
OAL: an Implementation of an Actor Language
on a Massively Parallel Message-Passing Architecture

Jean-l~uts Glavitto, ~ Ge tmam
LRI- Amhfteclure et Conception des Circuits Int~gr~s

B~I 490 UnfversfM de Paris XI- 91405 Orsay cedex France
emafL, gfavftto@lrl.lrf.fr

~:H~,~ Fowler
LFCS - University of Edinburgh

ABSTRACT

We study the implementation of an actor language, OAL, on a massively parallel message-passing
architecture: MEGA. Motivations and implementation constraints are exposed. A simulator has
been built to investigate resource consumption. First results sbow the feasibility o f the
implementation but indicates serious problems in memory usage. Load-balancing strategies are
presented which partially solve the memory problem. Actors adequacy as a model f o r
exploiting massive parallelism is discussed in conclusion.

L ~

MEGA (Machines to Explore Giant Architectures) is a family of architectures dedicated to the
exploration of message passing on massively parallel MIMD machines for Artificial Intelligence
applications. Such computers attempt to achieve massive parallelism (more than 109 ips) using a
very large number of processing elements and intensive communication between them
[DAL88]. That implies the expression and the exploitation of a very fine-grained parallelism.

The Computer Architecture group of LRI has worked on several studies to investigate design
key-points: the processing element [CAP90], the network architecture and the p a c k a g i n g
[GER89] [BEC89], the routing strategy [GERg0a] [GER90b] and the execution model [CAP91].

The last point is devoted to language implementation issues requested to exploit fine-grained
parallelism and their repercussions on the architectural level. Actors languages have earned a
reputation of being able to express the full parallelism of an application. The aim of this paper is
to present motivations and considerations arising in the implementation of an actor language on
MEGA.

The following section describes the MEGA underlying architecture, CPU and network. The
second section presents briefly ~e actors concepts and our motivations in implementing them.
Next we present the canonical actor language used in this study, OAL. The fourth section

848

exposes the implementation of this language on MEGA and the simulator used to evaluate them.
Finally we discuss the suitability of the actor paradigm to achieve massive parallelism.

IL A machine to explore giant a r c h ~ MEGA

One of the most attractive architectural models for AI applications are message-passing archi-
tectures: they are characterized by an asynchronous MIMD control, distributed local memories
and message-passing communications.

MEGA focus on fine grained parallelism relying on thousands of processing elements inter-
connected in a 3D grid. VL$I technological progress makes possible the integration of the entire
network node, including CPU, memory and routing hardware, on a single chip [COR87] [ATH88]
[GER89]. This modular approach minimizes the number of wiring interconnections making
possible the structural feasibility of machines with up to 106 processing elements (PE).

The CPU executes a reduced instruction set, MegaTalk [CAPg0], designed to allow easy com-
pilation and compact representation of a lexical LISP dialect (as for example based on Scheme
[STEE75]). A detailed description of the CPU can be found in [cAPg0]. The CPU access code and
data are stored in on-chip memory. This feature severely constrains the memory size (between
4K and 64K following the actual technology) but drastically speeds up the memory accesses
[STAB6]. Thus, all instructions, including memory accesses, are performed in one clock cycle of
less than 80ns with a standard 1.5 gtm CMOS technology, achieving 8 blips [BECg0].

EL2 Netwcwk and commnmtcaltOn

The topology is a 3D grid

The monochip also includes a hardwired router dedicated to the routing management in a three-
dimensional grid. The choice of a 3D-grid is not naive: in recent works on very large parallel
machines, grids have been shown to be more efficient than hypercubes for very large
networks. Roughly, this is due to the fact that they take into account technologically-limited
resources such as wiring density [DAL87] or available pin number [REE87].

A bardwired mailing system

With very fine-grained parallelism, the average number of instructions executed between two
message-passing operations tends to be small and therefore the network delay becomes a
bottleneck for the whole system. If the message delivery time is too large, the processors have
to wait for messages and they will stay idle. This constraint is known as the communication-
calculus equilibrium [REF,87]. Therefore, when massive parallelism is concerned, software mes-
sage routing as in the Cosmic Cube [SEI85] and Intel iPSC/1 lINT86] is no longer possible,
because it degrades the performance strongly [GRU87]. The routing tools must be embedded in
hardware such as in iPSC/2 [NUG88]. Thus the main constraint on routing strategies relies on
hardwired implementation feasibility.

A new routing algorithm, the forced routing [GERg0a], is used in MEGA. It is a tradeoff between
deterministic (e.g. greedy routing: geometrical dimensions of the network are ordered, and
routing follows this order) and randomized routing [VAI.,82] [LEI88]. No buffering capacity is

349

needed at the nodes and the algorithm is quite simple, thus well adapted to hardwired imple-
mentation [BEC90]. In non-conflicting case, messages are randomly spread on the paths of equal
length insuring maximum efficiency in the use of network links. When a conflict for an output-
link appears, all requesting messages are routed, possibly along directions moving them away
from their destination. In this manner, when there is no contention, messages follow a shortest
path and when contention increases, they are randomly spread in the network.

At programmer level, two kind of messages are offered by the hardware: direct and defered
messages. A direct message embed the memory location where it must be stored. A deferred
message has a fixed size and is stored at reception in a hardware managed queue. In case of over-
flow, the message is re-routed in the network and will come back later.

HI. Actor languages

liE1 Actor concepts

Actors are a message passing based model of computation. An actor is a self-contained entity
with its own processing power. The computation is performed by sending and processing
messages in parallel between actors. The reception of a message triggers the execution of the
current behaviour of the receiver. Processing a communication results possibly in:

- some simple computations (arithmetic operations and the conditional control structure);
the sending of messages to others actors (send command);

- the creation of new actors (new command);
the specification of the bebaviour which will govern the response to the next message
(become command).

An unserialized actor, opposed to serialized actor, cannot change its internal state:, the same
behaviour and the same acquaintance list (the actors with which an actor is able to communicate
by sending messages) are used to respond to any message. So message processing can be done
in parallel.

The concept of actor abstracts the notion of process, function or data structure. Patterns of
passing messages represent various control structures; data structures and assignment are
accomplished through the mechanisms of replacement behaviour and acquaintances list
[HEW76]. (We will not enter more into details, the interested reader can find references in
§III.3.)

BI.2 Motivations

Among the available models of parallel execution, many features make actors very attractive to
be implemented on a massive MIMD machine.

Abstracting the hardware

Actor communication is very close to that of MEGA. The assumptions underlying the mailing
system are the same as provided by the hardwired routing of MEGA (guarantee of delivery but
arrival non-determinism). Moreover, the granularity in an actor language like Act1 or Act2
(message size and number, task size and numbed is well fitted to the number and power of
available processing elements of MEGA. Therefore, an actor language can abstract a specific
MEGA machine, hiding implementation details while staying a priori near enough, to enable a
pertinent driving of the hardware resources.

350

Expressive power

Actor languages provide a natural expression of the parallelism and the distribution. These
expression facilities are strengthened by theoretical results showing equivalence between actors
and PRAM 1 [BVN91] [EPP88] [VAL89]. It means that problems efficiently solved in the PRAM
framework are also efficiently solved by an actor program. A lot of research have been done on
PRAM algorithm and interesting results exist (the set of problems efficiendy solved by a PRAM
algorithm is not an empty one).

Moreover, the expressive power of actor languages make them able to emu la t e e x e c u t i o n m o d e l
of other programming paradigms. For example, continuation can be used to implement the
function cal l ,paradigm. Function call differs from actor message sending in that sending a
message does not return a value. Continuation consist in putting an additional argument in the
message, the receiver of the answer that will be elaborated in response to the message. So
actors used together with continuation, realize a demand-driven evaluation scheme [BURS1]
[TRE82] (evaluation of arguments of a function call is done in parallel).

Replacement behaviour is a cumbersome but powerful construct. It allows the implementation
of more sophisticated Communication schemes such as those required of eager and lazy eva-
luation. More elaborated communication primitives (e.g. now or future in ABCL [YON86a]) can
be implemented using the basic primitives ~become" and ~send". Explicit translation, however,
is obviously to hard to be done manually: the script of an actor must be broken in several parts
l inked by become commands (in addition, its acquaintance list must be copied through be-
haviour replacement).

Actor that does not change its script, acts like an object (the "become" command is just used to
change acquaintances value). The part of the script dedicated to process a certain kind of mes-
sages correspond to a method. De~ation can be used to achieve inheritance: when a message is
outside the domain of an actor, it is dispatched to a supply actor, the delegation, that can re-
present the "inherited part" of the object. See also works around POOL lAME88] about the
combination of structuring mechanisms of object-oriented programming with the facilities for
parallelism.

Finally, actor languages are not only able to process various functional evaluation scheme but also
provide an effective support for reacUve systems [PNU86] that is, systems that does not give an
output for data in input (transformational systems) but that react at their environment stimuli.

So, an actor language must be seen as a parallel assembly language, the target for the compilation
of more sophisticated languages :

[-~ ~ ... [] high level parallel language

L m ~ z ~ lfletmlnZ on m m A
[o a t]

I ~Laeran~ I . . . l l a e r ~ l

parallel assembly language

processor assembly language

I processor I tpa,cessor J

1 More precisely, if a problem is solved by a CRCW-PRAM algorithm in time T(r0 and in space S(n), then it
exists an actor program solving the problem in time T(n)log(n) with high probability and in actor size
complexity S(r0 (cf. [BVN~ID.

:351

m.30AaAnthe am~ ~ ~

PLASMA (Planner-like Language and System Model on Actor) is the ancestor of the family of
actor languages [HEW75] and is purely sequential. Concurrence is introduced with the next
generation, PlasraaII, and has motivated the development of the experimental language Actl
[LIB811, a language focussed on message passing and behaviour mechanisms (the PlasraalH and
Alog [CAR841 descendents of PlasmaII are more aimed at the investigation of message filtering
and logic in terms of actors). A denotational semantic of Act1 was given through the semantic of
Atolia [CLIN81], a simplified form of Act1. Actor languages are usually seen as a kernel system to
build more sophisticated languages. An example is given with Omega LATT85] (a description and
deduction system), and Ether [KOR79] (a reasoning system) built on top of Act1. They are aimed
at knowledge representat ion and dedicated to ai-applications. Another example is ABCL
[YON86b], an object-oriented computation model inheriting some concepts (message passing)
from the actor computation model. The Act2 [THE83] programming language blends kernel
concepts from Act1, Omega and Ether to provide an extensible framework in which additional
concepts (such as in the Prelude system) can be embedded. Act2 was effectively implemented
in Scrippter a language running on a network of LispMachines emulating an actor-dedicated
architecture: Apiary [HEW80]. Act and Sal, close to Act2, are used by LAGH851 to provide a
transition-based semantics to actors. Sal is generally regarded as the minimal actor language and
is also the basis of OAL

OAL is a canonical actor language very close of SAL [AGH85] TOONS [ESP] or SCRIPTS [LIT90].
Some restrictions have been made in regard to SAL semantics for sake of simplicity and to
respect staticity. The idea behind is to have a compiled language where most of the work (type
checking, message dispatching, etc) can be done statically at compile-time.

The notable exception, with respect to the SAL semantic, is that the argument of a become
command can only be a behaviour name (a new-expression in SAL terminology): in SAL, an
actor can "become" another actor, meaning that all mail of the first is forwarded to the second.
This can be done explicitly by hand in OAL but not implicitly. Implementat ion of such a
"become" implies dynamic type checking.

We have to note the absence of unserialized actors, indeed, qualifying as unseriatized an actor, as
no influence on its implementation (message received by an unserialized actor are implicitly
serialized for their processing, cf. SIC). A feature w e have added in OAL, is actor suicide, for
explicit release of resources owned by an actor. A more detailed description of OAL with its
semantics can be found in [FOW90].

IV. Implemetmmlon

We describe here a possible implementation of OAL on the MEGA machine. Although OAL is
not actually running on a MEGA machine, OAL programs can be processed and evaluated on a
dedica ted simulator. Several simulators of MEGA exist serving different purposes: VLSI
simulation, evaluation of MegaTalk (the RISC instruction set), evaluation of the forced routing
strategy, evaluation of the OAL implementation (see further).

. IV.1 ' r l ~ a c t o r ~ , ; ~ a t a f l o n

Each instance of an actor is represented by a data structure residing on a unique processor. This
data structure contains the acquaintances of the actor, a link to the message input queue and to
the current script. Because OAL "become" is static, we are able to determine at compile time

352

the set of behaviours reachable from a given one and so w e can compute the size needed to
store the largest acquaintances list. So, acquaintances are accessed just as structure fields.

The current script consist of pieces of code glued together with a switch statement which
makes the dispatch of the messages. Each case of the switch process a message type.

Each actor is referenced through an auid (actor unique identifier). The auid of an actor is
composed at creation time and is the juxtaposition of a local number (an index in the actor table
of the processor) and the processor address (3 bytes corresponding to its x,y,z coordinates). So
the size of an auid is 5 bytes and more precisely for boundary alignment reasons, 3 words. It was
considered to compact the processor address to gain 3 bits and to restrict the actors number in
a processor to 512. With these assumptions, the size of a auid is lowered to 2 words. But the gain
in memory resources is lost by the coding/decoding operat ions necessary to compact /
uncompact the processor address when sending a message.

IV.2 The ~ n a g e m e n t o f the C t ~

The processing of a message by an actor creates a task. A task is managed through a workspace.
The workspace is a structure 16 bytes long that contains the PSW (program status word of the
task), the entry in the actor table referring to the actor responsible for the task, a reference to
the acquaintance structure and a reference to the message. 8 additional bytes are used for
temporary results computed during the processing of a message.

Tasks are scheduled following a simple reactive strategy as in the original operating system of
the Cosmic Cube [SEI88]. Messages are processed in their order of arrivals. Because actor scripts
are ensured to end in a bounded time, no preemptive mechanism is needed. The scheduler is
part of a common toolbox resident on each processor (the toolbox summarizes the common
routines needed to perform an OAL program). Actors resident on the processor are accessed
by the toolbox through the actor table. Previous evaluation [GER90c] has showed that the size of
the code of the scheduler (workspace management and scheduling) is about 0.5K.

IV.3 The mailing system

The purpose of the mailing system is to implement OAL messages on top of MEGA messages.
The problem is not to split too long messages (cf. SIV.5) but to ensure the unlimited buffering
assumption of the language.

The "send" statement in an OAL script submit the message to the mail service of a processor.
Actions performed by the mail service take place between task scheduling. Each OAL message
results in 3 MEGA messages managed by the toolbox.

When the toolbox has to send an OAL message, it first requests of the (toolbox of the) receiver
the right to send its message. The response is delayed until the receiver has room enough to
store the incoming message. The acknowledgement contains the remote memory address used
to receive the OAL message and cause the final sending. Three messages have been exchanged:
one "deferred" and two "direct" (see SlI.2).

It appears more and more that the constraints ensured by the actor mailing system are very
weak, making cumbersome even the coding of a trivial algorithm. Languages like ABCL or
CANTOR lATH87] assume a stronger constraint on message arrival: message order is preserved

353

for messages sent from one actor to another one. This can be implemented adding a stamp field
to each message. A table is linked with each actor, keeping track of number of messages sent to
a given receiver. This count is used to give a value to the stamp field of the request message. The
receiver delays its acknowledgement until it receives the previous communications.

IV.4 toad-baana~ stt-aegy

Load-balancing consist in spreading the work among the processors with the goal of
maximizing task processing throughput (the overall throughput is cons idered as more
important that the response time of an individual actor) JAMS84] [REE87]. As processors have
very small memory resources, load-balancing is also crucial for MEGA not only to speed-up the
program execution, but to make possible the processing of memory consuming application.

To reach these goals, we have to adjust two opposi te effects: task processing throughput is
increased and processor memory usage is reduced if the tasks are distributed among the
available processors. But distributing the tasks also increases buffering and communication cost,
slowing down task processing and using memory. So, a good load balancing must preserve
localio,.

Because OAL tasks are very small (few lines of code), the cost of migrating a task during its
execution, is too expensive. Creating a task on another processor from where the concerned
actor resides, implies at least to copy actor acquaintances and so are too much expensive too.
The only solution is to keep the task on the same processor as the concerned actor. Thus, load-
balancing is achieved through the distribution of actors.

Our current hypothesis is that an actor cannot migrate during its life from a processor to
another for the following reasons. As a matter of fact, actor migration must be transparent to
the programmer: actors are light weight dynamic entities and the user must be unaware of their
physical positions. The decision to move an actor is thus done by the system. It is not possible
to tell each actor concerned by the move because these actors are not explicitly known by the
system (this is the inverse of the relationship maintained through the acquaintance lists). So
when the system has to move an actor, it must leave a forwarder that ensures the mail delivery.
And the benefit of moving the actor (reducing the task load of one processor) is lost by the
increase of the network load and will not reduce memory usage.

After this consideration, it must be clear that, within our framework, only few solutions exist to
control the load-balancing. The only parameter upon which we can act is the physical processor
allocated to an actor at creation time (statement "new"). Static load-balancing is possible in OAL
with the optional keyword "at" which explicitly gives the processor where to create the new
actor. Dynamic balancing is done in absence of the previous keyword. It consist of the creation
of the actor on a processor selected following some criteria (cf. SIV.6).

The creation of an actor on an another processor uses a communication protocol between
toolboxes. For sake of simplicity, the simulator assumes that actor scripts are available on each
processor. Protocol for code migration have not been considered.

3S4

IV.5 The ~ t o f the ~

Data structure and space limits

The expected average number of arguments in a message is 2.5 (cf. fig. 2) and we must add the
auid of the receiver. That leads to a typical message not exceeding 20 bytes length: thus there is
no problem to code an actor message in a MEGA message of maximum size of 64. Pathological
messages resulting in overflow of this hard limit, are compile time errors.

The acquaintances list of an actor have an expected average length of 16 bytes (see the following
table: the size of the OAL programs corpus is not significant enough so we consider the
indication extrapolated from a large sized object-oriented application). The data structure
representing an actor must be increased by the pointer to the current behaviour script. The
average length of an actor also does not exceed 20 bytes. This implies a maximum of 200 actors
resident on a small MEGA processor with 4Kb local memory and 3000 actors for a 62Kb local
memory. Obviously, this estimation must be reduced taking into account the space occupied by
the code, the space used for the input queues and the space used for the common services.
With the hypothesis of 1000 actors per processor, a small cube of edge 10 may support one
million actors and a full cube of edge 100 may support 109 actors.

acquaintances or
slots in byte

arguments number

OAL examples
library

object-oriented
application (in C++)

5.2 15.6
223/127 97+126/33+33

~L4 2.4
1051 args/435methods

Static attalysls of typical code providing evaluation of expected actor size and arguments message
number. The ratio (223/127) for the OAL library refer to 223 acquaintance for 127 new statements. In the
"object" column, 97+126 refer to 97 references to other objects and 126 slots of basic types. 33+33 stand
for 33 root classes and 33 derivations. For transposition in the actor scheme, a reference is counted for
6 bytes and a reference is added for each derivation class (delegation). A basic type is coded in 2 bytes.

The Garbage Collector problem

Actor programs create a lot of short-lived actors (cf. to simulation results) and a garbage
collector is needed to minimize the amount of memory used. The "suicide" OAL feature permits
explicit deletion of resources used by an actor but is dangerous from a software engineering
point of view: if a message arrives after the death of an actor, unpredictable results occur (dead
actors are similar to pending reference in C). So, "suicide" can be only used to remo,~e actors
statically known as useless (for example, the programmer knows that some kind of actors have
only two messages to process as arising in a dichotomic search). Therefore, an implicit system is
necessary for garbage collecting distributed memory.

Here are the properties we expect from a good GC algorithm [COU89] [LIB83]: locality and
minimization of communications, minimization of synchronisation needed, easy processing of
the message on the way, earlier deletion of inacessible resources, independence from physical
parameters (network size and topology) and cheap processing.

Mark-scan parallel garbage collection algorithm [HUD82] [HUG85] has several drawbacks. The
first is certainly that they do not respond the important property of maximizing available
memory: actors may be deleted long after they become inaccessible. In addition,
synchronization constraints are needed between processors.

355

Reference counting methods [BEC86] [BEV87] [WAT87] answer to the previous objection and
also solve the problem of "flying" references (actor referenced in a message on the way). But
they have other shortcommings: actors part of a circular structure, are not dele ted at all.
Moreover, because actors are light entities, the cost of an additional counter is high.

A large amount of research are currently done in distributed garbage collection area. At this
point, the garbage collector of OAL is an open question. Future work would be done to evaluate
more precisely existing algorithms.

IV.6 $1.m,l~flon

The simulator

The MEGA simulator used in this study consist of a set of C++ classes [STR87] modelling a MEGA
machine: p r o c e s s o r , memory, message , and t a s k . Messages are similar to events in a discrete
event simulation. An additional kind of object was defined, the basic a c t o r , able to transform a
message in a task.

The compilation of an OAL program results in a set of C++ classes inheriting from the classes
actor and message. A new class inheriting of actor is defined for each bead behaviourin an
OAL program (a head behaviour corresponds to a behaviour appearing in a "new" statement). A
derivation of m e s s a g e is produced for each kind of message recognized by a behaviour.

The C++ compilation of the translation of an OAL program is linked with the simulator itself to
produce the final programme. Size, topology of the network and dynamic load-balancing
strategy, are run-time parameters. The results of an execution are the messages received by the
external actor O u t p u t and some statistics summarizing memory occupation, processor activity,
network load, etc.

The adopted simulation scheme has several advantages. The compi led approach enables
simulation of bigger size than possible through the direct interpretation of an OAL program
(especially w.r.t, the number of processors). For example, one of our test program generates a
binary tree of 32000 leafs and sorts it in parallel. This program mimics a realistic application,
requiring more than 9.106 message exchanges. The simulation of this program on a 512-
processors sized MEGA is possible and take less than 8 hours on a Sparc.

Moreover, the compiler allows a strict "type checking" (no run-time error of kind "unexpected
message type") and furnishes interesting characteristics (actors size, average argument number,
etc). At last but not least, the translation time is not annoying for the user (700 OAL lines/s) and
the generated C++ is in a human readable form.

The simulations

The goal of the simulation was to quantify the execution of actors programs in term of resource
consomption in order to compare with respect to efficiency the actor execution model against
other paradigms.

Two main dynamic load-balancing strategies are under investigation. The first strategy consists in
minimizing the number of actor residing on a processor (L1); the second one minimizes the
number of current tasks on a processor (L2). These numbers are immediafly available on a pro-
cessor. The following table shows the results for two applications (a beta-reductlon [HIL86] of

356

4096 elements and a parallel bitonic sort [GIB 88] of 512 elements) and for various network size
(this last parameters can correspond to a variable processor load). Each entry of the table gives
the results for the L1 and the L2 strategies. The L2 strategy is not always the best with respect to
the throughput (the criterium ~max processed task and max waiting task per processor") but
minimizes maximum memory occupation.

L1

L2

Par~nel
s i m o n o f
4O96
e.lements

1 512 1000 4096 8000 network size

90K / 90K 1 / 80 1 / 80 1 / 80 0 / 80 ~ OOL~l~fg10n
90K / 90K 6 / 40 3 / 40 0 / 40 0 / 40 average / max

0 / 0 0 / 1 0 / 1 0 / 1 0 / 1
0 / 0 0 / 1 0 / 1 0 / l 0 / 1

16K / 4K 6K / 4 6K / 4 6K / 4 61(/4
16K/4K 1386 / 2 1386 / 2 1386 / 2 1386 / 2

21K / 21K 49/12K 25 /12K 6/121(3 / 1 2 K
Parall~_ 21K / 21K 138 / l l K 79 / 4K 25 / 12K 13 / 12K
bitontc sort o / o o /10 o /10 O/lO O/lO
o f 512 o / o t120 1 / 2 2 1 / 2 8 1 / 2 8

a n d 21K/769 12K/512 12I(/512 12K/512 I2K/512
21K / 769 l l K / 492 189 / 4K 513 / 12K 513 / 12K

mamsmmtt

~ pathlen#~
averase / max

mmmmput"
max processed tasks / max

wait~$ tasks

menmry occupation

avera$e / max

messa~ path lenght
averase / max

max processed tasks I max

waiting tasks

The most important remark about the previous results is that increasing the network size has
very little effect to m a x i m u m caracteristics (memory occupation, waiting tasks...). That is, the
load-balancing strategy is unable to spread the computation load homogeneously over the
network. The reasons of this bottleneck will be discussed in the next section.

The simulation also help us to verify an important hypothesis about load-balancing. The
previous simulation assumes that the load-balancing algorithm possesses complete knowledge
of the global network state. In practice only limited information is available. However, it appears
that state knowledge of nodes within a small distance suffices to approximate the result
provided by the global knowledge hypothesis (the event horizon effec0 [REE87] [LIN85]. The
following table compares the two load-balancing strategies under the two hypothesis in case of
extreme contention (small network, big job). The conclusion is that local hypothesis favours
average characteristics a little bit but leads to more heterogeneous processing. This was
predictable because if the event horizon is too large, the load charge reduction is offset by the
increased cost of communication.

gZobaz
local

/ / b l t o n i c sort
o f 32000
elemengs

o n 5 1 2
~ r s

L1

41100
3 1786

L2

5000/4
868/32

4 /156
3 / 710

/K ~ o z y o¢~'upatl~
average / max

5 9 / 6
113 / 29

lO,'21 5/21 ngssage path leng~
1 / 16 1 / 21 average / max

/K - - - , , processed tasks/
maxwamt~ tasks

357

The previous programs create respectively 8K, 60K and 620K actors (i.e. more than the available
processors). This stresses the idea of having an efficient garbage collector. Using the "suicide ~
feature in OAL, reduces the number of living actors to 1 at the end of the beta-reduction and to
3000 for the second application. But this technique is not always possible.

V. Conclusion

Actor implementation on MEGA

The simulation we are currently working with shows the feasibility of implementing actors on
MEGA. The severe constraints on memory s p a c e can be managed through a relevant load-
balancing strategy that minimizes processor memory occupation and load charge.

However, the test programs we have developed in OAL are space and time consuming in
regards to other parallel language implementations (refer to [GER90cD, and this, even in the
same functional programming style (there is for example no need for garbage-collecting
processes in a demand-driven execution scheme). Consequently, the use of actors to achieve
massive parallelism is questionable.

Actors and (massive) parallelism

To analyze the suitability or unsuitability of actors to massive computing, we first make a
distinction between three kinds of parallelism usable to speed-up the execution of a program
[SAN90]. Data-parallelism is the ability to process homogeneous set of data in an atomic
operation. It is the parallelism exploited for example in *Lisp [HIL85] or ParalationLisp. Control-
parallelism is the parallel processing of multiple threads of control. This parallelism is present in
Occam, //Pascal, etc. The flow-parallelism is the one used through the multiple stages of a
systolic architecture using a pipe-line effect.

The actor mechanisms are primitive enough to handle the various sources of parallelism in an
application. Actors are able to express and to use the three sources of speed-up: one actor per
"data element" correspond to the data-parallel paradigm, one actor per process correspond to
the parallel control scheme while acquaintances list can be used to represent the fan-out of a
pipe-line stage. However, this expressive power sacrifices the language efficiency on realistic
computers . Indeed, oppos i te characteristics have to be joined to implement the actor
paradigm. For example, data-parallel operations need dynamicity and accommodate well to

• synchronicity while control schemes are static and fitted to asynchronous execution model.
Restricting also the actor programming to a given style, cannot gain against the more
constrained assumptions made in one of the more specialized scheme. For example, the cost of
doing an operation for each of n data-elements (a~ba-notation [HIL86]) is the cost of the scalar
operation in a data-parallel language based on a SIMD model. To achieve the same result within
the actor language, n messages must be exchanged.

In addition, resource management cannot be done in a fine manner: the usual resource mana-
gement unit is the task, as being the resource consumer. But a task does not correspond to an
actor, it correspond to the handling of a message by an actor. Actor management is a poor
substitute to task management (some actors are the receiver of thousand messages while other
are very ephemeral entities, waiting for just one message before dying). Also an actor cannot be
v iewed as cluster of tasks (no communicat ion locality in this cluster, no control over
CPU/network, memory/network tradeoff, ...).

358

In conclusion, the simulat ion w e are currently work ing with, rules out the idea to u se an actor
language as a f ine-grain parallel a ssembly language, a harness for m o r e e labora ted system.
Although actors express very well distr ibuted application and concurrency, they are not able to
manage resource consumpt ion in a f ine way.

At
~ t

The MEGA project is developed within "Computer Architecture and VLSI Design" Research Group. The authors
do thank the other members of this group: Dr D Etiemble and Dr J-P Sansonnet for their outstanding
contribution to the project, F. Capello who worked on the architecture of the CPU and J-L Bechenec for VLSI
development and many helpful discussions. We also thank the referees for their comments and helpful
corrections. This work is currendy supported by the french national research program on New Computer
Architectures (PRC-ANM) and by DRET under grant #89342320047050. The stay of Mr. Fowler was possible thanks
to the Erasmus EEC programs.

mbtiot~phy

[AGH85]

[AME881

lAMS871

lATH87]

LATH88]

LATT85]
[BEC86]

[BEC89]

[BEC90]

[BEV871

[BUR81]

[BVN91]
[CAR84]

[CAP90]

[CAP911

[CLrN8H
[COR87]

[COU89]

[DAL87]

[DAL881

G. Agha, "Actors: a model for concurrent computation In distributed system~, AI tech. rep. 844, MIT,
1985.
P. America, "POOL-T: A Parallel Object-Ortented Language", in Object-Oriented Concurrent
Programming, eds. A. Yonezawa, M. Tokoro, MIT Press 1988.
J. Amsterdam, "Load Balancing Strategies for the Apiary", dissertation for the degree of Bachelor,
Hardvard College, May 1984.
W.C. Athas, "Fine Grain Cormurrem Computations ~, Tech. Rep 5242, Dep. of Computer Science,
California Institue of Technology, May 1987.
W.C. Athas, C.L. Seitz, "Multicomputers : Message-Passing Concurrent Computers", IEEE Computer,
vol. 21, n ° 8, August 1988, pp 9-24
G. Attardi "Building Expert Systems with Omega', DELPHI, tech. rep. ESP/85/2, I985.
MJ. Beckefle, K. Ekanadham, "lXstrfbuted Garbage Collection with no Global Syachronisatton", IBM
research report RC 11667 (#52377) january 1986.
J-L. B~chennec, "MegaPack : a 3D Packaging for MassWe~ Parallel Computers'; LRt-Archi TR 8907-
1989
J-L. B~chennec, C. Chanussot, V. Neri and D. Etiemble, "VISIDesfgn o f a 3-D Hfghlyparallel message
passing architecture", International Workshop on VLSI design for Artificial Intelligence and Neural
Networks, Septembm 90
D. I. Bevan, "Distrfbuted Garbage Collection Algorithm using Refererme Counts", ACM trans, on prog.
lang. and syst., vol 2, n°3, july 87.
W.F. Burton, M.R. Sleep, " Exectatng functfonal programms on a virtual tree of processom", Proc. ACM
Conference on Functionnal programming langages and computer Architecture - 1981 pp 187-194
F. Baude, G. Vidal-Naquet, "Actors as a parallelprogramming model', to appear in STACS91.
F. CarrY, "Alog: acteurs etprogramatfon en logtque" (Alog: actors and logic programming) Th6se de
docteur ing~nieur, juin 1984 (in french).
F. Cappello, J-L Bechennec, D. Etiemble ~A RISC Cenlral Processing Unit for a Massively Parallel
Architecture', EUROMICRO 90, Amsterdam, August 90
F. Cappello, C. Germain, J-P. Sansonnet, "Design of a reduced Instruction set for massfvely parallel
functional programming, LRI-Archi TR 90-07, also submitted to publication.
W.D. Clinger, "Foundation of Actor Semam~.¢', Phi) thesis, MIT May 1987 (ai-tr-633).
R. Cornu-Emieux, G. Mazar~, P. Objois, "A VLSI asynchronous cellular array to accelerate logical
stmulatfot~, proc. of the 30th. Midwest Internationnal Symposium on Circuit and Systems, 1987.
A; Couvert, A. Maddi, R. P6drono "Object Sharing tn Distributed Systems - Principles of garbage
collectforr, IRISA, INRIA report 963, January 1989 (in french)
W.J. Dally, "Wfre-Efftctent VLSI Maltiprocessor Communication Networks", 1987 Stanford Conference
on Advanced Research in VLSI, 1987, pp 391-415
W.J. Dally, "Fine-Grain Message-Passing Concurrent Computers", proc. of the Third Conference on
Hypercubes Concurrent Computers and Applications, vol. 1, Pasadena, January 19-20, 1988

359

[EPP88]

[ESP891
[FOW90]

[GER89]

[GER90a]

[GERg0b]

[GER90c]

[GIB 88]
[GRU87]

[HEW75]
[HEW76]

[HEWS0]

[HIL851
[HIL86]
[HUD82]

[HUG85]

[INTM]
[KOR79]
[LEI88]

[LIB81]
[LIB83]

[LIN85]

[LITg0]

[NUG88]

[PNU86]

[REE87]

[SAN90]

[SEI85]
[STAB6]
[STE75]

[STR871
[THE831
[TRE82]

[VAL82]

[VAL891

[WAT87]

D. Eppstein, Z. Galil, "Parallel a~gorftbmic Technic for ComMnatorfal Computation" Ann. rev. Compt.
Sci., 3:233-283, 1988
Esprit Project P440, "Ftna/Repor/", December 1989.
J. Fowler, 'Studies of algorithms adapted to a neturrrk of dynamic processed', University of Edinburgh,
M.Sc Report September 1990.
C. Germain, J-L. B6chennec, D. Etiemble, J-P. Sansonnet, "A New Comraunication Design for
Massively Parallel Message-Passing Architectures", IFIP Working Conf. on Decentralized Systems 1989,
North-Holland ed.
C. Germain, J-L B~chennec, D. Etiemble, J-P. Sansonnet, "An Interconnectton Network and a Routing
Scheme for a Massively Parallel Message-Pasang MultW.omputed, Third Symp. on Frontiers 90
conference on Massively Parallel Computation, October 8-10 College Park, MD
C. Germain, J-L Giavitto, "A Comparafson of Two Routing strategy for Massively Parallel Computers",
5th International Symposium on Computer and Information Sdence, Capadoccia, Nov. 90.
C. Germain, J-L. Giavitto, J-P. Sansonnet, "Implementation d~n paradtgme de programmation
fonctionelle sur une machine massivement paralle!e" (implementation of a paradigmatic functionnal
programming style on a massively parallel computer), LRI-Archi TR 90-07, also submitted to
publication (in french).
A. Gibbons, W. Rytter, "Efficient parallel algorithms" Cambridge University Press - 1988, (chap. 5)
D.C.Gmnwald, D.A. Reed, "Bencbmarktng Hypercube~ Hardware and Software", Hypercube
Multiprocessors 87, 1987, pp 169-177
C. Hewitt, B. Smith, "A PLASMA Prfmee', rough draft, 13:17 1975, MIT-AIL
Hewitt C., "Vte~ng Control Structure as Pa~erns o f Passing Messages", MIT Artificial Intelligence
Memo 410, December 1976
Hewitt C., nAptary multtprocessor architecture knowledge system", prooc, of the joint SRC/Univ. of
Newcastle upon Tyne Workshop on VLSI, Machine Architecture and Very High Level LAnguages,
October 1980.
W.D. HiLlis, "The Connection Machine", The MIT Press, 1985
W.D. Hillis, G.L. Steele, "Data ParallelAlgorfthms', CACM vol.29 nol2, December 1986.
P. Hudak, R.M. Keller, "Garbage collection and task deletion in dfstrtbuted applicative processing
systems", proc. ACM conference on Lisp and Functionnal Programming, 1982 pp 168-178.
J. Hughes, "A Distributed Garbage CoUection Algorftbrr~ proc. ACM conference on Functional
Programming Languages and Computer Architecture, Nancy 1985, LNCS 201.
INTEL Scientific Computers,'Intel iPSC System Overview", Order n ° 310610-001, 1986
W. Kornfeld, "Using Parallel Processing for Problem Solving, AI Memo 561, MIT, december 1979.
F.T. Leighton, B. Maggs, S. Rao, ' Universal Packet Rotaing Algorithms",29 st IEEE Syrup. on Foudations
of Computer Science,1988, pp 256269
H. Lieberman, "Apretaew of Act-l", AI Memo 625, MIT AI Laboratory, 1981.
H. Lieberman, C. Hewitt, "A real-time garbage collector based on the lifetimes of objects", CACM vol.
26 n°6, pp 419-428June 1983.
F.C.H. Lin, "Load Balancing and Fault Tolerance in Applicative Systems", Ph.D. Dissertation, Dep. of
Computer Science, Univ. of Utah, 1985.
L. Litzler, M. Tr6hel, "The kernel of an actor language for a multi-transputer system", ISMM Lugano,
june 1990.
S.F. Nugent, "The fPSC/2 Direct-Connect Communications Technology", 3 ° Conf. on Hypercube
Concurrent Computers and Applications, 1988
A. Pnueli, "Application of temporal logic to the spec~flca~on and verification of reactWe systems : a
survey of current trends", LNCS, 1986.
D.A. Reed, R.M. Fujimoto, "Mul~coraputer Networks - Message-tiased Parallel Processing', The MIT
Press, 1987
J.-P, Sansonnet, "Concepts d'Arcbttectures Avanc~es", Tome 1, cours de DEA de l'Universit6 d'Orsay,
LRI 1990 (in french).
C.L. Seitz, "The Cosmic Cube", Com. ACM, vol. 28, n ° 1, Jan. 1985, pp 22
w. StaUings Ed., "Reduced Instruc~on Set Computers Tutorial" IEEE Computer Society Press - 1986
G.L Steele Jr., G. Sussman, "Scheme : An interpreter for the extended lambda calculus", MIT AI Lab
memo 349 - 1975
B. Stroustrup, "The C++ Programming Language" Addison-Weslay, 1987.
D. G. Theriault, "Issues in the design and implementation o f Act2", tech. rep. ai-tr 66!, MIT, June 1983.
P. Treleaven, D.R. Brownbridge, R.P. Hopkins, "Data driven and Demand Driven Architectures" ACM
Computing survey Vol 14 n ° 1 - 1982
LG. Valiant, "A scheme for fast parallel comraunfcation ~, SIAM Jour. on Computing, vol. 11, n ° 2, Mai
1982, pp 350-361
L.G. Valiant "Bulk-synchronous parallel computerS" Prooc. of the A.I. and Message Passing
Architecture Conference, p 15-22, London, 1989. J. Wiley.
P. Watson, t. Watson, "An efficient garbage collection scbeme for parallel compute~, proc. of PARLE
If, LNCS 259.

360

lYON86a] A. Yonezawa, E, Shibayama, H. Matsuda, T. Takada, Y. Honda "Modellgng and Programming gn an
Object Orgented Concurent Language ABCL/I", Research report C-75, Dept. of Information Science,
Tokyo Institute of Technology, Nov. 86.

IYON86b] A. Yonezawa, H. Matsuda, E. Shibayama "An Approach to Object Oriented Concurrent Programmgng:
a language ABC£", Proc. of the third Workshop on Object-Oriented Languages, Paris 1986.

