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Preface

This book has been first published in French by Belin in 2006. It originates in an
interdisciplinary Spring School devoted to morphogenesis and held in Berder Island
(Morbihan, France) in March 2002. Although the topics were not directly focused on
morphogenesis, we should also mention the ensuing annual sessions of this Berder
CNRS Thematic School, organized by one of the editor of the book (A. L.), where
most of the authors of the book met and interacted. This initial event has been fol-
lowed by two 1-day meetings, “Journées Complexité” that we organized in Paris
at the Institut Henri Poincaré in November 2003 and November 2004, and again
specially devoted to morphogenesis and the specific interdisciplinary approaches
required to reach a full understanding. These meetings have been among the launch-
ing events founding the Institut des Systèmes Complexes de Paris-Ile-de-France.
Several other events, mostly organized by ISC-PIF, reinforced the links between the
authors and the motivation to put on the paper and share with readers all the benefits
and challenges of an interdisciplinary approach of morphogenesis and pattern for-
mations. The collective enterprise that led to the present book is exemplary of the
spirit of this institute and its activities.

Morphogenesis has been specially focused among the main issues arising in the
science of complex systems, due to the intrinsic interdisciplinarity of the topic. The
reader will discover in this book the range of objects where similar questions about
the formation and persistence of their shape arise, and the wealth of complementary
concepts and methods involved in their study. All the different facets have been
considered together to really grasp what is morphogenesis. The ambition of this
book is to offer such a multiple account. It aims to present a collective work rather
than a compilation of independent papers, in which authors interacted and mutually
influenced each other, and shared a similar vision about morphogenesis although
substantiated in (very) different instances and contexts. To complete the cohesion
and scope of the book, we propose an overview of the central questions raised by
morphogenesis and a presentation of the contents in the introduction (Chap. 1).

We acknowledge the support of the European Community for the translation of
this book, as being one of the outcome of BioEmergences, a NEST-Measuring the
impossible project coordinated by one of us (P.B.) and of Embryomics, a NEST-
Adventure project coordinated by Nadine Peyriéras, author of Chap. 9. We are
much grateful to the wonderful job done by Richard Crabtree, who has to face the
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challenge of translating 18 chapters with different styles and technical terms from
as many different disciplines. It was a pleasure to work with him. We hope that both
the authors and the readers will appreciate the result!

Paris, July 2010 Paul Bourgine
Annick Lesne
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Chapter 18
Computer Morphogenesis

Jean-Louis Giavitto and Antoine Spicher

18.1 Explaining Living Matter by Understanding Development

18.1.1 The Animal-Machine

In 1739, Jacques de Vaucanson (1709–1782) presented a celebrated automaton to
the French Academy of Sciences. It was called the Canard Digérateur (Digest-
ing Duck, Fig. 18.1), a masterpiece of anatomical simulation, with more than four
hundred moving parts reproducing the main vital functions (respiration, digestion,
locomotion): the animal flapped its wings, ate grain and defecated (the grain being
digested by dissolution, according to the inventor).

In making these “mobile anatomies”, Jacques de Vaucanson was almost cer-
tainly influenced by the biomechanistic philosophy of René Descartes (1596–1650),
who reduced the organs of the human body to parts in a machine “designed by
God”. Indeed, Descartes believed that one can understand life by comparing it to a
machine: that one can explain the main bodily functions – digestion, locomotion,
respiration, but also memory and imagination – as if they were produced by an
automaton, like a clock designed to show the time simply by the layout of its wheels
and counterweights. But when René Descartes tried to convince Queen Christina of
Sweden that animals were just another form of machine, she is said to have replied:

Can machines reproduce?

Three centuries were to pass before her question received an answer. A hundred
years later, the automata of Vaucanson were imitating the main physiological func-
tions, but they still could not reproduce, and it was only with the publication of
an article by John Von Neumann in 1951, The General and Logical Theory of
Automata, that it was finally possible to believe that a machine could effectively
build a copy of itself [34].

J.-L. Giavitto (B)
University of Évry, Paris, France
e-mail: giavitto@ibisc.univ-evry.fr
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Fig. 18.1 Vaucanson’s duck. Voltaire described Vaucanson in these lines: “While rival of the old
Prometheus’ fame, Vaucanson brings to man celestial flame. Boldly to copy nature’s self aspires,
And bodies animates with heavenly fires”

To meet Queen Christina’s objection, it is necessary to define precisely what
we mean by “machine” and what we mean by “reproduction”. For Von Neumann,
who had a very functionalist approach to this question, mechanics can ultimately
be reduced to a computer programme, and reproduction consists in duplicating this
programme. This does not mean using a command in the computer’s operating sys-
tem to copy a file containing a programme, but ensuring that the functioning of
the programme produces a complete and functional description of the programme
itself. Fig. 18.2 shows an example of such a programme written in the programming
language C: its execution produces a file containing the exact copy of its own code.
This is called a self-replicating code.

Von Neumann’s purpose was clearly to show that living processes can be
reduced to mechanical processes, described by operations that can be performed
autonomously, without the help of an “invisible mahout”: to a machine, in other

{ {
}

}

Fig. 18.2 A self-replicating code. This programme is made up of two lines of code in the pro-
gramming language C. The second line of the programme (starting with main) has been arbitrarily
typeset over three lines to make it more legible
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words. And for Von Neumann, like Queen Christina, reproduction and development
are a specific characteristic of living things. But for Von Neumann, this character-
istic is just a particular property possessed by certain machines, not a quality that
transcends physical processes, giving special status to biological ones. The existence
of a machine, an automaton, capable of reproduction, is therefore a key factor in the
age-old debate opposing the relative status of biology and physics.

This debate has not been easy to settle, reproduction being one of the most fun-
damental processes in the life of organisms and appearing to resist any physical
explanation. Intuition suggests that if, as a result of its functioning, a machine A
can produce a machine B, then A must contain, in one form or another, a complete
description not only of B but also of the specific mechanisms instructing it how
to use that description to actually produce (construct) B. This description must be
internal to A, otherwise we would be dealing with a mechanism of copying rather
than reproduction. We should therefore be able to define a certain measure of com-
plexity and show that A is necessarily more complex than B. But in this case, our
intuition leads us astray.

18.1.2 From Self-Reproduction to Development

Modern biologists may ask themselves the same questions as the philosophers and
queens of past centuries, but today they seek to understand the mechanisms of repro-
duction by elucidating the processes leading from the germ cell to the complete
organism: the aim is to understand, step by step, the construction of an organism
over the course of time, through the multitude of local interactions of its constituent
elements. In a word, development.

The elements that Von Neumann brought to the debate are very abstract: they are
based on the description of a cellular automaton which reproduces, over the course
of time, the configuration of a spatial subdomain in a neighbouring region. A cellular
automaton can be described by a predefined network of sites, called cells, each cell
possessing one of a finite set of states. The state of each cell is updated according to
a predefined rule of evolution, which takes into account the state of the cell and the
state of its neighbours at time t to calculate the state of the cell at time t + 1. The
functioning of the automaton corresponds to the updating of the state of its cells at
discrete time intervals (see Fig. 18.3).

We are a long way from the molecular mechanisms to which modern biologists
wish to reduce biological phenomena. The existence of a self-replicating automaton
suggests that there is no problem of principle in the existence of such a machine, but
it tells us nothing about the “how” of biological processes. Nevertheless, the con-
cepts of programme, code, automaton, memory and information have invaded biol-
ogy and assumed an explanatory value, especially in developmental biology [20]:
biologists need models and metaphors to understand (i.e. to represent, analyse and
interpret) the huge mass of experimental data they have collected. For example, the
concept of genetic code plays a similar role in the living cell as the rule governing
the evolution of states does in the Von Neumann automaton.
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cell in state 1cell in state 0

tt  + 1
one−step evolution of a cellnetwork of cells

Fig. 18.3 A cellular automaton is a network of cells, each joined to its neighbours by links. Here
the network is a rectangular grid. Each cell possesses a state (here either 0 or 1). The rule of
evolution used here is: the state of a cell is the modulo-2 addition of the states of the neighbouring
cells. An example of the evolution of one cell is shown top right. The three networks below show
three successive stages in the evolution of the automaton. The rule is applied simultaneously to
all the cells. Von Neumann’s self-replicating automaton is a model of this type, where the rules
of evolution lead to the reproduction of the initial configuration of a given region in an adjacent
region

18.1.3 Development as a Dynamical System

The concept of dynamical system allows to formalise the idea of process of devel-
opment. A dynamical system (DS) is characterised by observations that evolve over
time. These observations are the variables of the system, and they are linked by cer-
tain relations. These variables account for relevant properties of the system (whether
they be biological, physical, chemical, sociological, or other). At a given moment in
time, they have a certain value, and the set of these values constitutes the state of the
system. The set of all the possible states of a system constitutes its state space (or
configuration space). For example, a falling stone is a system characterised by the
variables position and velocity of the stone. These two variables are not independent:
if we consider the position of the stone as a function of time, then its velocity is the
derivative of that function.

The succession of system states over time is called a trajectory. A DS is a formal
way of specifying how the system moves from one point in the configuration space
(one state) to another point (the next state). This can be done directly, by a function
(the function of evolution of the system), or indirectly, by giving constraints (equa-
tions) on the possible future state (which is not necessarily unique, if the system
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Table 18.1 Three examples of formalism used to specify a dynamical system according to the
continuous or discrete nature of the variables and of time. Iterated functions correspond to
sequences xn+1 = f n+1(x0) = f (xn) for a given function f on R. Many other formalisms have
also been studied

C : Continuous
D : Discrete Differential Equation Iterated Functions Finite Automaton

Time C D D
State C C D

is not deterministic). A variety of mathematical formalisms correspond to this very
general concept of dynamical system. For example, the variables can take contin-
uous or discrete values. Likewise, the progression of time can be continuous or in
discrete steps. Examples of formalisms corresponding to these cases are listed in
Table 18.1.

In simple cases, the trajectory of a dynamical system can be expressed explicitly
by an analytic function of time t . In the case of the falling stone, for example, the
differential equations dx/dt = v and dv/dt = g can be explicitly integrated to give
the distance travelled by the stone as a function of time: x = gt2/2.

In more complex cases, an analytic equation giving the trajectory does not exist,
and computer simulation is then a favoured approach for studying the trajectories
of the system. In addition, instead of focusing on one particular trajectory, we can
look at qualitative properties satisfied by all the possible trajectories, for example:
“if we wait long enough, the system ends up in a well-defined state in which it then
remains” or “if the trajectory passes through these states, it will never return”. When
there is no faster means of predicting properties than by observing or simulating
them, we qualify them as emergent properties. Note that DS with very simple spec-
ifications can produce very complex trajectories (we sometimes speak of chaotic
behaviour); moreover, calculating the trajectory of the system can be expensive in
terms of computer time and require a vast amount of memory.

18.1.3.1 The Structure of States

Another important characteristic by means of which dynamical systems can be clas-
sified is the structure of states. In the example of the falling stone, the structure of a
state is simple: it is a pair of vectors (velocity, position).

Very often, the structure of a state reflects the spatial organisation of the system.
Let us take the example of the diffusion of heat in a volume. The distribution of the
temperature has a structure, related to the spatial organisation of the volume. We can
therefore define a scalar field assigning a temperature to each point. The evolution
of this field follows a law of diffusion specified by a partial derivative equation. This
links the temperature at time t + dt of a point p to the values of the temperature
field at p and in its neighbourhood at time t .

Very often, subsystems only interact if they are connected or physically close:
we call this the property of locality (there is no action at a distance). The structure
of a state then reflects this division into subsystems, and the function of evolution
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respects the property of locality. For the evolution of temperature in a volume, each
state assigns a temperature to each point in the volume V and the state space is
therefore the set of functions of V in R. The heat diffusion equation governing the
evolution of the system indicates that the temperature of a point in V depends solely
on the temperature of the neighbouring points.

18.1.3.2 Development as Trajectory of a Dynamical System

Above, we stated that the concept of genetic code has much in common with the
rules specifying the evolution of cell state in Von Neumann automata. This is the
concept underlying the “all-genetic” paradigm, according to which the complete
evolution of the organism is coded in its genetic material, and every character-
istic is uniquely determined by the genes. This viewpoint has been substantially
challenged [2], in favour of a more flexible approach, reconciling the genetic and
epigenetic viewpoints on development. Living systems may be dynamical, but they
are also open systems, interacting with their environment. Development should
therefore be regarded as a co-construction, depending on interactions both within
the system and outside it (with the environment). Genetic material does not con-
stitute a complete and sufficient description of any given organism, although it is
indispensable. Cell machinery, for example, also plays a central role, as has been
demonstrated experimentally by the technique of cloning in which a nucleus (i.e.
the genetic material of a cell) is introduced into a germ cell.

However, the processes of morphogenesis involving the movement and reorgan-
isation of matter are also characterised by a second property: the state space and its
topology can also evolve over time.

Let us illustrate this idea by comparing it to the two examples described above.
In the case of the falling stone, the velocity and the position of the stone change at
each moment but the system is always adequately described by a pair of vectors. In
this case, we say that the dynamical system has a stable (static) structure. The same
is true for the evolution of the temperature in the volume V : V is fixed in advance
and each state is always an element of V → R. In these two examples, the state
space can be described adequately at the beginning of time, before the simulation;
it corresponds to the space of the measurements of the system. The value of these
measurements changes over time, but the data of the state space and its topology are
not variables of the system and cannot evolve over the course of time.

Quite the opposite holds true for the processes of development: biological pro-
cesses form highly structured and hierarchically organised dynamical systems, the
spatial structure of which varies over time and must be calculated in conjunction
with the state of the system. We call this type of system a dynamical system with
dynamical structure, which we shall abbreviate to (DS)2.

The fact that the very structure of a biological system is dynamical has been high-
lighted by several authors; we can cite, in different domains: the concept of hyper-
cycle introduced by Eigen and Schuster in the study of autocatalytic networks [13],
the theory of autopoietic systems formulated by Maturana and Varela [43], systems
of variable structure developed in control theory by Itkis [30], or the concept of
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biological organisation introduced by Fontana and Buss to formalise and study
the emergence of self-maintaining functional structures in a set of chemical reac-
tions [18]. The objective of all of these works has been to grasp and formalise the
idea of change in the structure of a system, change that is coupled with the evolution
of the state of the system.

(DS)2 are widespread in models of plant growth and more generally in devel-
opmental biology, in multiscale cell models, mechanisms of protein transport and
compartmentalisation, etc. But they are also relevant in other domains, such as the
modelling of mobile networks, Internet and the Web, the development of cities,
traffic jams, self-assembly processes, autocatalytic networks in chemistry, semantic
networks in learning, social behaviour, etc.

18.1.3.3 An Example

To illustrate the concept of (DS)2, let us take the example of the development of an
embryo. The initial state of the embryo is described by the state s0 ∈ S of the germ
cell (however complicated that description might be). After the first division, we
have to describe the state with 2 cells, that is to say a new state s1 ∈ S×S. But when
the number n of embryo cells becomes large enough, the state of the system can no
longer be adequately described by an element of Sn . This set only describes the state
of each cell; it does not contain the spatial information necessary to describe the net-
work of cells (their positioning in relation to each other). And yet this network is of
prime importance, because it conditions the diffusion of signals (chemical, mechani-
cal or electrical) between cells and therefore, in the end, their functioning. With each
movement, division or death of a cell, the topology of this network changes. For
example, during gastrulation, cells initially far apart become neighbours, enabling
them to interact and changing their destiny (cell differentiation).

18.1.4 What Formalism for Dynamical Systems with Dynamical
Structure?

Dynamical systems with dynamical structure are difficult to study because they are
difficult to formalise. Let us return to the example of the embryo to illustrate this.

We have indicated that the position of each cell changes over time, making it
difficult, for example, to specify the processes of diffusion between cells. One solu-
tion that comes immediately to mind is therefore to complete the state of a cell with
information about its position, and to consider T = S × R3 as a building block1

allowing to construct the set:

1 To simplify, we only take into account the position of each cell in R3, but we should also specify
its form, which conditions its neighbourhood and its exchanges with other cells (for example the
surface exchange area between two neighbouring cells, which conditions intermembrane flow).
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T ∗ = T ∪ T 2 ∪ · · · ∪ T n ∪ . . .

= T ∪ T × T ∗ .

It is certainly possible to characterise an embryo as a point in this phase space,
but that does not get us very far: T ∗ has very little intrinsic structure and does
not provide much information about the possible trajectories of the systems. For
example, the function of evolution will be very difficult to define and there is little
chance that it will be continuous.

18.1.4.1 The Problem of Locality

The function of evolution will be difficult to define because specifying the position
of each cell in terms of its coordinates R3 presupposes the definition of a global ref-
erence point. During the evolution of the embryo, the growth of a cell pushes away
the neighbouring cells, which in turn push away their neighbours, until the position
of every cell has been changed. Between two successive states, we therefore have to
express the change in the position of each cell by a global transformation of coor-
dinates. Because it must express globally the changes in each position, and because
these changes are due to multiple concurrent local transformations, the expression
of this transformation can be arbitrarily complex.

The origin of this problem lies in the extrinsic and global expression of the form
of the system2 and one solution is therefore to specify intrinsically the position of
each cell, for example by including the distance from its neighbours in the state
s ∈ S of each cell. In this case, the specification of changes in the position of a cell
is local, but as the neighbourhood of each cell changes, we are again faced with the
problem of a state space that changes over time.

18.1.4.2 The Problem of Continuity

Let us return to the example of the falling stone. The position and the velocity of
the stone vary continuously. The state of the system therefore varies continuously
over time and the trajectory of the system is a continuous function of time in the
state space. This continuity allows to reason in terms of infinitesimal evolutions of
the system and to write a differential equation characterising the trajectory. In more
complicated cases, we obtain a partial derivative equation (when the state has a spa-
tial structure) or a set of such equations when several different modes of functioning
have to be taken into account (a finite and usually small number).

2 In the approach described, the specification of the position of the cells uses a global reference
point independent of the growing embryo. This reference point corresponds to the identification of
points in the space surrounding the form, and not to a process intrinsic to the growing form: the
laws governing the movement, division and death of cells would be the same if the embryo was
developing within a toric volume (but the result could be different because the neighbourhoods of
the cells would be different).
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In the case of embryo development, this is no longer possible: as long as there
is no movement,3 division or death of cells, the state s belongs to a certain T n

and this evolution is continuous (assuming that the electric potentials, chemical
concentrations, mechanical constraints, etc. evolve continuously). But the essential
morphogenetic events (for example a cell division that changes the state from T n to
T n+1) are by nature discontinuous.4

18.1.4.3 Towards Other Solutions

The modelling and simulation of the evolution of a (DS)2 are therefore particularly
arduous: it is difficult to define the structure and the dynamics of the system at the
same time, because one is dependent on the other. The example given above high-
lights the inadequacy of global and continuous formalisms (we want to express an
evolution as a succession of discrete morphogenetic events corresponding to qual-
itative discontinuities and changes). However, it is still possible to describe these
systems, with the laws of evolution often being informally described as a set of
local transformations acting on an ordered set of discrete entities.

Faced with these difficulties, several researchers have suggested using rewrite
systems to formalise this type of description.

18.2 Rewrite Systems

18.2.1 Introduction

Rewrite systems (RS) are among the formalisms that computer scientists have
appropriated and developed, especially for modelling changes in the state of a pro-
cess. A rewrite system is a mechanism allowing to define the replacement of one
part of an object by another. The objects concerned are usually terms that can be
represented by a tree, of which the inner nodes are operations and the leaf nodes
are constants (see Fig. 18.4). An RS is defined by a set of rules, and a rule is a pair
denoted α → β. A rule α → β indicates how a sub-term α can be replaced by a
term β.

18.2.1.1 An Example

Let us take the arithmetical expressions and the rule 0 + x → x . Intuitively, this
rule specifies that any expression that can take the form “0 added to something

3 Cell movement is sufficient to change the topology and therefore the interaction between cells.
4 In the example we have been using, morphogenetic events are discontinuous because the mod-
elling is done at cell level. We could have modelled the concentration of different molecules at each
point in space, which might have avoided this problem of discontinuity (the movement of each
molecule being a priori continuous). But this raises another problem: how do these concentrations
represent the biological entities that interest us: cells, tissues, organs, etc.?
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Fig. 18.4 Representation of the term (0 + 1)+ (0 + 0) and application of the two rules 0 + x → x
and x + y → y + x . At each reduction, the strategy here is to apply one rule at a time. The subtree
filtered by the left side of the rule to be applied is circled by a dashed line. The applications are
non-deterministic, in the sense that we could have chosen other applications at each step. For the
first reduction, for example, we could have applied the same rule 0 + x → x to the left subtree of
the root rather than the right subtree. We could also have chosen to apply the rule x + y → y + x
to any of the three inner nodes (3 possibilities). The final term obtained is the constant 1, and this
is a normal form for the two rules

denoted by x” can be rewritten more simply as “the thing denoted by x”. Thus, the
expression e = 1+ (0+3) can be rewritten as e′ = 1+3 by applying the above rule
to the sub-term (0 + 3) of e. We also write e → e′ to indicate that e can be rewritten
as e′ through one sole application of the rule.

The sequence e → e1 → · · · → en → e′ is called a derivation of e. We say that
e is a normal form if there is no e′ such that e → e′.

18.2.1.2 RS and Decision Procedure in an Equational Theory

The original motivation behind RS was to provide a decision procedure in equa-
tional theories. In these theories, the aim is to prove automatically the equality of
two complex terms solely by using predefined elementary equalities. The idea is to
orientate the equations (for example, to orient the equality 0 + x = x into a rule
0 + x → x) and to use the rules obtained to derive the normal form e′ of a term e.
The normal form e′ is equivalent to e (since each substitution transforms a subterm
into an equivalent term) and can be interpreted as a simplification of e. Two terms
e1 and e2 are then equivalent in the theory if they reduce to the same normal form e.
For example, e1 defined by 0 + (1 + 3) is equivalent to e2 defined by 1 + (0 + 3),
because e1 and e2 reduce to the same normal form e: 1 + 3.

For this decision procedure always to succeed, there must exist a normal form for
each expression (property of normalisation) and each expression must have one sole
normal form (property of confluence). These two properties are not quite sufficient
for the decision procedure to calculate automatically; at each step we must also
choose a derivation, i.e. choose which subterm will be rewritten and by which rule:
this is the strategy of rule application.

The theory of RS [9, 10] is mainly used in algebra and logic, but it can be applied
in almost every branch of computing (from Petri networks to symbolic calculus,
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from the theory of demonstration to lambda calculus). One key result is that RS,
considered as processes of calculation, are Turing-complete (any computational pro-
cess, i.e. described by a Turing machine, can be formalised by an RS). The use
of rules to transform a term is such a fundamental operation that several generic
environments have been developed to define and apply RS (see, among others, the
websites of the projects ELAN [16] and MAUDE [33]). The tools differ in the terms
they take into account, the α patterns allowed on the left-hand side of a rule for
selecting subterms, and the strategies of application that can be defined.

18.2.2 Rewrite Systems and the Simulation of Dynamical Systems

The above presentation suggests that a rule α → β specifies a term β equivalent
to (and simpler than) the term α. But we can interpret this rule as the result of a
computation (the expression β is the result of evaluating the expression α) or as the
evolution of a subsystem changing from state α to state β. RS can therefore be used
to model and simulate DS:

• a state is represented by a term and the state of a subsystem is represented by a
subterm;

• the evolution function is encoded by the rules of the RS in the following manner:
the left side of the rule corresponds to a subsystem in which the elements interact,
and the right side of the rule corresponds to the result of their interaction.

Thus, the derivation of a term s corresponds to a possible trajectory of a DS start-
ing from the initial state s. A rewrite rule then corresponds to the specification of
the evolution of a subsystem. A normal form corresponds to a fixed point in the
trajectory (the system is in equilibrium and no evolution can take place).

18.2.2.1 An Example

For the development of the embryo, a rule c ⊕ i → c′ can be interpreted as a cell in
the state c which, on receiving a signal i , evolves to the state c′; a rule c → c′ ⊕ c′′

represents a cell division; a rule c → ∅ (c gives nothing) represents apoptosis; etc.
[17, 23]. The idea is that the evolution of a biosystem is specified by rewrite rules
of which the left side selects an entity in the system and the messages sent to it, and
the right side describes the new state of the entity. The operator ⊕ which appears in
the rule denotes the composition of local entities in a global system (in our example,
the aggregation of cells in an embryo). The capacity to represent both the changes
of state and the appearance and disappearance of cells within the same formalism
makes RS good candidates for the modelling of (DS)2.

18.2.2.2 Dealing with Time

One important factor in the modelling of a (DS)2 is the treatment of time. The model
of time favoured in RS is clearly an event-driven, atomic and discrete model: time
passes when an evolution occurs somewhere in the system, the application of a rule
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corresponds to an event and specifies an atomic and instant change in the state of
the system. The concept of duration is not taken into account (although it could
be, within this formalism, by considering the start and the end of a time interval as
events). The choice of a strategy of application provides a certain degree of con-
trol over the model of time: for example, a maximal parallel application of rules
to change from one global state to another corresponds to synchronous dynamics,
while the application of one sole rule corresponds to asynchronous dynamics.

18.2.2.3 Dealing with Space

A rule of the form c ⊕ i → c′ presupposes that a signal i produced by a certain
cell will reach its target c somewhere else in the system. The operation ⊕ used
to amalgamate the states of the subsystems and the messages of interaction into
the state of a complete system must therefore express the spatial dependencies and
functional organisation of the system studied.

The concept of rewriting has mainly been developed and studied for the rewriting
of terms. These represent a severe restriction on RS, because their use requires the
encoding of the highly organised structure of (DS)2 in tree form. The possibility of
defining rules of evolution depends on this encoding. This work demands a great
deal of creativity and intuition. It is difficult to represent in a satisfactory manner
the organisation of a biological system into molecules, compartments, cells, tis-
sues, organs and individuals, and this has motivated an extension of the concept of
rewriting to structures more sophisticated than terms (for example, we can define a
concept of rewriting on a graph, see also [21, 22]).

Nevertheless, even when they are limited to trees, RS offer remarkable examples
of modelling of (DS)2, particularly in the biological domain. By playing on the
properties of the operators, it is possible to model several types of organisation. In
the following sections, we shall give examples where:

• the operation ⊕ is associative and commutative, which allows to model a “chem-
ical soup”;

• several operations can be considered simultaneously, as a means to introduce the
idea of compartmentalisation;

• the operation ⊕ is simply associative, which allows to represent sequences and
tree structures.

18.3 Multiset Rewriting and Chemical Modelling

The state of a chemical solution can be represented by a multiset: a set in which one
element can appear several times, as in a chemical solution where several molecules
of the same species are present at the same time. A multiset can be formalised by a
formal sum in which the operator ⊕ is associative and commutative. For example:

(a ⊕ b) ⊕ (c ⊕ b)
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represents a multiset (e.g. a chemical solution) containing the elements (e.g. the
molecules) a, b and c, where two copies of b appear. Since the operation ⊕ is asso-
ciative, we can discard the brackets, and the property of commutativity allows us to
reorganise the elements in this sum as we like:

(a ⊕ b) ⊕ (c ⊕ b) = a ⊕ b ⊕ c ⊕ b = a ⊕ b ⊕ b ⊕ c = c ⊕ b ⊕ a ⊕ b = . . .

A multiset therefore corresponds to a tree in which associativity allows us to “flat-
ten” the branches, and commutativity allows us to permute the leaves.

In a chemical solution, Brownian motion agitates the molecules, and after a suf-
ficiently long time each molecule will have had the opportunity to meet and interact
with any other molecule in the solution. Once we have represented the state of
a chemical solution as a multiset, it is therefore easy to formulate the chemical
reactions as rewriting rules on multisets. The associativity and commutativity of
the operator ⊕ play the role of Brownian motion and allow to “group together”
arbitrarily the elements of the multiset corresponding to a left side of the rule before
that rule is applied. For example, the three rules:

r1 : a ⊕ a → a ⊕ a ⊕ b r2 : a ⊕ b → a ⊕ b ⊕ b r3 : b ⊕ b → b ⊕ b ⊕ a

represent second-order catalytic reactions between type a and type b molecules
(a collision between two molecules catalyses the formation of a third molecule,
without consuming the first two). Thus, if a reaction r1 occurs in state a ⊕c ⊕a ⊕b,
the result will be the state a ⊕ c ⊕ a ⊕ b ⊕ b where an extra b has been produced.
Note that it is not necessary for the two a molecules to be side by side, because we
can always rearrange the term to make it so.

Several chemical reactions can happen at the same time, in parallel. This cor-
responds to the simultaneous application of several rules to different molecules.
The strategy of applying as many rules as possible at a given time step is called a
maximal parallel application. Such a strategy is non-deterministic: on the multiset
a ⊕ a ⊕ b we can apply r1 or r2, but not both at the same time, due to a lack of
resources. In this case, one of the rules is chosen at random. A reduction step is
then repeated to simulate the evolution of the state of the chemical solution. Several
approaches are possible, in terms of adjusting the strategy of rule application, to
take into account the kinetics of chemical reactions [5, 24].

Note that in this approach, each molecule is explicitly represented and each inter-
action is explicitly treated: this is known as agent-based simulation. This approach
can be compared to more classic approaches which represent the concentration of
each chemical species rather than each molecule. Obviously, in this particular case,
the agent-based approach is more costly in computing time and memory, but it
allows to simulate finely the complex phenomena, such as fluctuations and corre-
lations, that are beyond the reach of global approaches.

This abstract formalisation of chemical reactions constitutes a domain of research
called artificial chemistry [11, 12], tackling problems ranging from the automatic
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generation of combustion reactions [6] to the study of mechanisms of self-
organisation in the evolution of self-catalytic networks [18].

18.3.1 Some Examples of Application

18.3.1.1 A simple example of population growth

To illustrate multiset rewriting and its application to modelling, we shall look at
an example of a biological nature: the multiplication of a unicellular organism in a
test-tube. We assume that a cell exists in two forms, A and b: A represents a mature
cell ready to divide and b a young cell that will evolve to form A. Each cell division
of A produces one cell of type A and one cell of type b. These evolutions can be
formalised by the two rules:

r1 : A −→ A ⊕ b

r2 : b −→ A

If the initial state of our test-tube is represented by m0 = A ⊕ b ⊕ b, the first three
evolutions give us:

m0 → A ⊕ b ⊕ A ⊕ A → A ⊕ b ⊕ A ⊕ b ⊕ A ⊕ b ⊕ A →
→ A ⊕ b ⊕ A ⊕ b ⊕ A ⊕ b ⊕ A ⊕ b ⊕ A ⊕ A ⊕ A → . . .

Simulation of this process can be used to determine, for example, the ratio of forms
A to forms b in the population after a given time. Moreover, as we mentioned earlier,
we can test properties verified by all the processes satisfying these rules of evolution.
For example, Fibonacci5 proved that the ratio #A/#b of the number of A to the
number of b converges asymptotically towards the golden number, whatever the
initial state.

18.3.1.2 Applications to the Modelling of Networks of Biological Interaction

The modelling of biological interaction networks (genetic control networks, sig-
nalling networks, metabolic cascades, etc.) is a relatively new domain of application
of these techniques. In [17], Fisher and his co-authors proposed using the concept
of multiset to represent proteins involved in a cascade of interactions in a signalling

5 In 1602, Fibonacci studied the question of how fast a population of rabbits would grow under
ideal conditions. Imagine that a pair of rabbits, one male and one female, are put in a field. These
rabbits are capable of reproducing after one month, so that at the end of the second month, the
female has given birth to another pair of rabbits. To simplify, we assume that the rabbits never
die and that each female gives birth to a new pair, composed of a male and a female, every month
starting from the second month. If we represent a newly-born pair by b and a mature pair by A, then
the rule r1 corresponds to the breeding of a new pair and the rule r2 to the maturing of a young pair.
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pathway. This avenue has been widely developed, in particular to take into account
the different complexes that proteins can form [14, 15].

If multiset rewriting has been used to model signalling networks and metabolic
pathways, we should not deduce that the cell can be compared to a test-tube contain-
ing a chemical soup. On the contrary, the cell is a spatially highly organised medium,
with compartments, vesicles, cargos, membranes, etc., which allow to localise the
different chemical species involved (for example the receptors are localised on
the cell membrane, while the genes are located in the nucleus; other proteins are
anchored and diffuse in membranes like the endoplasmic reticulum). Among other
things, this localisation helps to make certain reactions much more efficient. Other
phenomena, such as the extreme density of proteins in the intracellular medium, ren-
der the simple model of chemical soup simply inadequate. Taking into account this
spatial organisation is one of the main challenges currently faced in the modelling
of cellular processes [31, 42].

18.3.1.3 Heat Diffusion in a Bar

Above, we stated that the properties of associativity and commutativity allow us
to deconstruct a term so that each element can interact with any other element, in
the manner of molecules in a well-mixed chemical soup. But with the appropriate
encoding, multiset rewriting can be “diverted”, so as to take into account geometric
information.

The process we want to model is the diffusion of a set of particles along a line.
This problem also corresponds to the diffusion of heat in a thin rod, with each
particle representing a quantum of heat. The line is discretized into a sequence of
small intervals indexed by consecutive integers. Each interval contains a number of
particles (possibly zero). At each time step, a particle can stay in the same interval
or diffuse into the neighbouring interval (see Fig. 18.5). We can represent a state of
the line by means of a multiset in which each number n represents a particle present
in the interval numbered n. The evolution of the system is then specified by the
following three rules:

r1 : n −→ n

r2 : n −→ n − 1

r3 : n −→ n + 1

where n is an integer and the operations + and − which appear on the right side are
the usual arithmetic operations. The rule r2 (respectively r3) specifies the behaviour
of a particle that diffuses into the interval on its left (respectively right) and the rule
r1 specifies a particle that remains in the same interval.

18.3.2 Păun Systems and Compartmentalisation

The above encoding allows us to deal with linear geometry. Other variations have
been proposed to facilitate the representation of more complex biological structures,
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Fig. 18.5 Diffusion of particles in a thin rod. The left-hand figure shows the evolution over 160
time steps of 1500 particles initially distributed over 20 intervals in the middle of a bar discretized
into 60 intervals. The diagram on the right specifies the behaviour of a particle (see text). The
number of particles in an interval corresponds to the concentration of a chemical product or a
quantity of heat. The multiset representing the state of the line (which is discretized into 5 intervals
numbered from 0 to 4) is given by: 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 2 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 4

such as the nesting of membranes and compartments in a cell: the elements of a
multiset can be molecules or other multisets, which can in turn contain molecules
or other multisets.

This nesting is studied using the formalism of Păun systems (P systems) [36], in
which the classical rewriting of multisets is extended by the concept of membrane.
A membrane is a nesting of compartments represented, for example, by a Venn
diagram6 without intersections and with one sole superset: the skin of the system
(see Fig. 18.6).

( ( • ) • • • ( • • ( • ) ) )

skinskin

m1 m2

m3

skin m1 m2 m3

m3
m2

m1

Fig. 18.6 Păun systems. Membrane nesting can be represented by a Venn diagram without inter-
sections and with one sole superset, by a nesting tree or by a well-bracketed word

6 Venn diagrams, invented by the English logician of the same name, are a means of visualising
set operations by representing the sets as surfaces delimited by closed curves.
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Fig. 18.7 Example of a rule of evolution in a Păun system. The symbol δ on the right side of a
rule entails the dissolution of the enclosing membrane. The destination membranes are indicated
by the suffix (the membranes are named). The enclosing membrane can always be referred to by
the name “out”

Objects are placed in each region delimited by a membrane, and they then evolve
according to diverse mechanisms: an object (or a multiset of objects) can change
into other objects, but it can also cross a membrane or provoke the dissolution or
creation of a membrane. Fig. 18.7 shows some examples of rules of evolution in
P systems. Formally, such a system can be specified by using several operations
⊕,⊕′,⊕′′, . . . , each corresponding to a certain membrane. These operations are
associative and commutative, but they are not associative with each other (in order
to keep the membranes separate).

18.3.3 In Parenthesis: The Application to Parallel Programming

The dialogue between computing and the other scientific disciplines is not all one-
way. Here is an example. Inspired by the chemical metaphor, computer scientists
have used multiset rewriting not only to simulate chemical reactions or biological
processes, but also as a parallel programming language. The idea was first developed
in the language GAMMA [3]. Here is a particularly elegant example of a parallel
programme:

x ⊕ y / (x mod y == 0) −→ y .

This rule specifies that the pair of numbers x, y must be replaced by y when the
condition “y divides x” is satisfied (the condition is written after the / symbol). If we
apply this rule as far as possible to the multiset composed of all the integers between
2 and n, we obtain a multiset in which the rule cannot be applied (because the
condition is no longer satisfied) and which therefore contains all the prime numbers
up to n.
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In the above programme, there is no trace of artificial sequencing in the calcu-
lations: the rule can be applied in any order whatsoever. Note that the parallelism
comes from the simultaneous application of rules and that the “unfolding” of the
programme consists simply in repeating the application of the rules until a normal
form (a fixed point) is obtained. These programmes are non-deterministic, unless the
rewriting rules are confluent: in that case, when the programme ends, we do obtain
a perfectly determined result, although the intermediate values calculated during the
execution of the programme can differ (we speak of deterministic results despite a
non-deterministic evaluation).

18.4 Lindenmayer Systems and the Growth of Linear Structures

In the previous section, we considered a process of rewriting on associative and
commutative terms, allowing us to model a “chemical soup”. In this section, we
shall explore associative terms: these terms then correspond to sequences and we
speak of rewriting strings (of symbols). Chomsky’s work on formal grammars [7]
marked the beginning of a long series of works on string rewriting, and these works
have been at the origin of developments concerning syntax, semantics and formal
languages in computing. Grammars are generative formalisms. In other words, they
allow us to construct families of objects, by generating sets of phrases: a phrase is
a sequence of symbols generated by successive rewritings. The set of phrases that
can be generated is a language.

In 1968, the biologist Aristid Lindenmayer (1925–1989) introduced a new type
of string rewriting to serve as the foundation for a formal theory of developmen-
tal biology [32]: Lindenmayer systems, more often abbreviated to L-systems. The
main difference from Chomsky grammars lies in the strategy of rule application. In
Chomsky grammars, only one rewriting is applied at a time, whereas in L-systems
the rewritings take place in parallel, replacing all the symbols in a phrase at each
step. Lindenmayer justified this strategy by analogy to cell development: all the
cells in an organism divide independently and in parallel.

The objective of L-systems is to construct a complex object (like a plant) by
successively replacing the different parts of a simpler object, by means of rewriting
rules. Symbols are interpreted as components of a living organism, such as cells or
organs, rather than words. L-systems have found numerous applications not only in
the modelling of plant growth, but also in computer graphics, with the generation of
fractal curves or virtual plants.

18.4.1 Growth of a Filamentous Structure

A simple example of L-system is the one that describes the growth of cyanobacte-
ria Anabaena Catenula. These blue-green algae form filaments composed, for our
example, of four types of cells, G , g , D and d , which can be interpreted as follows: G
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and D are mature cells capable of dividing; g and d are quiescent cells. In addition,
the cells are polarised: D and d are polarised towards the right in the filament;
G and g are polarised towards the left. When we examine a filament, we can see
that the cells do not succeed each other in any old order. And the rewriting system
presented below generates sequences very similar to those observed in nature.

g D D

G d

D

G G  d G d

The derivations on the right show that at each step all the symbols are rewritten
in parallel according to the rules on the left. Numerous variations can be devel-
oped from this basic mechanism, with the aim of extending the expressivity of the
formalism. One of the most important extensions involves attaching attributes to
the symbols, for example a number representing a size, or the concentration of
a chemical product. Fig. 18.8 illustrates the use of one such extension in a more
realistic model of Anabaena growth. Instead of simply considering mature cells and
quiescent cells, each cell possesses a size that grows over time. Furthermore, in a
nitrogen-free medium, some cells become specialised: the heterocysts. Wilcox et
al. [44] proposed that a cell differentiates into a heterocyst under the action of two
chemical substances, an activator and an inhibitor, which diffuse in the filament and
react with each other. This reaction-diffusion model allows to explain the appear-
ance of an isolated heterocyst cell every n vegetative cells, as observed in nature,
with a relatively constant n. Prusinkiewicz and Hammel [25] used an L-system to
specify and simulate this system, thereby achieving the simulation of a reaction-
diffusion in a growing medium (the filament), an important example of (DS)2.

Fig. 18.8 Differentiation of heterocysts in an Anabaena filament. The left-hand figure represents
the same diagram as the right-hand one, but seen from another angle. This graphical representation,
called an extrusion in space-time, was introduced in [25]. In this diagram, times moves from the
top-left corner to the bottom-right corner. Each “slice” represents the cells of a filament at a given
moment in time. The height of each cell represents the concentration of activator, as does the
shading of the cell (from black to white). The black cells are vegetative. Differentiation occurs
when the concentration of activator rises above a threshold level
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18.4.2 Development of a Branching Structure

It is easy to represent a branching structure by a string, by introducing two symbols
that serve as “brackets”. There are subtle differences between the rewriting of such
strings and the direct rewriting of terms. String rewriting is the method used in
L-systems to represent the branching structure of a plant and its rules of develop-
ment. The example below is caricatural, and does not correspond to the growth of
any real plant. But it does allow us to illustrate the power of this approach.

Let us assume that a plant is made up of two types of “branch”: simple branches
b and budded branches B . From one year to the next, budded branches lose their
buds and become simple branches. We therefore have the rule B → b . A simple
branch grows and produces a section of plant comprising an axis made up of three
simple branches with two budded branches branching off it, 1/3 and 2/3 of the way
up. This specification is expressed by the rule:

b −→ b ⟨ qB ⟩ b ⟨ pB ⟩ b .

In this rule, we use the brackets ⟨ and ⟩ the represent the development of the lateral
axes. We use the additional symbols p and q to indicate development on the left or
the right of these axes.

At the beginning of the 1980s, P. Prusinkiewicz introduced a graphical interpre-
tation of words produced by an L-system [40]. This interpretation is based on the
concept of graphical turtle, as used in the LOGO programming language, for exam-
ple. This allows to directly visualise the structure of objects described by a word
generated by the L-system. Thus, we use the successive derivations of an L-system
to represent the successive states of a developing plant, or to draw the successive
curves that tend towards a fractal curve.

A state of the graphical turtle is the triplet (x, y, θ), where (x, y) represents the
current position of the turtle in Cartesian coordinates and θ represents the orientation
of the turtle. This orientation is interpreted as the angle between the body of the
turtle and the horizontal axis. The turtle moves following commands represented by
the symbols of a word.

• In our example, the symbol b corresponds to the command “move forward one
length ∆”. So if the current state was (x, y, θ), then after reading the symbol b
it becomes (x + ∆ cos θ, y + ∆sinθ, θ).

• The symbol B is interpreted in the same way, except that after drawing the corre-
sponding segment, we also draw a circle centred on the current position.

• The symbols ⟨ and ⟩ save and restore the current state respectively. The position
is saved in a stack. When the turtle meets the symbol ⟩ , it “jumps” to the position
corresponding to the open bracket.

• Finally, the symbol p (resp. q) increments (resp. decrements) the current angle θ

by a predefined angle.

Using this graphical interpretation, the first three derivations of a simple branch are
illustrated in Fig. 18.9.
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Fig. 18.9 Graphical representation of the first three derivations in a Lindenmayer system. The
initial state is given by the word b ⟨ qB ⟩ b ⟨ pB ⟩ b and the rules of derivation are the two rules
defined in the text. The scale of the representation of each “plant” is different

18.5 Beyond Linear Structures: Calculating a Form in Order
to Understand It

L-systems have proved to be perfectly suited to the modelling of plant growth [40]:
they allow to define in a particularly compact and synthetic way the creation of
the complex form of a plant and above all, in their recent extensions, to couple the
process of form creation with the physical-chemical processes that take place within
that form.

However, although L-systems are suitable for the representation of linear forms
(filaments or trees), their use for the construction of more complex shapes (ordinary
graphs, surfaces or volumes) depends on arbitrary encoding that rapidly becomes
inextricably complex. Researchers are therefore trying to design more suitable
formalisms. The import of this search for formalisms to specify the processes of
development reaches far beyond the question of simulation, for two reasons: these
formalisms could fill a conceptual vacuum in biology, and they could potentially
have an enormous epistemological impact. What is more, their application could
extend far beyond the domain of biology.

18.5.1 Simulation and Explanation

Drawing firstly on purely physical models (osmotic growth with Leduc, optimal
forms with D’Arcy Thompson, reaction-diffusion processes with Turing, etc.),
then purely genetic models (with concepts such as gene action or the genetic
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programme), the different formalisms proposed over the course of the last century to
specify the processes of development have filled a conceptual vacuum and modified
the perception of what has explanatory value for biologists [20].

As an example, advances in computing and the data produced in biology allow
the simulation of certain processes of development with predictions that can then
be empirically validated [8]. Very recently, for instance, several cell-level mod-
els [4, 41] of meristem development (the meristem being the growing tissue of the
plant) have succeeded in reproducing characteristic phyllotactic patterns observed
in nature and in linking them to the circulation of auxin (a plant hormone) in this
tissue. The accumulation of auxin triggers the development of new organs, which
modify the form of the meristem and consequently the flow of auxin: a marvellous
example of (DS)2.

However, no matter how predictive these simulations are, they can only have an
explanatory value if they allow us to express the processes of development in a form
that is intelligible to the human mind, so that we can analyse them and reason about
them [29]. After all, what kind of understanding can we hope to derive from the
simple observation of a succession of complex calculations? We might just as well
observe these processes in nature, instead of reproducing them on a computer.

Computer morphogenesis allows us to define a formal framework, in which we
can speak rigorously of genetic programme, memory, information, signal, interac-
tion, environment, etc. and to relate these concepts to a completely mechanistic view
of development processes. It introduces the concept of computation as an explana-
tory scheme in the modelling of development. But if the embryo can be deduced by
computation from a description of the egg and its interactions with the environment,
the embryo must be considered both as the result of a computation and as part of
the computer that produces this result. This problem is studied in computer science
(reflexive interpreters, meta-circular evaluators). The future will tell whether these
concepts will enable us to grasp that most specific aspect of living beings: their
development.

18.5.2 Giving Form to a Population of Autonomous Agents

The modelling of development processes is important for biologists, but it is also
important for computer scientists, who are always looking for new computational
models and for whom biology is clearly a great source of inspiration.

Computational models are constrained by the particularities of a material model
or inspired by a metaphor of what a computation should be. Today, new material
supports for computation are being studied. One celebrated example is the exper-
iment that Adleman performed in 1994 [1], proving that a combinatorial prob-
lem7 can be solved using DNA molecules in a test-tube. But other possibilities

7 The problem he chose was the Hamiltonian path problem, consisting in determining whether a
given graph contains a path that starts at the first vertex, ends at the last vertex, and passes exactly
once through each remaining vertex.
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are currently the subject of very active research, including using the growth of
colonies of bacteria, the diffusion of chemical reagents or the self-assembly of
biomolecules . . . to compute. The programming of these new computational sup-
ports certainly raises some substantial problems, and is driving the development
of new languages and algorithms to allow us to use an immense population of
autonomous entities (biomolecules, viruses or cells) that interact locally and irregu-
larly, to construct and develop a reliable computation (a form).

But the mechanisms offered by a programming language, or by new algorithms,
can also be directly inspired by a biological metaphor without resorting to biolog-
ical machines built using biotechnologies. For example, evolutionary algorithms
are inspired by the mechanisms studied in evolution theory, even though they are
executed on electronic machines like present-day computers.

In the same order of idea, formalisms providing a conceptual grasp of the mech-
anisms of development could well revitalise the concept of “programme”, by sug-
gesting new approaches in the development of very big software, notably in the
specification of their architecture and the interconnection of their different parts,
or by offering new mechanisms for hiding useless information, abstracting details
or capitalising and reusing code. Computer scientists are actively seeking, for their
software, properties usually attributed to living matter: autonomy, adaptability, self-
repair, robustness, self-organisation. Clearly, the dialogue between computing and
biology [28, 35], so ambiguous and so fertile, is not about to end.
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