
A r c h i t e c t u r e I

PTAH
Introduction to a new parallel architecture for highly

numeric processing

Franck Cappello, Jean-Luc Btchennec, Jean-Louis Giavitto

LRI - UA 410 CNRS
Bfitiment 490 - Universit~ de Paris-Sud

91405 Orsay Cedex
email : fci@lri.lri.fr

A b s t r a c t . This paper proposes a new architectural design for high performance
parallel computers: the one-cycle machine. In such a computer the memory access,
network access, instruction sequencing, data computation take the same duration:
one clock cycle. We first consider the communication network efficiency as the
main critical resource. We show that the adaptation of the network performance to
the processing element power is more important than the CPU power in itself with
respect to the global processing effectiveness. Two guidelines are derived from our
analysis and conduct to the design of PTAH. Two simple examples are used to
illustrate the interest of PTAH for the execution of numeric applications. Finally,
some hardware features are proposed for a PTAH implementation being able to
reach the TeraFLOPS.

I. Background

I . I . T h e " g r a n d C h a l l e n g e "

Substantial applications require a tremendous numeric computing power, as for
example, climate modeling [1], electrical simulation, astrophysic, Quantum Chromo
Dynamic (QCD) [2], fluids mechanic, thermodynamic, human genome decoding, medical
imagery, etc. Two families of architecture have been devoted to the satisfaction of such
intensive numeric computing requirements [3]: vector supercomputers like CRAY YMP
C90 [4], NEC SX3 [5] and parallel supercomputers such as CM5 [6], GF11 [7], Paragon
XP/S [8], TC2000 [9] and Monarch [10]

To face the increasing needs of numeric applications, supercomputer manufacturers
have fixed the objective to reach the TeraFLOPS before the end of the decade. The
solution to this challenge probably relies on a correct architectural design rather to a
technological jump because a factor of 100 is needed to speed the available hardware up
to the TeraFLOPS.

As a matter of fact, vector architectures are limited by the available technology and
thus, parallel architectures will be more rapidly suitable to outperform the last generation
supercomputers by a factor 100. Moreover, the low cost and the increasing performance
of the current microprocessors (i860 XP from INTEL, RS6000 from iBM, T9000 from
INMOS) make them attractive to be the processing elements (PEs) of the future parallel
architectures. Such options are corroborated by the choices of the current supercomputers
project like IBM Vulcan [11], CRAY Research MPP [12] and Thinking Machines CM5.

The communication network will make the principal difference between these
architectures. To quote J. Smith et al. from [13]: "Data movement is always the most

82

difficult problem for the effective use of supercomputers. The performance of future
supercomputers will ultimately be measured by how fast they can move data both within
the system and across the network". This section is devoted to a critic, based on the
analysis of the communication network usage, of three possible architectural designs.

1.2. The proposed solutions
Table 1 presents three architectures based on three CPUs. The CPU performance

ranges from 1 MFLOP to 100 MFLOP corresponding to the next RISC generation.
According to the CPU performance, column 2 gives the corresponding number of PEs
required to reach the TeraFLOPS.

Such a number of PEs already implies the use of a mesh topology. At this network
scale, 2D or 3D grids have been shown to bethe more efficient topologies. Roughly, this
is due to the fact that they take into account technologically-limited resources such as
wiring density [14] or available pins number [15]. The choices retained for the actual
projects of such architectures [12] [8] [16] [17] corroborate this analysis.

MegaFLOP per PE Number of PE Typical CPU for the PE

106
(practical limit)

16 bits
(Mega PE, Mosaic PE) M1 1

M2 10 105

M3 100 104

Table 1: A scale of number of PEs required to reach the TeraFLOPS according to the

32 bits
(680X0, 80X86 with co-processors)

32-64 bits
(next generation i860, RS6000,etc)

performance of one PE.

The PE performance directly involves the network link bandwidth. Table 2 shows the
needed network bandwidth for two typical communication patterns. The program
executed on each PE for these communication patterns needs one communication for each
operation. For instance, a typical program instruction might be: compute a result from a
value of an other PE and an internal value. So the program needs an
operation/communication ratio of one (this assumption will be refined in figure 1). The
comparisons are made on the basis of a static routing scheme (see paragraph II.1 for
further discussions).

Typical network RCB Without

topology (Mesh) Contention

M1 100" 100" 100 532 Megabits/s
M2 47*47*47 2,5 Gigabits/s
M3 22*22*22 12 Gigabits/s

RCB according to the bisection RCB (optimistic)

throughput

800 Megabits/s 80 Megabits/s
3,76 Gigabits/s 240 Megabits/s
17,6 Gigabits/s 800 Megabits/s

Table 2: The network characteristics and the link bandwidths corresponding to three typical
architectures for the TeraFLOPS

The first communication pattern corresponds to a scheme where all PEs send a word to
a receiver faraway off the communication network average distance (given in column 1).
Moreover the communication is supposed without any contention. Column 2 gives the
Related Channel Bandwidth (RCB). Let's d be the average distance and 6 the degree of a

83

PE (in the 3D grid). If we assume an idealized channel load rate of d/6 then
RCB = (CPUthrougthput. wordlength, d/6). In fact, if all PEs emits a message to a
neighbor, the (average of) channel load rate is 1/6 and so, if the messages are sent to a
distance of d, the channel load rate is d/6.

The second communication pattern is an attempt to take into account the unavoidable
contention. The model we propose consists in estimating that 1/4 of the messages cross
over the network bisection. The computed value (column 3) is known as the bisection
throughput. These values are unreachable with the current technology. Column 4 gives
more realistic hypothesis about what can be obtained.

In order to obtain a TeraFLOPS with these more realistic network bandwidths, we
have to examine the operation/communication ratio that reduces the PE throughput. The
results are summarized in figure 1.

32n
The resulting curves are plotted from the following relationship: Ct = - ~ - ~ where Ct

represents the channel throughput, 32 the word length, n the side of the mesh, ,,q. the PE
throughput and 1/4 comes from the fact that only one quarter of the messages cross over
the bisection. The parameter R represents the ratio operation/communication for a PE.
This ratio is the same for all PE. Actually the interpretation of R is a little bit more
sophisticated: it also includes the ratio Application size~Computer size (known as the vp-
ratio in the Connection-Machine programming languages [18]). When the application size
is larger than the computer size, the application is folded and this may reduces of inter-
PEs communications: parts of the application that are mapped on the same PE
communicate without leaving the PE.

Mb~t.i/s

10000

1000

100

10
3 5 7 9 11 I3 15 17 19 21 23 25 27 29

(Op/Com)'fAs/Cs)

M3

M2

M1

Figure 1: Number of operations per communication required for M1, M2 and M3 to reach the
TeraFLOPS according to the realizable link bandwidth and the bisection throughput.

At least a ratio of 10 operations per communication is required for the architectures
with one million of PEs to reach the TeraFLOPS. This performance is obtained with M3
for a ratio of 23 operations per communication. So, these architectures become efficient
only from a high R. The important conclusion we draw from the figure 1 is summarized in
figure 2.

Fine-grained architectures (M1) are more effective to obtain as soon as possible the
TeraFLOPS. Here fine-grained should be understood as a low operations~communication

84

ratio. To emphases our argument, let takes an application that fit the size of the computer.
If the communication ratio is 10, the TeraFLOPS can be achieved with M1. With M 3 we
have to group the application on less PEs with the hope to increase the operations per
communication ratio. However, grouping the application on less PEs decreases the
achievable computing performance.

1 TeraFLOP

600,6 -. 80% 40% ~ "~ / ~ ~ ~ M3

40 GigaFLOP ~ , , , , I I I 1 1 I I I I I I I I I I I I I
0% 1 2 3 ' ' ' '5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(Op/Com)* (Ms/As)

Figure 2: Achievable performance following R

L 3 . C P U - D r i v e n v e r s u s N e t w o r k - D r i v e n Archi tec tures

As a consequence, we oppose C P U - d r i v e n to ne twork -dr iven architectures. In CPU-
driven architectures, the CPU performance exceeds the network capabilities. More the
CPU is powerful more the ratio instruction/communication must be high (to obtain the
TeraFLOPS). The PE activity is characterized by bursts of computation and a big number
of PEs must be used to remedy the weak efficiency. In contrast, network-driven
architectures are designed to adapt network and CPU performance. Because the network
is able to feed the CPU at its nominal rate, sus ta ined p e r f o r m a n c e s are c lose to p e a k
per formance . Thus, the TeraFLOPS is obtained more rapidly.

In this paper we develop P T A H , a proposa l f o r ne twork-dr iven archi tecture . We first
present two consequences of the network driven architecture concept. Then, we develop
the underlying execution model and we illustrate them on two toy examples. Finally, the
implementation of a network of processors able to reach the TeraFLOPS is discussed.

II. One operation and two communications per PE and per
cycle

P T A H is an architecture that follows a principle of effectiveness. This can be
rephrased as to opt imize the use o f the PEs . The structure of the PE must be designed in
order to furnish an optimally usable computational power.

From the application point of view, the efficiency of a PE is measured in the number
of "useful" operations performed. Useful operations are the logic and arithmetic ones.
Therefore the conclusion is that PTAH must be able to perform:

one operat ion and two communica t ions per P E and per cycle.

85

We define a cycle as the duration between two executions of the basic operations: the
floating point multiplication is a basic operation. At each cycle, each PE executes its
programmed operation. So at each cycle, a PE consumes at most three operands: two for a
dyadic operation and a Boolean value in case of a conditional execution. In addition, at
each cycle, a PE may output two values (e.g. when swapping two values).

Operands of an operation are accessed both in the PE local memory or received from
other PEs through the network. This also handle for the results: they may be delivered to
the communication network.

II.1. Static versus Dynamic routing
Dynamic routing of the communications is used into many general purpose parallel

architectures [6, 19, 20, 21].

The dynamic routing uses an interpretation level to route messages which therefore
must embed a network information section (addresses) and an application data section. In
addition, the dynamic routing strategy must be distributed over the PEs, leading to a far
from optimal conflicts resolution. The values appearing in the previous tables are then far
from realistic if considered with dynamic routing. For example, in the iPSC/2, the
hardware does not limit the communication performance because it represents only 5% of
the transmission delay [19]. This limitation is not linked to a special architectural design,
e.g. it also holds for the CM2 where the typical duration of a send takes the time of 75
additions [6].

Parallel architectures with dedicated networks are built to execute a restricted family
of applications. Their networks are directly defined to fit the communication requirements
of the applications. Systolic architectures [22], which realize hardware operators, are
examples of a such approach. Others examples include complete dedicated computer,
such as the Yorktown Simulation Engine [23] built by IBM to speed-up logic simulations,
the Wire Routing Machine [24] to route VLSI or the GF11 to compute QCD [2]. Several
other dedicated machines have been build, especially in the field of image processing
(MPP [25], PASM [26], Sphynx [27]).

Such architectures, from the network point of view, answer to the question: which data
movements must be performed? They are very efficient because of the optimal matching
between the structure of the processing architecture and the computing structure of the
application. However, when these machines are used as general purpose architecture, they
lose their efficiency.

The static routing is a way to combine the flexibility of dynamic routing and the
efficiency of dedicated networks. However the static routing implies the compilation of
the communications (see section III) and a careful analysis of the network properties.

11.2. T h e specification of the network properties
To define the PTAH network we must analyze the characteristics of the

communications of an application which will be executed on a parallel computer. If we
consider globally the whole execution of an application, its communication geometry
looks like a "jungle". But three connection patterns can be exhibited at a given time: the
permutation, the broadcast and the reduction. The permutation and broadcast connection
patterns implies nodes that receive at most one communication at a time. In a reduction
pattern, a node is able to receive two communications at the same time because the
operations that appear in a reduction imply the dyadic operators performed by a PE. So a
reduction is realized with a binary tree (for the associative operations). These simple

86

patterns can be combined to realize any complex pattern.

In consequence, to avoid inefficient hotspots, the degree of the communication
network is fixed as two inputs and two outputs per PE. Moreover, the topology of the
network must satisfy two additional properties:

- a Benes property [28] to implement any permutation without contention,
- a partitionable broadcast capability to allow independent partitions to execute local

broadcasts (broadcast can be limited to a subset of PEs).

The next section investigates the adaptation of the processing structure to the applications.
The architectural impacts of "one operation and two communications per PE and per
cycle" are explored in section IV.

III. Adaptation of the architecture geometry to the
application structure

The network must be able to match the CPU processing rate and so must perform at
most two communications per cycle and per PE. Moreover, the optimal execution of an
application distributed over a network of processors requires a suitable interaction
between PEs. Therefore, the structure of the computer must be flexible enough to be well-
fitted to the structure of any given computation. As a consequence, PTAH provides the

adaptation of the architecture geometry to the application structure.

The execution of an application is characterized by a communication geometry and by
a control geometry. The communication geometry fixes the interconnection topology of
the PEs which correspond to an optimal execution of the application. The communication
geometry is often derived from the dataflow graph of the application. For example, a
Perfect Shuffle topology can be used to support optimally the data movements of a FFT
[29]; meshes are usually used to support finite differences schemes, etc.

The control geometry defines the optimal execution model of the application. As for
the data organization, it exists a control organization which sequences the operations to
perform. For example, the SIMD control model organizes the processing of the
application as a single sequence of operations executed simultaneously by all PEs. The
optimal control geometry depends on the application.

The adaptation of the architecture geometries to the application structure is required to
provide for each application the best executing structure. The communication network and
the control structure are the basic resources used for the geometry adaptation. The section
V presents some performant communication and control geometries for some standard
numeric applications.

The no-sens program proposed by Gasjki in [30] compares the efficiency of an ideal
dynamic Dataflow architecture with an ideal SIMD or Vector architecture. This simple
program shows the requirement of aflexible control structure that must be adapted to the
algorithm specificities. Because the parallel computers use the microprocessors
technology for the PE, they can use the microprocessor instruction cache or local memory
to store the program and the microprocessor sequencer to control the program execution
and take advantage of the large amount of instructions sequencing locality of the
applications (most executed instruction sequences are within loops). However, this large
amount of unorganized threads must be control to avoid the lost of efficiency. The
synchronous MIMD control structure which combines a synchronization hardware with a
multiple threaded architecture fits all these requirements.

87

IV. General design of a PTAH architecture
At this point, we have determined that the optimal use of each PE involves:

- the execution of one operation and two communications per PE per cycle;

- the adaptation of the geometry of the architecture to the application structure.

These two constraints lead to the concept of one-cycle machine: all operation, memory
access, network access, instruction sequencing, data computations take one cycle.
These constraints are very hard to satisfy and require hardware specificities (detailed in
IV.2). In particular, the feasibility of the architecture implies a static approach of the
execution to avoid expensive interpretation level.

IV.1. A compiled model of execution
The use of interpretation levels within communications (dynamic routing) and control

(micro-coding) is well-known as involving performance limitations. Thus, efforts to
reduce the use of interpretation levels has given birth to communication compilers [31]
and MSIMD control model [32] (in the field of sequential machine, the RISC concept [33]
participates of these efforts).

Therefore, the communication and the control structure must only depend on static
parameters. It means that tasks creation/destruction, partitioning, placement and
scheduling must be anticipated at compile time. Each communication collision must be
resolved at compile time. The communication patterns and occurrences have to be known
before execution. As a matter of fact, these severe constraints limit the target applications.
However, such a class of applications is an important and pertinent one. Interpretation
levels may be introduced, at the price of a lesser efficiency, to execute inherently dynamic
applications (that is, application whose behavior cannot be anticipated). For example, it is
possible to implement a dynamic routing scheme upon the static routing for highly
unstructured applications or for some sparse matrix and graph algorithms. A hardware
communication routing chip can be add to each switch node of a dynamic topology
communication network. This results in a few increases of the hardware complexity since
the switches in these communication networks are not limited by the transistor count but
by their pin count. However, if this improvement is to expensive according to the irregular
operation occurrences, the dynamic routing can be achieved by using the PE as the routing
chips (software emulated) of a static topology communication network.

The structure of each resource, memory, communication network, CPU is very
simple and so leads to a simpler compilation. Task scheduling may use techniques issued
from the VLIW compilation and compilation of communication may profit of the
technology developed for Router-Compilers.

IV.2. Specialized resources with balanced bandwidths
Each CPU has two inputs for the operands and two outputs for the results. So the

private memory and the communication network allow four simultaneous accesses (two
reads and two writes). Because all the architecture resources receive the same clock, the
synchronization is implicit and all the actions made by each resource have a calibrated
duration of one cycle.

The optimal use of the PEs requires to realize each architectural function (processing,
control, communication, memorization, synchronization) with a dedicated hardware.
Sharing hardware resources between functions induces bottlenecks and therefor delays the
function performance. So each resource is specialized.

88

IV.2.a. An adaptable communication network
The communication network is the critical resource of a network of processors with

compilable geometry. It fixes the duration of the cycle used to clock all resources. The
switched circuits method [34] is used because it allows a short access time, a short latency
and a high bandwidth. Communications are implicit in such a network and the connection
patterns - sets of circuits - are defined at compile time and sequenced at execute time.

The topologies of the indirect networks such as the Crossbar, the Memphis Switch, the
Benes, and the various over-dimensioned direct networks (as meshes) can realize the
standard interconnection patterns : permutation, broadcast and reduction.

IV.2.b. A set of adaptable control units

As previously mentioned, a MIMD synchronisable control structure is flexible enough
to fit the best executing control structure. A MIMD control structure can realize the
control part of MIMD, MSIMD, SPMD and SIMD control modes. Each PE must have its
private sequencer to realize all these modes. The synchronization of all PEs uses a
hardware synchronization network. Each PE has one input and one output to access these
networks. Each PE accesses to the synchronization networks are defined at compile time.
Partitionable networks are used to allow the synchronization of independent sets of PEs.
Two synchronization networks are required to realize hierarchical synchronization. For
example, it is possible to synchronize multiple PEs within a partition and multiple
partitions within the machine as needed for a MSIMD control structure.

The control structure provides exactly one instruction per cycle to the processing unit.
The control structure uses private resources (memory, ALU) to realize control processing.
An anticipation unit is used to execute the loop controls, the jumps and the other sequence
breaks. So, the control processing is independent of the data processing.

lV.2.c. A set of dedicated processing units with fixed format

The goal of the processing unit is to provide one useful result per cycle. Useful results
are results of processing under application data. Performing operation for program or
communication controls is not considered as providing useful results. The processing unit
is dedicated, i.e. it does not compute the controls or the communications. A Harvard
memory structure is used to separate the storage of the application data and the storage of
the control data. Because PTAH is designed for highly numeric processing, the format of
the processing unit is fixed to 32 or 64 bits. But adaptable processing units can be used, if
needed, with balanced control, storage and communication resources.

IV.2.d. The memory structure for the application data

The memory structure for the application data allows four accesses within each cycle.
Therefore, it is important to provide exactly four accesses per cycle. Providing an average
of four accesses per cycle is a weaker property which complicates the management of the
other resources. Thus, the memory structure cannot be hierarchic (register, cache, static
memory, dynamic memory). The natural memory structure is then composed of four
memory banks. The optimal placement of the data in the memory banks is resolved at
compile time.

Shared data are accessed through the communication network. The broadcast facilities
of the communication network are used to realize simultaneous "reads" to the same data.
A multiple "write" access uses the reduction method for an associative operation or a

89

sequential access for non-associative operations. The hotspots (contention places) are
detected and resolved statically at compile time.

IV.2.e. An adaptable I/0 access

PTAH provides an adaptable I/O access according to the application requirements: a
direct access of all the PEs or a serial access of a dedicated PE. A direct I/O access of all
the PEs is possible according to the I/O units capabilities. Each PE has two input and two
output ports for the I/Os. Multiple dedicated PEs can be used to adapl the machine
bandwidth with the I/O bandwidth. Then, the communication network is used as a
concentrator-broadcaster. The access configuration and the management of the
communication network for the I/Os are resolved at compile time.

V. Some Illustrations of the PTAH features
As a general principle of parallel computer architecture, PTAH can be used from small

to very large parallel computers (from 2 to 64k PEs). So, we have deliberately chosen
very simple and small examples to illustrate the principle of PTAH. Despite there limited
usability, these examples show some of the architecture features. The implementation and
performance results of real application (QCD), library (Linpack, FFTpack, BLAS3)
and benchmarks will be presented in future papers.

In the following examples, the geometry of the executing structure is adapted to the
algorithm structure chosen in the example. We assume that the duration of the cycle is
equal to the duration of a whole 32 or 64 bits floating point multiplication 1.

V,1. An i m p l e m e n t a t i o n o f a s t a n d a r d benchmark: the matrix-matrix
product

The Basic Linear Algebra Subprograms (BLAS) [35] have become a standard library
to support linear algebra. The BLAS operations are divided into three levels : level 1
concerns Vector-Vector operations, level 2 includes Matrix-Vector operations and level 3
is devoted to Matrix-Matrix operations. We will examine the computation of the Matrix-
Matrix product, a level 3 BLAS operation. In particular, we will focus on the product of
3*3 matrix. The Figure 3 shows the geometrical evolution of PTAH while computing a
3*3 matrix product.

The subprogram consists in the product of the matrix A=(aij) by the matrix B=(bij).
The result is stored in matrix C=(cij). We assume that: the executing structure has 9 PEs,
all matrix are square and contains 9 elements and all elements are stored on a different PE.
For sake of simplicity, we also assume that the PEs are numbered as the matrix elements
and so a 11, b 11 and c 11 are stored on PE 11.

The Figure 3 show at cycle 1 the communications performed at cycle 0 and the
operations executed at cycle 1. The communications are pipe-lined and realized one cycle
before the operation which use them (see section VI). But for more simplicity we show
the communications and their associated operations within the same cycle. So Cl 1, c21
and c31 are partly computed at cycle 1. The partial computations are the products part of
the computation of the matrix C elements. Thus at cycle 1, PE31 receive a31 and b l l to
compute the products part of c31. At the same time PE31 transmits b31 to PE13, PE23

1 Some comercial components and full custom CMOS VLSI realize such an operation in less than 50ns.

90

and PE33. The results of the partial computation are stored and will be used at cycle 4 and
5. The cycle 2 and 3 partly computes c12, c22, c32, c13, c23 and c33.

The cycle 4 and 5 perform the sum of the partial results previously computed and so
compute the definitive value of each element of the matrix C. Thus at cycle 4, PE31
receives the result of a32*b21 from PE32 to compute (a 3 l*bl 1)+(a32*b21). At the same
time, PE 31 transmits the result of a31*bl 1 to PE31. The cycle 5 execute the second half
part of the sum. Finally, the product of the matrix 3*3 takes 6 cycles to compute 27
multiplications and 18 additions i.e. 45 operations. In the example, the seed-up of PTAH
over a sequential computer is 7.5 and the efficiency is about 83%. With the assumption
that any communication is required for the cycle 1, i.e. the elements of the matrix are
placed on the PEs in such a manner that no communication is required to compute the
product part of Cl 1, c21 and c31, the speed-up becomes 9 and the efficiency becomes
100%! For this processing, the communications are permutations and broadcasts and a
simple SIMD control structure is required. For matrix of size N*M on a machine with u*v
PEs, if there is enough memory space to store the partial results the speed-up is bounded
to u*v. Else, blocks of matrix are used and the speed-up is bounded by [-N/u-]*[-M/v].

Cycle 1 Cycle 2

a31*bll a32*b21 a33*b31
Cycle 4 Cycle 5

Cycle 3

Figure 3: Adaptation of the PTAH geometry for the computation of a matrix 3*3 product.

V.2. A direct use of the systolic designs: implementation of the
convolution

The convolution is a routine often used in signal processing, image processing, FFT...
and which has given birth to the systolic concept. The convolution computes the result
vector {Yl, Y2 Yn+l-k} with Yi = WlXi+W2Xi+...+WkXi+k-1 from a vector of weights
{Wl, w2 Wk} and a vector of samples {Xl, x2 Xn}. The computing structure
presented in figure 4 has the same properties as the classical linear systolic structure [22].
Thus, according to the limited I/O bandwidth assumption, the inputs (xi) and the outputs
(Yi) are made in a serial manner and all inputs are used in the computing structure as long
as possible.

All the data comes from the network and the weights are stocked in the local memory.
At each cycle, each PE realizes one operation. The data of the input vector x are
broadcasted to PE1, PE2, PE3 and PE4. Each intermediary result uses a specific
communication channel. One sample is broadcasted at each cycle. The multiply and add

91

operations are pipelined. Within the first cycle, x 1 is broadcasted to PE 1, PE2, PE3 and
PE4. During the next cycle x2 is broadcasted and xl is multiplied with wl, w2, w3 and
w4. At the third cycle, PE5 receives wl*xl, x3 is broadcasted and x2 is multiplied with
wl and w2. PE5 adds wl*xl and 0 at cycle 4 and transmit the result to PE6 at cycle 5.
The result of w2*x2, communicated in cycle 4, is buffered during cycle 5 and added with
wl*xl at cycle 6. At this time, five cycles are required to output the first result and the
convolution is terminated at cycle 13. The memories of PE6, PE7 and PE8 are used as
internal buffers. This geometry provides a speed-up of 2 and the efficiency is about 26%.

x6x5 x4 x3 x2 xl

. ZE_5 LEe P_E# _ ~ _ _ ,

y2 yl

Figure 4: Two geometries of PTAH for the computation of a convolution.

VI. Guide lines for the implementation of a PTAH machine
A PTAH architecture is mostly function of the desired PE number. The number of PEs

fixes the topology of the communication network according to the technological
constraints [21]. The network also determines the granularity and the duration of one
cycle and defines the bandwidth of the network links. According to the implementation
choices, each link will have a high number of wires to transport the informations in a
parallel manner or it will use serial links with high bandwidth wires. In this section, we
will discuss a very large architecture designed to reach the TeraFLOPS.

N i T

Conditio~ ~]

Sequencer

[Dec~oder
Control Word

DMB: Data Memory Banks

PMB: Program Memory banks

LHCS: Look ahead Control Structure

NI: Network inputs

NO: Network Outputs

GO: Global OR network

Figure 5: Simplified architecture of a PE for PTAH.

92

VI.1. The Processing Element

The PE is built from its processing unit which has a FPU for floating point operations
and a ALU for fixed point, integer and logic operations. The PE granularity corresponds
to the granularity of the processing unit, i.e. 32 or 64 bits. Figure 5 shows a simplified
scheme of the common PE with four memory banks, four communication network
accesses, the control structure, the anticipation unit, the FPU and the ALU.

Each PE must perform one useful operation per cycle to guarantee an optimal use of
its processing unit. So a RISC-like architecture with a four stages pipeline is used (see
figure 6). Because data can be accessed from the private memory or from the
communication network, the pipeline stages 2 and 4 concerns both memory and network
operations. A zero delay branching sequencer must be used to avoid the breaking of the
PE pipeline. This can be realize with a sequencer that works faster than the FPU or with
multiple program memory banks providing multiple instructions at each cycle.

I I DI I I SD I
L1 LD/LN EX

LI EX

, IP"
cycles

LI: Load Instruction
DI: Decode Instruction
LD: Load Data
LR: Load from Network
EX: EXecute
SD: Store Data
WR: Write to Network

Figure 6: Execution pipeline of the PE

VI.2. The communication network
We now consider an implementation allowing to reach the TeraFLOPS with 64K PEs.

The cycle is fixed at 60 ns. Each PE can provide 16 MFLOPs. The network topology is a
3D mesh with 40x40x40 nodes. The topology of a 3D mesh has regular and short
connections and so allows the use of larger communication links and a higher network
bandwidth.

X -

Z +

y + ~ - X+

P1 Z- PO
The 2 links of the PE

Figure 7: A connection box Figure 8: The CROSSBAR of a connection
box

In a 3D mesh, a connection between two distant nodes crosses over intermediary
nodes. To allow the connections without constraint between the nodes, further links
available to cross over a node must be provided. These links cross over the node in the
three directions without any node interaction. Links are bi-directional and the circulation

93

direction is fixed at compile time. The number of links in one direction depends on the
length of the mesh in this direction. Thus for a 3D mesh with 40 nodes in each direction,
the number of links for a node must be 40 in each direction to allow any interconnection
pattern (even the permutation) in each direction.

This over-dimensioned 3D mesh can be realized with 40 independent 3D mesh. Each
node has a connection box (see Figure 7). This box allows to connect multiple links of the
three directions and the node links to the mesh links. Each node has one link to input data
and one link to output data. While each node is able to receive two inputs and to provide
two outputs within each cycle, two communication networks are required. So each node
has 80 connection boxes. A connection box contains a small CROSSBAR (see Figure 8).

A connection box owns a pattern memory to store the different configurations to use.
The pattern memory can store up to 1024 configurations. A pattern sequencer provides the
address of the connection pattern according to the current instruction executed by the PEs.
Figure 9 shows the node structure of a 64K PEs network with compilable geometry.

At hardware level there are 80 links between two neighbor nodes. The parallel
communication on links is impossible and so serial communications are required. We
consider that the performance of each PE is 16MFLOPs and that the data length is 32 bits.
So a serial link at 512 Mbits/s is required to connect neighbor nodes. This is possible with
a BiCMOS technology providing that each signal is associated with a ground. The number
of wires between two neighbor PEs is then 160.

!N!!!---!!!!it
80

: o n n e c t i o n
b o x e s

1
m e m o r y

of
1024

conf igura t ions

PE
[] []

pat te rns
s e q u e n c e r

- - c l k

Figure 9: The node structure of PTAH 64k

emitting shift register Clk Clk elk

[, !~::~ Pit. [receiving shift mgi~,ex
~ e m i t t e r PE ~ '

Figure 10: Communication pipelining in the
network

In a 3D mesh, the task placement on the nodes fixes the distance (the number of nodes
to cross over) between two communications nodes. For a 40x40x40 mesh, this distance
can be up-to 120 nodes. But the duration of the data transport depends on this distance and
the access time of the network fixes the duration of the cycle used for all resources. So, if
we want to maintain a short cycle, the access time must be dissociated from the duration
of the data transport. The solution retained is to pipeline the communications in the
network. So each box works like one element of a shift register (see Figure 10).

The message cross over the network from connection boxes to connection boxes.
Since two consecutive connection boxes are spatially neighbor, they can be easily
synchronized. The communication pipelining provides the following advantage: while the
communication frequency is 32 times higher than the computing frequency (for 32 bits
data), the network is crossed over 32 time faster than if the same frequency was used for
the computation and the communication.

This result requires some explanations: if T is the length of the message to

94

communicate and D the distance in number of connection boxes between the transmitter
and the receiver - notice that there are always a minimum of two connection boxes

between one transmitter and one receiver - the number of shifting cycle is: C = (D + T)
T

Thus, in a neighborhood such as D + T _< 2T, the transmission delay is constant and
equal to 2 PE cycles. For T = 32, the neighborhood is 31 nodes in each direction. The
drawback of the communication pipelining is that the distance between the two
communicating node fixes the instant when the message must be send. So a clock must be
built from the division of the pipeline Clk by T. This clock must be shifted of D.Clk cycles
from the node clock of the receiver.

The 3D mesh of PTAH 64k is partitionable per blocks. The Blocks are sets of
hardware connected nodes. A block can contain from one node to the whole machine.

The global 3D mesh can be viewed as containing multiple reduced 3D mesh. Each
reduced 3D mesh can be independent and used as a reduced network of nodes with
compilable geometry. This feature allows to execute multi-tasking or to share the machine
between multiple users. The "Global-Or" synchronization networks are realized with two
3D meshes independent of the communication networks. Since only block partitions are
possible on 3D meshes, each "Global-or" network uses only a single wire. Each node
receives 6 wires, one for each direction. Partition are defined at compile time. Each node
has the required hardware to logically "cut" its wires to close the frontier of a partition.
Once the partitions are realized, the two "Global-Or" networks can be seen as multiple
independent "Local-Or" networks.

As we have previously mentioned, the I/O access can be limited to one dedicated node
or extend up-to a direct access of all nodes. The over-dimensioned 3D mesh of the 64K
nodes network can be uses as a concentrator-broadcaster for a limited I/O access or to
realize all paths required for a direct I/O access. For a direct I/O access, the topology and
the number of links of our over-dimensioned 3D mesh guarantee that all nodes can
simultaneously input or output data to and from the I/O devices. All nodes can be viewed
from one face of the 3D mesh within one cycle. For simultaneous inputs and outputs the
two communication networks and two faces must be used.

A 3D packaging, technology is required to build a 64K nodes network. The MegaPack
[36] - a 3D VLSI packaging for direct construction of 3D computers - can be used to
realize our network. The PE and the connection boxes can be made with ASIC
components. An other way to build such a machine is to use commercial components
mounted on classical boards. The boards must be studied to be connected directly without
the use of back-plane or racks. The board assembling forms naturally the 3D networks.
The machine is a cube of boards and its implementation will lead to a higher volume than
with the MegaPack.

VII. Conclusion
Our examination of the actual massively parallel architectures shows that the

communication systems (dedicated networks and general purpose networks) lead to a non-
optimal use of the potential computing performance. So we have proposed to optimize the
use of the PEs by the adaptation of the architecture geometry to the application structure
and the execution of one operation and two communications per PE and per cycle.

The main consequence of our approach is: the bandwidth adaptation of the
communication network, the memory and the control structure to the performance of the
processing unit. The bandwidth adaptation leads to the use of hardware resources that are

95

dedicated. The performances required for the communication network require the use of
the circuit switching technique. The sequencing of the connection patterns associates the
efficiency of the dedicated networks to the flexibility of the general purpose networks.

Our execution model has been illustrated through two simple examples.
The implementation of a 64k PEs machine, designed to reach the TeraFLOPS, has

been detailed. Some details of the hardware implementation have been described and
particularly the node structure. The machine uses the communication pipelining to allow
the reception and the emission of a total of 4 communications per cycle. A particular
organization of the data memory and a zero delay branching program sequencer are
required to allow the PE to make one useful computation per cycle.

The critical resource of this architecture is the communication network. We have
proposed a network topology corresponding to the requirements of the architecture. The
over-dimensioned 3D mesh can be partitioned with blocks. Its communication pipeline
reduces the latency to 5 PE cycles despite a diameter of 120.

Acknowledgments
The PTAH Project is developed within the "Computer Architecture and VLSI Design"

Research Group at LRI. The authors do thanks the other members of this group: C.
Germain for his outstanding contribution, J.-P. Sansonnet and D. Etiemble for many
helpful comments and support and F. Delaplace for fruitful discussions. This work is
partially supported by the french national research program on New Computer
Architectures (PRC-ANM) and by DRET under grant #89342320047050/.

R6ferences
1. D. Korn, N. Rushfield, "Washcloth Simulation of Three-Dimensional Weather

Forecasting Code", New York University, May 1983.
2. J.J. Dongarra, "Experimental Parallel Computing Architectures", North Holland,

1987.
3. R.W. Hockney, C.R. Jesshope, "Parallel Computer 2", Adam Hilger, 1998.
4. W.D. Robb, "The Cray YMP C90 Computer System", Supercomputing Europe

92, Paris, 1992.
5. T. Watanabe, "SX-3 Series Architecture & Technology Trend", Supercomputing

Europe 92, Paris, 1992.
6. "The Connection Machine CM-5 Technical Summary", Thinking Machines

Corporation, Oct 91.
7. L Beetem, M. Denneau, D. Weingarten, "The GFll Supercomputer", in

Proceedings of the 12th Internationnal Symposium on Computer Architecture,
IEEE Computer Society, Boston 1985.

8 "Paragon XP/S Product Overview", Intel Corporation,1991.
9. "The TC2000 Massively Parallel Supercomputer", in "Parallel Computing : Past,

Present and Future", BBN Advanced Computers Inc, 1990.
10. R.D. Rettberg, W. R. Crowther, P. P. Corvey and R. S. Tomlinson, "The

Monarch Parallel Processor Hardware Design", Computer, April 91.
11. J.R. Moulic, "Parallel Systems", Supercomputing Europe 92, Paris, 1992.
12. S. Nelson, "Toward TeraFLOP Computing", Supercomputing Europe 91

Conference, Fevrier 1991.
13. J.E. Smith, W.C. Hsu, C. Hsiung, Supercomputing 90.
14. W.J. Dally, "Wire-efficient VLSI Multiprocessor Communications", 1987

96

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

Stanford Conference on Advanced Research in VLSI, 1987, pp 391-415.
D.A. Reed, R.M. Fujimoto, "Multicomputers Networks - Message-based Parallel
Processing", The MIT Press, 1987.
W.C. Athas, C.L. Seitz, "Multicomputers : Message-Passing Concurrent
Computers", COMPUTER, Aug 1988.
C. Germain, J-L. B6chennec, D. Etiemble and J-P. Sansonnet, "A New
Communication Design for Massively Parallel Message-Passing Architectures",
IFIP Working Conf. on Decentralized Systems 1989, North-Holland ed.
TMC, The Essential *Lisp Manual, Cambridge MA, 1986
S. F. Nugent, "The iPSC/2 Direct-Connect Communications Technology", 3rd
Conf. on Hypercube Concurrent Computers and Applications, 1988.
W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar
"Performance mesureament on a 128-nodes Butterfly Parallel Processor", proc. of
the Int. Conf. on Parallel Processing, pp 450-457, 1985.
C. Germain, J-L B6chennec, D. Etiemble, J-P. Sansonnet, "An interconnection
network and a routing scheme for a massively parallel message-passing
multicomputer", 3rd Symposium on Frontiers of Massively Parallel Computation,
Oct 8-10 1990, College Park, MD.
H.T. Kung, "Why Systolic Architecture ?", COMPUTER, Jan 1982.
M.M. Denneau, "The Yorktown Simulation Engine", ACM/IEEE 19th Desing
Automation Conference Proceedings, 1982.
S.J. Hong, R. Nair, "Wire-Routing Machines, New Tools for VLSI Physical
Design", Proceedings of the IEEE, Jan 1983.
K. Batcher, "Design of a Massively Parallel Processor", IEEE Transaction on
Computer, Sep 1980.
H.J. Siegel, L.J. Siegel, F.C. Kemmer, P.T. Muller, H.E. Smalley, S.D. Smith,
"PASM : A Partitionable SIMD/MSIMD System for Image Processing and
Pattern Recognition", IEEE Transaction on Computer, Dec 1981.
A. Merigot, S. Bouaziz, P. Clermont, F. Devos, M. Echer, J. Mehat, Y. Ni,
"SPHINX un processeur pyramidal massivement parall~le pour la vision
artificielle", 7ibme congr~s RFIA, Nov 1989.
V. Benes, "Optimal Rearrangeable Multistage Connecting Networks", Bell
System Technical Journal, Vol 43, no 4, Part 2, Jul 1964.
H.S. Stone, "Parallel Processing with the Perfect Shuffle", IEEE transaction on
Computers, Feb 1971.
D.D. Gajski, D.H. Lawrie, D.J. Kuck, and A.H. Sameh, "CEDAR", IEEE
COMPCON'84 Proceedings, March 1, 1984.
E. Denning Dahl, "Mapping and Compilated communication on the Connection
Machine System", Proceedings of the fifth Distributed Memory Computing
Conference, Apr 1990.
David Elliot Shaw, "SIMD and MSIMD Variant of NON-VON Supercomputer",
IEEE COMPCON'84 Proceedings, March 1 1984.
D.A. Patterson, "Reduced Instruction Set Computers", Communication of the
ACM, Jan 1985.
Tse-Yun Feng, "A Survey of Interconnection Network", Computer, December 81.
C. Lawson, R. Hanson, D. Kincaid, F. Krogh, "Basic Linear Algebra
Subprograms for Fortran usage", ACM Transaction on Mathematic Software,
1979.
J.-L. B6chennec, F. Cappello, D. Etiemble, "A 3D Hardware Package for highly
Parallel Architectures", Euromicro 91,1991.

