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Abstract. We describe FieldBroker, a software architecture, dedicated
to data parallel computations on fields over Zn. Fields are a natural ex-
tension of the parallel array data structure. From the application point
of view, field operations are processed by a field server, leading to a
client/server architecture. Requests are translated successively in three
languages corresponding to a tower of three virtual machines processing
respectively mappings on Zn, sets of arrays and flat vectors in memory.
The server is itself designed as a master/multithreaded-slaves program.
The aim of FieldBroker is to mutually incorporate approaches found in
distributed computing, functional programming and the data parallel pa-
radigm. It provides a testbed for experiments with language constructs,
evaluation mechanisms, on-the-fly optimizations, load-balancing strate-
gies and data field implementations.

1 Introduction

1.1 Collections, Data Fields and Data Parallelism

The data parallel paradigm [19] relies on the concept of collection to offer an
elegant and concise way to code many algorithms for data intensive computa-
tions. A collection is an aggregate of data handled as a whole [38]. A data field
is a theoretically well founded abstract view of a collection as a function from
a finite index set to a value domain [41, 24]. Higher order functions or inten-
sional operations [33] on these mappings correspond to data parallel operations:
point-wise applied operation (map), reduction (fold), parallel prefix (scan), rear-
ranging operations (permutation), etc. One attractive advantage of the data field
approach, in addition to its generality and abstraction, is that many ambiguities
and semantical problems of “imperative” data parallelism can be avoided in the
declarative framework of data fields [30, 25].

1.2 A Distributed Paradigm for Data Parallelism

Data parallelism was motivated to satisfy the increasing needs of computing
power in scientific applications. As a consequence, the main target of data par-
allel languages has been supercomputers and the privileged linguistic framework
was Fortran (cf. HPF [35]). Several factors urge to reconsider this traditional
framework:



– Advances in network protocols and bandwidths have made practical the de-
velopment of high performance applications whose processing is distributed
over several supercomputers [39].

– The widening of parallel programming application domains (e.g. data min-
ing, virtual reality applications, generalization of numerical simulations)
urges to use cheaper computing resources, like NOWs and COWs (networks
and clusters of workstations) [1].

– Development in parallel compilation and run-time environments have made
possible the integration of data parallelism and control parallelism [18, 40, 4],
e.g. to hide the communication latency with the multithreaded execution of
independent computations.

– New algorithms exhibit more and more a dynamic behavior and perform on
irregular data. Consequently, new applications depend more and more on the
facilities provided by a run-time (dynamic management of time and space
resources, localization, etc.).

– Challenging applications consist of multiple heterogeneous modules inter-
acting with each other to solve an overall design problem. New software
architectures are needed to support the development of such applications.

All these points require the development of portable, robust, high-performance,
dynamically adaptable, architecture neutral applications on multiple platforms
in heterogeneous, distributed networks.

Many of theses attributes can be cited as descriptive characteristics of dis-
tributed applications. So, it is not surprising that distributed computing concepts
and tools, which precisely face this kind of problems, become an attractive frame-
work for supporting data parallel applications. In this perspective, we propose
FieldBroker, a client server architecture dedicated to data parallel computa-
tions on data field over Zn. Data field operations in an application are requests
processed by the FieldBroker server.

FieldBroker has been developed to provide an underlying virtual machine
to the 81/2 language [11, 29] and to compute recursive definitions of group based
fields [13]. However, FieldBroker aims also to investigate the viability of client
server computing for data parallel numerical and scientific applications, and
the extent to which this paradigm can integrate efficiently a functional ap-
proach of the data parallel programming model. This combination naturally
leads to an environment for dynamic computation and collaborative comput-
ing. This environment provides and facilitates interaction and collaboration be-
tween users, processes and resources. It also provides a testbed for experiments
with language constructs, evaluation mechanisms, on-the-fly optimizations, load-
balancing strategies and data field implementations.

The subsequent sections describe FieldBroker. Section 2 presents the soft-
ware architecture of the server. Section 3 describes the translation of a request



through a tower of three languages corresponding to a succession of three vir-
tual machines. Section 4 reviews related works and the final section discusses
the rationales of using Java in a preliminary implementation.

2 A Distributed Software Architecture for Scientific
Computation

The software architecture of the data field server is illustrated by Fig. 1 right.
Three layers are distinguished. They correspond to three virtual machines:

– The server handles requests on functions over Zn. It is responsible for
parallelization and synchronization between requests from one client and
between different clients.

– The master handles operations between sets of arrays. This layer is respon-
sible for various high-level optimizations on data field expressions. It also
decides the load balancing strategy and synchronizes the computations of
the slaves.

– The slaves implement sequential computations over contiguous data in mem-
ory (vectors). They are driven by the master requests. Master requests are
of two kinds: computations to perform on the slave’s own data or communi-
cations (send data to other slaves; receives are implicit). Computations and
communications are multithreaded in order to hide communication latency.

The communications between two levels of the architecture are specified by a
language describing the data field representation and the data field operations.
Three languages are used, going from the more abstract L0 (client view on a
field) to L1 and to the more concrete L2 (in core memory view on a field). They
are described in the next section. The server-master and the slave programs
are implemented in Java. The rationale of this design decision is to support
portability and dynamic extensibility (cf. section 5). The expected benefits of
this software architecture are the following:

– Accessibility and client independence: requests for the data field com-
putation are issued by a client through an API. However, because the slave
is a Java program, Java applets can be easily used to communicate with the
server. This means that an interactive access could be provided through a
web client at no further cost. In this case, the server appears as a data field
desk calculator.

– Autonomous services: the server lifetime is not linked to the client life-
time. Thus, implementing persistence, sharing and checkpointing will be
much easier with this architecture than with a monolithic SPMD program.

– Multi-client interactions: this architecture enables applications composi-
tion by pipelining, data sharing, etc.
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Fig. 1. Left: Relationships between field algebras L0,L1 and L2. Right: A
client/server-master/multithreaded-slaves architecture for the data parallel evaluation
of data field requests. The software architecture described on the right implements the
field algebras sketched on the left. Functions iTi+1 are phases of the evaluation. The
functions [[ ]]i are the semantic functions [31] that map an expression to the denoted
element of Zn → Value. They are defined such that the diagram commutes, that is
[[ei]]i = [[iTi+1(ei)]]i+1 is true for i ∈ {0, 1} and ei ∈ Li. This property ensures the
soundness of the evaluation process.

3 A Three Levels Language Tower

A client issues two kinds of requests to the server: data field expressions and
commands. Commands are used by clients to modify the operational behavior
of the server, e.g., garbage collection and data distribution constraints, etc. We
focus in this paper only on the evaluation of data field expressions.

The evaluation of a L0 term begins with its optimization into an equivalent
L0 term and its translation into a L1 term. The same treatment happens for a L1

term which is translated, after optimization, into a set of L2 terms. Finally, these
terms are dispatched to the slaves to achieve the data parallel final processing.
This process is illustrated in Fig. 1.

In the rest of this section, we sketch the L0,L1 and L2 algebras. Technical
details, such as the formal definition of each function appearing in Fig. 1 (left),
and the diagram commutations, can be found in [7].

3.1 L0: functions on Zn

We do not accept any function over Zn as a data field. Intuitively we will preserve
the operational property of the array data-structure: the access of an element
is done in constant time. Translated in the data field context, this means that
applying a data field to an index gives a value in constant time. Thus, two
kinds of functions are allowed as data fields: functions over a finite set (because



they can be tabulated to achieve the previous property) and functions given as
constant time evaluation rules.

Extensional and symbolic constants. The first kind of functions are the exten-
sional constants of L0 and the second one, the intensional or symbolic ones. The
idea is that extensional constants are implemented as (set of) arrays and that
symbolic constants parameterize some operations on arrays.

We give an example to make it more concrete. The correct evaluation of
expression A+1 must assign a data field to the (overloaded) constant 1: typically,
1 must denote a data field with same shape as A and + is interpreted as a binary
operator on data fields. Our approach is to assign to 1 a data field defined over
all Zn and to interpret + as a strict operator. The advantage is that there is no
need to overload 1 with several shapes [12, 20] anymore. Furthermore, there is
no need to really build an array full of 1: the operation ( + cs) where cs is a
symbolic constant can be recognized as a specialized unary operator.

Functional operators. L0 operators are classified into functional and geometrical
ones. An example of a functional operator is map: map[op](F1, ..., Fq) where op
is a strict q-ary operator. Formally, we write

[[map[op](F1, ..., Fq)]]0 = λz ∈ Zn. op([[F1]]0(z), ..., [[Fq]]0(z))

where a lambda expression is used to denote an element of Zn → Value. However,
we may omit the brackets [[ ]]i because they can be recovered from the context,
and we write more liberally this semantic equation as:

map[op](F1, ..., Fq)(z) = op(F1(z), ..., Fq(z))

We adopt this simplification in the rest of this paper.
A second example, is the restriction:

restrict(F1, F2)(z) = if F2(z) then F1(z) else ⋆

which enables the selection of parts of data fields for later operations. The value ⋆
is a “soft bottom” element meaning “undefined value” (this value is distinguished
from ⊥ which means “unterminating computation”, cf. [25, 15]).

We give a last example of a functional operator: the merge operator which
recombines two data fields into one:

merge(F1, F2)(z) = if F1(z) ̸= ⋆ then F1(z) else F2(z)

merge implements the asymmetric union of data fields. It enables the represen-
tation of irregular data structures.

Geometric operations. A geometric operation g acts only on the index part of a
data field, that is g[F ] = F ◦ g where g is a function from Zn to Zm. Examples
of such functions allowed in L0 are: transpose, shift and dilate [7].



The optimization O0 of L0 expressions is to convert any sequence of shift,
transpose and dilate into a sequence of no more than five basic geometric opera-
tors. This simplification is very analog to the one performed in the Infidel Virtual
Machine [37]. In our case, the computation of the canonical form is achieved as
the normal form of a rewriting system [6], allowing the easy integration of addi-
tional optimizations as L0 rewriting rules.

Note that restrict, merge, shift (cf. below) and map are sufficient to im-
plement an important class of numerical methods like red-black relaxations or
explicit schemes for grid methods.

3.2 L1: expliciting iterations and lazy operations

The purpose of L1 is twofold. First, we will explicitly determine an “iteration
domain” for each operator in L0, that is, to deduce the description of a region
of Zn where the data field is defined. Secondly, we will avoid to compute some
operations by keeping them symbolic. This last goal is a generalization of the
trick used to avoid the computation of a matrix transposition M t: do not com-
pute the transposition but remember to use M(j, i) in place of M t(i, j) in the
subsequent computations.

Avoiding shift, restrict and merge. Three kinds of L0 operations are subject
to such a trick: shift, restrict and merge. To avoid the computation of shift
operations, a constant of L1 includes the parameter of the translation. The
purpose is similar to the one that motivates the alignment construct in HPF,
but here, the alignment is assigned to each value (rather than to each variable),
to enable a finer control over data movements. To avoid restrict operations, we
adjoin a boolean data field that acts as a guard. And finally, to avoid merging, we
represent the merge of a list of fields by a list. Thus, a L1 constant is described
by:

⟨(s1, b1, s′1, f1) ; ... ; (sp, bp, s′p, fp)⟩

where si, s
′
i are translations, bi are L0 boolean constants and fi are L0 constant.

The idea is that si is the translation associated to the boolean guard bi while
s′i is the translation attached to the value field fi, and the value of a point is
the value defined by the first defined quadruple in the list. So, the meaning
of such constants is defined inductively on the list structure: ⟨ ⟩(z) = ⋆ and
((s, b, s′, f) ; l) (z) = if (b ◦ s)(z) then (f ◦ s′)(z) else l(z), where l is a list of
quadruples and “;” denotes the cons operation.

The translation 0T1 of L0 terms in L1 is not detailed here, but we give some
examples. Assuming that 0T1(Fi) = ⟨si, bi, s′i, fi⟩, then 0T1(merge(F1, F2)) =
⟨(s1, b1, s′1, f1) ; (s2, b2, s′2, f2)⟩. For a translation t, 0T1(t[F1]) = ⟨s1 ◦ t, b1, s

′
1 ◦

t, f1⟩. Finally, 0T1(restrict(F1, F2)) = ⟨id , (b1 ◦ s1)∧ (b2 ◦ s2)∧ (f2 ◦ s′2), s′1, f1⟩
where id denotes the identity function. Note that this last expression is not a L1

constant but a L1 expression if (b1 ◦ s1)∧ (b2 ◦s2)∧ (f2 ◦ s′2) cannot be simplified
as a L0 constant (boolean expressions over symbolic constants are simplified in
L1 expressions optimization).



Guards annotations and L1 optimizations. Other L1 expressions are made of L0

operators annotated by an explicit iteration domain. This iteration domain is
simply a L0 boolean expression b which denotes an approximation of the defini-
tion domain. The idea is that this boolean guard acts as an explicit restrict
on each expression. So, the definition of [[ ]]1 fulfills the following property:

[[eb]]1 ⊑ [[eb
′
]]1 if [[b]]0 ⊑ [[b′]]0 where ⊑ is the Scott order [15] on (Zn → Value).

The optimization of L1 expressions is to replace a guard by a more restricted
expression without changing the general meaning. Formally, we will replace eb

by eb
′
such that [[eb]]1 = [[eb

′
]]1 but [[b′]]0 ⊑ [[b]]0. Here is an example on vectors.

The construct R[x, y] is a symbolic constant that is true inside the (hyper) rect-
angle specified by two extreme points x and y and false elsewhere. Then, the L0

expression
map[+](1, restrict(2, R[0, 10])))

is a data field over Z that adds point-wise an infinite vector of 1 and a finite
vector of 2 of domain [0, 10]. This is translated into the L1 expression:

maptrue [+](⟨id, true, id, 1⟩, restricttrue(⟨id, true, id, 2⟩, ⟨id, R[0, 10], id, true⟩))

which in turn is optimized as

mapR[0,10][+](⟨id, R[0, 10], id, 1⟩, ⟨id, R[0, 10], id, 2⟩)

Note that after guard propagation, there is no more field with infinite extension
in this example. However, a symbolic constant remains symbolic and is not
translated into an extensional constant.

3.3 L2: working on flat vectors

A L2 constant is composed of a vector and a data descriptor. Each vector cor-
responds to the flattening of a multidimensional array and the associated data
descriptor describes how the array elements are packed into the vector. Cur-
rently, the data descriptor of the vector v is a couple (s, b) where s and b are
respectively called stride and base and are such that if a is the array associated
with v and z a multidimensional index, a[z] = v[s�z + b] where � is the scalar
product. L2 operations are vector operations corresponding to L1 operations
and curried form of such operations where the provided arguments are symbolic
constants (cf. example in § 3.1).

Each L2 constant is owned by a slave and slaves are mainly L2 interpreters
distributed over a network. They are implemented in Java. The distribution
strategy is a parameter of the system. For the moment, we have developed a very
simple heuristic that uniformizes the amount of memory used by the slaves: a new
vector is allocated to the slave that uses a minimal amount of memory. Obviously,
more refined approaches have to be studied, e.g. to minimize execution time and
data communication [28, 27].

A slave basically waits for incoming master requests and spawns new threads
in order to evaluate computing requests when the corresponding arguments are



available. If some arguments of a received request are not available, the request
and the missing arguments identifiers are registered in a soft scoreboard. This
scoreboard is updated each time a result is produced or a data is received from
other slaves. New threads are started for requests that are ready for evaluation.
The threads of a slave have different priorities upon the corresponding task, e.g.
a communication thread (send or receive) has a higher priority than a computing
thread.

A slave operation is generally implemented by using a single loop over vec-
tors, whatever the dimension of the original data fields (there is no need of
dimension dependent nesting of loops because the flatness of the representa-
tion). The control part of a loop is scalar if the (used or computed) elements
of the involved vectors are contiguous. Otherwise, it corresponds to the emu-
lation of a multidimensional index. In this last case, the scalar vector indexes
are computed incrementally by using this multidimensional index and the data
descriptors associated with each vector.

4 Related Works

FieldBroker integrates concepts and technics that have been developed sep-
arately. Relationships between the definition of functions and data fields are
investigated in [24]. A proposal for an implementation is described in [16] but
focuses mainly on the management of the definition domain of data fields. Guard
simplification in L1 is a special case of the extent analysis studied in [26].

One specific feature of FieldBroker is the use of heterogeneous representa-
tions, i.e. extensional and symbolic constants, to simplify field expressions. Fur-
ther investigations are needed to formalize and fully understand this approach.
Clearly, the algebraic framework is the right one to reason about the mixing of
multiple representations. These remarks hold also for the tricks used in L1 to
avoid evaluation.

Implementation of regions of Zn in L2 are inspired from the projects [37, 22]
which develop a language and a library dedicated to non-uniform block struc-
tured algorithms. However, we do not distinguish between several kinds of region
specifications, focusing on a uniform handling.

The flattening of arrays into vectors in L2 is inspired from [37] and the im-
plementation of vector operation using a single loop was inspired by A++/P++
[34] (itself using an algorithm described in [32]).

Client server architecture for HPC applications have been proposed recently:
[23, 14]. A lot of research efforts are now dedicated to the use of the emerging
web technology in an HPC framework [10, 3, 2].

5 Discussion: What Cost of Java?

We have implemented a first prototype of the client-server/master-multithreaded-
slaves architecture using Java as the implementation language. The advantages



associated with the Java programming language (portability of processes, trans-
parent memory management, anonymous and dynamic accesses to remote re-
sources, ...) come at some costs: the natural communication model relies on
RMI and not on message passing, the language is interpreted, and the memory
management is dynamic.

It is too early to conclude about the viability of using Java in the context
of numerical and scientific applications, mainly because the purpose of the first
implementation is only to give us some insights into the benefits and drawbacks
of the system design and functionalities. Because performance is not of primary
concern, we have always prefered the straightforward implementations over the
optimized ones, making unfair any performance evaluation (actually they are
poor). The purpose of this section is then to sketch some evidences against the
a priori disqualification of Java and to propose some of the necessary optimiza-
tions.

RMI versus MPI. The client-server model fits well with the Remote Method
Invocation (RMI) or the Remote Procedure Call (RPC) interface. This process
interaction model avoids many of the pitfalls of asynchronous message passing
programming. Furthermore, message passing requires a number of complex tasks
to be explicitly handled by the user (process identification, message preparation,
transmission and reception, ordering, etc.). However the message passing para-
digm is actually a de facto standard in data parallel programming due to the
effectiveness, robustness and implementation portability of communication li-
braries such as PVM or MPI. The problem is then to evaluate whether the use
of a RMI communication model is a viable alternative for scientific applications,
or not.

Recent studies [8, 23] show that “the client server model does not degrade
either programmability or performance for physical applications” [23]. The dif-
ference between the two communication modes on a set of simple scientific pro-
grams is less that 10 percent. Moreover, there is a lot of room for performance
improvement through the utilisation of multiprotocol communication like in the
Nexus library [9].

Bytecode interpretation versus compilation. Compared to VCODE, a virtual
machine dedicated to vector operations, Java achieves one sixth to half the per-
formance [17]. That is to say, w.r.t. to the facilities provided by an interpreted
approach, the performance degradation induced by the Java virtual machine are
not redhibitory. However, this still compares poorly against compiled code. This
drawback has led to the development of just-in-time Java compilers [5] that
are able to translate portions of the Java bytecode into executable machine-
dependent code. The performance obtained by these JIT is much better and
could be still improved [21].

In addition, a just-in-time compiler enables a kind of optimization that is
generally out of reach from a request server. We illustrate this on an example
involving loop fusion. Suppose for instance that two successive expression eval-
uations imply two successive loops with body e1 and e2. If the two loops have



the same iteration domain, and satisfy some additional constraints on e1 and
e2, then a smart compiler is able to factorize the two loops into only one with
body e1; e2. This optimization is out of reach from an interpreter because the
available primitive operations do not include the sequence e1; e2. However, with
just-in-time compiler, it is possible to synthesize on the fly the bytecode corre-
sponding to e1; e2 to achieve loop fusion. This approach is a possible answer to
the usual criticisms made on the server approach (no global optimization over
requests) and is a direction for future researches.

Dynamic versus static memory management. Finally, Java dynamic manage-
ment is sometimes argued against its use in the context of scientific applications.
But this is unavoidable in the case of irregular, dynamic and data dependent ap-
plications. Moreover, commands can be used by an application to fine-tune the
memory management.
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