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A b s t r a c t .  This paper proposes a new architectural design for high performance 
parallel computers: the one-cycle machine. In such a computer the memory access, 
network access, instruction sequencing, data computation take the same duration: 
one clock cycle. We first consider the communication network efficiency as the 
main critical resource. We show that the adaptation of the network performance to 
the processing element power is more important than the CPU power in itself with 
respect to the global processing effectiveness. Two guidelines are derived from our 
analysis and conduct to the design of PTAH. Two simple examples are used to 
illustrate the interest of PTAH for the execution of numeric applications. Finally, 
some hardware features are proposed for a PTAH implementation being able to 
reach the TeraFLOPS. 

I. Background 

I . I . T h e  " g r a n d  C h a l l e n g e "  

Substantial applications require a tremendous numeric computing power, as for 
example, climate modeling [1], electrical simulation, astrophysic, Quantum Chromo 
Dynamic (QCD) [2], fluids mechanic, thermodynamic, human genome decoding, medical 
imagery, etc. Two families of architecture have been devoted to the satisfaction of such 
intensive numeric computing requirements [3]: vector supercomputers like CRAY YMP 
C90 [4], NEC SX3 [5] and parallel supercomputers such as CM5 [6], GF11 [7], Paragon 
XP/S [8], TC2000 [9] and Monarch [10] 

To face the increasing needs of numeric applications, supercomputer manufacturers 
have fixed the objective to reach the TeraFLOPS before the end of the decade. The 
solution to this challenge probably relies on a correct architectural design rather to a 
technological jump because a factor of 100 is needed to speed the available hardware up 
to the TeraFLOPS. 

As a matter of fact, vector architectures are limited by the available technology and 
thus, parallel architectures will be more rapidly suitable to outperform the last generation 
supercomputers by a factor 100. Moreover, the low cost and the increasing performance 
of the current microprocessors (i860 XP from INTEL, RS6000 from iBM, T9000 from 
INMOS) make them attractive to be the processing elements (PEs) of the future parallel 
architectures. Such options are corroborated by the choices of the current supercomputers 
project like IBM Vulcan [11], CRAY Research MPP [12] and Thinking Machines CM5. 

The communication network will make the principal difference between these 
architectures. To quote J. Smith et al. from [13]: "Data movement is always the most 
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difficult problem for the effective use of supercomputers. The performance of future 
supercomputers will ultimately be measured by how fast they can move data both within 
the system and across the network". This section is devoted to a critic, based on the 
analysis of the communication network usage, of three possible architectural designs. 

1.2. The proposed solutions 
Table 1 presents three architectures based on three CPUs. The CPU performance 

ranges from 1 MFLOP to 100 MFLOP corresponding to the next RISC generation. 
According to the CPU performance, column 2 gives the corresponding number of PEs 
required to reach the TeraFLOPS. 

Such a number of PEs already implies the use of a mesh topology. At this network 
scale, 2D or 3D grids have been shown to bethe more efficient topologies. Roughly, this 
is due to the fact that they take into account technologically-limited resources such as 
wiring density [14] or available pins number [15]. The choices retained for the actual 
projects of such architectures [12] [8] [16] [17] corroborate this analysis. 

MegaFLOP per PE Number of PE Typical CPU for the PE 

106 
(practical limit) 

16 bits 
(Mega PE, Mosaic PE) M1 1 

M2 10 105 

M3 100 104 

Table 1: A scale of number of PEs required to reach the TeraFLOPS according to the 

32 bits 
(680X0, 80X86 with co-processors) 

32-64 bits 
(next generation i860, RS6000,etc) 

performance of one PE. 

The PE performance directly involves the network link bandwidth. Table 2 shows the 
needed network bandwidth for two typical communication patterns. The program 
executed on each PE for these communication patterns needs one communication for each 
operation. For instance, a typical program instruction might be: compute a result from a 
value of an other PE and an internal value. So the program needs an 
operation/communication ratio of one (this assumption will be refined in figure 1). The 
comparisons are made on the basis of a static routing scheme (see paragraph II.1 for 
further discussions). 

Typical network RCB Without 

topology (Mesh) Contention 

M1 100" 100" 100 532 Megabits/s 
M2 47*47*47 2,5 Gigabits/s 
M3 22*22*22 12 Gigabits/s 

RCB according to the bisection RCB (optimistic) 

throughput 

800 Megabits/s 80 Megabits/s 
3,76 Gigabits/s 240 Megabits/s 
17,6 Gigabits/s 800 Megabits/s 

Table 2: The network characteristics and the link bandwidths corresponding to three typical 
architectures for the TeraFLOPS 

The first communication pattern corresponds to a scheme where all PEs send a word to 
a receiver faraway off the communication network average distance (given in column 1). 
Moreover the communication is supposed without any contention. Column 2 gives the 
Related Channel Bandwidth (RCB). Let's d be the average distance and 6 the degree of a 
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PE (in the 3D grid). If we assume an idealized channel load rate of d/6 then 
RCB = (CPUthrougthput. wordlength, d/6). In fact, if all PEs emits a message to a 
neighbor, the (average of) channel load rate is 1/6 and so, if the messages are sent to a 
distance of d, the channel load rate is d/6. 

The second communication pattern is an attempt to take into account the unavoidable 
contention. The model we propose consists in estimating that 1/4 of the messages cross 
over the network bisection. The computed value (column 3) is known as the bisection 
throughput. These values are unreachable with the current technology. Column 4 gives 
more realistic hypothesis about what can be obtained. 

In order to obtain a TeraFLOPS with these more realistic network bandwidths, we 
have to examine the operation/communication ratio that reduces the PE throughput. The 
results are summarized in figure 1. 

32n 
The resulting curves are plotted from the following relationship: Ct = - ~ - ~  where Ct 

represents the channel throughput, 32 the word length, n the side of the mesh, ,,q. the PE 
throughput and 1/4 comes from the fact that only one quarter of the messages cross over 
the bisection. The parameter R represents the ratio operation/communication for a PE. 
This ratio is the same for all PE. Actually the interpretation of R is a little bit more 
sophisticated: it also includes the ratio Application size~Computer size (known as the vp- 
ratio in the Connection-Machine programming languages [18]). When the application size 
is larger than the computer size, the application is folded and this may reduces of inter- 
PEs communications: parts of the application that are mapped on the same PE 
communicate without leaving the PE. 

Mb~t.i/s 

10000 

1000 

100 

10 
3 5 7 9 11 I3 15 17 19 21 23 25 27 29 

(Op/Com)'fAs/Cs) 

M3 

M2 

M1 

Figure 1: Number of operations per communication required for M1, M2 and M3 to reach the 
TeraFLOPS according to the realizable link bandwidth and the bisection throughput. 

At least a ratio of 10 operations per communication is required for the architectures 
with one million of PEs to reach the TeraFLOPS. This performance is obtained with M3 
for a ratio of 23 operations per communication. So, these architectures become efficient 
only from a high R. The important conclusion we draw from the figure 1 is summarized in 
figure 2. 

Fine-grained architectures (M1) are more effective to obtain as soon as possible the 
TeraFLOPS. Here fine-grained should be understood as a low operations~communication 
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ratio.  To emphases our argument, let takes an application that fit the size of the computer. 
If the communication ratio is 10, the TeraFLOPS can be achieved with M1.  With M 3  we 
have to group the application on less PEs with the hope to increase the operations per 
communication ratio. However, grouping the application on less PEs decreases the 
achievable computing performance. 

1 TeraFLOP 

600,6 -. 80% 40% ~ "~ / ~ ~  ~ M3 

40 GigaFLOP ~ , , , , I I I 1 1 I I I I I I I I I I I I I 
0% 1 2 3 ' ' ' '5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

(Op/Com)* (Ms/As) 

Figure 2: Achievable performance following R 

L 3 .  C P U - D r i v e n  v e r s u s  N e t w o r k - D r i v e n  Archi tec tures  

As a consequence, we oppose C P U - d r i v e n  to ne twork -dr iven  architectures. In CPU- 
driven architectures, the CPU performance exceeds the network capabilities. More the 
CPU is powerful more the ratio instruction/communication must be high (to obtain the 
TeraFLOPS). The PE activity is characterized by bursts of computation and a big number 
of PEs must be used to remedy the weak efficiency. In contrast, network-driven 
architectures are designed to adapt network and CPU performance. Because the network 
is able to feed the CPU at its nominal rate, sus ta ined  p e r f o r m a n c e s  are  c lose  to p e a k  
per formance .  Thus, the TeraFLOPS is obtained more rapidly. 

In this paper we develop P T A H ,  a proposa l  f o r  ne twork-dr iven  archi tecture .  We first 
present two consequences of the network driven architecture concept. Then, we develop 
the underlying execution model and we illustrate them on two toy examples. Finally, the 
implementation of a network of processors able to reach the TeraFLOPS is discussed. 

II. One operation and two communications per PE and per 
cycle 

P T A H  is an architecture that follows a principle of effectiveness. This can be 
rephrased as to opt imize  the use o f  the PEs .  The structure of the PE must be designed in 
order to furnish an optimally usable computational power. 

From the application point of view, the efficiency of a PE is measured in the number 
of "useful" operations performed. Useful operations are the logic and arithmetic ones. 
Therefore the conclusion is that PTAH must be able to perform: 

one operat ion and two communica t ions  per  P E  and per  cycle.  
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We define a cycle as the duration between two executions of the basic operations: the 
floating point multiplication is a basic operation. At each cycle, each PE executes its 
programmed operation. So at each cycle, a PE consumes at most three operands: two for a 
dyadic operation and a Boolean value in case of a conditional execution. In addition, at 
each cycle, a PE may output two values (e.g. when swapping two values). 

Operands of an operation are accessed both in the PE local memory or received from 
other PEs through the network. This also handle for the results: they may be delivered to 
the communication network. 

II.1. Static versus Dynamic routing 
Dynamic routing of the communications is used into many general purpose parallel 

architectures [6, 19, 20, 21]. 

The dynamic routing uses an interpretation level to route messages which therefore 
must embed a network information section (addresses) and an application data section. In 
addition, the dynamic routing strategy must be distributed over the PEs, leading to a far 
from optimal conflicts resolution. The values appearing in the previous tables are then far 
from realistic if considered with dynamic routing. For example, in the iPSC/2, the 
hardware does not limit the communication performance because it represents only 5% of 
the transmission delay [19]. This limitation is not linked to a special architectural design, 
e.g. it also holds for the CM2 where the typical duration of a send takes the time of 75 
additions [6]. 

Parallel architectures with dedicated networks are built to execute a restricted family 
of applications. Their networks are directly defined to fit the communication requirements 
of the applications. Systolic architectures [22], which realize hardware operators, are 
examples of a such approach. Others examples include complete dedicated computer, 
such as the Yorktown Simulation Engine [23] built by IBM to speed-up logic simulations, 
the Wire Routing Machine [24] to route VLSI or the GF11 to compute QCD [2]. Several 
other dedicated machines have been build, especially in the field of image processing 
(MPP [25], PASM [26], Sphynx [27]). 

Such architectures, from the network point of view, answer to the question: which data 
movements must be performed? They are very efficient because of the optimal matching 
between the structure of the processing architecture and the computing structure of the 
application. However, when these machines are used as general purpose architecture, they 
lose their efficiency. 

The static routing is a way to combine the flexibility of dynamic routing and the 
efficiency of dedicated networks. However the static routing implies the compilation of 
the communications (see section III) and a careful analysis of the network properties. 

11.2. T h e  specification of the network properties 
To define the PTAH network we must analyze the characteristics of the 

communications of an application which will be executed on a parallel computer. If we 
consider globally the whole execution of an application, its communication geometry 
looks like a "jungle". But three connection patterns can be exhibited at a given time: the 
permutation, the broadcast and the reduction. The permutation and broadcast connection 
patterns implies nodes that receive at most one communication at a time. In a reduction 
pattern, a node is able to receive two communications at the same time because the 
operations that appear in a reduction imply the dyadic operators performed by a PE. So a 
reduction is realized with a binary tree (for the associative operations). These simple 
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patterns can be combined to realize any complex pattern. 

In consequence, to avoid inefficient hotspots, the degree of the communication 
network is fixed as two inputs and two outputs per PE. Moreover, the topology of the 
network must satisfy two additional properties: 

- a Benes property [28] to implement any permutation without contention, 
- a partitionable broadcast capability to allow independent partitions to execute local 

broadcasts (broadcast can be limited to a subset of PEs). 

The next section investigates the adaptation of the processing structure to the applications. 
The architectural impacts of "one operation and two communications per PE and per 
cycle" are explored in section IV. 

III. Adaptation of the architecture geometry to the 
application structure 

The network must be able to match the CPU processing rate and so must perform at 
most two communications per cycle and per PE. Moreover, the optimal execution of an 
application distributed over a network of processors requires a suitable interaction 
between PEs. Therefore, the structure of the computer must be flexible enough to be well- 
fitted to the structure of any given computation. As a consequence, PTAH provides the 

adaptation of  the architecture geometry to the application structure. 

The execution of an application is characterized by a communication geometry and by 
a control geometry. The communication geometry fixes the interconnection topology of 
the PEs which correspond to an optimal execution of the application. The communication 
geometry is often derived from the dataflow graph of the application. For example, a 
Perfect Shuffle topology can be used to support optimally the data movements of a FFT 
[29]; meshes are usually used to support finite differences schemes, etc. 

The control geometry defines the optimal execution model of the application. As for 
the data organization, it exists a control organization which sequences the operations to 
perform. For example, the SIMD control model organizes the processing of the 
application as a single sequence of operations executed simultaneously by all PEs. The 
optimal control geometry depends on the application. 

The adaptation of the architecture geometries to the application structure is required to 
provide for each application the best executing structure. The communication network and 
the control structure are the basic resources used for the geometry adaptation. The section 
V presents some performant communication and control geometries for some standard 
numeric applications. 

The no-sens program proposed by Gasjki in [30] compares the efficiency of an ideal 
dynamic Dataflow architecture with an ideal SIMD or Vector architecture. This simple 
program shows the requirement of aflexible control structure that must be adapted to the 
algorithm specificities. Because the parallel computers use the microprocessors 
technology for the PE, they can use the microprocessor instruction cache or local memory 
to store the program and the microprocessor sequencer to control the program execution 
and take advantage of the large amount of instructions sequencing locality of the 
applications (most executed instruction sequences are within loops). However, this large 
amount of unorganized threads must be control to avoid the lost of efficiency. The 
synchronous MIMD control structure which combines a synchronization hardware with a 
multiple threaded architecture fits all these requirements. 
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IV. General design of a PTAH architecture 
At this point, we have determined that the optimal use of each PE involves: 

- the execution of one operation and two communications per PE per cycle; 

- the adaptation of the geometry of the architecture to the application structure. 

These two constraints lead to the concept of one-cycle machine: all operation, memory 
access, network access, instruction sequencing, data computations .... take one cycle. 
These constraints are very hard to satisfy and require hardware specificities (detailed in 
IV.2). In particular, the feasibility of the architecture implies a static approach of the 
execution to avoid expensive interpretation level. 

IV.1. A compiled model of execution 
The use of interpretation levels within communications (dynamic routing) and control 

(micro-coding) is well-known as involving performance limitations. Thus, efforts to 
reduce the use of interpretation levels has given birth to communication compilers [31] 
and MSIMD control model [32] (in the field of sequential machine, the RISC concept [33] 
participates of these efforts). 

Therefore, the communication and the control structure must only depend on static 
parameters. It means that tasks creation/destruction, partitioning, placement and 
scheduling must be anticipated at compile time. Each communication collision must be 
resolved at compile time. The communication patterns and occurrences have to be known 
before execution. As a matter of fact, these severe constraints limit the target applications. 
However, such a class of applications is an important and pertinent one. Interpretation 
levels may be introduced, at the price of a lesser efficiency, to execute inherently dynamic 
applications (that is, application whose behavior cannot be anticipated). For example, it is 
possible to implement a dynamic routing scheme upon the static routing for highly 
unstructured applications or for some sparse matrix and graph algorithms. A hardware 
communication routing chip can be add to each switch node of a dynamic topology 
communication network. This results in a few increases of the hardware complexity since 
the switches in these communication networks are not limited by the transistor count but 
by their pin count. However, if this improvement is to expensive according to the irregular 
operation occurrences, the dynamic routing can be achieved by using the PE as the routing 
chips (software emulated) of a static topology communication network. 

The structure of each resource, memory, communication network, CPU ..... is very 
simple and so leads to a simpler compilation. Task scheduling may use techniques issued 
from the VLIW compilation and compilation of communication may profit of the 
technology developed for Router-Compilers. 

IV.2. Specialized resources with balanced bandwidths 
Each CPU has two inputs for the operands and two outputs for the results. So the 

private memory and the communication network allow four simultaneous accesses (two 
reads and two writes). Because all the architecture resources receive the same clock, the 
synchronization is implicit and all the actions made by each resource have a calibrated 
duration of one cycle. 

The optimal use of the PEs requires to realize each architectural function (processing, 
control, communication, memorization, synchronization .... ) with a dedicated hardware. 
Sharing hardware resources between functions induces bottlenecks and therefor delays the 
function performance. So each resource is specialized. 
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IV.2.a. An adaptable communication network 
The communication network is the critical resource of a network of processors with 

compilable geometry. It fixes the duration of the cycle used to clock all resources. The 
switched circuits method [34] is used because it allows a short access time, a short latency 
and a high bandwidth. Communications are implicit in such a network and the connection 
patterns - sets of circuits - are defined at compile time and sequenced at execute time. 

The topologies of the indirect networks such as the Crossbar, the Memphis Switch, the 
Benes, and the various over-dimensioned direct networks (as meshes) can realize the 
standard interconnection patterns : permutation, broadcast and reduction. 

IV.2.b. A set of adaptable control units 

As previously mentioned, a MIMD synchronisable control structure is flexible enough 
to fit the best executing control structure. A MIMD control structure can realize the 
control part of MIMD, MSIMD, SPMD and SIMD control modes. Each PE must have its 
private sequencer to realize all these modes. The synchronization of all PEs uses a 
hardware synchronization network. Each PE has one input and one output to access these 
networks. Each PE accesses to the synchronization networks are defined at compile time. 
Partitionable networks are used to allow the synchronization of independent sets of PEs. 
Two synchronization networks are required to realize hierarchical synchronization. For 
example, it is possible to synchronize multiple PEs within a partition and multiple 
partitions within the machine as needed for a MSIMD control structure. 

The control structure provides exactly one instruction per cycle to the processing unit. 
The control structure uses private resources (memory, ALU) to realize control processing. 
An anticipation unit is used to execute the loop controls, the jumps and the other sequence 
breaks. So, the control processing is independent of the data processing. 

lV.2.c. A set of dedicated processing units with fixed format 

The goal of the processing unit is to provide one useful result per cycle. Useful results 
are results of processing under application data. Performing operation for program or 
communication controls is not considered as providing useful results. The processing unit 
is dedicated, i.e. it does not compute the controls or the communications. A Harvard 
memory structure is used to separate the storage of the application data and the storage of 
the control data. Because PTAH is designed for highly numeric processing, the format of 
the processing unit is fixed to 32 or 64 bits. But adaptable processing units can be used, if 
needed, with balanced control, storage and communication resources. 

IV.2.d. The memory structure for the application data 

The memory structure for the application data allows four accesses within each cycle. 
Therefore, it is important to provide exactly four accesses per cycle. Providing an average 
of four accesses per cycle is a weaker property which complicates the management of the 
other resources. Thus, the memory structure cannot be hierarchic (register, cache, static 
memory, dynamic memory .... ). The natural memory structure is then composed of four 
memory banks. The optimal placement of the data in the memory banks is resolved at 
compile time. 

Shared data are accessed through the communication network. The broadcast facilities 
of the communication network are used to realize simultaneous "reads" to the same data. 
A multiple "write" access uses the reduction method for an associative operation or a 
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sequential access for non-associative operations. The hotspots (contention places) are 
detected and resolved statically at compile time. 

IV.2.e. An adaptable I/0 access 

PTAH provides an adaptable I/O access according to the application requirements: a 
direct access of all the PEs or a serial access of a dedicated PE. A direct I/O access of all 
the PEs is possible according to the I/O units capabilities. Each PE has two input and two 
output ports for the I/Os. Multiple dedicated PEs can be used to adapl the machine 
bandwidth with the I/O bandwidth. Then, the communication network is used as a 
concentrator-broadcaster. The access configuration and the management of the 
communication network for the I/Os are resolved at compile time. 

V. Some Illustrations of the PTAH features 
As a general principle of parallel computer architecture, PTAH can be used from small 

to very large parallel computers (from 2 to 64k PEs). So, we have deliberately chosen 
very simple and small examples to illustrate the principle of PTAH. Despite there limited 
usability, these examples show some of the architecture features. The implementation and 
performance results of real application (QCD .... ), library (Linpack, FFTpack, BLAS3) 
and benchmarks will be presented in future papers. 

In the following examples, the geometry of the executing structure is adapted to the 
algorithm structure chosen in the example. We assume that the duration of the cycle is 
equal to the duration of a whole 32 or 64 bits floating point multiplication 1. 

V,1.  An  i m p l e m e n t a t i o n  o f  a s t a n d a r d  benchmark: the matrix-matrix  
product 

The Basic Linear Algebra Subprograms (BLAS) [35] have become a standard library 
to support linear algebra. The BLAS operations are divided into three levels : level 1 
concerns Vector-Vector operations, level 2 includes Matrix-Vector operations and level 3 
is devoted to Matrix-Matrix operations. We will examine the computation of the Matrix- 
Matrix product, a level 3 BLAS operation. In particular, we will focus on the product of 
3*3 matrix. The Figure 3 shows the geometrical evolution of PTAH while computing a 
3*3 matrix product. 

The subprogram consists in the product of the matrix A=(aij) by the matrix B=(bij ). 
The result is stored in matrix C=(cij). We assume that: the executing structure has 9 PEs, 
all matrix are square and contains 9 elements and all elements are stored on a different PE. 
For sake of simplicity, we also assume that the PEs are numbered as the matrix elements 
and so a 11, b 11 and c 11 are stored on PE 11. 

The Figure 3 show at cycle 1 the communications performed at cycle 0 and the 
operations executed at cycle 1. The communications are pipe-lined and realized one cycle 
before the operation which use them (see section VI). But for more simplicity we show 
the communications and their associated operations within the same cycle. So Cl 1, c21 
and c31 are partly computed at cycle 1. The partial computations are the products part of 
the computation of the matrix C elements. Thus at cycle 1, PE31 receive a31 and b l l  to 
compute the products part of c31. At the same time PE31 transmits b31 to PE13, PE23 

1 Some comercial components and full custom CMOS VLSI realize such an operation in less than 50ns. 
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and PE33. The results of the partial computation are stored and will be used at cycle 4 and 
5. The cycle 2 and 3 partly computes c12, c22, c32, c13, c23 and c33. 

The cycle 4 and 5 perform the sum of the partial results previously computed and so 
compute the definitive value of each element of the matrix C. Thus at cycle 4, PE31 
receives the result of a32*b21 from PE32 to compute (a 3 l*bl 1)+(a32*b21). At the same 
time, PE 31 transmits the result of a31*bl 1 to PE31. The cycle 5 execute the second half 
part of the sum. Finally, the product of the matrix 3*3 takes 6 cycles to compute 27 
multiplications and 18 additions i.e. 45 operations. In the example, the seed-up of PTAH 
over a sequential computer is 7.5 and the efficiency is about 83%. With the assumption 
that any communication is required for the cycle 1, i.e. the elements of the matrix are 
placed on the PEs in such a manner that no communication is required to compute the 
product part of Cl 1, c21 and c31, the speed-up becomes 9 and the efficiency becomes 
100%! For this processing, the communications are permutations and broadcasts and a 
simple SIMD control structure is required. For matrix of size N*M on a machine with u*v 
PEs, if there is enough memory space to store the partial results the speed-up is bounded 
to u*v. Else, blocks of matrix are used and the speed-up is bounded by [-N/u-]*[-M/v]. 

Cycle 1 Cycle 2 

a31*bll a32*b21 a33*b31 
Cycle 4 Cycle 5 

Cycle 3 

Figure 3: Adaptation of the PTAH geometry for the computation of a matrix 3*3 product. 

V.2. A direct use of the systolic designs: implementation of the 
convolution 

The convolution is a routine often used in signal processing, image processing, FFT... 
and which has given birth to the systolic concept. The convolution computes the result 
vector {Yl, Y2 . . . . .  Yn+l-k} with Yi = WlXi+W2Xi+...+WkXi+k-1 from a vector of weights 
{Wl, w2 . . . . .  Wk} and a vector of samples {Xl, x2 . . . . .  Xn}. The computing structure 
presented in figure 4 has the same properties as the classical linear systolic structure [22]. 
Thus, according to the limited I/O bandwidth assumption, the inputs (xi) and the outputs 
(Yi) are made in a serial manner and all inputs are used in the computing structure as long 
as possible. 

All the data comes from the network and the weights are stocked in the local memory. 
At each cycle, each PE realizes one operation. The data of the input vector x are 
broadcasted to PE1, PE2, PE3 and PE4. Each intermediary result uses a specific 
communication channel. One sample is broadcasted at each cycle. The multiply and add 
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operations are pipelined. Within the first cycle, x 1 is broadcasted to PE 1, PE2, PE3 and 
PE4. During the next cycle x2 is broadcasted and xl is multiplied with wl, w2, w3 and 
w4. At the third cycle, PE5 receives wl*xl, x3 is broadcasted and x2 is multiplied with 
wl and w2. PE5 adds wl*xl and 0 at cycle 4 and transmit the result to PE6 at cycle 5. 
The result of w2*x2, communicated in cycle 4, is buffered during cycle 5 and added with 
wl*xl at cycle 6. At this time, five cycles are required to output the first result and the 
convolution is terminated at cycle 13. The memories of PE6, PE7 and PE8 are used as 
internal buffers. This geometry provides a speed-up of 2 and the efficiency is about 26%. 

x6x5 x4 x3 x2 xl 

. . . . . . . . . . . . . . .  ZE_5 . . . . . . .  LEe  . . . . . . . .  P_E# . . . . . . . .  _ ~ _ _ ,  

y2 yl 

Figure 4: Two geometries of PTAH for the computation of a convolution. 

VI. Guide lines for the implementation of a PTAH machine 
A PTAH architecture is mostly function of the desired PE number. The number of PEs 

fixes the topology of the communication network according to the technological 
constraints [21]. The network also determines the granularity and the duration of one 
cycle and defines the bandwidth of the network links. According to the implementation 
choices, each link will have a high number of wires to transport the informations in a 
parallel manner or it will use serial links with high bandwidth wires. In this section, we 
will discuss a very large architecture designed to reach the TeraFLOPS. 

N i T  

Conditio~ ~ ] 

Sequencer 

[ Dec~oder 
Control Word 

DMB: Data Memory Banks 

PMB: Program Memory banks 

LHCS: Look ahead Control Structure 

NI: Network inputs 

NO: Network Outputs 

GO: Global OR network 

Figure 5: Simplified architecture of a PE for PTAH. 
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VI.1. The  Processing Element  

The PE is built from its processing unit which has a FPU for floating point operations 
and a ALU for fixed point, integer and logic operations. The PE granularity corresponds 
to the granularity of the processing unit, i.e. 32 or 64 bits. Figure 5 shows a simplified 
scheme of the common PE with four memory banks, four communication network 
accesses, the control structure, the anticipation unit, the FPU and the ALU. 

Each PE must perform one useful operation per cycle to guarantee an optimal use of 
its processing unit. So a RISC-like architecture with a four stages pipeline is used (see 
figure 6). Because data can be accessed from the private memory or from the 
communication network, the pipeline stages 2 and 4 concerns both memory and network 
operations. A zero delay branching sequencer must be used to avoid the breaking of the 
PE pipeline. This can be realize with a sequencer that works faster than the FPU or with 
multiple program memory banks providing multiple instructions at each cycle. 

I I DI I I SD I 
L1 LD/LN EX 

LI EX 

, IP" 
cycles 

LI: Load Instruction 
DI: Decode Instruction 
LD: Load Data 
LR: Load from Network 
EX: EXecute 
SD: Store Data 
WR: Write to Network 

Figure 6: Execution pipeline of the PE 

VI.2. The communication network 
We now consider an implementation allowing to reach the TeraFLOPS with 64K PEs. 

The cycle is fixed at 60 ns. Each PE can provide 16 MFLOPs. The network topology is a 
3D mesh with 40x40x40 nodes. The topology of a 3D mesh has regular and short 
connections and so allows the use of larger communication links and a higher network 
bandwidth. 

X -  

Z +  

y + ~ -  X+ 

P1 Z- PO 
The 2 links of the PE 

Figure 7: A connection box Figure 8: The CROSSBAR of a connection 
box 

In a 3D mesh, a connection between two distant nodes crosses over intermediary 
nodes. To allow the connections without constraint between the nodes, further links 
available to cross over a node must be provided. These links cross over the node in the 
three directions without any node interaction. Links are bi-directional and the circulation 
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direction is fixed at compile time. The number of links in one direction depends on the 
length of the mesh in this direction. Thus for a 3D mesh with 40 nodes in each direction, 
the number of links for a node must be 40 in each direction to allow any interconnection 
pattern (even the permutation) in each direction. 

This over-dimensioned 3D mesh can be realized with 40 independent 3D mesh. Each 
node has a connection box (see Figure 7). This box allows to connect multiple links of the 
three directions and the node links to the mesh links. Each node has one link to input data 
and one link to output data. While each node is able to receive two inputs and to provide 
two outputs within each cycle, two communication networks are required. So each node 
has 80 connection boxes. A connection box contains a small CROSSBAR (see Figure 8). 

A connection box owns a pattern memory to store the different configurations to use. 
The pattern memory can store up to 1024 configurations. A pattern sequencer provides the 
address of the connection pattern according to the current instruction executed by the PEs. 
Figure 9 shows the node structure of a 64K PEs network with compilable geometry. 

At hardware level there are 80 links between two neighbor nodes. The parallel 
communication on links is impossible and so serial communications are required. We 
consider that the performance of each PE is 16MFLOPs and that the data length is 32 bits. 
So a serial link at 512 Mbits/s is required to connect neighbor nodes. This is possible with 
a BiCMOS technology providing that each signal is associated with a ground. The number 
of wires between two neighbor PEs is then 160. 

!N!!!---!!!!it 
80 

: o n n e c t i o n  
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Figure 9: The node structure of PTAH 64k 
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Figure 10: Communication pipelining in the 
network 

In a 3D mesh, the task placement on the nodes fixes the distance (the number of nodes 
to cross over) between two communications nodes. For a 40x40x40 mesh, this distance 
can be up-to 120 nodes. But the duration of the data transport depends on this distance and 
the access time of the network fixes the duration of the cycle used for all resources. So, if 
we want to maintain a short cycle, the access time must be dissociated from the duration 
of the data transport. The solution retained is to pipeline the communications in the 
network. So each box works like one element of a shift register (see Figure 10). 

The message cross over the network from connection boxes to connection boxes. 
Since two consecutive connection boxes are spatially neighbor, they can be easily 
synchronized. The communication pipelining provides the following advantage: while the 
communication frequency is 32 times higher than the computing frequency (for 32 bits 
data), the network is crossed over 32 time faster than if the same frequency was used for 
the computation and the communication. 

This result requires some explanations: if T is the length of the message to 
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communicate and D the distance in number of connection boxes between the transmitter 
and the receiver - notice that there are always a minimum of two connection boxes 

between one transmitter and one receiver - the number of shifting cycle is: C = (D + T) 
T 

Thus, in a neighborhood such as D + T _< 2T, the transmission delay is constant and 
equal to 2 PE cycles. For T = 32, the neighborhood is 31 nodes in each direction. The 
drawback of the communication pipelining is that the distance between the two 
communicating node fixes the instant when the message must be send. So a clock must be 
built from the division of the pipeline Clk by T. This clock must be shifted of D.Clk cycles 
from the node clock of the receiver. 

The 3D mesh of PTAH 64k is partitionable per blocks. The Blocks are sets of 
hardware connected nodes. A block can contain from one node to the whole machine. 

The global 3D mesh can be viewed as containing multiple reduced 3D mesh. Each 
reduced 3D mesh can be independent and used as a reduced network of nodes with 
compilable geometry. This feature allows to execute multi-tasking or to share the machine 
between multiple users. The "Global-Or" synchronization networks are realized with two 
3D meshes independent of the communication networks. Since only block partitions are 
possible on 3D meshes, each "Global-or" network uses only a single wire. Each node 
receives 6 wires, one for each direction. Partition are defined at compile time. Each node 
has the required hardware to logically "cut" its wires to close the frontier of a partition. 
Once the partitions are realized, the two "Global-Or" networks can be seen as multiple 
independent "Local-Or" networks. 

As we have previously mentioned, the I/O access can be limited to one dedicated node 
or extend up-to a direct access of all nodes. The over-dimensioned 3D mesh of the 64K 
nodes network can be uses as a concentrator-broadcaster for a limited I/O access or to 
realize all paths required for a direct I/O access. For a direct I/O access, the topology and 
the number of links of our over-dimensioned 3D mesh guarantee that all nodes can 
simultaneously input or output data to and from the I/O devices. All nodes can be viewed 
from one face of the 3D mesh within one cycle. For simultaneous inputs and outputs the 
two communication networks and two faces must be used. 

A 3D packaging, technology is required to build a 64K nodes network. The MegaPack 
[36] - a 3D VLSI packaging for direct construction of 3D computers - can be used to 
realize our network. The PE and the connection boxes can be made with ASIC 
components. An other way to build such a machine is to use commercial components 
mounted on classical boards. The boards must be studied to be connected directly without 
the use of back-plane or racks. The board assembling forms naturally the 3D networks. 
The machine is a cube of boards and its implementation will lead to a higher volume than 
with the MegaPack. 

VII. Conclusion 
Our examination of the actual massively parallel architectures shows that the 

communication systems (dedicated networks and general purpose networks) lead to a non- 
optimal use of the potential computing performance. So we have proposed to optimize the 
use of the PEs by the adaptation of the architecture geometry to the application structure 
and the execution of one operation and two communications per PE and per cycle. 

The main consequence of our approach is: the bandwidth adaptation of the 
communication network, the memory and the control structure to the performance of the 
processing unit. The bandwidth adaptation leads to the use of hardware resources that are 
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dedicated. The performances required for the communication network require the use of 
the circuit switching technique. The sequencing of the connection patterns associates the 
efficiency of the dedicated networks to the flexibility of the general purpose networks. 

Our execution model has been illustrated through two simple examples. 
The implementation of a 64k PEs machine, designed to reach the TeraFLOPS, has 

been detailed. Some details of the hardware implementation have been described and 
particularly the node structure. The machine uses the communication pipelining to allow 
the reception and the emission of a total of 4 communications per cycle. A particular 
organization of the data memory and a zero delay branching program sequencer are 
required to allow the PE to make one useful computation per cycle. 

The critical resource of this architecture is the communication network. We have 
proposed a network topology corresponding to the requirements of the architecture. The 
over-dimensioned 3D mesh can be partitioned with blocks. Its communication pipeline 
reduces the latency to 5 PE cycles despite a diameter of 120. 
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