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1 Introduction

I take the opportunity given by this invited talk to promote two ideas: (1) a
topological point of view can fertilize the notion of rewriting and (2) this topo-
logical approach of rewriting is at the core of the modeling and the simulation
of an emerging class of dynamical systems (DS): the DS that exhibit a dynamical
structure (or (DS)2 in the rest of this paper).

This presentation is based upon the results of two research projects, 81/2
and MGS, that I have pursued hand in hand with Olivier Michel. The results
and software tools presented here belong also to him and have been elaborated
thanks to our long and fruitful collaboration.

I have voluntarily adopted in this presentation an informal style, including
some non-technical considerations. Thus, the reader must take the opinions,
subjective statements and positions expressed here with a grain of salt. For the
technical details, he may refer to the papers published elsewhere. The MGS home
page : http://mgs.lami.univ-evry.fr is a good starting point.

This presentation is organized as follows. Section 2 tries to develop an alter-
native understanding of the concept of a data structure: a data structure can be
seen as a space where the computation moves following some path. This point
of view is exemplified in section 3 on the design of a uniform data structure.
The result, called a GBF, is funded on the group generated by the elementary
moves (or displacements) in the data structure. The section 4 introduces the
MGS experimental language used to investigate the idea of associating compu-
tations to paths through rules. The application of such rules can be seen as a
kind of rewriting process on a collection of objects organized by a topological
relationship (the neighborhood). Simple examples of MGS programs are given in
section 4.4. However, a privileged application domain for MGS is the modeling
and simulation of dynamical systems that exhibit a dynamic structure. Section 5
sketches this point and gives a short presentation of several models. We review
to conclude some related and future work.
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2 Data Structures as Spaces

The fundamental concept of data structure is ubiquitous in computer science as
well as in all branches of mathematics. Its characterization is then not easy. Some
approaches emphasize on the construction of more sophisticated data structures
from basic ones (e.g. domain theory); other approaches focus on the operations
allowed on data structures (e.g. algebraic specification).

Species of structures. In [BLL97], a data structure s is presented as an organiza-
tion or an arrangement o performed on a data set D. Quoting the introduction
we can say that it is customary to consider the pair s = (o,D) and to say that
s is a structure o of D (for instance a list of int, an array of float, etc.). It is
outlined that a customary approach consists in working with these pairs in the
framework of axiomatic set theory. For example, the set G of simple directed
graphs (directed graphs without multiple edges) can be defined by:

s = (o, D) ∈ G ⇔ o ⊆ D ×D

This traditional approach consider equally the structure o and the set D and
does not stress the structure o as a set of places or positions, independently of
their occupation by elements of D. This last point of view is taken into account
by the less traditional approach of species of structures [BLL97] motivated by
the development of enumeration techniques and counting problems.

Space of a data structure. This point of view is also fruitful, even if one is not
interested in counting the instances of a data structure. As a matter of fact, a
lot of algorithms are structured following the structure of their data input or
their data output and are largely insensitive to the precise values in their data
set. This is obviously true for all polymorphic and polytypic functions, like map,
fold, etc. [MFP91]. The notion of shape [Jay95] and shape type [FM97] also
separates the set of places of a data structure from the values it contains.

Once we do not focus on the values manipulated in a program, we can analyze
the previous notions as attempts to specify classes of moves or paths related
to a given data structure. For example, there are two kinds of fold on lists:
fold left traverses the list from the head to the tail, and fold right goes
in the reverse direction. Another example: a shape type in [FM97] is defined
as a grammar specifying the admissible paths resulting from following pointers
in C data structures. So, in our context, the point of view is topological rather
than combinatorial: a data structure can be seen as a space, the set of places
or positions between which the programmers, the computation and the values,
move.

At last, the notion of move or path relies on some notion of neighborhood :
moving from one point to a neighbor point. Although speaking of neighborhood
in a data structure is not usual, the relative accessibility from one element to
another is a key point usually considered in a data structure. For example:

– In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).
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– In a circular buffer, or in a double-linked list, computation goes from one
element to the following or to the previous one.

– From a node in a tree, we can access the sons.
– The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
– In a record, the various fields are locally related and this localization can be

named by an identifier.
– Neighborhood relationships between array elements are left implicit in the

array data structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
For example (i−1, j) is the index used to access the “north neighbor” of point
(i, j) (we assume that the “north” direction is mapped to the first element
of the index tuple). The standard example of index algebra is integer tuples
with linear mappings λx.x±1 along each dimension (called “Von Neumann”
or “Moore” neighborhoods). More than 99% of array references are affine
functions of array indexes in scientific programs [GG95].

This list of examples can be continued to convince ourselves that a notion of
logical neighborhood is fundamental in the definition of a data structure. The
concept of logical neighborhood in a data structure is not only an abstraction
perceived by the programmer and vanishing at the execution, but it does have
an actual meaning for the computation. The computation indeed complies with
the logical neighborhood structure of the elements. For instance, recursive com-
putations on a data structure respect so often the logical neighborhood, that
standard high-order functions can be automatically defined from the data struc-
ture organization (think about catamorphisms and others polytypic functions
on inductive types [FS96, NO94]).

Paths and Computations. In a sequential computation, elements of the data
structure are visited one after the other. We assume that if element e′ is visited
just after element e in a data structure s, then e′ must be a neighbor of e in
some (concrete or abstract) way. We call the move from e to e′ a shift and the
succession of visited elements makes a path in s. The idea of sequential path can
be extended to include parallel modes of computations: multi-dimensional paths
must be used instead of one-dimensional paths [GJ92].

To summarize our presentation, we assume that a computation induces a
path in a space defined by the neighborhood relationships between the elements
of a data structure. At each shift, some elementary computation is done. Each
topological operation used to build a path can then be turned into a new control
structure that composes program fragments.

This schema is presented in an imperative setting but can be easily rephrased
into the declarative programming paradigm by just specifying the linking of com-
putational actions with path specifications. When a path specification matches
an actual path in a data structure, then the corresponding action is triggered.
It is very natural, especially in this topological framework, to require that the
results of the computational action be local : the corresponding data structure
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transformation is restricted to the value of the the elements involved in the path
and eventually to the organization of the path elements and their neighborhood
relationships. Such transformation is qualified as local.

This declarative schema induces a rule-oriented style of programming: a rule
defines a local transformation by specifying the path to be matched and the
corresponding action. A program run consists in the transformation of a whole
data structure by the simultaneous application of local transformations to non-
intersecting paths. Obviously, such global transformation can then be iterated.
Figures 1, 2 and 3 present three examples of algorithms where this topological
emphasis is particularly relevant.

Rewriting and the Topological Approach. This topological approach shares many
features with the idea of rewriting. Indeed, we can suppose that the computa-
tional action linked to a path is to replace this path by another one: this is the
case for the four previous examples. Then, we retrieve the idea of rewriting, see
figure 4 and 5, except that usually rewriting is described as the substitution of
some sub-structure by another one (e.g. a sub-term by another term). What we
gain with the topological emphasis is to focus on paths in the data structure
instead of sub-structures 1. Is this a real gain ?

The purpose of the MGS research project is to answer this question. To have
a positive answer we have to show that:

1. it is possible to define a data structure through the specification of the
neighborhood of its elements,

2. it is possible to define the substitution of a path by another one and to
control the substitution strategy,

3. and this is useful in some application area.

The next section sketches the notion of Group Based Datafield (GBF) and is
an example of a positive answer to question 1. This example is important also
because it integrates the array data structure, which opens the way to array
rewriting and gives at least one answer to question 3. The section 4 introduces
an experimental language, called also MGS, used to investigate the design space
of question 2. The section 5 shows the use of the previous tools in the domain of
dynamical systems modeling (especially in biology) and provide another answer
to question 3.

3 The Example of Uniform Neighborhood Data
Structures : GBF

From now on, we use the term topological collection to stress the topological
organization of the data structure’s elements. In this section, we will sketch
a possible design for uniform topological collections. A topological collection
is uniform if every element of the data structure has the same neighborhood
1 see however [Gia00].
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structure. More precisely, we assume in this study that: (1) the set of places
filled by the elements of the data structure is predefined (i.e. preexists to any
occurrence of the data structure), and (2) the shifts followed to go from some
place to a neighbor place can be named and (3) that the set G of shift’s names,
called directions, is the same for all places (like for example a “next neighbor”
and a “previous neighbor” that exist for each element in a circular list).

The Group Structure of Uniform Neighborhood. Let “a”, “b”, “c”. . . be the direc-
tion’s names and let P 〈a〉 be the “a” neighbor of the element P . Displacement
operations can be composed: using a multiplicative notation, we write P 〈a.b〉 for(
P 〈a〉)〈b〉. Displacement composition is associative. We note 1 the null displace-

ment, i.e. P 〈1〉 = P . Furthermore we will define a unique inverse displacement
a−1 for each displacement a such that P 〈a.a−1〉 = P 〈a−1.a〉 = P . In other words,
the displacements constitute a group G for the displacement composition, and
the application ·〈·〉 of the displacements to the places is the action of the group
over the places of the data structure. The simplest choice for the set of places P
and the corresponding action is to let P = G and P 〈a〉 = P.a (the group acts
transitively on itself).

We assume that the group G is specified through a finite presentation with
generators G (and G denotes indifferently the group and its presentation). Then,
the discrete space spawned by G acting on itself is conveniently described by the
Cayley graph associated to the presentation. See figure 6 for a dictionary between
graph theory and group related concepts.

Group Indexed Data Structure. A GBF is an extension of the notion of array,
where the elements are indexed by the elements of a group [GMS95, GM01a]. A
GBF value g of type G is a partial function with a finite definition domain2 that
associates a value to some group elements. The group elements are the places of
the collection. Thus the empty GBF is the everywhere undefined function. The
acronym GBF stands for Group Based Datafield. The formalization of a data
structure as a function is not new; it constitutes for instance, the foundation
of the theory of data fields [Lis93] and is heavily used in [Gia00]. In computer
science, it is common to think about a function as a rule to be performed in order
to obtain a result starting from an argument: this is the intensional notion of
functions. Here, we better rely on the extensional notion: a function is a set of
pairs relating the argument and the result. This is closer to the concept of a
data structure: for instance, an array tabulates the relationship between the set
of indices and the array elements and a GBF tabulates the relationship between
the set of places G and their values (this is why GBFs are required to have a
finite definition domain). We insist that the view of data structures as functions
is only logical and appears only at the level of the data structure definition. It
does not assume anything on the data structure implementation.

2 The definition domain of g is the subset of G of the elements having a well defined
image by g.
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GBF in MGS. Here is an example. The finite presentation

gbf Grid2 = < north, east >

introduces in MGS (see section 4) a new collection type called Grid2 , corre-
sponding to the Von Neumann neighborhood in a classical array (a cell above,
below, left or right – not diagonal) see figure 7. The two names north and east
refer to the directions that can be followed to reach the neighbors of an element.
These directions are the generators of the underlying group structure. The <
and > brackets are used for the presentation of Abelian groups and to avoid the
explicit writing of the commutation equations. In this presentation, there is no
explicit equation (beside the implicit commutation of the generators): Grid2 is
a free Abelian group.

The following declaration defines a non-free Abelian group:

gbf Hexagon = < east, north, northwest; east + north = northwest >

The Cayley graph of Hexagon defines an hexagonal lattice that tiles the plane,
see figure 7 and 8. Each cell has six neighbors (following the three generators
and their inverses). The equation east + north = northwest specifies that a
move following northwest is the same has a move following the east direction
followed by a move following the north direction.

Uniform neighborhood and classical data structures. Free groups with n genera-
tors correspond to n-ary trees and Abelian GBF corresponds to twisted and cir-
cular grids (the free Abelian group with n generators generalizes n-dimensional
arrays). Thus, GBF are able to describe in the same formalism both tree and
array, a feature not available with regular inductive data types.

GBF Implementations. Accessing the value associated to a group element re-
quires the comparison of generator words modulo the equation of the GBF: this
is the word problem for groups and it is undecidable in general. However, for
large and interesting families of groups (e.g. free groups, Abelian groups, au-
tomatic groups) the problem is solvable. Actually the MGS implementation is
restricted to Abelian groups.

4 Topological Collections and their Transformations

In this section, we want to show how a declarative programming style, based
on rules and a general notion of rewriting, can be developed on topological
collections like the GBF presented in the previous section. The topological ap-
proach sketched in section 2 is investigated through an experimental declarative
programming language called MGS [GM01c, GM02b]. MGS embeds the idea of
topological collections and their transformations into the framework of a simple
dynamically typed functional language. Collections are just new kinds of values
and transformations are functions acting on collections and defined by a specific
syntax using rules. Functions and transformations are first-class values and can
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be passed as arguments or returned as the result of an application. MGS is an
applicative programming language: operators acting on values combine values to
give new values, they do not act by side-effect. In our context, dynamically typed
means that there is no static type checking and that type errors are detected
at run-time during evaluation. Although dynamically typed, the set of values
has a rich type structure used in the definition of pattern-matching, rule and
transformations.

Transformation of a Topological Collection. The global transformation of a topo-
logical collection C consists in the parallel application of a set of local transfor-
mations. A local transformation is specified by a rewriting rule r that specifies
the change of a subcollection. The application of a rewrite rule r = β ⇒ f(β, ...)
to a collection C:

1. selects a path B of C whose elements match the path pattern β,
2. computes a new collection B′ as a function f of B and its neighbors,
3. and specifies the insertion of B′ in place of B into C.

In the rest of this section, we first describe the topological collection types
available in MGS beside the GBF. We introduce the notion of “Newtonian” and
“Leibnizian” collection, because this distinction is crucial for the behavior of rule
application. Subsection 4.2 sketches the most common pattern that can be used
in the left hand side (l.h.s.) of a rule. Then we discuss some of the application
strategy available in MGS. Finally, subsection 4.4 gives some simple examples of
real MGS program.

4.1 Newtonian and Leibnizian Collection Types

There are several predefined collection types in MGS, and also several means
to construct new collection types. The collection types can range in MGS from
totally unstructured with sets and multisets to more structured with sequences
and Abelian GBFs, Delaunay neighborhood and graphs (other topologies are cur-
rently under development). For any collection type T, the corresponding empty
collection is written ():T. Elements in a collection T can be of any type, including
collections, thus achieving complex objects in the sense of [BNTW95]. The name
of a type is also a predicate used to test if a value has this type: T(v) returns
true only if v has type T.

Monoidal Collections. Set, multiset (or bag) and sequences are members of the
monoidal collection family. As a matter of fact, a sequence (resp. a multiset)
(resp. a set) of values can be seen as an element of the free monoid (resp. the
commutative monoid) (resp. the idempotent and commutative monoid). The
join operation in V ∗ is written by a comma “,” and induces the neighborhood
of each element: let E be a monoidal collection, then elements x and y in E
are neighbors iff E = u,x,y,v for some u and v. This definition induces the
following topology:
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– for sets (type set), each element in the set is neighbor of any other element
(because of the commutativity, the term describing a set can be reordered
following any order);

– for multiset (type bag), each element is also neighbor of any other (however,
the elements are not required to be distinct as in a set);

– for sequence (type seq), the topology is the expected one: an element not at
the end has a neighbor at its right.

The comma operator is overloaded in MGS and can be used to build any monoidal
collection (the type of the arguments disambiguate the collection built).

Newtonian and Leibnizian Collection Types. Coming back to the idea of seeing
a data structure as a space, we can note a great difference between the “kind of
space” involved by the GBFs and the monoidal collections. The two concepts of
space involved by these data structure may be contrasted as follows:

1. in a GBF, the underlying space preexists (as the Cayley graph of the finite
presentation) and is thought as a container for the collection elements;

2. in a monoidal collection, e.g. a set, the underlying space exists only by the
virtue of the elements present in the collection.

The first notion as been advocated by Newton in opposition with Leibniz and
Huygens [Jam93]. The last attributes a positional quality to the elements. In
this approach, there is no such things like an empty place3.

This distinction has several impacts on the management of the data struc-
tures. Consider the rule:

x, y ⇒ x

Intuitively it defines the erasure of an element y neighbor of an element x. This
does not raise any difficulty in a Leibnizian collection: applied one time to a set
with a cardinal greater than 2, this rule removes one randomly chosen element.
However, in a Newtonian collection like an array, the erasure of y leave an empty
cell, because the cell itself cannot disappear without breaking the neighborhood.
The content of an empty cell is the special value <undef>.

Another distinction is that Newtonian collections correspond to an absolute
space, where the place can be named, denoted and used in all the collections
with the same type. There is no such thing for a Leibnizian collection: e.g. there
is no notion of absolute place for the element of a multiset.

4.2 Path Patterns

A path is a sequence of elements and thus, a path pattern Pat is a sequence or a
repetition Rep of basic filters. A basic filterBfilt matches one element in a GBF.

3 An empty set/seq/bag is a space of a certain kind without any place, and not an
empty space.
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The grammar of path patterns reflects this decomposition:

Pat ::= Rep | Rep Dir Pat | Pat as id | (Pat)
Rep ::= Bfilt | Bfilt/exp | Bfilt Dir+
Bfilt ::= cte | id | | <undef>
Dir ::= , | |u1, ..., un>

where cte is a literal value, id ranges over the pattern variables, exp is a boolean
expression, and ui is a word of generators of a GBF. The following explanations
give a systematic interpretation for these patterns.

literal: a literal value cte matches an element with the same value. For example,
123 matches an element in a GBF with value 123.

empty element the symbol <undef> matches an element with an undefined
value, that is, an element whose position does not belong to the support of
the GBF. The use of this basic filter is subject to some restriction: it can
occur only as the neighbor of a defined element.

variable: a pattern variable a matches exactly one element with a well defined
value. The variable a can then occur elsewhere in the rest of the rule and
denotes the value of the matched element.
If the pattern variable a is not used in the rest of the rule, one can spare
the effort of giving a fresh name using the anonymous filter that matches
any element with a defined value. The position of a is accessible through the
expression pos(x).

neighbor: b dir p is a pattern that matches a path with first element matched
by b and continuing as a path matched by p with the first element p0 such
that p0 is neighbor of b following the dir direction. The specification dir of
a direction is interpreted as follows:
— the comma “,” means that p0 and b must be neighbors.
— the direction |u1, ..., un> means that p0 must be a u0-neighbor or a

u1-neighbor or ... or a un-neighbor of b;
For example, x, y matches two connected elements (i.e., x must be a neighbor
of y). The pattern

1 |east> |north,east> 2
matches three elements. The first must have the value 1 and the third the
value 2. The second is at the east of the first and the last is at the north or
at the east of the second.

guard: p/exp matches a path matched by p if boolean expression exp evaluates
to true. For instance, x, y / y > x matches two neighbor elements x and y
such that y is greater than x.

naming: a sub-pattern can be named using the as construct. For example, in
the expression (1, x |north>+ , 3) as P, the variable P is binded to the
path matched by 1, x |north>+, 3.

repetition: pattern b dir+ matches a non-empty path b dir b dir ...dir b. If
the basic filter b is a variable, then its value refers the sequence of matched
elements and not to one of the individual values. The pattern x+ is an ab-
breviation for “( ,+) as x”.
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Elements matched by basic filters in a rule are distinct. So a matched path
is without self-intersection. The identifier of a pattern variable can be used only
once in the position of a filter. That is, the path pattern x,x is forbidden.
However, this pattern can be rewritten for instance as: x,y/y = x.

4.3 Substitution and Application Strategies

Paths and Subcollections. A path pattern is used to find the occurrence of the
specified path in a collection C. The matched path can be seen as a sequence of
elements in C as well as a subcollection of C: the collection made of the elements
in the path and inheriting its organization from C. Therefore, the right hand
side (r.h.s.) can compute a sequence as well as a subcollection. If the r.h.s. is
a sequence, then the nth element of the r.h.s. replaces the nth element of the
matched path (this holds for Newtonian collections, Leibnizian collections are
more flexible and allow the insertion or the deletion of elements). If the r.h.s
is a collection, then this collection is pasted into C as a replacement for the
matched path. The pasting operation depends of the collection kind and can be
parameterized by giving explicit attributes to the arrow.

For example, suppose that we want to replace each 1 in a sequence by a series
of three 1. The corresponding rule is:

1 ⇒ 1, 1, 1

The behavior of the previous rule is the intended behavior. For example, applied
to sequence 0, 1, 2, 1, 0 we obtain 0, 1, 1, 1, 2, 1, 1, 1, 0. However,
there is a possible ambiguity with a rule that replaces each 1 by only one element
which is, unfortunately, a sequence. That is, the desired result is a sequence of
five elements: 0, (1, 1, 1), 2, (1, 1, 1), 0 (this sequence has for elements 3
integers and 2 sequences). This behavior is achieved by overriding the default
pasting strategy of ⇒:

1 ={noflat}⇒ 1, 1, 1

The attribute noflat enables the desired behavior.

Priorities and Application Order. Others attributes enable the control of the rule
application strategy. For instance, rules can have a priority used to chose the next
paths to match. However, the only property ensured by the MGS rewriting engine
is the following: if no rule at all applies during the application of a transformation
T on a collection C, then there is no occurrence in C of the paths specified by
the l.h.s. of the rules of T . Nevertheless, if the l.h.s. of the T ’s rules specify only
paths of length one, an additional property is satisfied: these rule are applied in
a maximal parallel manner. For example

x ⇒ f(x)

is a rule that implements a polytypic map f: this rule replaces each element x of
a collection by f(x), for any collection type.
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Iterations and Fixpoints. A transformation T is a function like any other func-
tion and a first-class value. For instance, a transformation can be passed as an
argument to another function or returned as a result. It allows to sequence and
compose transformations very easily.

The expression T (c) denotes the application of one transformation step of
the transformation T to the collection c. As said above, a transformation step
consists in the parallel application of the rules (modulo the rule application’s
features). A transformation step can be easily iterated:

T [n] (c) denotes the application of n transformation steps to c

T [fixpoint] (c) application of T until a fixpoint is reached
T [fixrule] (c) idem but the fixpoint is detected when no rule applies

4.4 Simple Examples

The path pattern language introduced above is largely enough to code the ex-
amples of figures 1, 2, and 3. We present the first three algorithms.

The transformation:

trans BeadSort = { empty |north> 1 ⇒ 1, empty }
is applied on a Grid2 . The constant empty is used to give a value to an empty
place and the constant 1 is used to represent an occupied cell. The l.h.s. of
the only rule of the transformation BeadSort selects the paths of length two,
composed by an occupied cell at north of an empty cell. Such a path is replaced
by a path computed in the r.h.s. of the rule. The r.h.s. in this example computes
a path of length two with the occupied and the empty cell exchanged. Indeed,
the comma in the MGS expression at the r.h.s. of a rule4 is used to build a
sequence by listing its elements.

The transformation BubbleSort acts on a sequence. Although the sequence
collection type can be specified as a GBF with only one generator, the sequence
type is predefined in MGS and has specific properties (see section 4.1). The
transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }
This is not really a bubble sort because swapping of elements can take at arbi-
trary places; hence an out-of-order element does not necessarily bubble to the
top in the characteristic way.

The two previous examples do not create new elements in the collection.
The Erastothene transformation computes the ordered sequence of the prime
integers. Each element i in the sequence corresponds to the previously computed
ith prime Pi and is represented by a record {p = Pi}. This element can receive

4 A comma is also used in a path expression to denote the neighborhood relationship
between two elements in a collection in the l.h.s. The two usages agree, because in
the sequence a, b the elements a and b are neighbors.
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a candidate number n and is then represented by a record {p = Pi, a = n}. If
the candidate passes the test, then the element transforms itself to a record r =
{x = Pi, b = n}. If the right neighbor of r is of form {x = Pi+1}, then the
candidate n skip from r to the right neighbor. When there is no right neighbor
to r, then n is prime and a new element is added at the end of the sequence.
The first element of the sequence is distinguished and generates the candidates.
Accordingly, the Erastothene transformation consists in 6 rules named genere1 ,
genere2 , test1 , test2 , pass and create:

trans Erastothene = {
genere1: n/int(n), <undef> ⇒ n, {x=n}
genere2: n/int(n), {p=x, ~a, ~b} ⇒ n, {x=n}
test1: {p=x, a=y, ~b} / y mod x == 0 ⇒ {p=x}
test2: {p=x, a=y, ~b} / y mod x <> 0 ⇒ {p=x, b=y}
pass: {p=x1, b=y}, {p=x2, ~a, ~b} ⇒ {p=x1}, {p=x2, a=y}
create: {p=x, b=y}, <undef> ⇒ {p=x}, {p=y}

}
The pattern {p=x, a=y, ~b} matches a record with a field p (and the value
of this field is binded to x), a field a and no field b. The pattern n/int(n),
<undef> matches a path reduced to a single integer (there is nothing at the
right of this integer). Consequently, it matches the end of a sequence (if this end
is an integer). The rule genere1 is used only once, at the beginning, when the
transformation is applied to the sequence singleton 2,():seq.

5 Application to the Modeling of Dynamical Systems
with a Dynamic Structure

Our topological approach is motivated by some considerations internal to com-
puter science, and also by the needs expressed by some application domains. A
target application domain for MGS is the modeling and simulation of dynam-
ical systems (DS) and especially DS that exhibit a dynamic structure ((DS)2).
This kind of dynamical systems is very challenging to model and simulate. New
programming concepts must be developed to ease their modeling and simulation.

Dynamical Systems with a Dynamical Structure. Intuitively, a dynamical system
is a formal way to describe how a point (the state of the system) moves in the
phase space (the space of all possible states of the system). It gives a rule, the
evolution function, telling us where the point should go next from its current
location. There exist several formalisms used to describe a DS: ordinary differ-
ential equations (ODE), partial differential equations (PDE), iterated equations
(finite set of coupled difference equations), cellular automata, etc., following the
discrete or continuous nature of the time, the space and the value used in the
modeling.

Many DS systems are structured, which means that they can be decomposed
into parts and sometimes the whole state s of the system is simply the product
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of the state of these parts. The evolution of the state of the whole system is then
viewed as the result of the changes of the state of its parts. In this case, the
evolution function hi of a the state of a part oi depends only on a subset {oij

}
of the state variables of the whole system. In this context, we say that the DS

exhibits a static structure if:

1. the state of the system is statically described by the state of a fixed set of
parts and this set does not change in time;

2. the relationships between the state of the parts, specified as the functions hi

between oi and the arguments oij
, are also fixed and do not change in time.

Moreover, we say that the oij are the logical neighbors of oi (because very often,
two parts of a system interact when they are physical neighbors). This situation
is simple and arises often in elementary physics. For example, a falling stone is
statically described by a position and a velocity and this set of variables does
not change (even if the value of the position and the value of the velocity change
in the course of time).

As pointed out by [GGMP02], many biological systems can be viewed as a
dynamical system in which not only the values of state variables, but also the
set of state variables and/or the evolution function, change over time. We call
these systems dynamical systems with a dynamic structure following [GM01c], or
(DS)2 in short. An obvious example is given by the development of an embryo.
Initially, the state of the system is described solely by the chemical state o0

of the egg (no matter how complex this chemical state can be). After several
divisions, the state of the embryo is given not only by the chemical state oi

of the cells, but also by their spatial arrangement5. The number of cells, their
spatial organization and their interactions evolve constantly in the course of the
development and is not handled by one fixed structure O. On the contrary, the
phase space O(t) used to characterize the structure of the state of the system at
time t must be computed jointly with the running state of the system. In this
kind of situation, the dynamic of the whole system is often specified as several
local competing transformations occurring in an organized set of simpler entities.
The organization of this set is subject to possible drastic changes in the course
of time and is a plain part of the state of the DS.

The MGS approach. The main idea to model (DS)2 is to follow an approach
developed recently by several authors [FMP00, Man01, EKL+02b, EKL+02a].
The point is to use rewriting rules to model the parts of the system in interaction.

More specifically, we want to use an MGS topological collection S to represent
the state of a dynamical system at a given time. The elements in the collection
represent either entities (a subsystem or an atomic part of the dynamical system)
or messages (signal, command, information, action, etc.) addressed to an entity.
5 The neighborhood of each cell is of paramount importance to evolution of the system

because of the interplay between the shape of the system and the state of the cells.
The shape of the system has an impact on the diffusion of the chemical signals and
hence on the cells state. Reciprocally, the state of each cell determines the evolution
of the shape of the whole system.
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A path or a subcollection in S represents a subset of interacting entities
and messages in the system. The evolution of the system is achieved through
transformations, where the l.h.s. of a rule typically matches an entity and a
message addressed to it, and where the r.h.s. specifies the entity’s updated state,
and possibly other messages addressed to other entities.

If one uses a multiset organization for the collection, the entities interact in
a rather unstructured way. More organized topological collections are used for
more sophisticated spatial organizations and interactions (like GBFs or Delau-
nay).

More generally, many mathematical models of objects and processes are
based on a notion of state that specifies the object or the process by assigning
some data to each point of a physical or abstract space. The MGS programming
language is designed to support this approach offering several mechanisms to
build complex and evolving spaces and handling the maps between these spaces
and the data.

In the rest of this section we present three examples involving various topol-
ogy. The first one involves the use of sequences and multisets and is related to
the cleavage of DNA strings floating in a chemical solution. The second example
uses an hexagonal lattice to discretize the 2D formation of a snowflake. The last
one sketch the trajectory of cells attracted by some neighbors. This example in-
volves a dynamic topology computed as the result of the Delaunay triangulation
of a set of points in Euclidean space.

5.1 Restriction Enzymes

This example shows the ability to nest different topologies to achieve the model-
ing of a biological structure. We want to represent the action of a set of restriction
enzymes on the DNA. The DNA structure is simplified as a sequence of letters
A, C, T and G. The DNA strings are collected in a multiset. Thus we have to
manipulate a multiset of sequences. The following declarations:

collection DNA = seq;;
collection TUBE = bag;;

introduce a subtype called DNA of seq and a subtype of multisets called TUBE.
A restriction enzyme is represented as a rule that splits the DNA strings; for

instance a rule like:

EcoRI = X+, ("G","A","A","T","T","C"), Y+
⇒ (X,"G") :: ("A","A","T","T","C",Y) :: ():TUBE ;

stands for the EcoRI restriction enzyme with recognition sequence G^AATTC (the
point of cleavage is marked with ^). The X+ pattern filters the part of the DNA
string before the recognition sequence. Identically, Y names the part of the string
after the recognition sequence. The r.h.s. of the rule constructs a TUBE containing
the two resulting DNA subsequences (the :: operator indicates the “consing” of
an element at the head of a sequence).
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We need an additional rule Void for specifying that a DNA string without
a recognition sequence must be inserted wrapped in a TUBE. The two rules are
collected into one transformation:

trans Restriction = {
EcoRI = ...;
Void = X+ ⇒ X :: ():TUBE ;

}
The rule specification order in a transformation is taken into account, and so,
the rule Void is used only if rule EcoRI cannot be applied. In this way, the result
of applying the transformation Restriction on a DNA string is systematically a
sequence with only one element which is a TUBE.

The transformation Restriction can then be applied to the DNA strings floating
in a TUBE using the simple transformation:

trans React = { dna ⇒ hd(Restriction(dna)) }
The operator hd gives the head of the result of the transformation Restriction,
i.e. a TUBE containing one or two DNA strings. These elements are then merged
with the content of the enclosing TUBE. The transformation can be iterated until
a fixpoint is reached :

React[fixpoint]((
("C","C","C","G","A","A","T","T","C","A","A",():DNA),
("T","T","G","A","A","T","T","C","G","G","G",():DNA),
():TUBE ));;

returns a tube with four DNA strings:

("T","T","G",():DNA),
("C","C","C","G",():DNA),
("A","A","T","T","C","A","A",():DNA),
("A","A","T","T","C","G","G","G",():DNA),
():TUBE

5.2 The Formation of a Snowflake

A crystal forms when a liquid is cooled below its freezing point. Crystals start
from a seed and then grows by progressively adding more molecules to their
surface. As an idealization, the molecules of a snowflake lie on an hexagonal grid
and when a piece of ice is added, to the snowflake, the heat released by this
process inhibits the addition of ice nearby.

This phenomenon leads to the following cellular automata rule [Wol02]: a
black cell (value 1) represents a place of the crystal filled with ice and a white cell
(value 0) is an empty place. A white cell becomes black if it has exactly one black
neighbor, otherwise it remains white. The corresponding MGS transformation is:
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trans SnowFlake = {
0 as x / 1 == FoldNeighbor[\y.\acc.y+acc, 0](x) ⇒ 1

}
The construct FoldNeighbor is not a function but an operator available only
within a rule: it enables to fold a function on the defined neighbors of an element
matched in the l.h.s. Here, this operator is used to compute the number of
neighbors (parameter y enumerates the neighbors and parameter acc acts as
an accumulator). This transformation acts on a value of type Hexagon and a
possible run is illustrated in figure 9.

5.3 System of Moving Cells Linked by Spring-Like Forces

We want to model the trajectory of a set of cells. A cell moves because it is
attracted by its immediate neighbors (for example because the limited diffu-
sion of a chemical that creates a gradient). The problem is that, due to the
cell movements, the immediate neighbors of a cell can change. We use a De-
launay triangulation to compute the neighborhood of the cells. The Delaunay
triangulation of a point set is a collection of edges satisfying an ”empty circle”
property: for each edge we can find a circle containing the edge’s endpoints but
not containing any other points.

In MGS, we start by defining the type of the value that represents a cell:

record Position = { x:float, y:float, z:float };;
record Cell = Position + {l};;

specify two record types, the first having the fields x, y and z, and the second
having a field l in addition. The l field is used to associate an attractive force
to each cell.

We then defines a Delaunay collection type. The specification:

collection delaunay(3) D3 =
\e.if Position(e)

then (e.x, e.y, e.z)
else ?("bad element type for D3 delaunay type") fi ;;

defines a new Delaunay collection type in 3 dimensions. The type, called D3 , is
parameterized by a user function that extracts from each element in the collec-
tion, an abstract coordinate. In this example, the coordinate are simply stored
in the value that represents a cell and the function simply check that the cell’s
value has a correct type and returns its coordinate (as a sequence of 3 floats).

We assume that the interaction between two cells is computed by a function of
two arguments called interaction. Then, the following MGS program fragment:

epsilon = 0.05;;
fun add(u, v, e) =
u + { x = u.x + e*v.x, y = u.y + e*v.y, z = u.z + e*v.z };;

fun sum(x, u, acc) = add(acc, interaction(x,u), epsilon);;
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trans evol = {
c ⇒
add(c, FoldNeighbor[sum(x), {x=0,y=0,z=0,l=c.l}](c), epsilon)

};;
defines evol , the system’s evolution function. The function add takes two records
u and v and a float e. The result is a record containing all the fields of u but
where the fields x, y and z have been updated by a linear combination of the
corresponding fields in u and v. The function sum adds to its first argument,
the interaction between two cells. This function is called in the FoldNeighbor
construct appearing in the transformation evol . This transformation compute
the sum of the interaction between a cell c and a neighbor cell; this sum is then
used to change the state of the cell c.

The result of 250 iteration steps of this program, assuming an interaction
function computing a force corresponding to a spring parameterized by the l
observable, is showed at figure 10.

Delaunay collections are Leibnizian, so it is easy to extend the model to take
into account cellular division and death.

6 Related Works, Current Work and Future Work

The topological approach we have sketched here is part of a long term research
effort [GMS95] developed for instance in [Gia00] where the focus is on the sub-
structure, or in [GM01a] where a general tool for uniform neighborhood defi-
nition is developed. In this research program, a data structure is viewed as a
space where some computation occurs and moves in this space. The notion of
neighborhood is then used to control the computations.

Related Works. Seeing a computation as a path in some abstract space is hardly
new: the representation of the execution of a concurrent program as a trajectory
in the Cartesian product of the sequential processes dates back to the 60’s (in
this representation, semaphore operations create topological obstructions and
one can study the topology of theses obstructions to decide if a deadlock may
occur). However, note that the considered space is based on the control structure,
not on the involved data structure.

In the same line, the methods for building domains in denotational semantics
have clearly topological roots, but they involve the topology of the set of values,
not the topology of a value.

Transformation on multiset is reminiscent of multiset-rewriting (or rewriting
of terms modulo AC). This is the main computational device of Gamma [BM86,
BCM87], a language based on a chemical metaphor; the data are considered as
a multiset M of molecules and the computation is a succession of chemical reac-
tions according to a particular rule. The CHemical Abstract Machine (CHAM)
extends these ideas with a focus on the expression of semantic of non determinis-
tic processes [BB90]. The CHAM introduces a mechanism to isolate some parts
of the chemical solution. This idea has been seriously taken into account in the
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notion of P systems. P systems [Pau98, Pau01] are a new distributed parallel
computing model based on the notion of a membrane structure. A membrane
structure is a nesting of cells represented, e.g, by a Venn diagram without inter-
section and with a unique superset: the skin. Objects are placed in the regions
defined by the membranes and evolve following various transformations: an ob-
ject can evolve into another object, can pass trough a membrane or dissolve its
enclosing membrane. As for Gamma, the computation is finished when no object
can further evolve. By using nested multisets, MGS is able to emulate more or
less the notion of P systems. In addition, patterns like the iteration + go beyond
what is possible to specify in the l.h.s. of a Gamma rule6.

Lindenmayer systems [Lin68] have long been used in the modeling of (DS)2

(especially in the modeling of plant growing). They loosely correspond to trans-
formations on sequences or string rewriting (they also correspond to tree rewrit-
ing, because some standard features make particularly simple to code arbitrary
trees, cf. the work of P. Prusinkiewicz [PLH+90, PH92]). Obviously, L systems
are dedicated to the handling of linear and tree-like structures.

There exists strong links between GBF and cellular automata (CA), es-
pecially considering the work of Z. Róka which has studied CA on Cayley
graphs [Rók94]. However, our own works focus on the construction of Cayley
graphs as the shape of a data structure and we develop an operator algebra and
rewriting notions on this new data type. This is not in the line of Z. Róka which
focuses on synchronization problems and establishes complexity results in the
framework of CA.

Formalizations and Implementations. A unifying theoretical framework can be
developed [GM01b, GM02b], based on the notion of chain complex developed
in algebraic combinatorial topology [Hen94]. The topology needed to describe
the neighborhood in a set or a sequence, or more generally the topology of
the usual data structures, are fairly poor. However, the topological framework
unifies various situations (see the paragraph above). Nevertheless, we do not
claim that we have achieved a useful theoretical framework encompassing the
previous paradigms. We advocate that few (topological) notions and a single
syntax can be consistently used to allow the merging of several formalisms (CA, L
systems, P systems, etc.) for programming purposes. All the examples presented
here are running with one or the other of the two existing MGS interpreters. A
new version of the interpreter is currently developed, written in OCAML (a dialect
of ML): please visit the MGS home page: http://mgs.lami.univ-evry.fr.

Perspectives. The perspectives opened by this preliminary work are numerous.
We want to develop several complementary approaches to defines new topologi-
cal collection types. One approach to extend the GBF applicability is to consider
monoids instead of groups, especially automatic monoids which exhibit good al-
gorithmic properties. Another direction is to handle general combinatorial spatial
6 For example the rule “x+ /n==length(x) ⇒ ?(x)” can be used on a graph with n

vertices to print an Hamiltonian path (function ? print its argument and function
length gives the length of a sequence).
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structures like simplicial complexes or G-maps [Lie91]. At the language level, the
study of the topological collections concepts must continue with a finer study
of transformation kinds. Several kinds of restriction can be put on the transfor-
mations, leading to various kind of pattern languages and rules. The complexity
of matching such patterns has to be investigated. The efficient compilation of a
MGS program is a long-term research. We have considered in this paper only one-
dimensional paths, but a general n-dimensional notion of path exists and can be
used to generalize the substitution mechanisms of MGS. From the applications
point of view, we are targeted by the simulation of more complex developmental
processes in biology [GGMP02].

To conclude, I want to promote the use of topological notions in computer
science. The work sketched here is a modest step in this direction. I use the
qualifier modest because the notions used here rely on very elementary notions
taken in the domain of combinatorial algebraic topology. We do not use deep
theorems but rather fundamental definitions that structure the field and clarify
the objects and mechanisms to manage. This is why I want to advocate the
development of alternative topological approaches of computation, confident on
their heuristic, technical and pedagogical virtues.
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[BM86] J. P. Banâtre and Daniel Le Métayer. A new computational model and
its discipline of programming. Technical Report RR-0566, Inria, 1986.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Prin-
ciples of programming with complex objects and collection types. Theo-
retical Computer Science, 149(1):3–48, 18 September 1995.

[Ede58] M. Eden. In H. P. Yockey, editor, Symposium on Information Theory in
Biology, page 359, New York, 1958. Pergamon Press.

[EKL+02a] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and J. Sonmez.
Pathway logic: Symbolic analysis of biological signaling. In Proceedings of
the Pacific Symposium on Biocomputing, pages 400–412, January 2002.

[EKL+02b] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, , and Car-
olyn Talcott. Pathway logic: Executable models of biological networks. In
Fourth International Workshop on Rewriting Logic and Its Applications
(WRLA’2002), volume 71 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002.

[FM97] P. Fradet and D. Le Métayer. Shape types. In Proc. of Principles of
Programming Languages, Paris, France, Jan. 1997. ACM Press.

[FMP00] Michael Fisher, Grant Malcolm, and Raymond Paton. Spatio-logical pro-
cesses in intracellular signaling. BioSystems, 55:83–92, 2000.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, Programs from outer space).
In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 284–294, St.
Petersburg Beach, Florida, 21–24 January 1996.

[GG95] D. Gautier and C. Germain. A static approach for compiling communica-
tions in parallel scientific programs. Scientific Programming, 4:291–305,
1995.

[GGMP02] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Modelling
and Simulation of biological processes in the context of genomics, chap-
ter “Computational Models for Integrative and Developmental Biology”.
Hermes, July 2002.

[Gia00] J.-L. Giavitto. A framework for the recursive definition of data struc-
tures. In ACM-Sigplan 2nd International Conference on Principles and
Practice of Declarative Programming (PPDP’00), pages 45–55, Montréal,
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Fig. 1. Bead sort is a new sorting algorithm [ACD02]. The idea is to represent positive
integers by a set of beads, like those used in an abacus. Beads are attached to vertical
rods and appear to be suspended in the air just before sliding down (a number is read
horizontally, as a row). After their falls, the rows of numbers have been rearranged
such as the smaller numbers appears on top of greater numbers. The corresponding
one-line MGS program is given in section 4.4.
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Fig. 2. A kind of bubble-sort is immediate in MGS; it is sufficient to specify the ex-
change of two non-ordered adjacent elements in a sequence. The corresponding one-line
MGS program is given in section 4.4. This is not really bubble-sort because swapping
of elements can take at arbitrary places; hence an out-of-order element does not nec-
essarily bubble to the top in the characteristic way.)
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Fig. 3. Erastothene’s sieve. The successive natural numbers are generated by the first
cells (round box) and travel along a sequence of cells containing the previous prime
number (square box). If a traveling number is divisible by the number in a cell, it is
erased, else, it is passed to the right neighbor. When a number reach the end of the
sequence, it becomes a new cell extending the sequence.
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Fig. 4. A local transformation of a topological collection. Collection A is of some kind
(set, sequence, array, cyclic grid, tree, term, etc). A rule T specifies that a subcollection
B of A has to be substituted by a collection C computed from B. The right hand side
of the rule is computed from the subcollection matched by the left hand side x and its
possible neighbors x′ in the collection A.
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...
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Fig. 5. Transformation and iteration of a transformation. A global transformation T
is a set of local transformations applied in parallel and synchronously to make one
evolution step. The local transformations do not interact together. A transformation
can then be iterated.
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a

a

a

b

b

b

b

a

b

e

w = a.b.a

w.(b-1.a)

b.a.a-1.b-1

a.b-1.a-1.b

P

w

Q

Fig. 6. Graphical representation of the relationships between Cayley graphs and group
theory. A vertex is a group element. The label a of an edge corresponds to the generator
a of the group. There is an edge between vertices P and Q labelled by a iff P.a = Q.
A word (a product of generators) can be seen a path. Starting from vertex P , a path
w ends in P.w. Path composition corresponds to word multiplication. A closed path
(a cycle) is a word equal to e (the identity of the multiplication). An equation v = w
can be rewritten v.w−1 = e and then corresponds to a cycle in the graph. There
are two kinds of cycles in the graph: the cycles that are present in all Cayley graphs
and corresponding to group laws (intuitively: a backtracking path like b.a.a−1.b−1)
and closed paths specific to the own group equations (e.g.: a.b−1.a−1.b). The graph
connexity (there is always a path going from P to Q) is equivalent to say that there is
always a solution x to equation P.x = Q.

north
northwest

easth

north

east+north

north+east

east

Fig. 7. These shapes correspond to a Cayley graph of Hexagon and Grid2 with the
following conventions: a vertex is represented as a face and two neighbors in the Cayley
graphs share an edge in this representation. An empty cell has an undefined value. Only
a part of the infinite domain is figured.
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Fig. 8. Eden’s model on a grid and on an hexagonal mesh (initial state, and states
after the 3 and the 7 time steps). The Eden’s aggregation process is a simple model of
growth. The model has been used since the 1960’s as a model for such things as tumor
growth and growth of cities. In this model (specifically, a type B Eden model [Ede58]),
a 2D space is partitioned in empty or occupied cells. We start with only one occupied
cell. At each step, occupied cells with an empty neighbor are selected, and the cor-
responding empty cell is made occupied. This process simply described as exactly the
same transformation for both cases:

trans Eden = { x,<undef> / x ⇒ x,true }
We assume that the boolean value true is used to represent an occupied cell, other
cells are simply left undefined. Then the previous rule can be read: an occupied element
x and an undefined neighbor are transformed into two occupied elements. This model
cannot be coded by only one simple rule on a two-state cellular automata if one wants
to avoid that two distinct occupied cells preempt the same unoccupied cell.
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Fig. 9. Formation of a snowflake. See section 5.2 for the explanation. The transforma-
tion acts on a GBF Hexagon (cf. sec. 3). The pictured states are the step at time steps
1, 4, 8, 12, 16, 18, 20 and 23.

Fig. 10. Each sphere in the picture above corresponds to a cell attracted by its neigh-
boring cells by a spring. The neighborhood of a cell is computed dynamically using a
Delaunay triangulation built from the cells position. At each time step, this neighbor-
hood can change. The first picture is the initial state and shows the neighborhood using
links between the cells. The second picture shows the final state, when the system has
reached an equilibrium (each ”tube” in this picture represents the successive positions
of a cell). In MGS, the Delaunay collection type is a type constructor corresponding
to the building of collections with a neighborhood computed from the positions of the
elements in a d-dimensional Euclidean space.


