Vivant, Département Réponse et Dynamique Cellulaires,
- Direction des Science du Vivant, Departement Reponse et Dynamique Cellulaires, CEA Grenoble, where he is researching the problem of biological self-organisation.
- iames.tabony@cea.fr
- 131
- 132
- 133
- 134
- 135

Chapter 18 Computer Morphogenesis

Jean-Louis Giavitto and Antoine Spicher

18.1 Explaining Living Matter by Understanding Development

18.1.1 The Animal-Machine

In 1739, Jacques de Vaucanson (1709–1782) presented a celebrated automaton to
 the French Academy of Sciences. It was called the *Canard Digérateur* (Digest ing Duck, Fig. 18.1), a masterpiece of anatomical simulation, with more than four
 hundred moving parts reproducing the main vital functions (respiration, digestion,
 locomotion): the animal flapped its wings, ate grain and defecated (the grain being
 digested by dissolution, according to the inventor).

23 In making these "mobile anatomies", Jacques de Vaucanson was almost cer-24 tainly influenced by the biomechanistic philosophy of René Descartes (1596–1650), 25 who reduced the organs of the human body to parts in a machine "designed by 26 God". Indeed, Descartes believed that one can understand life by comparing it to a 27 machine: that one can explain the main bodily functions - digestion, locomotion, 28 respiration, but also memory and imagination - as if they were produced by an 29 automaton, like a clock designed to show the time simply by the layout of its wheels 30 and counterweights. But when René Descartes tried to convince Queen Christina of 31 Sweden that animals were just another form of machine, she is said to have replied: 32

Can machines reproduce?

Three centuries were to pass before her question received an answer. A hundred years later, the automata of Vaucanson were imitating the main physiological functions, but they still could not reproduce, and it was only with the publication of an article by John Von Neumann in 1951, *The General and Logical Theory of Automata*, that it was finally possible to believe that a machine could effectively build a copy of itself [34].

40

33

01 02

03 04 05

13 14 15

- 41 42
- J.-L. Giavitto (🖂)
- ¹³ University of Évry, Paris, France
- ⁴⁴ e-mail: giavitto@ibisc.univ-evry.fr
 ⁴⁵
 - P. Bourgine, A. Lesne (eds.), *Morphogenesis*, DOI 10.1007/978-3-642-13174-5_18, © Springer-Verlag Berlin Heidelberg 2011

317

Fig. 18.1 Vaucanson's duck. Voltaire described Vaucanson in these lines: "While rival of the old Prometheus' fame, Vaucanson brings to man celestial flame. Boldly to copy nature's self aspires, And bodies animates with heavenly fires"

66 67

79

80

81 82 83

84 85

86

87

65

318

68 To meet Queen Christina's objection, it is necessary to define precisely what 69 we mean by "machine" and what we mean by "reproduction". For Von Neumann, 70 who had a very functionalist approach to this question, mechanics can ultimately 71 be reduced to a computer programme, and reproduction consists in duplicating this 72 programme. This does not mean using a command in the computer's operating sys-73 tem to copy a file containing a programme, but ensuring that the functioning of 74 the programme produces a complete and functional description of the programme 75 itself. Fig. 18.2 shows an example of such a programme written in the programming 76 language C: its execution produces a file containing the exact copy of its own code. 77 This is called a *self-replicating* code. 78

Von Neumann's purpose was clearly to show that living processes can be reduced to mechanical processes, described by operations that can be performed autonomously, without the help of an "invisible mahout": to a machine, in other

#include<stdio.h>

```
main(){char*c="\\"#include<stdio.h>%cmain() {char*c=%c%c%c%.
102s%cn%c;printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}
\n";printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}
```

Fig. 18.2 A self-replicating code. This programme is made up of two lines of code in the programming language C. The second line of the programme (starting with main) has been arbitrarily typeset over three lines to make it more legible

words. And for Von Neumann, like Queen Christina, reproduction and development
 are a specific characteristic of living things. But for Von Neumann, this character istic is just a particular property possessed by certain machines, not a quality that
 transcends physical processes, giving special status to biological ones. The existence
 of a machine, an automaton, capable of reproduction, is therefore a key factor in the
 age-old debate opposing the relative status of biology and physics.

This debate has not been easy to settle, reproduction being one of the most fun-97 damental processes in the life of organisms and appearing to resist any physical 98 explanation. Intuition suggests that if, as a result of its functioning, a machine A 99 can produce a machine B, then A must contain, in one form or another, a complete 100 description not only of B but also of the specific mechanisms instructing it how 101 to use that description to actually produce (construct) B. This description must be 102 internal to A, otherwise we would be dealing with a mechanism of copying rather 103 than reproduction. We should therefore be able to define a certain measure of com-104 plexity and show that A is necessarily more complex than B. But in this case, our 105 intuition leads us astray. 106

- 107
- 108
- 109
- 109 110

18.1.2 From Self-Reproduction to Development

Modern biologists may ask themselves the same questions as the philosophers and queens of past centuries, but today they seek to understand the mechanisms of reproduction by elucidating the *processes* leading from the germ cell to the complete organism: the aim is to understand, step by step, the *construction of an organism over the course of time*, through the multitude of local interactions of its constituent elements. In a word, *development*.

The elements that Von Neumann brought to the debate are very abstract: they are 117 based on the description of a cellular automaton which reproduces, over the course 118 of time, the configuration of a spatial subdomain in a neighbouring region. A cellular 119 automaton can be described by a *predefined* network of sites, called cells, each cell 120 possessing one of a finite set of states. The state of each cell is updated according to 121 a predefined rule of evolution, which takes into account the state of the cell and the 122 state of its neighbours at time t to calculate the state of the cell at time t + 1. The 123 functioning of the automaton corresponds to the updating of the state of its cells at 124 discrete time intervals (see Fig. 18.3). 125

We are a long way from the molecular mechanisms to which modern biologists 126 wish to reduce biological phenomena. The existence of a self-replicating automaton 127 suggests that there is no problem of principle in the existence of such a machine, but 128 it tells us nothing about the "how" of biological processes. Nevertheless, the con-129 cepts of programme, code, automaton, memory and information have invaded biol-130 ogy and assumed an explanatory value, especially in developmental biology [20]: 131 biologists need models and metaphors to understand (i.e. to represent, analyse and 132 interpret) the huge mass of experimental data they have collected. For example, the 133 concept of genetic code plays a similar role in the living cell as the rule governing 134 the evolution of states does in the Von Neumann automaton. 135

320

Fig. 18.3 A cellular automaton is a network of cells, each joined to its neighbours by links. Here the network is a rectangular grid. Each cell possesses a state (here either 0 or 1). The rule of evolution used here is: the state of a cell is the modulo-2 addition of the states of the neighbouring cells. An example of the evolution of one cell is shown top right. The three networks below show three successive stages in the evolution of the automaton. The rule is applied simultaneously to all the cells. Von Neumann's self-replicating automaton is a model of this type, where the rules of evolution lead to the reproduction of the initial configuration of a given region in an adjacent region

162 163

164

18.1.3 Development as a Dynamical System

The concept of dynamical system allows to formalise the idea of process of devel-165 opment. A dynamical system (DS) is characterised by observations that evolve over 166 time. These observations are the variables of the system, and they are linked by cer-167 tain relations. These variables account for relevant properties of the system (whether 168 they be biological, physical, chemical, sociological, or other). At a given moment in 169 time, they have a certain value, and the set of these values constitutes the state of the 170 system. The set of all the possible states of a system constitutes its state space (or 171 configuration space). For example, a falling stone is a system characterised by the 172 variables *position* and *velocity* of the stone. These two variables are not independent: 173 if we consider the position of the stone as a function of time, then its velocity is the 174 derivative of that function. 175

The succession of system states over time is called a *trajectory*. A DS is a formal way of specifying how the system moves from one point in the configuration space (one state) to another point (the next state). This can be done directly, by a function (the function of evolution of the system), or indirectly, by giving constraints (equations) on the possible future state (which is not necessarily unique, if the system

Table 18.1 Three examples of formalism used to specify a dynamical system according to the continuous or discrete nature of the variables and of time. Iterated functions correspond to sequences $x_{n+1} = f^{n+1}(x_0) = f(x_n)$ for a given function f on **R**. Many other formalisms have also been studied

D : Discrete	Differential Equation	Iterated Functions	Finite Automat
Time	C	D	D
State	С	С	D

189

is not deterministic). A variety of mathematical formalisms correspond to this very
 general concept of dynamical system. For example, the variables can take contin uous or discrete values. Likewise, the progression of time can be continuous or in
 discrete steps. Examples of formalisms corresponding to these cases are listed in
 Table 18.1.

In simple cases, the trajectory of a dynamical system can be expressed explicitly by an analytic function of time *t*. In the case of the falling stone, for example, the differential equations dx/dt = v and $dv/dt = \mathbf{g}$ can be explicitly integrated to give the distance travelled by the stone as a function of time: $x = \mathbf{g}t^2/2$.

In more complex cases, an analytic equation giving the trajectory does not exist, 199 and computer simulation is then a favoured approach for studying the trajectories 200 of the system. In addition, instead of focusing on one particular trajectory, we can 201 look at qualitative properties satisfied by all the possible trajectories, for example: 202 "if we wait long enough, the system ends up in a well-defined state in which it then 203 remains" or "if the trajectory passes through these states, it will never return". When 204 there is no faster means of predicting properties than by observing or simulating 205 them, we qualify them as *emergent properties*. Note that DS with very simple spec-206 ifications can produce very complex trajectories (we sometimes speak of *chaotic* 207 behaviour); moreover, calculating the trajectory of the system can be expensive in 208 terms of computer time and require a vast amount of memory. 209

210 211

212

18.1.3.1 The Structure of States

Another important characteristic by means of which dynamical systems can be classified is the structure of states. In the example of the falling stone, the structure of a state is simple: it is a pair of vectors (velocity, position).

Very often, the structure of a state reflects the spatial organisation of the system. Let us take the example of the diffusion of heat in a volume. The distribution of the temperature has a structure, related to the spatial organisation of the volume. We can therefore define a scalar field assigning a temperature to each point. The evolution of this field follows a law of diffusion specified by a partial derivative equation. This links the temperature at time t + dt of a point p to the values of the temperature field at p and in its neighbourhood at time t.

Very often, subsystems only interact if they are connected or physically close: we call this the property of *locality* (there is no action at a distance). The structure of a state then reflects this division into subsystems, and the function of evolution respects the property of locality. For the evolution of temperature in a volume, each state assigns a temperature to each point in the volume V and the state space is therefore the set of functions of V in **R**. The heat diffusion equation governing the evolution of the system indicates that the temperature of a point in V depends solely on the temperature of the neighbouring points.

231 232

233

18.1.3.2 Development as Trajectory of a Dynamical System

Above, we stated that the concept of genetic code has much in common with the 234 rules specifying the evolution of cell state in Von Neumann automata. This is the 235 concept underlying the "all-genetic" paradigm, according to which the complete 236 evolution of the organism is coded in its genetic material, and every character-237 istic is uniquely determined by the genes. This viewpoint has been substantially 238 challenged [2], in favour of a more flexible approach, reconciling the genetic and 239 epigenetic viewpoints on development. Living systems may be dynamical, but they 240 are also open systems, interacting with their environment. Development should 241 therefore be regarded as a co-construction, depending on interactions both within 242 the system and outside it (with the environment). Genetic material does not con-243 stitute a complete and sufficient description of any given organism, although it is 244 indispensable. Cell machinery, for example, also plays a central role, as has been 245 demonstrated experimentally by the technique of cloning in which a nucleus (i.e. 246 the genetic material of a cell) is introduced into a germ cell. 247

However, the processes of morphogenesis involving the movement and reorganisation of matter are also characterised by a second property: the state space and its topology can also evolve over time.

Let us illustrate this idea by comparing it to the two examples described above. 251 In the case of the falling stone, the velocity and the position of the stone change at 252 each moment but the system is always adequately described by a pair of vectors. In 253 this case, we say that the dynamical system has a stable (static) structure. The same 254 is true for the evolution of the temperature in the volume V: V is fixed in advance 255 and each state is always an element of $V \rightarrow \mathbf{R}$. In these two examples, the state 256 space can be described adequately at the beginning of time, before the simulation; 257 it corresponds to the space of the measurements of the system. The value of these 258 measurements changes over time, but the data of the state space and its topology are 259 not variables of the system and cannot evolve over the course of time. 260

Quite the opposite holds true for the processes of development: biological processes form highly structured and hierarchically organised dynamical systems, the spatial structure of which varies over time and must be calculated in conjunction with the state of the system. We call this type of system a *dynamical system with dynamical structure*, which we shall abbreviate to (DS)².

The fact that the very structure of a biological system is dynamical has been highlighted by several authors; we can cite, in different domains: the concept of *hypercycle* introduced by Eigen and Schuster in the study of autocatalytic networks [13], the theory of *autopoietic systems* formulated by Maturana and Varela [43], *systems of variable structure* developed in control theory by Itkis [30], or the concept of

biological organisation introduced by Fontana and Buss to formalise and study
the emergence of self-maintaining functional structures in a set of chemical reactions [18]. The objective of all of these works has been to grasp and formalise the
idea of change in the structure of a system, change that is coupled with the evolution
of the state of the system.

(DS)² are widespread in models of plant growth and more generally in developmental biology, in multiscale cell models, mechanisms of protein transport and compartmentalisation, etc. But they are also relevant in other domains, such as the modelling of mobile networks, Internet and the Web, the development of cities, traffic jams, self-assembly processes, autocatalytic networks in chemistry, semantic networks in learning, social behaviour, etc.

282 283

284

18.1.3.3 An Example

To illustrate the concept of $(DS)^2$, let us take the example of the development of an 285 embryo. The initial state of the embryo is described by the state $s_0 \in S$ of the germ 286 cell (however complicated that description might be). After the first division, we 287 have to describe the state with 2 cells, that is to say a new state $s_1 \in S \times S$. But when 288 the number n of embryo cells becomes large enough, the state of the system can no 289 longer be adequately described by an element of S^n . This set only describes the state 290 of each cell; it does not contain the spatial information necessary to describe the net-291 work of cells (their positioning in relation to each other). And yet this network is of 292 prime importance, because it conditions the diffusion of signals (chemical, mechani-293 cal or electrical) between cells and therefore, in the end, their functioning. With each 294 movement, division or death of a cell, the topology of this network changes. For 295 example, during gastrulation, cells initially far apart become neighbours, enabling 296 them to interact and changing their destiny (cell differentiation). 297

298 299

300

18.1.4 What Formalism for Dynamical Systems with Dynamical Structure?

301 302 303

304

Dynamical systems with dynamical structure are difficult to study because they are difficult to formalise. Let us return to the example of the embryo to illustrate this.

³⁰⁵ We have indicated that the position of each cell changes over time, making it ³⁰⁶ difficult, for example, to specify the processes of diffusion between cells. One solu-³⁰⁷ tion that comes immediately to mind is therefore to complete the state of a cell with ³⁰⁸ information about its position, and to consider $\mathcal{T} = S \times \mathbf{R}^3$ as a building block¹ ³⁰⁹ allowing to construct the set:

- 311
- 312

surface exchange area between two neighbouring cells, which conditions intermembrane flow).

³¹³ ¹ To simplify, we only take into account the position of each cell in \mathbb{R}^3 , but we should also specify

its form, which conditions its neighbourhood and its exchanges with other cells (for example the

J.-L. Giavitto and A. Spicher

324

316

317 318 $\mathcal{T}^* = \mathcal{T} \cup \mathcal{T}^2 \cup \dots \cup \mathcal{T}^n \cup \dots$ $= \mathcal{T} \cup \mathcal{T} \times \mathcal{T}^* .$

³¹⁹ It is certainly possible to characterise an embryo as a point in this phase space, ³²⁰ but that does not get us very far: \mathcal{T}^* has very little intrinsic structure and does ³²¹ not provide much information about the possible trajectories of the systems. For ³²² example, the function of evolution will be very difficult to define and there is little ³²³ chance that it will be continuous.

324 325

18.1.4.1 The Problem of Locality

327 The function of evolution will be difficult to define because specifying the position of each cell in terms of its coordinates \mathbf{R}^3 presupposes the definition of a global ref-328 329 erence point. During the evolution of the embryo, the growth of a cell pushes away 330 the neighbouring cells, which in turn push away their neighbours, until the position 331 of every cell has been changed. Between two successive states, we therefore have to 332 express the change in the position of each cell by a global transformation of coor-333 dinates. Because it must express globally the changes in each position, and because 334 these changes are due to multiple concurrent local transformations, the expression 335 of this transformation can be arbitrarily complex.

The origin of this problem lies in the *extrinsic and global* expression of the form of the system² and one solution is therefore to specify intrinsically the position of each cell, for example by including the distance from its neighbours in the state $s \in S$ of each cell. In this case, the specification of changes in the position of a cell is local, but as the neighbourhood of each cell changes, we are again faced with the problem of a state space that changes over time.

342 343

344

18.1.4.2 The Problem of Continuity

345 Let us return to the example of the falling stone. The position and the velocity of 346 the stone vary continuously. The state of the system therefore varies continuously 347 over time and the trajectory of the system is a continuous function of time in the 348 state space. This continuity allows to reason in terms of infinitesimal evolutions of 349 the system and to write a differential equation characterising the trajectory. In more 350 complicated cases, we obtain a partial derivative equation (when the state has a spa-351 tial structure) or a set of such equations when several different modes of functioning 352 have to be taken into account (a finite and usually small number). 353

² In the approach described, the specification of the position of the cells uses a global reference point independent of the growing embryo. This reference point corresponds to the identification of points in the space surrounding the form, and not to a process intrinsic to the growing form: the laws governing the movement, division and death of cells would be the same if the embryo was developing within a toric volume (but the result could be different because the neighbourhoods of the cells would be different).

In the case of embryo development, this is no longer possible: as long as there 361 is no movement,³ division or death of cells, the state s belongs to a certain \mathcal{T}^n 362 and this evolution is continuous (assuming that the electric potentials, chemical 363 concentrations, mechanical constraints, etc. evolve continuously). But the essential 364 morphogenetic events (for example a cell division that changes the state from T^n to 365 \mathcal{T}^{n+1}) are by nature discontinuous.⁴ 366

367 368

369

18.1.4.3 Towards Other Solutions

The modelling and simulation of the evolution of a $(DS)^2$ are therefore particularly 370 arduous: it is difficult to define the structure and the dynamics of the system at the 371 same time, because one is dependent on the other. The example given above high-372 lights the inadequacy of global and continuous formalisms (we want to express an 373 evolution as a succession of discrete morphogenetic events corresponding to qual-374 itative discontinuities and changes). However, it is still possible to describe these 375 systems, with the laws of evolution often being informally described as a set of 376 local transformations acting on an ordered set of discrete entities. 377

Faced with these difficulties, several researchers have suggested using rewrite systems to formalise this type of description.

379 380 381

378

18.2 Rewrite Systems

382 383 384

385

18.2.1 Introduction

Rewrite systems (RS) are among the formalisms that computer scientists have 386 387 appropriated and developed, especially for modelling changes in the state of a pro-388 cess. A rewrite system is a mechanism allowing to define the replacement of one 389 part of an object by another. The objects concerned are usually terms that can be represented by a tree, of which the inner nodes are operations and the leaf nodes 390 391 are constants (see Fig. 18.4). An RS is defined by a set of rules, and a rule is a pair denoted $\alpha \rightarrow \beta$. A rule $\alpha \rightarrow \beta$ indicates how a sub-term α can be replaced by a 392 393 term β .

394 395

396

18.2.1.1 An Example

Let us take the arithmetical expressions and the rule $0 + x \rightarrow x$. Intuitively, this 397 rule specifies that any expression that can take the form "0 added to something 398

³⁹⁹ 400

³ Cell movement is sufficient to change the topology and therefore the interaction between cells.

⁴⁰¹ ⁴ In the example we have been using, morphogenetic events are discontinuous because the mod-402 elling is done at cell level. We could have modelled the concentration of different molecules at each 403 point in space, which might have avoided this problem of discontinuity (the movement of each

⁴⁰⁴ molecule being *a priori* continuous). But this raises another problem: how do these concentrations represent the biological entities that interest us: cells, tissues, organs, etc.? 405

Fig. 18.4 Representation of the term (0 + 1) + (0 + 0) and application of the two rules $0 + x \rightarrow x$ and $x + y \rightarrow y + x$. At each reduction, the strategy here is to apply one rule at a time. The subtree filtered by the left side of the rule to be applied is circled by a dashed line. The applications are non-deterministic, in the sense that we could have chosen other applications at each step. For the first reduction, for example, we could have applied the same rule $0 + x \rightarrow x$ to the left subtree of the root rather than the right subtree. We could also have chosen to apply the rule $x + y \rightarrow y + x$ to any of the three inner nodes (3 possibilities). The final term obtained is the constant 1, and this is a *normal form* for the two rules

424

326

denoted by x" can be rewritten more simply as "the thing denoted by x". Thus, the expression e = 1 + (0+3) can be rewritten as e' = 1+3 by applying the above rule to the sub-term (0+3) of e. We also write $e \rightarrow e'$ to indicate that e can be rewritten as e' through one sole application of the rule.

The sequence $e \to e_1 \to \cdots \to e_n \to e'$ is called a *derivation* of *e*. We say that e is a *normal form* if there is no e' such that $e \to e'$.

431 432

433

450

18.2.1.2 RS and Decision Procedure in an Equational Theory

The original motivation behind RS was to provide a decision procedure in equa-434 tional theories. In these theories, the aim is to prove automatically the equality of 435 two complex terms solely by using predefined elementary equalities. The idea is to 436 orientate the equations (for example, to orient the equality 0 + x = x into a rule 437 $0 + x \rightarrow x$) and to use the rules obtained to derive the normal form e' of a term e. 438 The normal form e' is equivalent to e (since each substitution transforms a subterm 439 into an equivalent term) and can be interpreted as a simplification of e. Two terms 440 e_1 and e_2 are then equivalent in the theory if they reduce to the same normal form e. 441 For example, e_1 defined by 0 + (1 + 3) is equivalent to e_2 defined by 1 + (0 + 3), 442 because e_1 and e_2 reduce to the same normal form e: 1 + 3. 443

For this decision procedure always to succeed, there must exist a normal form for each expression (property of *normalisation*) and each expression must have one sole normal form (property of *confluence*). These two properties are not quite sufficient for the decision procedure to calculate automatically; at each step we must also choose a derivation, i.e. choose which subterm will be rewritten and by which rule: this is the *strategy* of rule application.

The theory of RS [9, 10] is mainly used in algebra and logic, but it can be applied in almost every branch of computing (from Petri networks to symbolic calculus,

from the theory of demonstration to lambda calculus). One key result is that RS, 451 considered as processes of calculation, are Turing-complete (any computational pro-452 cess, i.e. described by a Turing machine, can be formalised by an RS). The use 453 of rules to transform a term is such a fundamental operation that several generic 454 environments have been developed to define and apply RS (see, among others, the 455 websites of the projects ELAN [16] and MAUDE [33]). The tools differ in the terms 456 they take into account, the α patterns allowed on the left-hand side of a rule for 457 selecting subterms, and the strategies of application that can be defined. 458

- 459 460
- 461 462

463

464

465

466

467 468

469

18.2.2 Rewrite Systems and the Simulation of Dynamical Systems

The above presentation suggests that a rule $\alpha \rightarrow \beta$ specifies a term β equivalent to (and simpler than) the term α . But we can interpret this rule as the result of a computation (the expression β is the result of evaluating the expression α) or as the evolution of a subsystem changing from state α to state β . RS can therefore be used to model and simulate DS:

- a state is represented by a term and the state of a subsystem is represented by a subterm;
- the evolution function is encoded by the rules of the RS in the following manner: the left side of the rule corresponds to a subsystem in which the elements *interact*, and the right side of the rule corresponds to the result of their interaction.

Thus, the derivation of a term *s* corresponds to a possible trajectory of a DS starting from the initial state *s*. A rewrite rule then corresponds to the specification of the evolution of a subsystem. A normal form corresponds to a fixed point in the trajectory (the system is in equilibrium and no evolution can take place).

478 479

480

18.2.2.1 An Example

For the development of the embryo, a rule $c \oplus i \rightarrow c'$ can be interpreted as a cell in 481 the state c which, on receiving a signal i, evolves to the state c'; a rule $c \to c' \oplus c''$ 482 represents a cell division; a rule $c \rightarrow \emptyset$ (c gives nothing) represents apoptosis; etc. 483 [17, 23]. The idea is that the evolution of a biosystem is specified by rewrite rules 484 of which the left side selects an entity in the system and the messages sent to it, and 485 the right side describes the new state of the entity. The operator \oplus which appears in 486 the rule denotes the composition of local entities in a global system (in our example, 487 the aggregation of cells in an embryo). The capacity to represent both the changes 488 of state and the appearance and disappearance of cells within the same formalism 489 makes RS good candidates for the modelling of $(DS)^2$. 490

491 492

493

18.2.2.2 Dealing with Time

⁴⁹⁴ One important factor in the modelling of a (DS)² is the treatment of time. The model ⁴⁹⁵ of time favoured in RS is clearly an event-driven, atomic and discrete model: time ⁴⁹⁶ passes when an evolution occurs somewhere in the system, the application of a rule corresponds to an event and specifies an atomic and instant change in the state of the system. The concept of duration is not taken into account (although it could be, within this formalism, by considering the start and the end of a time interval as events). The choice of a strategy of application provides a certain degree of control over the model of time: for example, a maximal parallel application of rules to change from one global state to another corresponds to synchronous dynamics, while the application of one sole rule corresponds to asynchronous dynamics.

503

505

18.2.2.3 Dealing with Space

A rule of the form $c \oplus i \rightarrow c'$ presupposes that a signal *i* produced by a certain cell will reach its target *c* somewhere else in the system. The operation \oplus used to amalgamate the states of the subsystems and the messages of interaction into the state of a complete system must therefore express the spatial dependencies and functional organisation of the system studied.

The concept of rewriting has mainly been developed and studied for the rewriting 511 of terms. These represent a severe restriction on RS, because their use requires the 512 encoding of the highly organised structure of $(DS)^2$ in tree form. The possibility of 513 defining rules of evolution depends on this encoding. This work demands a great 514 deal of creativity and intuition. It is difficult to represent in a satisfactory manner 515 the organisation of a biological system into molecules, compartments, cells, tis-516 sues, organs and individuals, and this has motivated an extension of the concept of 517 rewriting to structures more sophisticated than terms (for example, we can define a 518 concept of rewriting on a graph, see also [21, 22]). 519

Nevertheless, even when they are limited to trees, RS offer remarkable examples of modelling of (DS)², particularly in the biological domain. By playing on the properties of the operators, it is possible to model several types of organisation. In the following sections, we shall give examples where:

- the operation ⊕ is associative and commutative, which allows to model a "chemical soup";
- several operations can be considered simultaneously, as a means to introduce the idea of compartmentalisation;
 - the operation \oplus is simply associative, which allows to represent sequences and tree structures.
- 530 531 532

529

524

525

18.3 Multiset Rewriting and Chemical Modelling

533 534 535

536

537

538 539

540

The state of a chemical solution can be represented by a *multiset*: a set in which one element can appear several times, as in a chemical solution where several molecules of the same species are present at the same time. A multiset can be formalised by a formal sum in which the operator \oplus is *associative* and *commutative*. For example:

 $(a \oplus b) \oplus (c \oplus b)$

represents a multiset (e.g. a chemical solution) containing the elements (e.g. the molecules) a, b and c, where two copies of b appear. Since the operation \oplus is associative, we can discard the brackets, and the property of commutativity allows us to reorganise the elements in this sum as we like:

545 546

547 548

549

550

551

552

553

554

555

556

557

$$(a \oplus b) \oplus (c \oplus b) = a \oplus b \oplus c \oplus b = a \oplus b \oplus b \oplus c = c \oplus b \oplus a \oplus b = \dots$$

A multiset therefore corresponds to a tree in which associativity allows us to "flatten" the branches, and commutativity allows us to permute the leaves.

In a chemical solution, Brownian motion agitates the molecules, and after a sufficiently long time each molecule will have had the opportunity to meet and interact with any other molecule in the solution. Once we have represented the state of a chemical solution as a multiset, it is therefore easy to formulate the chemical reactions as rewriting rules on multisets. The associativity and commutativity of the operator \oplus play the role of Brownian motion and allow to "group together" arbitrarily the elements of the multiset corresponding to a left side of the rule before that rule is applied. For example, the three rules:

558 559

$$r_1: a \oplus a \to a \oplus a \oplus b$$
 $r_2: a \oplus b \to a \oplus b \oplus b$ $r_3: b \oplus b \to b \oplus b \oplus a$

560 561

represent second-order catalytic reactions between type *a* and type *b* molecules (a collision between two molecules catalyses the formation of a third molecule, without consuming the first two). Thus, if a reaction r_1 occurs in state $a \oplus c \oplus a \oplus b$, the result will be the state $a \oplus c \oplus a \oplus b \oplus b$ where an extra *b* has been produced. Note that it is not necessary for the two *a* molecules to be side by side, because we can always rearrange the term to make it so.

Several chemical reactions can happen at the same time, in parallel. This cor-568 responds to the simultaneous application of several rules to different molecules. 569 The strategy of applying as many rules as possible at a given time step is called a 570 maximal parallel application. Such a strategy is non-deterministic: on the multiset 571 $a \oplus a \oplus b$ we can apply r_1 or r_2 , but not both at the same time, due to a lack of 572 resources. In this case, one of the rules is chosen at random. A reduction step is 573 then repeated to simulate the evolution of the state of the chemical solution. Several 574 approaches are possible, in terms of adjusting the strategy of rule application, to 575 take into account the kinetics of chemical reactions [5, 24]. 576

Note that in this approach, each molecule is explicitly represented and each interaction is explicitly treated: this is known as *agent-based simulation*. This approach can be compared to more classic approaches which represent the concentration of each chemical species rather than each molecule. Obviously, in this particular case, the agent-based approach is more costly in computing time and memory, but it allows to simulate finely the complex phenomena, such as fluctuations and correlations, that are beyond the reach of global approaches.

This abstract formalisation of chemical reactions constitutes a domain of research called *artificial chemistry* [11, 12], tackling problems ranging from the automatic ⁵⁸⁶ generation of combustion reactions [6] to the study of mechanisms of self-⁵⁸⁷ organisation in the evolution of self-catalytic networks [18].

588 589 590

591

592 593

594

595

596

597

598

18.3.1 Some Examples of Application

18.3.1.1 A simple example of population growth

To illustrate multiset rewriting and its application to modelling, we shall look at an example of a biological nature: the multiplication of a unicellular organism in a test-tube. We assume that a cell exists in two forms, A and b: A represents a mature cell ready to divide and b a young cell that will evolve to form A. Each cell division of A produces one cell of type A and one cell of type b. These evolutions can be formalised by the two rules:

r_1 :	$A \longrightarrow A \oplus l$
r_2 :	$b \longrightarrow A$

If the initial state of our test-tube is represented by $m_0 = A \oplus b \oplus b$, the first three evolutions give us:

608 609

606

607

Simulation of this process can be used to determine, for example, the ratio of forms *A* to forms *b* in the population after a given time. Moreover, as we mentioned earlier, we can test properties verified by all the processes satisfying these rules of evolution. For example, Fibonacci⁵ proved that the ratio #A/#b of the number of *A* to the number of *b* converges asymptotically towards the golden number, whatever the initial state.

616 617

618

623 624

18.3.1.2 Applications to the Modelling of Networks of Biological Interaction

The modelling of biological interaction networks (genetic control networks, signalling networks, metabolic cascades, etc.) is a relatively new domain of application of these techniques. In [17], Fisher and his co-authors proposed using the concept of multiset to represent proteins involved in a cascade of interactions in a signalling

⁵ In 1602, Fibonacci studied the question of how fast a population of rabbits would grow under ideal conditions. Imagine that a pair of rabbits, one male and one female, are put in a field. These rabbits are capable of reproducing after one month, so that at the end of the second month, the female has given birth to another pair of rabbits. To simplify, we assume that the rabbits never die and that each female gives birth to a new pair, composed of a male and a female, every month starting from the second month. If we represent a newly-born pair by *b* and a mature pair by *A*, then the rule r_1 corresponds to the breeding of a new pair and the rule r_2 to the maturing of a young pair.

pathway. This avenue has been widely developed, in particular to take into account
 the different complexes that proteins can form [14, 15].

If multiset rewriting has been used to model signalling networks and metabolic 633 pathways, we should not deduce that the cell can be compared to a test-tube contain-634 ing a chemical soup. On the contrary, the cell is a spatially highly organised medium, 635 with compartments, vesicles, cargos, membranes, etc., which allow to localise the 636 different chemical species involved (for example the receptors are localised on 637 the cell membrane, while the genes are located in the nucleus; other proteins are 638 anchored and diffuse in membranes like the endoplasmic reticulum). Among other 639 things, this localisation helps to make certain reactions much more efficient. Other 640 phenomena, such as the extreme density of proteins in the intracellular medium, ren-641 der the simple model of chemical soup simply inadequate. Taking into account this 642 spatial organisation is one of the main challenges currently faced in the modelling 643 of cellular processes [31, 42]. 644

18.3.1.3 Heat Diffusion in a Bar

⁶⁴⁷ Above, we stated that the properties of associativity and commutativity allow us ⁶⁴⁸ to deconstruct a term so that each element can interact with any other element, in ⁶⁴⁹ the manner of molecules in a well-mixed chemical soup. But with the appropriate ⁶⁵⁰ encoding, multiset rewriting can be "diverted", so as to take into account geometric ⁶⁵¹ information.

The process we want to model is the diffusion of a set of particles along a line. 653 This problem also corresponds to the diffusion of heat in a thin rod, with each 654 particle representing a quantum of heat. The line is discretized into a sequence of 655 small intervals indexed by consecutive integers. Each interval contains a number of 656 particles (possibly zero). At each time step, a particle can stay in the same interval 657 or diffuse into the neighbouring interval (see Fig. 18.5). We can represent a state of 658 the line by means of a multiset in which each number *n* represents a particle present 659 in the interval numbered n. The evolution of the system is then specified by the 660 following three rules: 661

501	
562	$r_1: n \longrightarrow n$
563	$r_2: n \longrightarrow n-1$
564	$r_3: n \longrightarrow n+1$
665	

where *n* is an integer and the operations + and - which appear on the right side are the usual arithmetic operations. The rule r_2 (respectively r_3) specifies the behaviour of a particle that diffuses into the interval on its left (respectively right) and the rule r_1 specifies a particle that remains in the same interval.

671 672

673

645

18.3.2 Păun Systems and Compartmentalisation

The above encoding allows us to deal with linear geometry. Other variations have been proposed to facilitate the representation of more complex biological structures,

Fig. 18.5 Diffusion of particles in a thin rod. The left-hand figure shows the evolution over 160 time steps of 1500 particles initially distributed over 20 intervals in the middle of a bar discretized into 60 intervals. The diagram on the right specifies the behaviour of a particle (see text). The number of particles in an interval corresponds to the concentration of a chemical product or a quantity of heat. The multiset representing the state of the line (which is discretized into 5 intervals numbered from 0 to 4) is given by: $0 \oplus 0 \oplus 1 \oplus 2 \oplus 2 \oplus 3 \oplus 4 \oplus 4$

⁶⁹⁶ such as the nesting of membranes and compartments in a cell: the elements of a
 ⁶⁹⁷ multiset can be molecules or other multisets, which can in turn contain molecules
 ⁶⁹⁸ or other multisets.

This nesting is studied using the formalism of *Păun systems* (P systems) [36], in
 which the classical rewriting of multisets is extended by the concept of *membrane*.
 A membrane is a nesting of compartments represented, for example, by a Venn
 diagram⁶ without intersections and with one sole superset: the *skin* of the system
 (see Fig. 18.6).

Fig. 18.6 Păun systems. Membrane nesting can be represented by a Venn diagram without intersections and with one sole superset, by a nesting tree or by a well-bracketed word

⁶ Venn diagrams, invented by the English logician of the same name, are a means of visualising
 set operations by representing the sets as surfaces delimited by closed curves.

Fig. 18.7 Example of a rule of evolution in a Păun system. The symbol δ on the right side of a rule entails the dissolution of the enclosing membrane. The destination membranes are indicated by the suffix (the membranes are named). The enclosing membrane can always be referred to by the name "out"

736 737

733

734

735

Objects are placed in each region delimited by a membrane, and they then evolve 738 739 according to diverse mechanisms: an object (or a multiset of objects) can change into other objects, but it can also cross a membrane or provoke the dissolution or 740 creation of a membrane. Fig. 18.7 shows some examples of rules of evolution in 741 742 P systems. Formally, such a system can be specified by using several operations 743 $\oplus, \oplus', \oplus'', \ldots$, each corresponding to a certain membrane. These operations are 744 associative and commutative, but they are not associative with each other (in order 745 to keep the membranes separate).

746 747

748

749 750

751

752

753

754

755

18.3.3 In Parenthesis: The Application to Parallel Programming

The dialogue between computing and the other scientific disciplines is not all oneway. Here is an example. Inspired by the chemical metaphor, computer scientists have used multiset rewriting not only to simulate chemical reactions or biological processes, but also as a parallel programming language. The idea was first developed in the language GAMMA [3]. Here is a particularly elegant example of a parallel programme:

756 757

758 759

760

761

This rule specifies that the pair of numbers x, y must be replaced by y when the condition "y divides x" is satisfied (the condition is written after the / symbol). If we

 $x \oplus y / (x \mod y = 0) \longrightarrow y$.

apply this rule as far as possible to the multiset composed of all the integers between 2 and n, we obtain a multiset in which the rule cannot be applied (because the condition is no longer satisfied) and which therefore contains all the prime numbers up to n.

334

In the above programme, there is no trace of artificial sequencing in the calcu-766 lations: the rule can be applied in any order whatsoever. Note that the parallelism 767 comes from the simultaneous application of rules and that the "unfolding" of the 768 programme consists simply in repeating the application of the rules until a normal 769 form (a fixed point) is obtained. These programmes are non-deterministic, unless the 770 rewriting rules are confluent: in that case, when the programme ends, we do obtain 771 a perfectly determined result, although the intermediate values calculated during the 772 execution of the programme can differ (we speak of deterministic results despite a 773 non-deterministic evaluation). 774

- 775
- 776 777

778

18.4 Lindenmayer Systems and the Growth of Linear Structures

779 In the previous section, we considered a process of rewriting on associative and 780 commutative terms, allowing us to model a "chemical soup". In this section, we 781 shall explore associative terms: these terms then correspond to sequences and we 782 speak of *rewriting strings* (of symbols). Chomsky's work on formal grammars [7] 783 marked the beginning of a long series of works on string rewriting, and these works 784 have been at the origin of developments concerning syntax, semantics and formal languages in computing. Grammars are generative formalisms. In other words, they 785 786 allow us to construct families of objects, by generating sets of phrases: a phrase is 787 a sequence of symbols generated by successive rewritings. The set of phrases that 788 can be generated is a *language*.

789 In 1968, the biologist Aristid Lindenmayer (1925–1989) introduced a new type 790 of string rewriting to serve as the foundation for a formal theory of developmen-791 tal biology [32]: Lindenmayer systems, more often abbreviated to L-systems. The 792 main difference from Chomsky grammars lies in the strategy of rule application. In 793 Chomsky grammars, only one rewriting is applied at a time, whereas in L-systems 794 the rewritings take place in parallel, replacing all the symbols in a phrase at each 795 step. Lindenmayer justified this strategy by analogy to cell development: all the 796 cells in an organism divide independently and in parallel.

The objective of L-systems is to construct a complex object (like a plant) by successively replacing the different parts of a simpler object, by means of rewriting rules. Symbols are interpreted as components of a living organism, such as cells or organs, rather than words. L-systems have found numerous applications not only in the modelling of plant growth, but also in computer graphics, with the generation of fractal curves or virtual plants.

803 804

805 806

18.4.1 Growth of a Filamentous Structure

A simple example of L-system is the one that describes the growth of cyanobacteria *Anabaena Catenula*. These blue-green algae form filaments composed, for our example, of four types of cells, G, g, D and d, which can be interpreted as follows: G

820 821 822

and D are mature cells capable of dividing; g and d are quiescent cells. In addition, the cells are polarised: D and d are polarised towards the right in the filament; G and g are polarised towards the left. When we examine a filament, we can see that the cells do not succeed each other in any old order. And the rewriting system presented below generates sequences very similar to those observed in nature.

823 The derivations on the right show that at each step all the symbols are rewritten 824 in parallel according to the rules on the left. Numerous variations can be devel-825 oped from this basic mechanism, with the aim of extending the expressivity of the 826 formalism. One of the most important extensions involves attaching attributes to 827 the symbols, for example a number representing a size, or the concentration of 828 a chemical product. Fig. 18.8 illustrates the use of one such extension in a more 829 realistic model of Anabaena growth. Instead of simply considering mature cells and 830 quiescent cells, each cell possesses a size that grows over time. Furthermore, in a 831 nitrogen-free medium, some cells become specialised: the heterocysts. Wilcox et 832 al. [44] proposed that a cell differentiates into a heterocyst under the action of two 833 chemical substances, an activator and an inhibitor, which diffuse in the filament and 834 react with each other. This reaction-diffusion model allows to explain the appear-835 ance of an isolated heterocyst cell every n vegetative cells, as observed in nature, 836 with a relatively constant n. Prusinkiewicz and Hammel [25] used an L-system to 837 specify and simulate this system, thereby achieving the simulation of a reaction-838 diffusion in a growing medium (the filament), an important example of $(DS)^2$. 839

Fig. 18.8 Differentiation of heterocysts in an *Anabaena* filament. The *left-hand figure* represents the same diagram as the *right-hand one*, but seen from another angle. This graphical representation, called an extrusion in space-time, was introduced in [25]. In this diagram, times moves from the *top-left corner* to the *bottom-right corner*. Each "slice" represents the cells of a filament at a given moment in time. The height of each cell represents the concentration of activator, as does the shading of the cell (from *black to white*). The *black cells* are vegetative. Differentiation occurs when the concentration of activator rises above a threshold level

855

⁸⁵⁶ 18.4.2 Development of a Branching Structure

857 858

859

860

861

862

863

870

871 872

897

898

It is easy to represent a branching structure by a string, by introducing two symbols that serve as "brackets". There are subtle differences between the rewriting of such strings and the direct rewriting of terms. String rewriting is the method used in L-systems to represent the branching structure of a plant and its rules of development. The example below is caricatural, and does not correspond to the growth of any real plant. But it does allow us to illustrate the power of this approach.

Let us assume that a plant is made up of two types of "branch": simple branches b and budded branches B. From one year to the next, budded branches lose their buds and become simple branches. We therefore have the rule $B \rightarrow b$. A simple branch grows and produces a section of plant comprising an axis made up of three simple branches with two budded branches branching off it, 1/3 and 2/3 of the way up. This specification is expressed by the rule:

$$b \longrightarrow b \langle qB \rangle b \langle pB \rangle b$$

In this rule, we use the brackets $\langle \text{ and } \rangle$ the represent the development of the lateral axes. We use the additional symbols *p* and *q* to indicate development on the left or the right of these axes.

At the beginning of the 1980s, P. Prusinkiewicz introduced a graphical interpretation of words produced by an L-system [40]. This interpretation is based on the concept of graphical turtle, as used in the LOGO programming language, for example. This allows to directly visualise the structure of objects described by a word generated by the L-system. Thus, we use the successive derivations of an L-system to represent the successive states of a developing plant, or to draw the successive curves that tend towards a fractal curve.

⁸⁸³ A state of the graphical turtle is the triplet (x, y, θ) , where (x, y) represents the ⁸⁸⁴ current position of the turtle in Cartesian coordinates and θ represents the orientation ⁸⁸⁵ of the turtle. This orientation is interpreted as the angle between the body of the ⁸⁸⁶ turtle and the horizontal axis. The turtle moves following commands represented by ⁸⁸⁷ the symbols of a word.

- In our example, the symbol b corresponds to the command "move forward one length Δ ". So if the current state was (x, y, θ) , then after reading the symbol b it becomes $(x + \Delta \cos \theta, y + \Delta \sin \theta, \theta)$.
- The symbol B is interpreted in the same way, except that after drawing the corresponding segment, we also draw a circle centred on the current position.
- The symbols (and) save and restore the current state respectively. The position is saved in a stack. When the turtle meets the symbol), it "jumps" to the position corresponding to the open bracket.
 - Finally, the symbol *p* (resp. *q*) increments (resp. decrements) the current angle *θ* by a predefined angle.

⁸⁹⁹ Using this graphical interpretation, the first three derivations of a simple branch are ⁹⁰⁰ illustrated in Fig. 18.9.

Fig. 18.9 Graphical representation of the first three derivations in a Lindenmayer system. The initial state is given by the word b(qB)b(pB)b and the rules of derivation are the two rules defined in the text. The scale of the representation of each "plant" is different

18.5 Beyond Linear Structures: Calculating a Form in Order to Understand It

L-systems have proved to be perfectly suited to the modelling of plant growth [40]: they allow to define in a particularly compact and synthetic way the creation of the complex form of a plant and above all, in their recent extensions, to couple the process of form creation with the physical-chemical processes that take place within that form.

However, although L-systems are suitable for the representation of linear forms 930 931 (filaments or trees), their use for the construction of more complex shapes (ordinary 932 graphs, surfaces or volumes) depends on arbitrary encoding that rapidly becomes 933 inextricably complex. Researchers are therefore trying to design more suitable formalisms. The import of this search for formalisms to specify the processes of 934 935 development reaches far beyond the question of simulation, for two reasons: these 936 formalisms could fill a conceptual vacuum in biology, and they could potentially 937 have an enormous epistemological impact. What is more, their application could 938 extend far beyond the domain of biology.

939 940

918

919

920 921

922

923 924

18.5.1 Simulation and Explanation

941 942

Drawing firstly on purely physical models (osmotic growth with Leduc, optimal
forms with D'Arcy Thompson, reaction-diffusion processes with Turing, etc.),
then purely genetic models (with concepts such as gene action or the genetic

programme), the different formalisms proposed over the course of the last century to
specify the processes of development have filled a conceptual vacuum and modified
the perception of what has explanatory value for biologists [20].

As an example, advances in computing and the data produced in biology allow 949 the simulation of certain processes of development with predictions that can then 950 be empirically validated [8]. Very recently, for instance, several cell-level mod-951 els [4, 41] of meristem development (the meristem being the growing tissue of the 952 plant) have succeeded in reproducing characteristic phyllotactic patterns observed 953 in nature and in linking them to the circulation of auxin (a plant hormone) in this 954 tissue. The accumulation of auxin triggers the development of new organs, which 955 modify the form of the meristem and consequently the flow of auxin: a marvellous 956 example of $(DS)^2$. 957

However, no matter how predictive these simulations are, they can only have an explanatory value if they allow us to express the processes of development in a form that is intelligible to the human mind, so that we can analyse them and reason about them [29]. After all, what kind of understanding can we hope to derive from the simple observation of a succession of complex calculations? We might just as well observe these processes in nature, instead of reproducing them on a computer.

Computer morphogenesis allows us to define a formal framework, in which we 964 can speak rigorously of genetic programme, memory, information, signal, interac-965 tion, environment, etc. and to relate these concepts to a completely mechanistic view 966 of development processes. It introduces the concept of computation as an explana-967 tory scheme in the modelling of development. But if the embryo can be deduced by 968 computation from a description of the egg and its interactions with the environment, 969 the embryo must be considered both as the result of a computation and as part of 970 the computer that produces this result. This problem is studied in computer science 971 (reflexive interpreters, meta-circular evaluators). The future will tell whether these 972 concepts will enable us to grasp that most specific aspect of living beings: their 973 development. 974

975 976

977 978

979

980

981

982

983

984

985

986 987

18.5.2 Giving Form to a Population of Autonomous Agents

The modelling of development processes is important for biologists, but it is also important for computer scientists, who are always looking for new computational models and for whom biology is clearly a great source of inspiration.

Computational models are constrained by the particularities of a material model or inspired by a metaphor of what a computation should be. Today, new material supports for computation are being studied. One celebrated example is the experiment that Adleman performed in 1994 [1], proving that a combinatorial problem⁷ can be solved using DNA molecules in a test-tube. But other possibilities

⁹⁹⁰ once through each remaining vertex.

⁹⁸⁸ ⁷ The problem he chose was the Hamiltonian path problem, consisting in determining whether a given graph contains a path that starts at the first vertex, ends at the last vertex, and passes exactly

are currently the subject of very active research, including using the growth of colonies of bacteria, the diffusion of chemical reagents or the self-assembly of biomolecules ... to compute. The programming of these new computational supports certainly raises some substantial problems, and is driving the development of new languages and algorithms to allow us to use an immense population of autonomous entities (biomolecules, viruses or cells) that interact locally and irregularly, to construct and develop a reliable computation (a form).

⁹⁹⁸ But the mechanisms offered by a programming language, or by new algorithms, ⁹⁹⁹ can also be directly inspired by a biological metaphor without resorting to biolog-¹⁰⁰⁰ ical machines built using biotechnologies. For example, evolutionary algorithms ¹⁰⁰¹ are inspired by the mechanisms studied in evolution theory, even though they are ¹⁰⁰² executed on electronic machines like present-day computers.

In the same order of idea, formalisms providing a conceptual grasp of the mech-1003 anisms of development could well revitalise the concept of "programme", by sug-1004 gesting new approaches in the development of very big software, notably in the 1005 specification of their architecture and the interconnection of their different parts, 1006 or by offering new mechanisms for hiding useless information, abstracting details 1007 or capitalising and reusing code. Computer scientists are actively seeking, for their 1008 software, properties usually attributed to living matter: autonomy, adaptability, self-1009 repair, robustness, self-organisation. Clearly, the dialogue between computing and 1010 biology [28, 35], so ambiguous and so fertile, is not about to end. 1011

1012

1014

1015 **References**

1016 1017

1018

1019

1020

- 1. Adleman, L. (1994) Molecular computation of solutions to combinatorial problems, *Science* **266**, 1021–1024.
- 2. Atlan H. (1999) La Fin du "tout-génétique"? Vers de nouveaux paradigmes en biologie, INRA Éditions (Paris).
- 3. Banatre J.-P., Coutant A., and Metayer D.L. (1988) A parallel machine for multiset transformation and its programming style, *Future Generation Computer Systems* **4**, 133–144.
- 4. Barbier de Reuille P., Bohn-Courseau I., Ljung K., Morin H., Carraro J., Godin C., and Traas J. (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. *PNAS* 103, 1627–1632.
- Bournez O. and Hoyrup M. (2003) Rewriting logic and probabilities, in *14th Int. Conf. on Rewriting Techniques and Applications (RTA'03)*, Valencia, June 2003, Lecture Notes in Computer Science, vol. 2706, edited by R. Nieuwenhuis, Springer (Berlin), pp. 61–75.
- Bournez O., Côme G.-M., Conraud V., Kirschner H., and Ibanescu L. (2003) A rule-based approach for automated generation of kinetic chemical mechanisms, in *14th Int. Conf. on Rewriting Techniques and Applications (RTA'03)*, Valencia, June 2003, Lecture Notes in Computer Science, vol. 2706, edited by R. Nieuwenhuis, Springer (Berlin), pp. 30–45.
- 1030 7. Chomsky N. (ed.) (1957) *Syntactic structures*, Mouton & Co. (The Hague).
- ¹⁰³¹ 8. Coen E., Rolland-Lagan A.-G., Matthews M., Bangham J.A., and Prusinkiewicz P. (2004) The genetics of geometry, *PNAS* 101, 4728–4735.
- 9. Dershowitz N. (1993) A Taste of Rewrite Systems, Lecture Notes in Computer Science, vol. 693, Springer-Verlag (Berlin), pp. 199–228.
- 1034 10. Dershowitz N. and Jouannaud J.-P. (1990) Rewrite systems, in *Handbook of Theoretical* 1035 *Computer Science*, vol. B, Elsevier (Amsterdam), pp. 244–320.

	1036	11.	Dittrich P. (2001) Artificial chemistry webpage, ls11-www.cs.uni-dortmund.de/achem
	1037	12.	Dittrich P., Ziegler J., and Banzhaf W. (2001) Artificial chemistries — a review, Artif. Life 7,
	1038		225–275.
	1020	13.	Eigen M. and Schuster P. (1979) The Hypercycle: A Principle of Natural Self-Organization,
	1039		Springer (Berlin).
	1040	14.	Eker S., Knapp M., Laderoute K., Lincoln P., Meseguer J., and Sonmez J. (2002) Pathway
	1041		logic: Symbolic analysis of biological signaling, in Proceedings of the Pacific Symposium on
	1042		Biocomputing, January 2002, pp. 400–412.
	1043	15.	Eker S., Knapp M., Laderoute K., Lincoln P., and Talcott C. (2002) Pathway logic: Exe-
	1045		cutable models of biological networks, in Fourth International Workshop on Rewriting
	1044		Logic and Its Applications (WRLA'2002), Electronic Notes in Theoretical Computer Science,
	1045		vol. 71, Elsevier (Amsterdam).
	1046	16.	The Elan project. Elan home page, 2002.
	1047		http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/
	10/18	17.	Fisher M., Malcolm G., and Paton R. (2000) Spatio-logical processes in intracellular sig-
	1040		nalling, <i>BioSystems</i> 55, 83–92.
	1049	18.	Fontana W. and Buss L. (1994) "The arrival of the fittest": Toward a theory of biological
	1050		organization, Bull. Math. Biol. 56, 1–64.
	1051	19.	Fox Keller E. (1995) Refiguring Life: Metaphors of Twentieth-century Biology, Columbia
AQ1	1052		University Press (New York).
	1052	20.	Fox Keller E. (2002) Making Sense of Life: Explaining Biological Development with Models,
	1055		Metaphors, and Machines, Harvard University Press (Cambridge MA).
	1054	21.	Giavitto JL. (2003) Invited talk: Topological collections, transformations and their applica-
	1055		tion to the modeling and the simulation of dynamical systems, in 14th Int. Conf. on Rewriting
	1056		Techniques and Applications (RTA'03), Valencia, June 2003, Lecture Notes in Computer
	1057		Science, vol. 2706, edited by R. Nieuwenhuis, Springer (Berlin), pp. 208–233.
	1050	22.	Giavitto JL. and Michel O. (2002) The topological structures of membrane computing,
	1038		Fundamenta Informaticae 49, 107–129.
	1059	23.	Giavitto JL. and Michel O. (2003) Modeling the topological organization of cellular pro-
	1060		cesses, <i>BioSystems</i> 70 , 149–163.
	1061	24.	Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions, J. Phys.
	1062		<i>Chem.</i> 81 , 2340–2361.
	1063	25.	Hammel M. and Prusinkiewicz P. (1996) Visualization of developmental processes by extru-
	1005		sion in space-time, in Proceedings of Graphics Interface '96, pp. 246–258.
	1064	26.	Head T. (1987) Formal language theory and DNA: an analysis of the generative capacity of
	1065		specific recombinant behaviors, Bull. Math. Biology 49, 737-759.
	1066	27.	Head T. (1992) Splicing schemes and DNA, in Lindenmayer Systems: Impacts on Theoreti-
	1067		cal Computer Science, Computer Graphics, and Developmental Biology, Springer (Berlin),
	1068		pp. 371–383. Reprinted in Nanobiology 1, 335–342 (1992).
	1000	28.	INTERSTICE (web site presenting research activity in the domain of the science and tech-
	1069		niques of information and communication), Dossier sur la bio-informatique, in French.
	1070		http://interstices.info/display.jsp?id=c_6474
	1071	29.	Israel G. (1996) La mathématisation du réel, Seuil (Paris), in French.
	1072	30.	Itkis Y. (1976) Control Systems of Variable Structure, Wiley (New York).
	1073	31.	Lemerle C., Di Ventura B., and Serrano L. (2005) Space as the final frontier in stochastic
	1075		simulations of biological systems, Minireview. FEBS Letters 579, 1789-1794.
	10/4	32.	Lindenmayer A. (1968) Mathematical models for cellular interaction in development, Parts I
	1075		and II, J. Theor. Biol. 18, 280–315.
	1076	33.	The Maude project, Maude home page, 2002. http://maude.csl.sri.com/
	1077	34.	von Neumann, J. (1966) Theory of Self-Reproducing Automata, Univ. of Illinois Press
	1078		(Urbana-Champaign).
	1070	35.	Paton R. (ed.) (1994) Computing With Biological Metaphors, Chapman & Hall (London).
	10/9	36.	Păun G. (2002) Membrane Computing. An Introduction, Springer-Verlag (Berlin).
	1080	37.	Prusinkiewicz P. (1998) Modeling of spatial structure and development of plants: a review,
			<i>Sci. Hortic.</i> 74 , 113–149.

18	Computer	· Morpho	genesis
10	Comparer	. ITTOI PHO	Selleolo

- ¹⁰⁸¹ 38. Prusinkiewicz P. (1999) A look at the visual modeling of plants using L-systems, *Agronomie* 19, 211–224.
- Prusinkiewicz P. and Hanan J. (1990) Visualization of botanical structures and processes using parametric L-systems, in *Scientific visualization and graphics simulation*, edited by D. Thalmann, J. Wiley & Sons (Chichester), pp. 183–201.
- Prusinkiewicz P., Lindenmayer A., Hanan J., *et al.* (1990) *The Algorithmic Beauty of Plants*,
 Springer-Verlag (Berlin).
- 41. Smith R.S., Guyomarc'h S., Mandel T., Reinhardt D., Kuhlemeier C., and Prusinkiewicz P. (2006) A plausible model of phyllotaxis, *PNAS* 103, 1301–1306.
- 42. Takahashi K., Vel Arjunan S.N., and Tomita M. (2005) Space in systems biology of signaliting pathways towards intracellular molecular crowding in silico, *Minireview. FEBS Letters* 579, 1783–1788.
- Varela F.J. (1979) *Principle of Biological Autonomy*, McGraw-Hill/Appleton & Lange (New York).
- 44. Wilcox M., Mitchison G.J., and Smith R.J. (1973) Pattern formation in the blue-green alga, Anabaena. I. Basic mechanisms, J. Cell Sci. 12, 707–723.