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1 Declarative array definition

The array data structure is fundamentally different from the list data structure. For example, there
is no definition of an array as an algebraic data type (with constructor like the :: for the lists).
Nevertheless, it is possible to specify arrays by means of recursive definitions. Here is an example,
for a vector:

iota = [| 0 |] ¦ ([| 1; 1 |] + iota : 2) (1)

In this equation, the constants (literal vectors) are written by listing their elements between
[| and |] as in CAML. The ¦ operator represents the concatenation of vectors, the + stands for the
point-wise addition and expression A : n truncates vector A to its n first elements. These opera-
tions are all polymorphic (they accept vectors of any length). One may check that V = [| 0; 1; 2 |]
is a solution of this equation because V : 2 = [| 0; 1 |], so 1 + (V : 2) = [| 1; 2 |] and then
0 ¦ (1 + (V : 2)) = [| 0; 1; 2 |] = V .

Opposed to the point of view taken by lazy functional language we want to avoid partial
data structures. Therefore, we must determine at compilation time definitions leading to partial
structures to reject them. As a matter of fact, the usual concept of data structure implies that each
part of the data structure must be well defined.

Note for instance that CAML, which relies on a strict evaluation strategy, enable the recursive
definition of a data structure. However, to ensure strict solutions, the right hand side of a definition
is restricted to a constructor expression (a function is not allowed). The solution adopted by CAML,
is sufficient to satisfy this constraint but is too crude and rejects many interesting and harmless
definitions.

How to Compute the Solution of a Recursive Vector Definition? We can compute the solution of
the equation by a fixed point iteration. However, the right definition of the domains and of the
operators semantics involves some subtleties. As a matter of fact, standard vector concatenation
is not continuous (we need a non strict version of vector concatenation, because we want to avoid
⊥ has a solution of eq. (1) and with x = ⊥, y = [| 1 |] and x′ = [| 666 |], then we have x v x′

but x ¦ y = [| 1 |] 6v [| 666, 1 |] = x′ ¦ y which shows that ¦ is not monotonic). But such problem
can be circumvented.

However, our final goal is to produce a code that computes the solution of the equation by
computing the value of each element, not by manipulating array values which can be prohibitive.
Equation (1) can be translated in an equivalent system of equations defining the element of iota.
If we assume that the length of the solution is 3, we can write (vector indexing begins with 1):

iota = [| iota1; iota2; iota3 |]

by evaluating the truncation in the r.h.s. of (1), we obtain:

[| iota1; iota2; iota3 |] = [| 0 |] ¦ ([| 1; 1 |] + [| iota1; iota2 |])

which can be rewritten in:



iota1 = 0
iota2 = 1 + iota1

iota3 = 1 + iota2



The equations of this system are between vector elements and are not recursive. So, this last system
can be solved by a series of substitutions.

Scheduling the Computations of the Resolution. The question is now: what can be the scheduling
of these substitutions? It can be checked, for the definition of iota, that the equation that defines
element i depends only on the element (i − 1) for i > 1; and element 0 depends upon no other
element. The system can then be solved by computing the r.h.s. of the element’s equation in the
order of the indices, and by substituting in the remaining equation the value just computed. The
computation of iota is then naturally translated into the following imperative iteration loop (in C):

iota[0] = 0;
for (i = 1; i<3; i++) iota[i] = 1 + iota[i-1];

Note that in this loop, an element is accessed only when is has already a well defined value.

2 Outline of the work

The purpose of this paper is to develop some tools to enable the automatic analysis of such array
equation. More precisely, starting from a system of equation, we

1. Check if the systems defines a set of arrays or more generally a data field [Lis93].
Consider for instance equation C = 1 ¦ (1 ¦2 C) : [2] (where ¦2 is the array concatenation
along the second dimension. With a sensible choice of semantic domains, this equation admits a
solution which represents à triangular array. We want to detect this kind of equation to handle
more efficiently “real arrays”.
To determine if a system of equations defines “real arrays”, we use a non standard type systems
that infer the shape (or rank) of each array [GSM92,Gia92]. This type system enables the use
of overloaded constant (that is, the constant “0” represents ambiguously an array of any shape
whose elements are 0).

2. Check if the defined arrays are strict, i.e. if every element in the array has a defined value. An
array satisfying this property is called maximal (because it is a maximal element of the Scott
order of the reduced domain where it can be solved).
When we have inferred the shape of the arrays, strictness is theoretically simple to answer
because then we are working only with finite domains. However, we want to (1) avoid the
explicit checking of the well-definition of each element and (2) determine if a static simple
schedule can be used to compute the array elements value.

Left to right computations of an array. To answer the second question, we focus on the equations
that can be solved “from left to right” (i.e. the vector element can be computed in the increasing
order of the indices ; this order can be extended for arrays and our approach may accommodate
several other scheduling order).

If an array is the solution of the equation x = ϕ(x), then we defines the function ¤ ◦ ϕ that
defines the “left-to-right” computation associated to ϕ. Informally, given a vector v, ¤v is the
biggest vector v′ such that v′ v v and ∃j such that v[i] 6= ⊥ for i ≤ j and v[k] = ⊥ for k < j (we
have no room to discuss more in depth this definition).

Prefix computable solution. We say that ϕ is prefix computable if fixϕ = fix(¤ ◦ ϕ). It exists
some maximal functions that are not prefix computable. For instance equation :

R : x P
(
[| 1 |] ¦1 x+3 ¦2 [| 2 |] ¦3 x

)
: 4 (2)

typechecks (the solution is a vector of 4 elements). Note that x+n is a vector where element i has
for value the value of the element i + n of x and u ¦n v concatenates the element of v after the first
n elements of u. The solution fix R can be computed by a fixed point iteration of ϕR :

ϕ1(⊥) = [| 1;⊥; 2;⊥ |] (¤ ◦ ϕ)1(⊥) = [| 1;⊥;⊥;⊥ |]
ϕ2(⊥) = [| 1;⊥; 2; 1 |] (¤ ◦ ϕ)2(⊥) = [| 1;⊥;⊥;⊥ |]
ϕ3(⊥) = [| 1; 1; 2; 1 |] (¤ ◦ ϕ)3(⊥) = [| 1;⊥;⊥;⊥ |]

R is not prefix computable because fixϕ 6= fix(¤◦ϕ). However, R is maximal because Def(fixϕ) =
{1, . . . , 4}.



Progressive equations. Let P : x = ϕ(x). We begin by explicitly giving a “growing” function ϕ̇ that
describes, in some sense, the progression of the definition domain between iterates of ¤ ◦ ϕ. We
prove that the inferred shape is a fixed point (not necessarily the least fixed point) of ϕ̇.

Then we gives a syntactic condition on the expression of ϕ̇ that gives a sufficient condition for
P being prefix computable.

3 Related Work

The pioneering work of [Sij89], introduces the idea of productive recursive definitions: the definition
of list l is productive if each element of l can be computed within a finite amount of time. For lists,
and more generally for data structure, the notion of being productive coincide with the notion of
being maximal. A function is said productive iff the image of a productive element is productive.

Our notion of prefix-computability is finer: e.g. the example (2) is productive but not prefix-
computable. This is due to the focus we put on the sub-structure compliant ordering of the com-
putations. This enables the generation of a static code to solve the definitions. We also provide an
explicit check (which is not the case of Sijtsma).

Note that the productivity of infinite list definition is similar to the problem of detecting
deadlock in data-flow programs, a problems handled in[Wad81] and [LM87]. All these works are
mainly motivated by the analysis of infinite list definition and then the results developed do not
take into account the bounded aspect of finite data structures.

The approach presented in the paper applies to a non-algebraic data structures, while classic
results from domain theory, as implemented in lazy functional languages, focus on algebraic data
structures only. The results can be used in program verification and/or to extend the class of
recursive definition accepted by a strict functionnal language (e.g. CAMLLIGHT accept recursive
definitions of algebraic data structure involving only constructors). The gain over a lazy functionnal
languiage (like HASKELL) is that we can avoid the lazy evaluation strategy: the scheduling of all
the computation is statically known and the memory resources can be anticipated. Thus, the
technics we have developed can be integrated as an optimization tools in a functional language
compiler.

The concepts and tools developed above have been generalized and implemented in a Mathematica
notebook. This notebook as well as the formal proofs of the results stated in this paper are down-
loadable at www.lri.fr/~giavitto/DefRec.html .
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