Non-Standard Multiset

Jean-Louis Giavitto
IRCAM umr 9912 CNRS – UPMC & INRIA projet MuSync
Gamma and beyond

• Gamma considers seriously multiset (rewriting) for programming
• However, sometimes even multisets lack of structures
• Hence:
 – Structured Gamma
 – HOCL
 – negative (abelian group) and infinite multiplicities
 – MGS
 – ... ?
• Gamma is a unconventional language but based on conventional multiset. Can we parallel set theory: Non well founded multisets?
From hydromel to hyperset (according T. Forster)

- Hydromel is made of chouchen and chufere
- Chouchen is made of pure hydromel
- Chufere is made of hydromel and chouchen

⇒ Hydromel is made of hydromel (right!)
But how distinguishing between hydromel and chouchen?

\[
\begin{align*}
\text{hydromel} &= \{ \text{chouchen}, \text{chufere} \} \\
\text{chouchen} &= \{ \text{hydromel} \} \\
\text{chufere} &= \{ \text{hydromel}, \text{chouchen} \}
\end{align*}
\]
Hyerset (= non-well-founded set)

- A set b is a hyperset if there exists an infinite descending sequence
 \[\ldots a_{n+1} \in a_n \in a_{n+1} \in \ldots \in a_{n+1} \in b \quad (\text{illfounded}) \]
- $J = \{ J \}$
- Standard set theory (ZFC): every set is well-founded
- (FA) $\Rightarrow x \neq [x, y]$ and $y \neq [x, y]$ for any x and y

C struct with pointers

```c
struct C = {
    C* x;
    int y;
}
C X; X.x = &c; X.y = 1;

type ('a, 'b) pair = Pair of 'a * 'b;; let rec x = Pair(x, 1);;
```
Non Standard Multiset (following Louis Kauffman for hyperset)

- Non standard Multiset (NSM) as
 - Words
 - Planar subsets
 - Graphs

- Tools from
 - Language theory
 - Topology
 - Diagrams

to investigate NSM
and check that there is no dangers
Words on parenthesis and the nesting of sets

• A finite word E on $\{\{,\}\}$ is well-formed iff

 – E is empty.

 – $E = \{F\}G$ where F and G are well-formed

• A finite ordered multiset is an expression

 \[S = \{T\} \]

 where T is well-formed
 thus $T = A_1 A_2 \ldots A_n$ where the A_i are the elements of S, are finite ordered multiset

• Finite multisets are the equivalence classes generated by
 $XY = YX$ where X and Y are well formed

• Example:

 $S = \{\{\}\} \{\{\}\}\}$ multiset with 2 elements $\{\} \ et \ \{\{\}\}\}$
 $X = \{\{\}\} \{\} \{\} \} \}$ (three times the same element)
Trees and boxes

- Multisets can be represented by trees
- Multisets can be represented by boxes
 (you can move and stretch the boxes but not cross them)
Forms and Non Standard Multisets (NSM)

- **Forms** are (eventually infinite) collections of rectangles such that two rectangles are either disjoints or one included into the other.

- **NSMs** are (eventually infinite) collections of rectangles:
 - there is one outermost rectangle R
 - the elements inside R are disjoint unions of elements of NSM

- **NSM** are framed forms: $\text{NSM} = \{ \text{Form} \}$
- The simplest example : $J = \{ J \}$

\[
J = \{ \{ \{ \{ \{ \{ \{ \ldots \} \} \} \} \} \} \} \}
\]
Two NSM (form) are equal if you can superpose them (= if they are homeomorph in the plane)
NSM defined by a set of recursive equations

\[A = \{ \{ \} \} B \]
\[B = \{ A \} \]

\[A = \{ \{ \} \} B \]
= \{ \{ \} \} \{ A \}
= \{ \{ \} \} \{ \{ \} \} \{ A \}
= \ldots \]
Recursive notation

• \(J = \{J\} \)

• \(A = \{B\} \) and \(B = \{A\} \) thus \(A = \{\{A\}\} \)

• \(F = \{\{F\}\} F \)
Number of divisions of a Form

• The number $[X]_n$ of divisions of a form X at depth n

 $[XY]_n = [X]_n + [Y]_n$

 $[{\{X}\}}]_n = [X]_{n-1}$

• For $F = \{ \{F\} F\}$:

 $[F]_n = [{\{F\}}]_{n-1} + [F]_{n-1}$

 $= [F]_{n-2} + [F]_{n-1}$
NSM defined by a finite set of recursive equations
= directed graph (à la Aczel)
They are more NSM than finite directed graphs
Do we avoid the Russel Paradox?

- We do not refer to the set of all multisets
- An axiomatic definition of NSM will enforce hereditarily constructions. Here, this is achieved by putting in the plane already pictured NSMs.
- NSM are limits of well-founded multisets (NSS à la Aczel are less than the limits of well-founded sets)
- We can defines the Russel set of a multiset M
 \[r(M) = \{ x \in M \mid x \notin x \} \]
- ZFC: $r(M) = M$
 This is not necessarily true for NSM

<table>
<thead>
<tr>
<th>M</th>
<th>$r(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J = {J}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$b = {1, b}$</td>
<td>${1}$</td>
</tr>
<tr>
<td>$b = {0, {1, b}}$</td>
<td>$b = {0, {1, b}}$</td>
</tr>
</tbody>
</table>
From Form to Boolean Algebra...

• From NSM to SET:
 add the equivalence $XX = X$

• From form to (almost) Boolean algebra
 – add $\{\{\}\} = \emptyset$
 – Example: $\{\{\}\}\{\} = \{\}$
 – Interpret
 • $\{X\}$ as the negation of X
 • XY as the disjunction “X or Y”
 • $\{\{X\}\{Y\}\}$ as the conjunction “X and Y”
 • $\{\}$ as true and $\{\{\}\}$ as false
 – They are more values than just true and false: the infinite forms
 – Infinite forms give solution to equation like
 $P = \neg(P)$ that is $P = \{P\}$
 (very similar to the extension of \mathbb{R} to \mathbb{C} to give solution to $x^2 = -1$)
From Form to Knot...

• add the equivalence $XX = _$.
 (cancellation of pair instead of condensation)
Reidemeister Moves

- Move 1: enables self-membership
- Move 2: pairs of elements disappear. So: $X = \{C\} = \{X \times C\}$ thus, look membership only in the reduced knot
- Move 3: does not change memberships
Ribon twist
Reidemeister Moves

• Move 1: enables self-membership
• Move 2: pairs of elements disappear. So: \(X = \{C\} = \{X \times C\} \) thus, look membership only in the reduced knot
• Move 3: does not change memberships
For instance...

Borromean rings fall apart upon the removal of any one of the triplet

\[
\begin{align*}
 a & \in b \\
 b & \in c \\
 c & \in a
\end{align*}
\]

\[
\begin{align*}
 a & = \{c\} \\
 b & = \{a\} \\
 c & = \{b\}
\end{align*}
\]
Space, intrinsically
Graphs, intrinsically

• Graph $G = (V, E)$ avec $E \subseteq V \times V$

• This definition is \textit{extrinsic}

V pre-exist to the graph.

– What we want is vertices that are only the organization between them, as co-existence, not as pre-existence.

– In addition, vertices have a position only relatively to the others vertices, not an absolute position (Leibniz vs. Newton)

• My motivation come from biological development where the organism build its own space
Leibniz vs. Newton
Leibniz vs. Newton

\[x \Rightarrow . \]
Leibniz vs. Newton

\[x \Rightarrow . \]
A graph

- is a pair (V, E) where V est is a set of vertices and E is a set of edges
- An edge E is a pair of vertices
- a vertex V is a pair (I, O) where I is the set of the ingoing edges and O is a set of the outgoing edges
Un graphe en soi : exemple

\[
\begin{align*}
\text{a} & \quad \text{c} \\
\text{d} & \quad \text{b} \\
\text{e} &
\end{align*}
\]
Un graphe en soi : exemple bis
Simplicial Complex

Brep
Gmap

...
Relational spaces

• A space is a closed world

• Each point in space is an observer of the other points

• Each point has its identity from the relationships it has with the other points

• This is not far from the concept of monad in Leibniz
Towards a formalization

• Which mathematical object may specify the internal structure of the points?

\[
\begin{align*}
a &= \{ b, d, c \} \\
b &= \{ d, c, a \} \\
c &= \{ a, b, d \} \\
d &= \{ c, a, b \}
\end{align*}
\]

• We need **multisets** because the equations are symmetric for all variable permutations and so \(a = b = c = d \)

• In fact we need more: a surface (not a graph, even if a surface can be “coded” by graph, cf. V-V system)

• But it is enough for a first approach
A 4-point space
• Dans un « GBF » (graphe de Cayley) tous les points sont indistingables (il y a un automorphisme qui transforme un point en n’importe quel autre)

• Suivant Leibniz : tous les états indistingables sont identifiés

• Barbour et Smolin se sont intéressés aux graphes de variété maximale dans le contexte de la physique (un tel graphe = un état intrinsèque de l’univers). On peut même définir des plus maximaux que d’autres avec le diamètre (l’horizon) nécessaire à distinguer les sommets.
A metaphysical conclusion
Les ensembles non-standards via Paul Finsler

• Ses travaux sur les ensembles circulaires l’invite à identifier un élément à une classe et, en l’occurrence, chaque homme à l’humanité tout entière.

• Ses travaux sur les espaces de Riemann lui montrent que le fini n’est pas nécessairement limité.

• De sorte qu’il imagine que l’autre vie n’est que la vie des autres.