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ABSTRACT 

We study the implementation of  an actor language, OAL, on a massively parallel message-passing 
architecture: MEGA. Motivations and  implementation constraints are exposed. A simulator has 
been built to investigate resource consumption. First results sbow the feasibility o f  the 
implementation but indicates serious problems in memory usage. Load-balancing strategies are 
presented which partially solve the memory problem. Actors adequacy  as a model f o r  
exploiting massive parallelism is discussed in conclusion. 

L ~  

MEGA (Machines to Explore Giant Architectures) is a family of architectures dedicated to the 
exploration of message passing on massively parallel MIMD machines for Artificial Intelligence 
applications. Such computers attempt to achieve massive parallelism (more than 109 ips) using a 
very large number of processing elements and intensive communication between them 
[DAL88]. That implies the expression and the exploitation of a very fine-grained parallelism. 

The Computer Architecture group of LRI has worked on several studies to investigate design 
key-points: the processing element [CAP90], the network architecture and the p a c k a g i n g  
[GER89] [BEC89], the routing strategy [GERg0a] [GER90b] and the execution model [CAP91]. 

The last point is devoted to language implementation issues requested to exploit fine-grained 
parallelism and their repercussions on the architectural level. Actors languages have earned a 
reputation of being able to express the full parallelism of an application. The aim of this paper is 
to present motivations and considerations arising in the implementation of an actor language on 
MEGA. 

The following section describes the MEGA underlying architecture, CPU and network. The 
second section presents briefly ~e  actors concepts and our motivations in implementing them. 
Next we present the canonical actor language used in this study, OAL. The fourth section 
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exposes the implementation of this language on MEGA and the simulator used to evaluate them. 
Finally we discuss the suitability of the actor paradigm to achieve massive parallelism. 

IL A machine to explore giant a r c h ~  MEGA 

One of  the most attractive architectural models for AI applications are message-passing archi- 
tectures: they are characterized by an asynchronous MIMD control, distributed local memories 
and message-passing communications. 

MEGA focus on fine grained parallelism relying on thousands of processing elements inter- 
connected in a 3D grid. VL$I technological progress makes possible the integration of the entire 
network node, including CPU, memory and routing hardware, on a single chip [COR87] [ATH88] 
[GER89]. This modular approach minimizes the number of wiring interconnections making 
possible the structural feasibility of machines with up to 106 processing elements (PE). 

The CPU executes a reduced instruction set, MegaTalk [CAPg0], designed to allow easy com- 
pilation and compact representation of a lexical LISP dialect (as for example based on Scheme 
[STEE75]). A detailed description of  the CPU can be found in [cAPg0]. The CPU access code and 
data are stored in on-chip memory. This feature severely constrains the memory size (between 
4K and 64K following the actual technology) but drastically speeds up the memory accesses 
[STAB6]. Thus, all instructions, including memory accesses, are performed in one clock cycle of 
less than 80ns with a standard 1.5 gtm CMOS technology, achieving 8 blips [BECg0]. 

EL2 Netwcwk and commnmtcaltOn 

The topology is a 3D grid 

The monochip also includes a hardwired router dedicated to the routing management in a three- 
dimensional grid. The choice of a 3D-grid is not naive: in recent works on very large parallel 
machines, grids have been shown to be more efficient than hypercubes for very large 
networks. Roughly, this is due to the fact that they take into account technologically-limited 
resources such as wiring density [DAL87] or available pin number [REE87]. 

A bardwired mailing system 

With very fine-grained parallelism, the average number of instructions executed between two 
message-passing operations tends to be small and therefore the network delay becomes a 
bottleneck for the whole system. If the message delivery time is too large, the processors have 
to wait for messages and they will stay idle. This constraint is known as the communication- 
calculus equilibrium [REF,87]. Therefore, when massive parallelism is concerned, software mes- 
sage routing as in the Cosmic Cube [SEI85] and Intel iPSC/1 lINT86] is no longer possible, 
because it degrades the performance strongly [GRU87]. The routing tools must be embedded in 
hardware such as in iPSC/2 [NUG88]. Thus the main constraint on routing strategies relies on 
hardwired implementation feasibility. 

A new routing algorithm, the forced routing [GERg0a], is used in MEGA. It is a tradeoff between 
deterministic (e.g. greedy routing: geometrical dimensions of the network are ordered, and 
routing follows this order) and randomized routing [VAI.,82] [LEI88]. No buffering capacity is 
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needed at the nodes and the algorithm is quite simple, thus well adapted to hardwired imple- 
mentation [BEC90]. In non-conflicting case, messages are randomly spread on the paths of  equal 
length insuring maximum efficiency in the use of network links. When a conflict for an output- 
link appears, all requesting messages are routed, possibly along directions moving them away 
from their destination. In this manner, when there is no contention, messages follow a shortest 
path and when contention increases, they are randomly spread in the network. 

At programmer level, two kind of messages are offered by the hardware: direct and defered 
messages. A direct message embed  the memory location where  it must be stored. A deferred 
message has a fixed size and is stored at reception in a hardware managed queue. In case of over- 
flow, the message is re-routed in the network and will come back later. 

HI. Actor languages 

liE1 Actor concepts  

Actors are a message passing based model  of computation. An actor is a self-contained entity 
with its own processing power. The computation is performed by sending and processing 
messages in parallel between actors. The reception of a message triggers the execution of the 
current behaviour of the receiver. Processing a communication results possibly in: 

- some simple computations (arithmetic operations and the conditional control structure); 
the sending of messages to others actors (send command); 

- the creation of new actors (new command); 
the specification of  the bebaviour which will govern the response to the next message 
(become command).  

An unserialized actor, opposed  to serialized actor, cannot change its internal state:, the same 
behaviour and the same acquaintance list (the actors with which an actor is able to communicate 
by sending messages) are used to respond to any message. So message processing can be done 
in parallel. 

The concept of  actor abstracts the notion of process, function or data structure. Patterns of 
passing messages represent  various control structures; data structures and assignment are 
accomplished through the mechanisms of  replacement  behaviour  and  acquaintances list 
[HEW76]. (We will not enter more into details, the interested reader can find references in 
§III.3.) 

BI.2 Motivations 

Among the available models of parallel execution, many features make actors very attractive to 
be implemented on a massive MIMD machine. 

Abstracting the hardware 

Actor communication is very close to that of MEGA. The assumptions underlying the mailing 
system are the same as provided by the hardwired routing of MEGA (guarantee of delivery but 
arrival non-determinism). Moreover, the granularity in an actor language like Act1 or Act2 
(message size and number, task size and numbed  is well fitted to the number  and power  of 
available processing elements of MEGA. Therefore, an actor language can abstract a specific 
MEGA machine, hiding implementation details while staying a priori near enough, to enable a 
pertinent driving of the hardware resources. 
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Expressive power 

Actor languages provide a natural expression of  the parallelism and the distribution. These 
expression facilities are strengthened by theoretical results showing equivalence between actors 
and PRAM 1 [BVN91] [EPP88] [VAL89]. It means that problems efficiently solved in the PRAM 
framework are also efficiently solved by an actor program. A lot of research have been done on 
PRAM algorithm and interesting results exist (the set of problems efficiendy solved by a PRAM 
algorithm is not an empty one). 

Moreover, the expressive power  of  actor languages make them able to emu la t e  e x e c u t i o n  m o d e l  
of  other programming paradigms. For example, continuation can be used to implement the 
function cal l ,paradigm. Function call differs from actor message sending in that sending a 
message does not return a value. Continuation consist in putting an additional argument in the 
message, the receiver of  the answer that will be  elaborated in response to the message. So 
actors used together with continuation, realize a demand-driven evaluation scheme [BURS1] 
[TRE82] (evaluation of arguments of a function call is done in parallel). 

Replacement behaviour is a cumbersome but powerful construct. It allows the implementation 
of  more sophisticated Communication schemes such as those required of  eager and lazy  eva- 
luation. More elaborated communication primitives (e.g. now or future in ABCL [YON86a]) can 
be  implemented using the basic primitives ~become" and ~send". Explicit translation, however, 
is obviously to hard to be  done  manually: the script of an actor must be  broken in several parts 
l inked by become commands (in addition, its acquaintance list must be copied through be- 
haviour replacement). 

Actor that does not change its script, acts like an object (the "become" command is just used to 
change acquaintances value). The part of the script dedicated to process a certain kind of mes- 
sages correspond to a method. De~ation can be used to achieve inheritance: when a message is 
outside the domain of  an actor, it is dispatched to a supply actor, the delegation, that can re- 
present the "inherited part" of  the object. See also works around POOL lAME88] about the 
combination of structuring mechanisms of object-oriented programming with the facilities for 
parallelism. 

Finally, actor languages are not only able to process various functional evaluation scheme but also 
provide an effective support  for reacUve systems [PNU86] that is, systems that does not give an 
output for data in input (transformational systems) but that react at their environment stimuli. 

So, an actor language must be seen as a parallel assembly language, the target for the compilation 
of more sophisticated languages : 

[-~ ~ ... [ ]  high level parallel language 

L m ~ z ~  lfletmlnZ on m m A  
[ o a t  ] 

I ~Laeran~ I . . .  l l a e r ~  l 

parallel assembly language 

processor assembly language 

I processor I tpa,cessor J 

1 More precisely, if a problem is solved by a CRCW-PRAM algorithm in time T(r0 and in space S(n), then it 
exists an actor program solving the problem in time T(n)log(n) with high probability and in actor size 
complexity S(r0 (cf. [BVN~ID. 
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m.30AaAnthe am~ ~ ~ 

PLASMA (Planner-like Language and System Model on Actor) is the ancestor of the family of 
actor languages [HEW75] and is purely sequential. Concurrence is introduced with the next 
generation, PlasraaII, and has motivated the development of the experimental language Actl  
[LIB811, a language focussed on message passing and behaviour mechanisms (the PlasraalH and 
Alog [CAR841 descendents of PlasmaII are more aimed at the investigation of message filtering 
and logic in terms of actors). A denotational semantic of Act1 was given through the semantic of 
Atolia [CLIN81], a simplified form of  Act1. Actor languages are usually seen as a kernel system to 
build more sophisticated languages. An example is given with Omega LATT85] (a description and 
deduction system), and Ether [KOR79] (a reasoning system) built on top of Act1. They are aimed 
at knowledge  representat ion and dedicated to ai-applications. Another example  is ABCL 
[YON86b], an object-oriented computation model  inheriting some concepts (message passing) 
from the actor computation model. The Act2 [THE83] programming language blends kernel 
concepts from Act1, Omega and Ether to provide an extensible framework in which additional 
concepts (such as in the Prelude system) can be  embedded.  Act2 was effectively implemented 
in Scrippter a language running on a network of LispMachines emulating an actor-dedicated 
architecture: Apiary [HEW80]. Act and Sal, close to Act2, are used by LAGH851 to provide a 
transition-based semantics to actors. Sal is generally regarded as the minimal actor language and 
is also the basis of  OAL 

OAL is a canonical actor language very close of SAL [AGH85] TOONS [ESP] or SCRIPTS [LIT90]. 
Some restrictions have been  made in regard to SAL semantics for sake of  simplicity and to 
respect staticity. The idea behind is to have a compiled language where most of the work (type 
checking, message dispatching, etc) can be done statically at compile-time. 

The notable exception, with respect to the SAL semantic, is that the argument of  a become 
command can only be  a behaviour name (a new-expression in SAL terminology): in SAL, an 
actor can "become" another actor, meaning that all mail of the first is forwarded to the second. 
This can be  done  explicitly by  hand in OAL but not  implicitly. Implementat ion of  such a 
"become" implies dynamic type checking. 

We have to note the absence of  unserialized actors, indeed, qualifying as unseriatized an actor, as 
no influence on its implementation (message received by an unserialized actor are implicitly 
serialized for their processing, cf. SIC). A feature w e  have added  in OAL, is actor suicide, for 
explicit release of  resources owned by an actor. A more detailed description of  OAL with its 
semantics can be found in [FOW90]. 

IV. Implemetmmlon 

We describe here a possible implementation of OAL on the MEGA machine. Although OAL is 
not actually running on a MEGA machine, OAL programs can be processed and evaluated on a 
dedica ted  simulator. Several simulators of  MEGA exist serving different purposes:  VLSI 
simulation, evaluation of  MegaTalk (the RISC instruction set), evaluation of the forced routing 
strategy, evaluation of the OAL implementation (see further). 

. IV.1 ' r l ~  a c t o r  ~ , ; ~ a t a f l o n  

Each instance of  an actor is represented by a data structure residing on a unique processor. This 
data structure contains the acquaintances of the actor, a link to the message input queue and to 
the current script. Because OAL "become" is static, we  are able to determine at compile time 
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the set of behaviours reachable from a given one and so w e  can compute the size needed to 
store the largest acquaintances list. So, acquaintances are accessed just as structure fields. 

The current script consist of  pieces of  code glued together with a switch statement which 
makes the dispatch of  the messages. Each case of the switch process a message type. 

Each actor is referenced through an auid (actor unique identifier). The auid of an actor is 
composed at creation time and is the juxtaposition of a local number (an index in the actor table 
of the processor) and the processor address (3 bytes corresponding to its x,y,z coordinates). So 
the size of  an auid is 5 bytes and more precisely for boundary alignment reasons, 3 words. It was 
considered to compact  the processor address to gain 3 bits and to restrict the actors number in 
a processor to 512. With these assumptions, the size of a auid is lowered to 2 words. But the gain 
in memory  resources is lost by the coding/decoding  operat ions necessary to compact /  
uncompact the processor address when sending a message. 

IV.2 The ~ n a g e m e n t  o f  the  C t ~  

The processing of  a message by  an actor creates a task. A task is managed through a workspace. 
The workspace is a structure 16 bytes long that contains the PSW (program status word  of the 
task), the entry in the actor table referring to the actor responsible for the task, a reference to 
the acquaintance structure and a reference to the message. 8 additional bytes are used for 
temporary results computed during the processing of a message. 

Tasks are scheduled following a simple reactive strategy as in the original operating system of 
the Cosmic Cube [SEI88]. Messages are processed in their order of  arrivals. Because actor scripts 
are ensured to end in a bounded time, no preemptive mechanism is needed. The scheduler is 
part of  a common toolbox resident on each processor (the toolbox summarizes the common 
routines needed  to perform an OAL program). Actors resident on the processor are accessed 
by the toolbox through the actor table. Previous evaluation [GER90c] has showed that the size of 
the code of the scheduler (workspace management and scheduling) is about 0.5K. 

IV.3 The mailing system 

The purpose of  the mailing system is to implement OAL messages on top of  MEGA messages. 
The problem is not to split too long messages (cf. SIV.5) but to ensure the unlimited buffering 
assumption of the language. 

The "send" statement in an OAL script submit the message to the mail service of  a processor. 
Actions performed by the mail service take place between task scheduling. Each OAL message 
results in 3 MEGA messages managed by  the toolbox. 

When the toolbox has to send an OAL message, it first requests of the (toolbox of the) receiver 
the right to send its message. The response is delayed until the receiver has room enough to 
store the incoming message. The acknowledgement contains the remote memory address used 
to receive the OAL message and cause the final sending. Three messages have been exchanged: 
one "deferred" and two "direct" (see SlI.2). 

It appears more and more that the constraints ensured by the actor mailing system are very 
weak, making cumbersome even the coding of  a trivial algorithm. Languages like ABCL or 
CANTOR lATH87] assume a stronger constraint on message arrival: message order is preserved 



353 

for messages sent from one  actor to another one. This can be implemented adding a stamp field 
to each message. A table is linked with each actor, keeping track of number of messages sent to 
a given receiver. This count is used to give a value to the stamp field of  the request message. The 
receiver delays its acknowledgement until it receives the previous communications. 

IV.4 toad-baana~ stt-aegy 

Load-balancing consist in spreading the work  among the processors  with the goal  of  
maximizing task processing throughput  (the overall  throughput  is cons idered  as more 
important that the response time of  an individual actor) JAMS84] [REE87]. As processors have 
very small memory resources, load-balancing is also crucial for MEGA not only to speed-up the 
program execution, but to make possible the processing of memory consuming application. 

To reach these goals, we have to adjust two opposi te  effects: task processing throughput is 
increased and processor  memory usage is reduced if the tasks are distributed among the 
available processors. But distributing the tasks also increases buffering and communication cost, 
slowing down task processing and using memory. So, a good  load balancing must preserve 
localio,. 

Because OAL tasks are very small (few lines of code), the cost of migrating a task during its 
execution, is too expensive. Creating a task on another processor from where  the concerned 
actor resides, implies at least to copy actor acquaintances and so are too much expensive too. 
The only solution is to keep the task on the same processor as the concerned actor. Thus, load- 
balancing is achieved through the distribution of actors. 

Our current hypothesis is that an actor cannot migrate during its life from a processor to 
another for the following reasons. As a matter of  fact, actor migration must be transparent to 
the programmer: actors are light weight dynamic entities and the user must be unaware of their 
physical positions. The decision to move an actor is thus done by the system. It is not possible 
to tell each actor concerned by the move because these actors are not explicitly known by the 
system (this is the inverse of the relationship maintained through the acquaintance lists). So 
when the system has to move an actor, it must leave a forwarder that ensures the mail delivery. 
And the benefit of moving the actor (reducing the task load of  one processor) is lost by the 
increase of the network load and will not reduce memory usage. 

After this consideration, it must be clear that, within our framework, only few solutions exist to 
control the load-balancing. The only parameter upon which we can act is the physical processor 
allocated to an actor at creation time (statement "new"). Static load-balancing is possible in OAL 
with the optional keyword "at" which explicitly gives the processor where  to create the new 
actor. Dynamic balancing is done in absence of the previous keyword. It consist of the creation 
of the actor on a processor selected following some criteria (cf. SIV.6). 

The creation of  an actor on  an another processor uses a communication protocol  between 
toolboxes. For sake of  simplicity, the simulator assumes that actor scripts are available on each 
processor. Protocol for code migration have not been considered. 
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IV.5 The ~ t  o f  the ~ 

Data structure and space limits 

The expected average number of arguments in a message is 2.5 (cf. fig. 2) and we must add the 
auid of the receiver. That leads to a typical message not exceeding 20 bytes length: thus there is 
no problem to code an actor message in a MEGA message of maximum size of 64. Pathological 
messages resulting in overflow of this hard limit, are compile time errors. 

The acquaintances list of an actor have an expected average length of 16 bytes (see the following 
table: the size of the OAL programs corpus is not significant enough so we consider the 
indication extrapolated from a large sized object-oriented application). The data structure 
representing an actor must be increased by the pointer to the current behaviour script. The 
average length of an actor also does not exceed 20 bytes. This implies a maximum of 200 actors 
resident on a small MEGA processor with 4Kb local memory and 3000 actors for a 62Kb local 
memory. Obviously, this estimation must be reduced taking into account the space occupied by 
the code, the space used for the input queues and the space used for the common services. 
With the hypothesis of 1000 actors per processor, a small cube of edge 10 may support one 
million actors and a full cube of edge 100 may support 109 actors. 

acquaintances or 
slots in byte 

arguments number 

OAL examples 
library 

object-oriented 
application (in C++) 

5.2 15.6 
223/127 97+126/33+33 

~L4 2.4 
1051 args/435methods 

Static attalysls of typical code providing evaluation of expected actor size and arguments message 
number. The ratio (223/127) for the OAL library refer to 223 acquaintance for 127 new statements. In the 
"object" column, 97+126 refer to 97 references to other objects and 126 slots of basic types. 33+33 stand 
for 33 root classes and 33 derivations. For transposition in the actor scheme, a reference is counted for 
6 bytes and a reference is added for each derivation class (delegation). A basic type is coded in 2 bytes. 

The Garbage Collector problem 

Actor programs create a lot of short-lived actors (cf. to simulation results) and a garbage 
collector is needed to minimize the amount of memory used. The "suicide" OAL feature permits 
explicit deletion of resources used by an actor but is dangerous from a software engineering 
point of view: if a message arrives after the death of an actor, unpredictable results occur (dead 
actors are similar to pending reference in C). So, "suicide" can be only used to remo,~e actors 
statically known as useless (for example, the programmer knows that some kind of actors have 
only two messages to process as arising in a dichotomic search). Therefore, an implicit system is 
necessary for garbage collecting distributed memory. 

Here are the properties we expect from a good GC algorithm [COU89] [LIB83]: locality and 
minimization of communications, minimization of synchronisation needed, easy processing of 
the message on the way, earlier deletion of inacessible resources, independence from physical 
parameters (network size and topology) and cheap processing. 

Mark-scan parallel garbage collection algorithm [HUD82] [HUG85] has several drawbacks. The 
first is certainly that they do not respond the important property of maximizing available 
memory: actors may be deleted long after they become inaccessible. In addition, 
synchronization constraints are needed between processors. 
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Reference counting methods [BEC86] [BEV87] [WAT87] answer to the previous objection and 
also solve the problem of "flying" references (actor referenced in a message on the way). But 
they have other shortcommings: actors part of  a circular structure, are not  dele ted  at all. 
Moreover, because actors are light entities, the cost of an additional counter is high. 

A large amount of research are currently done in distributed garbage collection area. At this 
point, the garbage collector of  OAL is an open question. Future work would be  done to evaluate 
more precisely existing algorithms. 

IV.6 $1.m,l~flon 

The simulator 

The MEGA simulator used in this study consist of a set of C++ classes [STR87] modelling a MEGA 
machine: p r o c e s s o r ,  memory, message ,  and t a s k .  Messages are similar to events in a discrete 
event simulation. An additional kind of object was defined, the basic a c t o r ,  able to transform a 
message in a task. 

The compilation of  an OAL program results in a set of  C++ classes inheriting from the classes 
actor and message. A new class inheriting of actor is defined for each bead behaviourin an 
OAL program (a head behaviour corresponds to a behaviour appearing in a "new" statement). A 
derivation of m e s s a g e  is produced for each kind of message recognized by a behaviour. 

The C++ compilation of the translation of an OAL program is linked with the simulator itself to 
produce the final programme. Size, topology of the network and dynamic load-balancing 
strategy, are run-time parameters. The results of an execution are the messages received by the 
external actor O u t p u t  and some statistics summarizing memory occupation, processor activity, 
network load, etc. 

The adopted  simulation scheme has several advantages. The compi led  approach enables 
simulation of  bigger size than possible through the direct interpretation of an OAL program 
(especially w.r.t, the number of processors). For example, one of our test program generates a 
binary tree of 32000 leafs and sorts it in parallel. This program mimics a realistic application, 
requiring more than 9.106 message exchanges. The simulation of  this program on a 512- 
processors sized MEGA is possible and take less than 8 hours on a Sparc. 

Moreover, the compiler allows a strict "type checking" (no run-time error of kind "unexpected 
message type") and furnishes interesting characteristics (actors size, average argument number, 
etc). At last but not least, the translation time is not annoying for the user (700 OAL lines/s) and 
the generated C++ is in a human readable form. 

The simulations 

The goal of the simulation was to quantify the execution of actors programs in term of resource 
consomption in order to compare with respect to efficiency the actor execution model  against 
other paradigms. 

Two main dynamic load-balancing strategies are under investigation. The first strategy consists in 
minimizing the number of  actor residing on a processor (L1); the second one minimizes the 
number of current tasks on a processor (L2). These numbers are immediafly available on a pro- 
cessor. The following table shows the results for two applications (a beta-reductlon [HIL86] of 
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4096 elements and a parallel bitonic sort [GIB 88] of 512 elements) and for various network size 
(this last parameters can correspond to a variable processor load). Each entry of the table gives 
the results for the L1 and the L2 strategies. The L2 strategy is not always the best with respect to 
the throughput (the criterium ~max processed task and max waiting task per processor") but 
minimizes maximum memory occupation. 

L1 

L2 

Par~nel 
s i m o n  o f  
4O96 
e.lements 

1 512 1000 4096 8000 network size 

90K / 90K 1 / 80 1 / 80 1 / 80 0 / 80 ~ OOL~l~fg10n 
90K / 90K 6 / 40 3 / 40 0 / 40 0 / 40 average / max 

0 / 0  0 / 1  0 / 1  0 / 1  0 / 1  
0 / 0  0 / 1  0 / 1  0 / l  0 / 1  

16K / 4K 6K / 4 6K / 4 6K / 4 61( /4  
16K/4K 1386 / 2 1386 / 2 1386 / 2 1386 / 2 

21K / 21K 49/12K 25 /12K 6/121( 3 / 1 2 K  
Parall~_ 21K / 21K 138 / l l K  79 / 4K 25 / 12K 13 / 12K 
bitontc sort o / o  o /10  o /10  O/lO O/lO 
o f  512 o / o  t120 1 / 2 2  1 / 2 8  1 / 2 8  

a n d  21K/769 12K/512 12I(/512 12K/512 I2K/512 
21K / 769 l l K /  492 189 / 4K 513 / 12K 513 / 12K 

mamsmmtt  

~ pathlen#~ 
averase / max 

mmmmput" 
max processed tasks / max 

wait~$ tasks 

menmry occupation 

avera$e / max 

messa~ path lenght 
averase / max 

max processed tasks I max 

waiting tasks 

The most important remark about the previous results is that increasing the network size has 
very little effect to m a x i m u m  caracteristics (memory occupation, waiting tasks...). That is, the 
load-balancing strategy is unable to spread the computation load homogeneously over the 
network. The reasons of this bottleneck will be discussed in the next section. 

The simulation also help us to verify an important hypothesis about load-balancing. The 
previous simulation assumes that the load-balancing algorithm possesses complete knowledge 
of the global network state. In practice only limited information is available. However, it appears 
that state knowledge of nodes within a small distance suffices to approximate the result 
provided by the global knowledge hypothesis (the event  horizon effec0 [REE87] [LIN85]. The 
following table compares the two load-balancing strategies under the two hypothesis in case of 
extreme contention (small network, big job). The conclusion is that local hypothesis favours 
average characteristics a little bit but leads to more heterogeneous processing. This was 
predictable because if the event horizon is too large, the load charge reduction is offset by the 
increased cost of communication. 

gZobaz 
local 

/ / b l t o n i c  sort 
o f  32000 
elemengs 

o n 5 1 2  
~ r s  

L1 

41100 
3 1786 

L2 

5000/4 
868/32 

4 /156  
3 / 710 

/K ~ o z y  o¢~'upatl~ 
average / max 

5 9 / 6  
113 / 29 

lO,'21 5/21 ngssage path leng~ 
1 / 16 1 / 21 average / max 

/K - - - , ,  processed tasks/ 
maxwamt~ tasks 
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The previous programs create respectively 8K, 60K and 620K actors (i.e. more than the available 
processors). This stresses the idea of  having an efficient garbage collector. Using the "suicide ~ 
feature in OAL, reduces the number of living actors to 1 at the end of  the beta-reduction and to 
3000 for the second application.  But this technique is not always possible. 

V. Conclusion 

Actor implementation on MEGA 

The simulation we  are currently working with shows the feasibility of  implementing actors on 
MEGA. The severe constraints on memory s p a c e  can be managed through a relevant load- 
balancing strategy that minimizes processor memory occupation and load charge. 

However, the test programs we have developed in OAL are space and time consuming in 
regards to other parallel language implementations (refer to [GER90cD, and this, even in the 
same functional programming style (there is for example  no need  for garbage-collecting 
processes in a demand-driven execution scheme). Consequently, the use of actors to achieve 
massive parallelism is questionable. 

Actors and (massive) parallelism 

To analyze the suitability or  unsuitability of actors to massive computing, we first make a 
distinction between three kinds of parallelism usable to speed-up the execution of a program 
[SAN90]. Data-parallelism is the ability to process homogeneous  set of  data in an atomic 
operation. It is the parallelism exploited for example in *Lisp [HIL85] or ParalationLisp. Control- 
parallelism is the parallel processing of multiple threads of control. This parallelism is present in 
Occam, //Pascal,  etc. The flow-parallelism is the one used through the multiple stages of a 
systolic architecture using a pipe-line effect. 

The actor mechanisms are primitive enough to handle the various sources of  parallelism in an 
application. Actors are able to express and to use the three sources of  speed-up: one actor per  
"data element" correspond to the data-parallel paradigm, one actor per  process correspond to 
the parallel control scheme while acquaintances list can be used to represent the fan-out of a 
pipe-line stage. However, this expressive power sacrifices the language efficiency on realistic 
computers .  Indeed,  oppos i te  characteristics have to be  joined to implement  the actor 
paradigm. For example,  data-parallel operations need  dynamicity and accommodate  well to 

• synchronicity while control schemes are static and fitted to asynchronous execution model. 
Restricting also the actor programming to a given style, cannot  gain against  the more 
constrained assumptions made in one of the more specialized scheme. For example, the cost of 
doing an operation for each of n data-elements (a~ba-notation [HIL86]) is the cost of  the scalar 
operation in a data-parallel language based on a SIMD model. To achieve the same result within 
the actor language, n messages must be exchanged. 

In addition, resource management cannot be done in a fine manner: the usual resource mana- 
gement unit is the task, as being the resource consumer. But a task does not correspond to an 
actor, it correspond to the handling of  a message by an actor. Actor management  is a poor 
substitute to task management (some actors are the receiver of thousand messages while other 
are very ephemeral  entities, waiting for just one message before dying). Also an actor cannot be 
v iewed as cluster of tasks (no communicat ion locality in this cluster, no  control over  
CPU/network, memory/network tradeoff, ...). 
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In conclusion,  the  simulat ion w e  are currently work ing  with,  rules out  the  idea  to u se  an actor 
language  as a f ine-grain parallel a ssembly  language,  a harness  for m o r e  e labora ted  system. 
Although actors express  very  well  distr ibuted application and  concurrency,  they  are not  able to 
manage  resource  consumpt ion  in a f ine way. 
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