
A framework for the recursive definition of data structures

Jean-Louis Giavitto
LRI umr 8623 du CNRS, Université de Paris-Sud

F-91405 Orsay Cedex, France

giavitto@lri.fr

ABSTRACT
Functional languages allow the de�nition of a function by
means of recursive equations. This paper describes a gen-
eral framework to extend this approach to data structures.
Our main objective is to avoid partial de�nitions and the
lazy evaluation strategy (as it is the case in Haskell). Our
�rst task is to develop the concept of data structure and
sub-structure in a general setting. Then we characterize
an evaluation strategy which preserves the structure of the
data set and we present a suÆcient condition for a de�ni-
tion to be total (each element of the data structure has a
de�nite value) and computable by this strategy. Using the
framework, we fully develop the special case of vectors. In
addition, we provide an explicit syntactic condition to check
if a recursive vector de�nition is total and computable by a
simple iterative loop.

Keywords
recursive de�nition of data-structures, static analysis of decla-
rative language, evaluation strategy, vector equations

1. INTRODUCTION
The notion of function supported by the languages of the

ML family is one of the most powerful and eÆcient that can
be found amongst the programming languages. In our opin-
ion, this success is due to the facts that:

1. functions in ML are de�ned in an equational framework
and relies on a well founded mathematical structure,
extensively studied (�-expressions); and

2. properties can be automatically inferred from de�ni-
tion to check correction and help implementation (type
inference and evaluation strategy).

Point 1) enables the algebraic reasoning on programs and
point 2) links the mathematical notion to its computer im-
plementation. Our idea is to extend this approach to \data
structure" while maintaining these two points. This goal is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP ’00, Montreal, Canada.
Copyright 2000 ACM 1-58113-265-4/00/0009 ..$5.00

a long term research objective, and we sketch here only a
�rst framework. However, this approach is fully developed
in the particular case of vectors.
More precisely, this paper studies de�nitions of data struc-

tures in general and arrays in particular by means of sets of
recursive equations. It develops a general theory of those
data structures, as well as statically-checkable criteria guar-
anteeing that the equations have totally-de�ned solutions
(i.e. no \bottom" components in the resulting data struc-
ture) that can be computed sequentially (i.e. without re-
course to lazy evaluation).
The approach presented in the paper applies to non-alge-

braic data structures such as arrays, while classic results
from domain theory, as implemented in lazy functional lan-
guages, focus on algebraic data structures only. Moreover,
the approach in the paper o�ers more compile-time check-
ing and possibly more eÆcient compilation schemes than
lazy evaluation of recursive de�nitions.
In the rest of this section, we present some problems raised

by the recursive de�nition of data structure, using in�nite
list and vector as examples.

1.1 Infinite List and other Algebraic Data Type
In CAML [14], it is possible to specify a data structure

through a recursive equations. For instance:

let rec z = 1 :: z ; ;

de�nes an in�nite list of ones: 1 :: 1 :: 1 :: : : : This de�nition
is no more than the expression in the CAML syntax of the
equation

z = 1 :: z (1)

where the solution z is to be found amongst the set of (�nite
and in�nite) lists. However, a more sophisticated de�nition
fails; the program:

let nil () = [] ; ;

let rec z = 1 :: (nil ()) ; ;

prints at compilation time he following error message on the
de�nition of z: \ This kind of expression is not allo-

wed in right-hand sides of "let rec" ". CAML indeed
does not allow recursive de�nition of a data structure if the
right hand-side (r.h.s.) implies a function application and
even if there is no \real recursion" involved (here the func-
tion nil which takes no argument and evaluates in []). Only
constructors can be used in the r.h.s. of a recursive data
structure de�nition.

45

This kind of de�nition is allowed in a lazy evaluation lan-
guage like Haskell [9]. Here is an example of a \real" re-
cursive de�nition:

let inc y = map (funx -> x+ 1) y ; ;

let rec iota = 1 :: (inc iota) ; ;

The list iota is an in�nite list such that its nth element equals
n. The lazy evaluation strategy of Haskell enables the han-
dling such data-structure: for example, the evaluation of the
expression hd (tl z) returns 2. However, consider the follow-
ing recursive list de�nition:

let rec z = 1 :: tl z ; ; (2)

This time, the program \loops": more exactly, the evalu-
ation of the expression hd (tl z) which is supposed to re-
turn the second element in the list raises a stack over
ow.
Remark that all the lists that begin with the value 1 are
formally solutions of the equation (2).
Lists are not the only data structure that can be de�ned

by recursive equations in Haskell. More generally, all alge-
braic data type can be speci�ed by this kind of de�nitions.

Equation (2) shows that, without caution, recursive def-
inition of a data structure may de�ne partial objects (i.e.
data structure where some elements are left unde�ned) ex-
actly like the recursive de�nition of functions enables the
speci�cation of partial functions.
However, opposed to the point of view taken by Haskell,

we want to avoid partial data structures. Therefore, we must
determine at compilation time de�nitions leading to partial
structures to reject them. As a matter of fact, the usual
concept of data structure implies that each part of the data
structure must be well de�ned. The solution adopted by
CAML, that is to say: allowing only constructors in r.h.s. of
an equation, is suÆcient to satisfy this constraint but is too
crude and rejects many interesting and harmless de�nitions.

1.2 An Example of Recursive Vector Defini-
tion

The vector data structure is fundamentally di�erent from
the list data structure. For example, there is no de�nition of
a vector as an algebraic data type (with constructor like the
:: for the lists). Nevertheless, it is possible to specify vectors
by means of recursive de�nitions. Here is an example:

iota = [| 0 |] � ([| 1; 1 |] + iota : 2) (3)

In this equation, the constants (literal vectors) are written
by listing their elements between [| and |] as in CAML. The
� operator represents the concatenation of vectors, the +
stands for the point-wise addition and expression A : n trun-
cates vector A to its n �rst elements. These operations are
all polymorphic (they accept vectors of any length). One
may check that V = [| 0; 1; 2 |] is a solution of this equation
because V : 2 = [| 0; 1 |], so [| 1; 1 |] + (V : 2) = [| 1; 2 |]
and then [| 0 |] � ([| 1; 1 |] + (V : 2)) = [| 0; 1; 2 |] = V .

How to Compute the Solution of a Recursive Vector
Definition?. Equation (3) can be translated in an equiv-
alent system of equations de�ning the elements of iota. If
we assume that the length of the solution is 3, we can write
(vector indexing begins with 1):

iota = [| iota1; iota2; iota3 |]

by evaluating the truncation in the r.h.s. of (3), we obtain:

[| iota1; iota2; iota3 |] =

[| 0 |] � ([| 1; 1 |] + [| iota1; iota2 |])

which can be rewritten in:8<: iota1 = 0
iota2 = 1 + iota1
iota3 = 1 + iota2

The equations of this system are between vector elements
and are not recursive. So, this last system can be solved by
a series of substitutions. Note that this situation is similar
to the recursive de�nition of a function. For example the
standard de�nition of fact (resp. iota) is recursive but the
computation of fact(n) (resp. the computation of the value
of an element of the vector iota) doesn't loop.
The question is now: what can be the scheduling of these

substitutions? It can be checked, for the de�nition of iota,
that the equation that de�nes element i depends only on
the element (i� 1) for i > 1; and the �rst element depends
upon no other element. The system can then be solved by
computing the r.h.s. of the element's equation in the order
of the indices, and by substituting in the remaining equation
the value just computed. The computation of iota is then
naturally translated into the following imperative iteration
loop (in C where vector indexing starts at 0):

iota[0] = 0;
for (i = 1; i<3; i++)

iota[i] = 1 + iota[i-1];

Note that in this loop, an element is accessed only when is
has already a well de�ned value.

Here too, our approach is di�erent from Haskell's ap-
proach: our evaluation strategy is not lazy and we want be-
fore starting the computation, to infer a complete scheduling
of all the subcomputation needed to solve the equation.
Moreover, we do not admit any kind of scheduling but only

those that are compliant with the \topological" structure of
the de�ned data structure. For instance, in the computation
of iota, all the auxiliary results are vectors. This is not
always the case, see for instance equation (4) in section 3.5
below for a counterexample.
This assumption is a strong constraint but is justi�ed in a

framework were we require to de�ne total data structure. It
enables a simple and eÆcient scheduling of the computations
and eases the checking that the solution is well de�ned. In
addition, this constraint can be thought as expliciting some
\primitive recursion scheme" linked to the data structure.
Additionally, to solve equation (3), we must determine

the length of the solution, which can be seen as a type in-
ference problem1. The inference of the type of the solution
of the equation (1) is a problem solved for algebraic data
types. However, the vector example shows that data struc-
tures generally requires a richer type structure.

1The type vector in CAML does not include the length of the
vector. This makes the programmer able to construct trian-
gular structure (as a vector of vectors of unequal length) but
disallows the checking at compile time that array concatena-
tion is well de�ned: a � a0 is well de�ned only if array a and
a0 have the same number of elements along the dimension
used for the concatenation.

46

1.3 Organization of the paper
The rest of this paper is organized as follows: in section 2

a general framework is described for the formalization of
recursive de�nitions of data structures and their resolution.
Section 3 presents an instance of this formal framework for
the case of vectors. Section 4 sketches the implementation
of the previous concepts in Mathematica. Finally, we review
related works and open questions raised by our work.

2. FORMALIZATION

2.1 Data Type and Data Structure
The fundamental concept of data-structure is ubiquitous

in computer science as well as in all branches of mathemat-
ics. Consequently, its characterization is not easy. Some
approaches emphasize on the construction of more sophisti-
cated data-structures from basic ones (e.g. domain theory);
other approaches focus on the operations allowed on data
structures (e.g. algebraic speci�cation).
We rely upon the following intuitive meaning of a data

structure: a data structure s is an organization or an ar-
rangement O performed on a data set V of values. It is
customary to consider the pair s = (O; V) and to say that
s is a structure O of V : for instance a list of int, an vector
of 5 elements
oat, etc.
A traditional approach consists in working with these pairs

in the framework of axiomatic set theory. For example, the
set G of simple directed graphs (directed graphs without
multiple edges) can be de�ned by: G =

�
(O; V) : O �

V � V
	
where V is the set of vertices. This approach con-

sider equally the structure O and the set V and does not
stress the structure O as a set of places or positions, inde-
pendently of their occupation by elements of V .
This is the point of view that we take. In this approach,

a data type is a pair (O; V) and a data structure s of type
(O; V) is a triple (f;O; V) where f is a total function from
some O 2 O to V , that is: f 2 O 7! V .
The set V plays the same role as before: it is the set

of values that can be \stored" in the data structure. The
set O is the set or organization (of type (O; V)). A data
structure s of type (O; V) is a labeling of the position of one
organization O of O, i.e. a value f(o) fromV is associated
to each position o in O.

2.2 Sub-structure of a Data Structure
The set of organizations O comes with some structure:

often, a data type induces a natural notion of sub-structure
in the data structure, just by forgetting some elements to
recover a data structure of the same type. Here are three
examples:

1. A list l = a :: l0 embeeds the sublist l0 and recursively,
all suÆxes of l.

2. A tree owns its subtrees (the sons of the root).

3. A vector s of length n represents also all vectors of
length m with m � n build by forgetting the last (n�
m) elements of s.

The �rst and second example shows that the notion of sub-
structure can be de�ned from the recursive speci�cation of
an algebraic data type. The third one shows that this notion
can be generalized to other kind of data type.

We want to derive the notion of \primitive recursion" from
this notion of sub-structure: a recursive de�nition is \prim-
itive" if the computation of the solution structure involves
only the value of the sub-structures.
We formalize the notion of sub-structure by considering a

partial order vO on O (the sets in indices will be dropped
whenever they can be recovered by the context). We require
(O;v) to be a well founded domain (here a domain is an
algebraic cpo, cf. [8]) to ensure the correction of inductive
de�nitions in O. The minimal element of O is denoted by
?O. If O v O0, then the positions of O can be considered
as position of O0. Therefore, for each O v O0, there exists
an injection jO 7!O0 from O to O0. For technical reason, we
require the existence of a maximal element in O: >O. This
element must be a domain. These considerations lead us to
the de�nition:

De�nition 1. A data type is a pair (O; V) where V is a
set of values and O a well founded domain with a maximal
element >O such that >O is a domain and for each O;O0 in
O, O v O0, there exists an injection jO 7!O0 . By convention,
j(O) denotes jO 7!>(O).
A data structure s of type (O; V) is a total function from

a O 2 O to V . O is called the organization of s. The
elements of O are called the positions of f . If s and s0 are
two data structures with the same data type and respective
organization O and O0 such that O v O0, and if s = s0 Æ
jO 7!O0 , then we say that s is a sub-structure of s0.

Example of the Binary Trees. In CAML the data type cor-
responding to a labeled binary tree may be: type 'a B =
Leaf of 'a | Node of 'a * ('a B) * ('a B).
For our goal, the corresponding data type can be B� =

(O; �) where � is the type of the labels. An element O 2 O
is a �nite subset of
 = fl; rg� that satisfy the following
assumptions:

1. if !:!0 2 O then ! 2 O;

2. if !:l 2 O then !:r 2 O;

3. if !:r 2 O then !:l 2 O.

A position is a word, the letter l represents the selection of
the left son and the letter r the right-sub-tree. The empty
word is represented by �.
For instance, the binary tree described in CAML by the

term Node (5, Leaf 6, Node (7, Leaf 8, Leaf 9)) cor-
responds to the organization OB =

�
�; l; r; r:l; r:r

	
and is

described by the function

B = f� 7! 5; l 7! 6; r 7! 7; r:l 7! 8; r:r 7! 9g

We add to the set O the element
 to represents the max-
imal element >O. The set
 is not �nite so it is not consid-
ered as a valid organisation for a data structure. It is just
used as an auxilliary set where the computation occurs (Cf.
next section).
The relation vO which corresponds to this notion of bi-

nary tree is the suÆx relation de�ned by O vO O0 if there is
a !0 2 O0 such that !0:O � O0. For example, the binary tree
C = f� 7! 7; l 7! 8; r 7! 9g is a sub-structure of B because
it can be rooted at position r in B: C(!) = B(r:!).
Several injections jO 7!O0 may be de�ned de�ned by:

jO 7!O0(!) = !
0
:!

47

5

6 7

98

l

r.l r.r

r

5
6

7

8
9

w0:w

O0

w0

jO 7!O0

O

w

�
V

O

Figure 1: The binary tree structure and sub-structure

for some !0. As a matter of fact, it may exists zero or
more injections between O and O0 depending on the exis-
tence of !0. However, we consider especially the function
j = jO 7!
 = �x:x between any organisation O and the top
organisation.
Figure 1 illustrates theses constructions. Beware that

other formalizations of the binary tree data-structure are
possible. We rely on the order vO and the functions j to
specify a speci�c notion of sub-structure in binary trees and
we admit only �nite binary trees.

2.3 Recursive Definitions
For the sake of simplicity, we restrict ourselves to pro-

grams P restricted to only one equation (however, the results
presented here can be extended to systems of equations).
A recursive de�nition is an equation of form X = 'P(X)

where X belongs to a data structure of type (OP; VP). To
ensure the existence of a solution, and to choose one par-
ticular solution when several solution exists, we focus on a
slightly di�erent problem: �nding the solution on the larger
set TP = >O ! V? of the partial function from >O to V?.
The following notations and results are standard in do-

main theory, cf. [8]. If V is a set, then V? is the
at domain
build on V by adjoining the minimal element ?. The set TP
is a domain with the Scott order vTP de�ned by: f vTP g i�
f(x) vV? g(x) for all x in >O. The function ' is from TP
to itself. If we assume that ' is a continuous function, then
there is a least x such that x = '(x). This x is called the
least �xed point of ', written fix'P or equally fix P. It is
given by

F
n '

n(?TP).
The element fix P is the solution of P and can be thought

of as a \partial data structure". As a matter of fact, a
partial function f in T de�nes a unique partial function
fO = f Æ jO 7!> on O. In the following, we write sometimes
f instead of fO.

Example of Recursive Definitions of Binary Trees. A
programm Q de�ning a binary trees is speci�ed by a de�ni-
tion

Q : X = 'Q(X)

where 'Q is a function from TQ =
! V? into itself.
Here is an example. Let j!j the length of the word ! 2

and consider the following de�nition for 'Q:8><>:
'Q(X)(�) = 0

'Q(X)(!:x) = 1 +X(!) if j!:xj � 2

'Q(X)(!) = ? if j!j > 2

Then Q de�nes a balanced binary tree of height 2 where each
node is labeled by its height: fix Q = f� 7! 0; l 7! 1; r 7!
1; l:l 7! 2; l:r 7! 2; r:l 7! 2; r:r 7! 2g.

2.4 Maximal Programs
At this point, our problem is to determine if fix P is indeed

a data structure, that is, if it is a total function on some
O 2 OP.
If f is a function from domain D into E, then Def(f)

denotes the de�nition domain of f , i.e. : Def(f) = fd 2
D : d 6= ?D ^ f(d) 6= ?Eg. The function f is said total i�
Def(f) = D � f?Dg.

De�nition 2. Let P : X = 'P(X) be a recursive de�nition
of a data structure of data type (O; V). TP denotes >O !
V?. The function 'P is a continuous function from TP into
itself.
We say that P is maximal if there is a O 2 O such that

j(O) = Def(fix'P). If P is maximal, we say that P de�nes
the data structure s = (fix'P) Æ jO 7!>.

The use of the adjectif \maximal" is justi�ed by the fol-
lowing fact. If P is maximal then by writing f = fix P and
with O such that j(O) = Def(fix P), one may see that fO is
a maximal element amongst the partial functions O ! V?
for the Scott order.

Example of Maximal and Non-Maximal Programs on
Binary Trees. The program Q given above is an example of
a maximal program. We have

Def(fix Q) = f�; l; r; l:l; l:r; r:l; r:rg

This set corresponds directly to an organisation OQ (the
functions j are the identity injections between the organ-
isations and
). Then Q is maximal and de�nes the data-
structure s with organisation OQ.
Now we give two examples of non-maximal programs.

Consider the program R1 de�ned by: R1 : X = 'R1(X),
where: (

'R1(X)(�) = 0

'R1(X)(!:x) = 1 +X(!)

Then Def('R1) =
 which is not an organisation (recall that
we admit only �nite subsets of
 as organisations; the set

is just added to O to have a top element and is not consid-
ered as a valid organisation).
The program R2 speci�ed through the function 'R2 :(

'R2 (X)(�) = 0

'R2 (X)(!:r) = 1 +X(!) j!j < 2

is not maximal. Indeed, fix R2 = f� 7! 0; r 7! 1; r:r 7! 2g
and then Def(fix R2) = f�; r; r:rg which is not an organi-
sation (this set does not satify condition 3 in the de�nition
of an organisation).

48

2.5 Inferring the Organization of the Least So-
lution

To check if Def(fix P) is a data structure, we want to infer
an O from a P and prove that fix P is maximal on this O.
Generally, an element O of O does not represent a stan-

dard type but is more precise: it is the set O which cor-
responds to an ML type. However, we handle the elements
of O as (non-standard) types and we want to infer for any
program P an organization OP such that: fix Pjj(OP) = fix P
(the notation f jE0 denotes the restriction of function f on
E to E0 � E).
We assume that for any program P, there is an associated

set of equations eP that represents type constraints. The
solutions of eP have to be found amongst the elements of
O. We say that P typechecks if fixeP exists and we say
that the type inference is sound i� for every program Q,
Def(fix Q) � j(fix eQ). In the sequel, we assume that the
type inference is sound.

Note that if type inference is sound and any O 6= >O is
�nite, then the problem of checking if a program is maximal
is theoretically solved: we have just to compute the solu-
tion of P on the �nite set fixeP instead of >O using a lazy
evaluation strategy. If the computation of fix P(o) loops or
requires the computation of fix P on a o0 outside j(fix eP),
then fix P is not de�ned on o. So it is possible to compute
explicitly Def(s) and to check if P is maximal. For instance,
it is possible to develop this approach for the vector data
structure presented in section 3.
However, this approach is not satisfactory because

� the domain fixeP can be arbitrary big;

� secondly, this method essentially computes the data
structure and cannot be considered as a compile-time
check;

� �nally, this method does not determine a simple sched-
uling of the computations needed to solve the program:
a data structure is handled like an ordinary function
on a �nite domain.

In consequence, we develop another approach.

2.6 Prefix-Computable Programs
At this point we want:

� to check if fix P is maximal on the organisation fixeP;
� and also to infer a simple scheduling of the computa-
tions needed to solve the �xpoint equation.

We have to precise the notion of \simple" scheduling.

We know how to compute fix P: just compute 'nP (?).
Because the target domain VP of the elements of TP is a
at
domain, if a position o has a de�nite value for 'nP (?), then
it is also the case for 'mP (?) if m � n. Thus we don't need
to compute again 'mP (?)(o) once we have a de�nite value
for o. So we can compute 'tP(?) by computing at step t only
the values associated to the positions in the set Æt:

Æt = Def('tP(?))� Def('t�1
P (?))

See �gure 2.
Our problem is to characterize in a simple way the sets

Æt which would make us able to schedule the computation

Æt't(?) 't+1(?)

Figure 2: Growth of the de�nition domain between
two iteration in the computation of fix'. The
square represents > and the gray area in the square
representents respectively Def('t(?)), Def('t+1(?))
and the di�erence between this two sets.

of the values of o in fixeP. This plan is usually too diÆcult
to achieve: the \shape" of the de�nition domain of 'tP(?) is
usually to complex (cf. �gure 2).
Our main idea is to try to characterize a family of pro-

grams for which we can \forget" some positions of the def-
inition domain of 'tP(?), without changing the �nal result.
By forgetting some part of the de�nition domain at each it-
eration, we may constrain the de�nition domain to a simpler
shape, compliant with the notion of sub-structure carried by
the data type.
To achieve this goal, we have to introduce the concept of

pre�x (see �gure 3).

De�nition 3. Let E be a subset of >O. The pre�xes of E
are the elements of fO 2 O : j(O) � Eg. We want to pick-
up a particular element, so we assume the existence of a total
ordering � on >O that extends vO, i.e.: O v O0) j(O) �
j(O0). We de�ne bEc = max�fj(O) : O 2 O ^ j(O) � Eg.
The set bEc is as subset of >O.
If f 2 T , we write bfc for bDef(f)c and 2f denotes f jbfc.

We write bfcO for the set O 2 O such that j(O) = bfc.

>

O � Def(f)

2f

O0

f

Figure 3: Pre�x of a function f .

We are now able to de�ne a notion of simple scheduling
by the formal notion of pre�x-computable program.

De�nition 4. A program P : X = '(X) is pre�x-computable
i� fix' = fix(2 Æ ').

Intuitively, if a program is pre�x-computable, then the
computation of the �xpoint of ' can be done by requiring
only the computation of the sub-structures of the solutions
corresponding to the pre�x of the iterates (cf. �gure 4).
Example (4) in section 3.5 shows that the property of be-

ing maximal and being pre�x-computable are not the same:
there are programs that are maximal but that are not pre�x-
computable.

49

2.7 Definition Domain Growing and Prefix-
computability

Now we want to link the property of being pre�x-compu-
table to the growth of the de�nition domain between the
two iterates 't(?) and 't+1(?) (see �gure 4).

b'ncb'nc

�

'n+1

>

'n

b'n+1c

b'(2'n)c

Figure 4: Pre�x of the iterates of ' ('n abbreviates
'n(?)).

De�nition 5. A program P : X = '(X) is �-growing,
with � a continuous function from O into itself, i� 8Y 2
T ; j(�(bY cO)) v b'(Y)c.

O is a domain and � is continuous. Then fix� exists. An
important result justi�es the introduction of this de�nition:

Theorem 1. A program P : X = '(X) that typechecks
is maximal and pre�x-computable i� there is a function �
such that P is �-growing and fixeP v fix�. In this case,
we say that P is �-progressive.

The demonstration is relatively easy: it consists in show-
ing that:

Def(fix P) � j(fixeP) � j(fix�) �

� Def(fix(2 Æ 'P)) � Def(fix P)

3. THE RECURSIVE DEFINITION OF
VECTORS

The previous section has sketched a general framework
for the recursive de�nition of data structures. For a given
program P, we need now to exhibit a function �P such that
P would be �P-progressive.
In this section, we pursue our work along this path, for

the special case of vectors. In the �rst part of this paper, we
have dealt only with meanings. We turn now our attention
also to expressions.
Our idea is to translate the program expression P to the

expression of a function
�

'P. The function
�

'P built is such
that P is

�

'P-growing but not necessarily
�

'P-progressive. We
then propose a syntactic condition on the expression of

�

'P

that gives a suÆcient condition for P being
�

'P-progressive.

3.1 Semantic domains
The type (V; V) represents the type of our vectors of ele-

ments of V . The set V is speci�ed by:

V =
�
;; f1g; f1; 2g; : : : ; f1; : : : ; ng; : : : ; N+

	

where N+ = N � f0g. The set V is ordered by inclusions:
vV is equal to � on V. This relation is a total order on V
and then � = � too. The functions jO 7!O0 are simply the
identity. The maximal element >V is the set N+ (remark
that it can be bbuild as the union of O 2 O; O 6= N

+).
Intuitively, a vector is a total function from f1; : : : ; ng

into V . A vector s is a sub-vector of s0 if s is obtained from
s0 by dropping �nal elements. The domain TV (of partial
functions from >V into V?) is the set of \partial vectors"
with elements value in V .

3.2 Vector Expressions and Vector Programs
A vector expression is de�ned by the following grammar:

EXP ::= [| v1; : : : ; vp |]�� f(e1; : : : ; ep)�� e+p�� e : p�� e1 �p e2�� id

where p 2 N+ , id 2 VAR a set of identi�ers, vi 2 V , e; ei 2
EXP and f 2 F a set of strict functions from V n into V .
Intuitively, construction [| : : : ; : : : |] enables the exten-

sional speci�cation of a vector (by listing its elements), con-
struction f(e1; : : : ; ep) corresponds to the (implicit) vector
point-wise extension of a scalar function, construction e+p is
reminiscent of Fortran's eoshift, construction e : p is the
truncation of vector e to its p �rst elements and �p is the
concatenation of vectors.

Interpretation of vector Operations. The operators of a
term of EXP are interpreted on TV in the following manner:

1. [| v1; : : : ; vp |] = �o: switch (o)
case 1: v1; : : : ; case p: vp; default: ?

2. f(e1; : : : ; ep) = �o:f(e1(o); : : : ep(o))

3. e+p = �o:e(o+ p)

4. e : p = (�o:e)jf1;:::;pg

5. e1 �p e2 = �o:if o � p then e1(o) else e2(o� p)

Note on the Vector Concatenation. The parameter p in
the vector concatenation is the number of elements taken
from the �rst argument.
This speci�cation of the concatenation may seems unsatis-

factory because one must explicit the p parameter. However,
the function @ speci�ed by:

f@g = �X:if X � max Def(f)

then f(X)

else g(X �max Def(f))

(which may appear more natural), is not a continuous func-
tion.
For instance, with x = ?, y = [| 1 |] and x0 = [| 666 |],

we have x v x0 but x@y = [| 1 |] 6v [| 666; 1 |] = x0@y
which shows that @ is not monotone and therefore not con-
tinuous.
However, by convention, we may assume that u � v is an

abbreviation of u �pu v where pu is the length of u inferred
by the system presented in section 3.3.

50

Semantics of a Program. A program P on vectors is a pair
x P e where x is an identi�er and e is a vector expression
where the only identi�er that may appear is x. This pair is
interpreted has an equation X = 'P(X) to be solved in TV
with 'P = �x:e.

Lemma 1. If P is a program on vectors, then 'P is a con-
tinuous function. Therefore fix'P exists and can be com-
puted as

F
n '

n
P (?).

3.3 Vector Type Inference
The set f1; : : : ; ng can be coded by the integer n and the

empty set by 0. Then, a number n 2 N can be used to repre-
sents an element of V: this number represents the length of
a vector. This representation of the de�nition domain of a
vector simpli�es the presentation of the system eP associated
to a vector program P.
The idea to build eP is the following. To each identi�er

x we associate a variable nx and to each sub-expression e
that appears in the r.h.s. of an equation of P, we associate
a variable ne. These variables are type variables and the
value they take are the type of the associated expression in
P. Informally, the value of nx in the solution fixeP will be
the length of the value of x in fix P.

De�nition 6. The set of equations eP = L(P) is built by
inspecting P and by adding new equations for each sub-
expression. An equation of eP takes the following form:

ne ~= L(e)

The function L is de�ned by induction on the structure of P:

L(P) =
�
L(x P e) : (x P e) 2 P

	
L(x P e) =

�
n
x ~= n

e
	
[L(e)

L(x) = ;

L([| v1; : : : ; vp |]) =
�
n
[| v1;:::;vp |] ~= p

	
L(f(e1; : : : ; ep)) =

[
1�i�p

L(ei) [

�
n
f(e1;:::;ep) ~= n

ei : 1 � i � p
	

L(e+p) =
�
n
e+p ~= n

e � p
	
[L(e)

L(e : l) =
�
n
e:l ~= l

	
[L(e)

L(e1 �p e2) = L(e1) [L(e2) [�
n
e1�pe2 ~= p+ n

e2
	

Note that:

� L(P) is a set of equation, not a system (that is, several
equation may have the same left hand-side).

� The equations in L(P) are all linear equations (and the
coeÆcients of the matrix of the linear function are all
0 or 1). It exists very eÆcient algorithms to determine
if this kind of equations set admits zero, one or several
solutions over Zd and to produce one solution, see for
example [7, 3].

De�nition 7. A program P typechecks i� L(P) has a unique
solution that satis�es the following constraints:

� for every sub-expression e of P, the numbers ne take a
strictly positive value;

� for every sub-expression e : p of P, we have ne � p;

� for every sub-expression e1 �p e2 of P, we have n
e1 � p.

If P : x P e0 typechecks, ne denotes the value of variable
ne in the unique solution of L(P) and fixeP denotes the set
f1; : : : ;nxg.

The following result states the correction of this type system:

Lemma 2. Typechecking is sound : if P : x P e type-
checks, then Def(fix') � fixeP.
It means that the de�ned values of P lie in the set speci�ed

by in fixeP. At this point, we cannot ensure more. For
instance, the program :

u P u : 3

typechecks and gives nu = 3. However, the solution u is the
function everywhere unde�ned.

3.4 Growth Function of a Vector Program
We will infer a speci�c function

�

'P for each vector program
P, which would be called the progression of P.

De�nition 8. If program P : x P e typechecks, we consider
the equation

�

P :
�

x
�

=
�

e where
�

x takes its value in N and
�

e = Pr(e). We write
�

'P the function from N to N speci�ed by
�

'P = �
�

x:
�

e. The Pr transformation is de�ned by induction
on vector-expression:

Pr(P) =
�

�

x
�

= Pr(e) : (x P e) 2 P
	

Pr(x) =
�

x

Pr([| v1; : : : ; vp |]) = p

Pr(e+p) = max(0;Pr(e)� p)

Pr(e : p) = min(p;Pr(e))

Pr(f(e1; : : : ; ep)) = min
�
Pr(ei) : 1 � i � p

	
Pr(e1 �p e2) = Pr(e1)�

p
Pr(e2)

where the function �p is de�ned by :

q�
p
q
0 = if q < p then q else p+ q

0

Lemma 3. The three following results are true:

1. If program P typechecks, then function
�

'P is monotone.

2. If program P typechecks, then P is
�

'P-growing.

3. If program P typechecks, then function
�

'P has fixeP as
a �xed point (it is not necessarily its least �xed point).

3.5 Example of a Program Maximal but not
Prefix-computable

Consider

R : x P
�
[| 1 |] �1 x+3 �2 [| 2 |] �3 x

�
: 4 (4)

This program typechecks and we have nx = 4. The solution

51

x

: 4

���

1 1nx+3 nx

x+3

Figure 5: Building of the example (4)

fix R can be computed by a �xpoint iteration of 'R :

'
1(?) = [| 1;?; 2;?|]

'
2(?) = [| 1;?; 2; 1 |]

'3(?) = [| 1; 1; 2; 1 |]

We can also compute the �xpoint of 2 Æ ' :

(2 Æ ')1(?) = [| 1;?;?;?|]

(2 Æ ')2(?) = [| 1;?;?;?|]

(2 Æ ')3(?) = [| 1;?;?;?|]

Therefor, R is not pre�x-computable because fix' and
fix(2 Æ ') di�er. However, R is maximal because

Def(fix') = fixeP = f1; : : : ; 4g 2 V:

The function
�

'R of program (4) is speci�ed by equation:
�

x
�

=
�

'R(
�

x) = min(4; (if A < 3 then A else 3 +
�

x))

where A � if B < 2 then B else 3

and B � 1 + max(0;
�

x� 3)

(after few simpli�cations). The iterates of
�

'R are:
�

'R(0) = 1

and
�

'
2
R(0) =

�

'R(1) = 1. Note that fix
�

'R = 1 < fixeP but
�

'R(4) = 4. We have fixeP �xpoint of
�

P (although it is not
the least one).

3.6 Progressive Program
To determine if a program is maximal and pre�x-compu-

table, the theorem 1 says that it is suÆcient to check that
fix

�

'P � fixeP.
This property can be checked simply by computing the

iterates
�

'
n
P (0). If a �xed point q � fixeP is found, we know

that P is not
�

'-progressive. On the other hand, we �nally
reach a q such that q � fixeP and we know then that the
program is maximal and pre�x-computable.
However, the computation of the iterates can take a long

time as shown by the following example

x P ([| 1 |] �1 x) : m

where m is an arbitrary parameter. The associated function
�

' = �n:min(m;n+ 1) takes m step to converge.
We want to determine directly if fix

�

'P � fixeP without
computing the iterates. This is not obvious in the general
case of a system with several equations because if a program
P is

�

'-growing, this does not imply that
�

'(q) > q. The
example: (

x = '1(x; y) = ([| 0 |] �1 x) : 2 �m

y = '2(x; y) = y+m
(5)

illustrate this fact. One can check that '2(?;?) = ? (for
anym) and therefore this program does not admit a function
�

' whose components are strictly monotone. Note that this

program is pre�x-computable but it is only after iteration
m that y takes a non ? value. However, checking that

�

'
is growing on fixeP is relatively easy for systems reduced to
only one equation.

De�nition 9. We say that a program P is progressive i�
it typechecks and if

�

P is progressive. A system
�

P :
�

x =
�

'(
�

x)
is progressive i� prog(;; 0;

�

x) > 0. The function prog is
speci�ed by induction on the expressions

�

e. The de�nition
is given in �gure 6.

Theorem 2. A progressive program is maximal and pre�x-
computable.

This theorem is one of the achievements of our work. For
instance, prog(;; 0;

�

x) for the program
�

R evaluates in �2.
So the program (4) is not accepted as

�

'R-progressive (and,
indeed, it is not pre�x-computable).

4. IMPLEMENTATION
The concepts and tools developed above have been gen-

eralized and implemented in a Mathematica notebook. This
notebook as well as the formal proofs of the results stated
in this paper are downloadable at www.lri.fr/~giavitto/
DefRec.html . An example of a mathematica session (check-
ing the progression of some programs) is given in �gure 7.
Within this notebook, it is possible to

� specify a system of vector equations P : X = '(X);

� infer the type of each sub-expression in the system;

� compute fix' (by �xpoint iteration);

� compute the iterates of 2', that is (2 Æ ')n(?) and
fix(2 Æ ');

� build the function
�

' and to compute fix
�

';

� check by computing prog if P is
�

'-progressive;

� generate an imperative code which computes the vec-
tor solutions by a �xed series of imperative loops.

The last point corresponds to our target goal of \compil-
ing" recursive vector de�nition in a static C-like code. Here
\static" means: without using the stack, malloc nor recur-
sive functions. Roughly speaking, if a program is progres-
sive, then the solutions can be computed by a loop that
enumerates the vector elements in an increasing order.

5. DISCUSSIONS

5.1 Summary
We have proposed a formal framework to de�ne data struc-

tures in general and arrays in particular by means of sets of
recursive equations. Our proposal depart from the standard
approach by the following points:

1. The concept of data structure we use is not restricted
to algebraic data types;

2. the formalism used to handle data structure emphases
the concept of sub-structure of a data-structure;

3. opposed to functions, a data structure must be a \com-
plete" (or \total") object and must be computed by a
simple scheduling strategy.

52

prog(S; q;
�

x) = if (
�

x 2 S) then q else prog(S [f
�

xg; q; _e)where e such that (
�

x
�

=
�

e) 2
�

P

prog(S; q; p) = p

prog(S; q;max(0;
�

e� p)) = prog(S; q � p;
�

e)

prog(S; q;min(
�

e1; : : : ;
�

ep)) = min
�
prog(S; q;

�

e1); : : : ; prog(S; q;
�

ep)
	

prog(S; q;
�

e1�
p

�

e2) = min(prog(S; q;
�

e1); prog(S; max(p; p+ q);
�

e2))

Figure 6: De�nition of the function prog. This de�nition is also valid in the more general case of a set
�

P of
equations.

The last condition matters: it ensures for instance that the
complexity of the accesses to the element of a data structure
are well de�ned [17].
In this framework, we have expressed some conditions that

enable that the computation of a data structure speci�ed
by an equation can be achieved complying with the sub-
structuring.
If we restrict to algebraic data-type, (we have sketched

a possible approach of of binary trees in section 2.2) the
evaluation strategy is less restrictive than the CAML one but
avoid the freeness of Haskell. The gain is that we can
avoid the lazy evaluation strategy: the scheduling of all the
computation is statically known and the memory resources
can be anticipated. Thus, the technics we have developed
can be integrated as an optimization tools in a functional
language compiler.
We have also illustrated our technics on the case of vectors

which are not an algebraic data type. We have considered
a notion of sub-vector corresponding to the vector trunca-
tion. And we have developed a type system to infer a vector
type that includes the number of elements (in the references,
the approach is extended to full array, with the inference of
the dimension and the number of element in each dimen-
sion). The technics developped here involve combining re-
sults from domain theory and decision procedure for solving
linear equations on integers. They may have interesting ap-
plications in the domain of program veri�cation (when we
want to prove that functions are total).
It is important to notice that the recursive de�nition of

vector are not really allowed in Haskell because the inten-
sional de�nition of a vector uses the following trick. The
function array which enable the building of an array takes
as argument an association list that describes the value of
each index of the array. So the recursive de�nition of an
array really begins by the recursive de�nition of a list and
then proceed with a non recursive array creation.

5.2 Related Work
Focusing on structures as a set of positions or places, in-

dependently of their occupation by values is the main point
of view of the species of structures theory [1]. Motivated
by the development of enumeration techniques for labeled
structures, the emphasis is put on the transport of struc-
tures along bijections in a categorical settings: two isomor-
phic structures can be considered as identical if the nature of
the elements of their underlying sets is ignored. This work
has largely inspirated the presentation of section 2.1.
Considering a data structure independently of its underly-

ing set is interesting for others purposes than combinatorial
enumeration.

For instance, in [10], B. Jay develops a concept of shape
polymorphism. In his point of view, a data structure is also a
pair (shape, set of data). As above, the shape describes the
organization of the data structure and the set of data de-
scribes the content of the data structure. However, his main
concern is the development of shape-polymorphic functions
and their typing. Examples of shape polymorphic functions
are the generalized map or the generalized scan, that can
be computed without changing the data structure organi-
zation. More generally, the shape of the result of a shape-
polymorphic function application depends only on the shape
of the argument, not of its content.

Data �elds, studied e.g. by B. Lisper [15], are a general-
ization of the array data structure where the set of indices is
extended to all Zn (see also [5]. EÆcient implementation of
data-�elds raise the question of the determination of their
de�nition domain [16]; few results exists, mainly based on
tools and results developed in the polyhedral model in the
�eld of automatic parallelization.
More generally, we have introduced the concept of group

based �elds, or GBF [6, 4], to extend data �elds towards
more general regular data structures. A GBF focuses on the
group of displacement between the position of an organiza-
tion. As for standard data �elds, the functions considered
are partial, which makes a big di�erence with the works and
concerns developed here.

The existing works on the inference of the length of a
vector, and more generally of the shape of an array, are
rare when we have developed an algorithm in 1990 for the
81/2 language (the only reference, as far we know, is [19]).
Since then, the subject has been more worked out, see for
instance [12, 20, 11].

The pioneering work of [18], introduces the idea of produc-
tive recursive de�nitions: the de�nition of list l is productive
if each element of l can be computed within a �nite amount
of time. For lists, and more generally for data structure, the
notion of being productive coincide with the notion of being
maximal. A function is said productive i� the image of a
productive element is productive.
Our notion of pre�x-computability is �ner: e.g. the exam-

ple (4) is productive but not pre�x-computable. This is due
to the focus we put on the sub-structure compliant ordering
of the computations. This enables the generation of a static
code to solve the de�nitions. We also provide an explicit
check, through the inference of

�

'P and the function prog,
that a program is progressive. Note that the productivity of
in�nite list de�nition is similar to the problem of detecting
deadlock in data-
ow programs, a problems handled in [21]
and [13]. All these works are mainly motivated by the anal-

53

ysis of in�nite list de�nition and then the results developed
do not take into account the bounded aspect of �nite data
structures.

6. PERSPECTIVES
Directions for future work suggest themselves. It remains

to instantiate the framework presented here to other data
structures (trees have been sketched). There is also a need
to consider several order vO. For example, the de�nition

riota P (riota+1 �
1
n) : n

may de�ne a vector equal to iota but computed in the reverse
order (when �p is adequately de�ned and with a \suÆx"
sub-structuring).
Some interesting question are raised by the connection

with the concrete data structure introduced in the study of
sequentiality in the �-calculus [2]. The connection would be
investigated, however our goal is not to determine a strictly
sequential scheduling of the computation, but to infer if a
scheduling compatible with the O ordering leads to the same
results as the unconstrained computation of the �xpoint.
On the theoretical side, it would be interesting to know if

pre�x-computability can be linked with the ordering induced
on >O by O through the functions j. Formally, O exhibits
a structure of abstract simplicial complex, which open the
way to a topological approach of data structures.

7. ACKNOWLEDGMENTS
The author would like to thanks Olivier Michel for assis-

tance, inventive arguments and continuous support. He is
also grateful to Paul Feautrier for stimulating discussions.
This research has been supported by the french GDR ALP
and ARP.

8. REFERENCES
[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial

species and tree-like structures, volume 67 of
Encyclopedia of mathematics and its applications.
Cambridge University Press, 1997. isbn 0-521-57323-8.

[2] P.-L. Curien. Categorical combinators, sequential
algorithms and functional programming. Research
notes in theoretical computer science. Pitman, 1986.
Second, revised edition, Birkhauser (1993).

[3] J.-L. Giavitto. Typing geometries of homogeneous
collection. In 2nd Int. workshop on array
manipulation, (ATABLE), Montral, 1992.

[4] J.-L. Giavitto. Rapport scienti�que en vue d'obtenir
l'habilitation diriger des recherches, May 1998.
http://www.lri.fr/~giavitto/Export/habilitation -
anglais.ps.gz.

[5] J.-L. Giavitto, D. De Vito, and J.-P. Sansonnet. A
data parallel Java client-server architecture for data
�eld computations over ZZn. In EuroPar'98 Parallel
Processing, Lecture Notes in Computer Science, Sept.
1998.

[6] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group
based �elds. In I. Takayasu, R. H. J. Halstead, and
C. Queinnec, editors, Parallel Symbolic Languages and
Systems (International Workshop PSLS'95), volume
1068 of Lecture Notes in Computer Science, pages

209{215, Beaune (France), 2-4 October 1995.
Springer-Verlag.

[7] J.-L. Giavitto, J.-P. Sansonnet, and O. Michel. Infrer
rapidement la gometrie des collections. In Workshop
on Static Analysis, Bordeaux, 1992.

[8] C. A. Gunter and D. S. Scott. Handbook of Theoretical
Computer Science, volume 2, chapter Semantic
Domains, pages 633{674. Elsevier Science, 1990.

[9] P. Hudak et al. Report on the programming language
HASKELL a non-strict, purely functional language,
version 1.3. Yale University, CS Dept., May 1996.

[10] C. B. Jay. A semantics of shape. Science of Computer
Programming, 25(2{3):251{283, 1995.

[11] C. B. Jay and M. Sekanina. Shape checking of array
programs. Technical Report 96.09, University of
Technology, Sydney, 1996.

[12] A. Kennedy. Dimension types. In D. Sannella, editor,
Programming Languages and Systems|ESOP'94, 5th
European Symposium on Programming, volume 788 of
Lecture Notes in Computer Science, pages 348{362,
Edinburgh, U.K., 11{13 Apr. 1994. Springer.

[13] E. A. Lee and D. G. Messerschmitt. Synchronous
data
ow. Proc. of the IEEE, 75(9), Sept. 1987.

[14] X. Leroy. The caml light system, release 0.6
documentation and user's manual. Technical report,
INRIA, Sept. 1993.

[15] B. Lisper. On the relation between functional and
data-parallel programming languages. In Proc. of the
6th. Int. Conf. on Functional Languages and
Computer Architectures. ACM, ACM Press, June
1993.

[16] B. Lisper and J.-F. Collard. Extent analysis of data
�elds. Technical Report TRITA-IT R 94:03, Royal
Institute of Technology, Sweden, January 1994.

[17] C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, Cambridge, UK, 1998.

[18] B. A. Sijtsma. On the productivity of recursive list
de�nitions. ACM Transactions on Programming
Languages and Systems, 11(4):633{649, October 1989.

[19] S. Thatte. A type system for implicit scaling. Science
of computer programming, 17:217{245, 1991.

[20] E. Violard. Typechecking of PEI expressions. In
C. Lengauer, M. Griebl, and S. Gorlatch, editors,
Euro-Par'97 Parallel Processing, Third International
Euro-Par Conference, number 1300 in LNCS, pages
521{529, Passau, Germany, August 1997.
Springer-Verlag.

[21] W. W. Wadge. An extensional treatment of data
ow
deadlock. Theoretical Comput. Sci., 13(1):3{15, 1981.

54

In[223]:= ex2 Sys#
fib +0� +fib : 9// � +�0, 1� � +fib : 8//,
fibo �0, 1� � +++fibo : �9/ : 8/ � +fibo : 8// '

Out[223]= � fib 0 � +fib : 9/ � �0, 1� � +fib : 8/
fibo �0, 1� �++fibo : 8/ � ++fibo : �9/ : 8// !

In[224]:= Progression#ex2'

Out[224]= �fib � 1, fibo � 1�

In[225]:= CompileSys#ex2'

XModule#�fib Table#0, �10�'�,
Do#fib3i7 If#i � 1, 0, XGet#fib, �1 � i'' � If#i � 2, XGet#�0, 1�, i', XGet#fib, �2� i'', �i, 10�';

XPrint#solution of , Unevaluated#fib', is: , fib'; XModule#�fibo Table#0, �10�'�,
Do#fibo3i7 If#i � 2, XGet#�0, 1�, i', XGet#fibo, �2� i' � XGet#fibo, �1� i'', �i, 10�';
XPrint#solution of , Unevaluated#fibo', is: , fibo'; XPrint#system solved'''

solution of fib is: �0, 1, 1, 2, 3, 5, 8, 13, 21, 34�

solution of fibo is: �0, 1, 1, 2, 3, 5, 8, 13, 21, 34�

system solved

In[226]:= ex4 Sys#u +�6, 7�� +u : �8// : 10'

Out[226]= �u �6, 7�� +u : �8/ : 10�

In[227]:= Progression#ex4'

Out[227]= �u � 0�

In[228]:= Evalue#ex4'

Fct u � evalCut#evalJoin#�6, 7�, evalCut#evalVar#u, ARG', �8'', 10'

Out[228]//TableForm=

u � �Ä, Ä, Ä, Ä, Ä, Ä, Ä, Ä, Ä, Ä�

u � �6, 7, Ä, Ä, Ä, Ä, Ä, Ä, Ä, Ä�

u � �6, 7, Ä, Ä, Ä, Ä, Ä, Ä, Ä, Ä�

In[229]:= ex7 Sys#riota ++riota : �4/ � 1/ �4'

Out[229]= �riota ++riota : �4/ � +�1/ / � 4 �

In[230]:= Progression#ex7'

Out[230]= �riota � �1�

In[231]:= Evalue#ex7'

Fct riota� evalJoin#evalPlus#evalCut#evalVar#riota, ARG', �4', ��1�', �4�'

Out[231]//TableForm=

riota � �Ä, Ä, Ä, Ä, Ä�

riota � �Ä, Ä, Ä, Ä, 4�

riota � �Ä, Ä, Ä, 3, 4�

riota � �Ä, Ä, 2, 3, 4�
riota � �Ä, 1, 2, 3, 4�

riota � �0, 1, 2, 3, 4�

riota � �0, 1, 2, 3, 4�

Untitled-1 1

Figure 7: Example of a Mathematica session. The technics presented in this paper have been extended to handle systems of
equations. For instance, ex2 is a system that de�nes two vectors : fib and fibo. An expression A:-p corresponds to A+p in
this paper and fa, bg corresponds to [| a; b |]. The expression Progression[ex2] computes the progressions of de�nitions in
system ex2 (following the speci�cation given in �g. 6). These progressions are all positive, which means that the two vectors
are pre�x-computable. The expression CompileSys[ex2] gives an imperative pseudo-code which computes the solution. The
evaluation on-the-
y of this pseudo-code returns the expected solution. The progression of ex4 is negative which means that
this program cannot be solved by a left-to-right computation. A rapid inspection of the equation shows that the dimension
of u is 10. However, the �xed point evaluation triggered by Evalue[ex4] shows that this program is not totally de�ned on
f1; : : : 10g. The successive iterations of 'ex4 are showed until a �xpoint is reached. A \2" in the vector notation means an
unde�ned element ?. Program ex7 de�nes the vector riota mentioned in section 6. The computed progression is negative,
which means that the solution cannot be computed by computing the elements in the order of the increasing indices. However,
the �xed point evaluation shows that riota is maximal on f1; : : : ; 5g.

55

