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Abstract. This paper reports the preliminary work on extending the
concept of collection in the declarative language 81/2. We propose to con-
sider a collection as a function over a group (eventually tabulated in a
distributed fashion). The group is the group of motions of the underlying
space. This extension is called “group based fields”. This approach makes
the definition of point neighbourhood explicit and the various permuta-
tions on collections become now motions in a space. It also enables the
definition of much richer shapes than in previous data-parallel languages.
Examples are given to illustrate the involved concepts. The application
of the fundamental structure theorem of abelian groups shows that group
based fields naturally embed the multidimensional arrays. In addition,
group based fields offers the same unifying framework for interpreting and
handling others well-known structures like trees. We then sketch some
of the problems implied by the implementation of recursively-defined
group-based fields.

1 Introduction

This paper reports the preliminary work on extending the concept of collection
in 81/2. 81/2 is a declarative language that allows the functional definition of
streams and collections [2, 3]. In this paper, we focus our interest on a high-level
programming abstraction which extends the concept of collection in 81/2. The
new construct is based on an algebra of index set, called shape, and an extension
of the array type, the field type.

The rest of this paper has the following structure. Section 2 gives some back-
ground on collections and arrays. Some shortcomings of data-parallel arrays are
sketched. Section 3 describes the 81/2 answers to the previous problem and intro-
duces group-based shapes. Section 4 gives some examples of shapes. Section 5
is devoted to fields and section 6 to field expressions. Section 7 examines the
problem of boundary and introduces the lazy management of group-based fields.
Section 8 gives examples of field definitions and section 9 sketches the imple-
mentation. Related and future works are discussed in the last section.

2 Arrays and collections

This paper reports the preliminary work on extending the concept of collection
in 81/2. 81/2 is a declarative language that allows the functional definition of



webs [2, 3]. A web combines the concepts of stream and collection. A stream is
a temporal succession of values whereas a collection is a structured set of values
that can be handled as a whole by the programmer. A web can be viewed as
a stream of collections and is used for example to represent the trajectory of a
dynamical system (a state that changes in time through the application of an
evolution function).

For the sake of simplicity, we forget here the stream viewpoint of a web and
we concentrate on the collection aspects. A 81/2 collection is a recursively defined
nested vector. For example, the following equation

iota = 0#(1 + iota) : [9] (1)

defines a vector of 10 elements. The operator # stands for the concatenation, so
this definition is very similar to the recursive definition of the infinite lazy list

let rec l = cons(0, map(1+, l))

The differences are: 1) in the take operator : [9] which selects the first nine
elements of its argument; 2) in the implicit coercion of the scalar constant 1 into
a vector; and 3) in the implicit extension of the operation + over vectors (a type
system described in [4] makes things go right).

We argue that 81/2 vectors are collections because they are handled as a
whole: no index manipulation or iteration loop appear in equation (1). Collec-
tions have been advocated as a good support for data-parallelism [5] whilst the
declarative definition of webs supports implicit control-parallelism. Usual struc-
tures of collections are sets (SETL [6]), bags (Gamma [7]), relations (set of tuples,
e.g. in SQL), vectors (*LISP), nested vectors (NESL [8], 81/2), and multidimen-
sional arrays (HPF, MOA [9], new Lucid [10]). Typical operations on “collections
structured as arrays” are point-wise applied scalar functions, reductions, scans
and various permutations or rearranging operations that can be interpreted as
communication operations in a data-parallel implementation. Recursive defini-
tions of multidimensional arrays are mainly studied in systolic programming [11]
and in automatic parallelization of loops [12], using exclusively tools from linear
algebra. In the field of functional programming, recursive definitions of infinite
lazy list have mainly been studied [13].

Arrays are a basic and versatile data-structure in computer science. It can be
used for example to implement queues, graphs and so on. Nowadays, simulation
of large dynamical systems (resolution of PDE, discrete events simulations, etc.)
represents the majority of supercomputer applications. Collections are often used
in these algorithms to represent the variation of some quantity over a bounded
spatial or temporal domain: for example a vector can be used to record the
temperature at the discretisation points of a uniform rod in the simulation of
heat diffusion. Indeed, collection managed as a whole are very well fitted to such
computation because the same physical laws apply homogeneously to each point
in space or in time. In the previous example, the array structure is most effective
than other collection structures because it matches naturally the grid structure
of the rod×time discretisation. However, it presents several shortcomings:



- Natural operations upon spaces, like taking the value of the neighbour ele-
ments, must be implemented in term of index manipulations.

- Arrays have static bounds: traditional arrays are shaped like n-dimensional
box, defined by a lower and an upper bound in each dimension, but grids
may have more complex shapes. And simulation of growing processes (like
plant growing) requires dynamically bounded arrays.

- Arrays provide a natural representation in the simple case of multidimen-
sional grids. For example, to implement a circular buffer, or to discretise a
circle, additional management must be included in the index manipulation
(e.g. increasing or decreasing the index modulo the length of the buffer or
the size of the discretisation).

- The topology of the space implemented as an array is implicit. The ability
to support several space topologies using the same array structure relies
mainly on the uniform access to an array element and in the “encoding” of
the topology in terms of index manipulations.

- Space formalisms (e.g. geometry, linear algebra, tensor calculus, differential
algebra) do not match array formalisations (e.g. product domain in denota-
tional semantics).

- Arrays have a simple and fast implementation on homogeneous random-
access memory architectures. However, high-performance architectures do
not have a homogeneous memory model. On vector architectures, access to
sequential elements is faster than to random elements. The optimal storage
layout for an array depends on its access pattern, and a poor layout can
have a dramatic impact on execution speed. Extracting access patterns from
index operation nested in iteration loops requires difficult and not always
successful analysis.

This motivates the development of a new collection structure.
81/2 abandons the concept of a general-purpose array type, and specializes it

towards two directions. The first one is a specialization towards finite difference
algorithms and space discretisations by considering more general grid topology
and grid shape. The second specialization we consider is towards the simulation
of growing processes by considering partial data-structure.

The goal of theses extensions is to relieve the programmer from making
many low-level implementation decisions and to concentrate in a sophisticated
data-structure the complexity of the algorithms. Certainly this implies some
loss of run-time performance but in return for programming convenience. Future
work must establish how much loss we can tolerate and and what we do get in
exchange.

3 Extending the concept of collection

81/2 introduces two new primitive types: shapes and fields. A shape represents a
set of coordinates. An example of coordinates is integer tuples, but more gener-
ally, 81/2 uses a group element to index a point. A field is an array whose index
set is an arbitrary set in a shape. Operations on fields are data-parallel ones. A



field is virtually defined over its entire shape, even if the shape has an infinite
number of elements, but the values of the field are computed only if needed : that
is, a field is a lazy data-structure.

In this section, we examine the concept of shape. A shape must specify both
the elements of an index set and the neighbourhood of an element. The motiva-
tions of considering a group to specify the index set are introduced through an
example.

3.1 Explicit definition of the neighbourhood of a point

Consider the recursive equation (1) for the definition of iota. This definition is
valid for every element in iota. So,we can state that

iota.i = (0#(1 + iota) : [9]).i 0 ≤ i < 10

The bounds for index i come from the operator take and from the properties
of the concatenation. The vector elements, numbered from 0, are accessed using
the operator dot. Thus, by virtue of concatenation, we have:

iota.0 = 0

iota.i = 1 + iota.(i− 1) 1 ≤ i < 10

That is, to compute the value of iota.i we need to know the value of iota.(i− 1).
We will say that the elements i−1 and i are neighbours1. From this point of view,
the neighbours of an element P are the elements accessed to compute the value
of P . In (1), the neighbours are implicitly defined by the action of catenating
0 to the left, which shifts the collection to the right and creates a linear order
between elements.

We will make neighbourhood definition explicit in the type of a collection by
specifying several spatial shifts to define the neighbourhood for each point. Such
a structure will be called a space or a shape. A shape is part of the type of a
collection, like [100] is part of the C vector type int [100].

3.2 Displacement and displacement composition

In the following, we restrict ourselves to regular space, that is, to spaces where
two points have the same configuration of neighbours (e.g. “one to the left”
and “one to the right”). Let give a name “a”, “b”, “c”, . . . to each neighbouring
direction and let P<a> be the “a” neighbour of a point P . We can consider
a as the displacement from a point towards one of its neighbours (see figure

1 This terminology is motivated by the fundamental postulate in physical science that
actions are local in space (no instantaneous distant action) and in time (causality).
That is, the state of a point depends only on the states of its neighbours. Therefore,
if a point value is required to compute another point value, these two points have to
be neighbours in some space, the (perhaps abstract) space where the phenomenon
takes place.
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1). Displacement operation can be composed: using a multiplicative notation,
we write P<a.b> for (P<a>)<b>. Displacement composition is associative. We
note e the null displacement, i.e. P<e> = P . Furthermore we will an inverse
displacement a−1 for each displacement a such that P<a.a−1>= P<a−1.a>= P .
In other words, the displacements form a group for the composition, and the
application of the displacements to points is the action of the group over the
point space.

3.3 Spaces as groups

Regarding the previous section, regular spaces have to do with groups. Indeed,
we make no distinction between points and displacements using the following
scheme. Let G be a group and S a subset of G. Space(G, S ) denotes the directed
graph having G as its set of vertices and G×S as its set of edges. For each edge
(g, s) ∈ G×S, the starting vertex is g and the target vertex is g.s. The direction
or the label of edge (g, s) is s. Each element of the subgroup generated by S
corresponds either to a path (a succession of elementary displacements) and a
point (the point reached starting from the identity point e of G and following
this path). Then we use P.s instead of P<s> for the s neighbour of P . In other
words, Space(G, S ) is a graph where: 1) each vertex represents a group element,
2) an edge labeled s is between the nodes P and Q if P.s = Q, and 3) the labels
of the edges are in S.

The following dictionary gives the translation between graph theory and
group related concepts:

Cayley graph Group
vertex ↔ group element

labeled edge ↔ generator
path composition ↔ word multiplication

closed path (cycle) ↔ word equating to e
connexity ↔ solvability of P.x = Q

(there is a path from any P to any Q)

We propose to consider a collection as a function over a group G (eventu-
ally tabulated in a distributed fashion) which complies with a space structure
Space(G, S ). This extension is called a group based field (field is an alternative
name for collection in the functional language community [14]). This approach
makes the definition of point neighbourhood explicit, the various permutations
on collections becoming motions in the underlying space.

Before going into group based fields, we will investigate further the concept
of shape and shape specifications. Let us say that S is a basis of G if an element
of G is a product of elements of S and that S generates G if S ∪ S−1 is a basis
of G. The following propositions make a link between the global structure of
Space(G, S ) and the relations between G and S:



- For Space(G, S ) to be connected, it is necessary and sufficient that S gener-
ates G. The connected components of Space(G, S ) are the cosets g.H where
H is the subgroup generated by S (a coset g.H is the set {g.h : h ∈ H}).

- For Space(G, S ) to contain a loop, it is necessary and sufficient that e belongs
to S.

- Space(G, S ) has a circuit of length ≥ 2, if and only if S ∩ S−1 = ∅.

In the following, we implicitly restrict to the case where the subset S gener-
ates G. If S is a basis of G, Space(G, S ) is called the Cayley graph of the group
G. If S is not a basis of G, Space(G, S ) is a subgraph of the Cayley graph of G.
Nota Bene: there exist regular connected graphs which are not the Cayley graph
of a group [15].

We use a finite presentation to specify a group. A finite presentation gives
a finite list of group generators and a finite list of equations constraining the
equality of two words. An equation takes the following form: v = w where v
and w are products of generators and their inverses. The presentation of a group
is not unique: different presentations may define the same group. However, a
presentation uniquely defines Space(G, S ): we use the generator list in the pre-
sentation to specify S. So the generators in the presentation are the distinguished
group elements representing the elementary displacements from a point towards
its neighbours.

We give two simple examples. Let C a cyclic group of order n generated by
S = {a}. D1 = Space(G , S ) represents the discretisation of a circle where n
is the number of points of the discretisation. To specify D1 , we give between
brackets the list of the generators followed by the equation list:

D1 = ⟨a ; an = e⟩

In the following, a presentation denotes the corresponding space or the underly-
ing group following the context. In the circle D1 , we can move always in the same
direction a. If we want to move in the reverse direction too, a−1 has to be added
to the list of generators. A two-dimensional “bidirectional” grid is specified by:

G2 = ⟨ North,East, South,West ;

North.East = East.North, South = North−1, West = East−1⟩

There are four generators but, because the last two equations, South and West
are just renamings for convenience of the inverses of North and East. The first
equation specifies that North and East commute, that is, the specified group is
abelian. Abelian groups are of special interest and we specifically use the enclos-
ing brackets for the presentation of abelian groups, skipping the commutation
equations in bracket as they are implicitly declared. The figure 2 gives several
other examples of abelian shapes.

Observe that D1has a finite number of elements and that this is not true
for G2 . If we use G2 as the underlying domain of some fields, we must add the
specification of a finite subset of the group elements. For the sake of simplicity,
we forget for the moment this problem.
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4 Abelian and non abelian shapes

This section reviews some interesting families of shapes.

4.1 Abelian shapes

A fundamental theorem of abelian groups says that each abelian group G is
isomorphic to

G ≃ ZZn × ZZ/n1ZZ × ZZ/n2ZZ × . . . × ZZ/nqZZ

where ni divides ni+1 (see any standard text on groups; for a computer oriented
handling Cf. [16]). This theorem shows that the study of abelian shapes splits
naturally into, on the one hand the study of free ZZ-modules of finite rank (i.e.
ZZn), and on the other hand the study of finite ZZ-modules. In other words,
abelian shapes correspond to a mix of n-dimensional grids and n-dimensional
torus.

Since arrays (like PASCAL arrays) are essentially finite grids, our definition
of group based fields naturally embeds the usual concept of array as the special
case of (bounded region over a free) abelian shape. For example, multidimen-
sional LUCID fields, systolic arrays, Lisper’s data-fields [17] and even lazy lists,
fit into this framework. Furthermore, this allows to reuse most of the achieve-
ments in the (parallel) implementation of arrays (e.g. [12], [18]) to implement
(bounded regions over) infinite abelian fields, and with some additional work, to
adapt them to the handling of finite abelian fields. The basic tool to explicit the
isomorphism between the finite presentation of an abelian group and ZZ-modules
is the computation of the Smith Normal Form (Cf. [19]).

Here is an example. H2 = ⟨a, b, c ; b = a.c⟩ corresponds to an hexagonal grid.
Figure 3 presents H2 and G2 in a different mode: a vertex is figured by a cell
instead of a point and neighbour vertices are adjacent cells (such hexagonal
partitions of the plane have interesting applications in digital topology). H2 is
isomorphic to G2 by the following injections:

i : H2 −→ G2 , ap.bq.cr → Northp+q.Eastq+r

j : G2 −→ H2 , Norths.Eastt → as.ct

Note that if H2 and G2 are group isomorphic, H2 and G2 have not the same
shape2 in the sense that the image of H2 -neighbours of a point P in H2 are not
the G2 -neighbours of the image of P in shape G2 . Other examples are given by
the first example of figure 2:

⟨a, b ; a2 = b2⟩ ≃ ⟨a, c ; c2 = e⟩ = ZZ× ZZ/2ZZ

2 From the implementation point of view, it does not matter because G2 corresponds
to an array and we can access uniformly to any array element in a shared-memory
implementation (in a distributed memory implementation, we can use a Valiant
routing strategy to achieve statistically the uniformity of accesses).



(just take c = a.b−1) and for the second example

⟨a, b ; a4 = e, a3 = b2⟩ ≃ ⟨d ; d8 = e⟩ = ZZ/8ZZ

(take d = a−2.b).

East ≅  c

North ≅  a

b
i

b

a

c
e

a.c=b

e

j

a3.b

≅
North4.East

Fig. 3. Representation of H2 and G2 and the isomorphism between them.

4.2 Non abelian shapes

Abelian groups are an important but special case of groups. We give here two
significant examples of a non abelian shape. Presentations of a non abelian shape
are given between ⟨| and |⟩. The first example is a triangular neighbourhood : the
vertices of T are at the centre of equilateral triangles, and the neighbours of a
vertex are the nodes located at the centre of the triangles which are adjacent
side by side:

T = ⟨|a, b, c ; a2 = b2 = c2 = e, (a.b.c)2 = e|⟩

Such a lattice occurs for example in flow dynamics because its symmetry matches
well the symmetry of fluid laws. Figure 4 gives a picture of T and shows two
other possible presentations for a triangular partition of the plane. It is easy to
see that, for instance, a.b ̸= b.a so this group is not abelian.

Our second example is simply a free group. A free group is a group with-
out constraint between generators. Note that free abelian groups add just the
commutation equations between generators and that they correspond to grids.
The free non abelian shape

F2 = ⟨|x, y|⟩



〈| a, b, c;
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Fig. 4. Three examples of a 3-neighbourhood shape. These shapes are non abelian.



F2 = 〈|x, y|〉
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w.x

w.x.y
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w.y.x
w.y2

Fig. 5. A free non abelian group with two generators. Bold lines correspond to the
points that can be reached starting from a point w and following the elementary dis-
placements x and y.



is pictured in figure 5. We see that the corresponding space can be pictured as
a tree (i.e. a connected non-empty graph without circuit). Actually, there is a
more general result stating that if Space(G, S ) is a tree, then G is a free group
generated by S.

This enables the embedding of some class trees in our framework. Let Space(G,
S ) where G is a free group and S is a minimal set of generators, i.e. no proper
subset of S generates G. Then Space(G, S ) is a tree. Observe that this tree has no
node without predecessor. This situation is unusual in computer science where
(infinite) trees have a root and “grow” by the leaves. Figure 5.b gives an illus-
tration of the points accessed starting from a point w in F2 : it is a binary tree
with root w. We cannot link to a generator the meaning of the father accessor
(for node w.x, the father accessor is x−1, whilst it is y−1 for the node w.y; in
addition they are not in S).

5 Defining group based fields

5.1 Neighbourhood compliant definitions

A field F can be thought as a function over a space that complies with the space
structure. That is, for each point P of Space(G, S ) we have

F (P ) = f(F (P.a), F (P.b), . . .)

with a, b, . . . , in S and f the functional dependency between a point value and
the values of its neighbours. Because such a relationship must hold for every
point P , we make it implicit and write:

F = f(F.a, F.b, . . .)

making this equation an equation about fields and not about field values. Ope-
rations on fields are reviewed below. The generators a, b, . . . are not always
sufficient to infer the domain of F (for instance, if the generator names are
shared by several groups or if they do not appear at all, like in the equation
“F = 0”). So we write:

F [E] = f(F.a, F.b, . . .)

for a field F over a space E. The syntax . . . [E]is borrowed from the usual
notation for specifying the shape of an array.

With these conventions, a possible program for a field on a one-dimensional
line, where the value of a point increases by one between two neighbours, is:

G1 = ⟨left⟩
iota[G1 ] = 1 + iota.left

We obviously need to set the value of iota at some point. More generally, we will
make a partition of the shape and define the field giving an equation for each
element of the partition.



5.2 Coset quantified definitions

It implies that each element of the partition can be viewed as a shape in itself.
We may use subgroups of the initial group to split the initial domain, but this is
somewhat too restrictive, thus we will use cosets. A coset g.H = {g.h, h ∈ H} is
the “translation” by g of the subgroup H. In a non-abelian group, we distinguish
the right coset g.H and the left coset H.g. To specify a coset we give the word g
and the subgroup H. The notation {g1, g2, . . . , gp} : G defines a subgroup of G
generated by {g1, g2, . . . , gp} (the gi are words of G). There is no specific equation
linking the generators of the subgroup but they are subject to the equations of
the enclosing group, if applicable. Going back to the iota example, we write:

G1 = ⟨left⟩
A = left2.(⟨⟩ : G1 ) (2)

iota@A = 0 (3)

iota[G1 ] = 1 + iota.left (4)

Equation (2) defines the coset A = {left2} because the subgroup ⟨⟩ : G1 is
reduced to {e} by convention. Equation (3) specifies that the field iota has the
value 0 for each point of coset A and equation (4) is valid for the remaining
points. We say that equation (3) is quantified over A and that (4) is the general
definition of iota. To define a field iota with the value 0 fixed at point e, we set
“iota@⟨⟩ = 0” instead of (3). We write ⟨⟩ for e.(⟨⟩ : G1 ) because a subgroup
H is also the coset e.H and because here, after iota@, ⟨⟩ denotes necessarily a
subgroup of G1 .

5.3 Well formed shape partitions

In the iota example, A is included in G1 hence equations (3) and (4) both apply
to define the values for the A points. To leave the ambiguity, it is assumed that
the equation over the smaller domain is the valid one. The domains are ordered
by inclusion, which is a partial order. So, if A∩B ̸= ∅ it is assumed that a domain
C = A ∩B has been defined (the intersection of two cosets is either empty or a
coset). Note that the set of points where the general definition applies is not a
coset but the complement of a union of cosets.

6 Operations on field

Operations on fields are of three kinds: extension of scalar functions, geometric
operations and reductions.

6.1 Extension

Extension of a scalar function is just the point-wise application of the function to
the value of a field in each point. We do not consider here nested fields, therefore



the extension of a function can be implicit without ambiguity (for an example
of possible ambiguity in the case of nested fields, consider the application of the
function reverse over a nested list and its implicit extension [5]). So, if F has
shape G, f(F ) denotes the field of shape G which has value f(F (w)) for each
point w ∈ G. Similarly, n-ary scalar functions are extended over fields with the
same shape.

6.2 Geometric operations

A geometric operation on a collection consists in rearranging the collection values
or in selecting some part of the collection to build a new one. The first geometric
operation is the translation of the field values along the displacement specified
by a generator: F.a where a ∈ S. The shape of F.a is the shape of F . The value
of F.a at point w is (F.a)(w) = F (w.a). When the field F is non-abelian, it is
necessary to define another operation a.F specified as: (a.F )(w) = F (a.w).

Another geometric operation is the restriction F |C of the field F to a coset
C. If C = x.H, the shape of F |C is H. This operation enables the access to the
value(s) of a (coset of) element(s): for example, F |(w.⟨⟩) is a field over the single
point domain {e} and valued by F (w).

Other useful geometric operations can be defined. We just mention the direct
product of two fields F1[G1]×hF2[G2]. Its shape is the direct product G1×G2 =
{(u1, u2) : u1 ∈ G1, u2 ∈ G2} equipped with multiplication (u1, u2).(v1, v2) =
(u1.v1, u2.v2). The value of the direct product F1×hF2 at point (u, v) is h(F1(u),
F2(v)).

6.3 Reductions

Reduction of an n-dimensional array in APL is parameterised by the axis of
the operation [20] (e.g. a matrix can be reduced by row or by column). The
projection of the array shape along the axis is another shape, of dimension n-1,
and this shape is the shape of the reduction. We generalize this situation in the
following way. Let H be a subgroup of G (H will be the axis of the reduction).
For u, v ∈ G, we define the relation u ≡ v if it exists x ∈ H such that u.x = v.
Let the quotient of G by H, denoted by G/H, be the equivalence classes of ≡. An
element w of G/H is the set u.H where u is any element in w. We need to ensure
that G/H is a group. This is always possible, through a standard construction, if
we assume that H is a normal subgroup of G, that is, for each x ∈ G, x.H = H.x
(for an abelian group, each subgroup is normal).

The expression h\H F denotes the reduction of a field F [G] following the
axis H and using a combining function h. It is assumed that H is a normal
subgroup of G and that h is commutative and associative. The shape of h\H F
is G/H. The value of h\H F on a point w is the reduction of {F (v) : v ∈ w}
by h (this set has no canonical order, this is why we impose the commutativity
of h). See figure 6 for some examples of reductions over the G2 shape (only the
first example can be expressed in APL). An interesting point is that H is not
restricted to be generated by only one generator; as an example, +\G F where



G is the shape of F computes the global sum of all elements in G. The problem
of handling reductions over an infinite domain are reviewed below.

Scan operations [21] seems more problematic to define. For instance, what
would be a scan with an axis H with more than one generator?

H = 〈 East 〉:G2

G2/H

h East

North

H = 〈 North.East 〉:G2

East

North

G2/H

h

East

North

H = 〈 East.East 〉:G2G2/H

h

Ea
st

North

h

Fig. 6. Three examples of reduction over the G2 shape.

7 Bounded versus lazy fields

We consider now the problem of handling infinite shapes. As a matter of fact,
only the values of a field over a finite domain are of practical interest. One
approach to tackle the problem is to specify explicitly this finite domain. However
this approach is unsatisfactory.



First, the answer to: “what is a suitable language for specifying finite subsets
in a group?” seems far from obvious.

Secondly, what does it mean to specify a finite domain over a finite group?
To fix the idea, suppose we define a field over D1 (4) the discretised circle with 4
elements. We will restrict it to the interval {aα : 0 ≤ α < 3}. The cyclic structure
of D1 (4) is lost and the programmer may use indifferently G1 as the underlying
domain for this field. On the contrary, if we restrict to {aα : 0 ≤ α < 8} we “wrap
around” two times (see figure 7). This is certainly not a desirable behaviour
because the choice of the subset contradicts the structure of the shape.

D1(4)

e

D1(4)

e

Fig. 7. Selecting a sub-domain in a shape.

Third, if we know for certain where we want a result (in heat diffusion ex-
ample Cf. section 8.3, it could be the temperature at the middle point of the
rod at time 100) we do not know the figure of the points that must be evalu-
ated to compute the required results. In such a context, specifying explicitly a
sub-domain of the field leads either to “access out of bounds” errors during the
computation or to somewhat useless computations.

So we advocate a lazy approach to compute a field: a field is virtually defined
over its entire shape, even if the shape has an infinite number of element, but
the values of the field are computed only if needed .

If the use of a lazy data structure and of a lazy evaluation strategy relieve
the burden of specifying a working subdomain, it does not solve the problem of
specifying the requested results because we certainly need the value of a field
in more than one point. However, the problem is much less compelling because
we now deal with a clean and straightforward mathematical object; the speci-
fication of the required subset of values is just like the problem of specifying a
good format for the “print” function (just like "%.8f" in the C language allows
to print the first 8 decimal places of a float).

For a first “formatting language”, we propose the following. The elements of
an abelian group are all enumerated by varying gn1

1 .gn2
2 . . . . .g

np
p where the gi

are the generators of the shape. So a subset is specified by setting an interval
for each ni. For non abelian fields, all the group element are enumerated by
gn1
i1
.gn2

i2
. . . . .g

np

ip
. . . . where gij is some generator and gij ̸= gij+1 . So we specify a

maximal number p of generators and an interval for the power of each generator.



Figure 8.a shows a bounded domain inH2 where each point has form aα.bβ .cγ

with 0 ≤ α < 4, −1 ≤ β < 2, 0 ≤ γ < 2. Figure 8.b shows such a domain in T,
the maximal number of generators being 2 and with 0 ≤ nj < 2 (anyway in T ,
g2i = e).

b

ac

c b

a

a

c b

c b

a

e

a

a

c

a

Fig. 8. Two domains described by the format of a “print” function dedicated to lazy
fields.

Using (lazy) infinite shapes, may result in the combination of an infinite
amount of values in a reduction computation. Such an operation may have sense,
for example, when there is only a finite number of defined values in the field. In
this case, making a global sum really means: “make the sum of all defined values
and ignore the undefined ones”. The situation is the same for a dynamically
bounded array: it is potentially infinite but the sum of all elements means the
sum of the current elements. With this approach, the programmer implicitly
works on a finite portion of the infinite field in order not to be burdened with
the handling of the bounds and because the required topology matches better the
topology of this infinite field. The problem is then to explicitly define, or to infer
at compile-time, or to maintain at run-time, a bounding region outside which
all values are necessarily undefined. Another possible meaning of an infinite
reduction is the existence of the result from a mathematical point of view (e.g.
when computing a convergent series). So we can compute an approximation of
the result if we know that, outside some bounded region, the values to be reduced
are vanishing.



8 Examples of group based fields

8.1 The iota example continued

Going back to the iota example, we can now say that equations (3)+(4) define
the function:

let rec iota(leftn) = if n == 2 then 0 else 1 + iota(leftn+1) fi

over G1 . This function has a defined value for the points {leftn, n ≤ 2} and the
value ⊥ for the other points, see figure 9. Note that the use of a displacement
a instead of a−1 is mainly a convention but it does matter when specifying the
domain of required values.

e
left

⊥ 0 1 2 3 4 5⊥

left n²2
left2

Fig. 9. The field iota.

8.2 Combining subfield definitions

Here, we give a more sophisticated example corresponding to a field F over a
cylinder. We use the free product ∗ of two groups which is simply defined by
joining their respective presentations and identifying the identity elements: the
free product coincides with the direct product for abelian groups.

D1 (n) = ⟨a ; an = e⟩
G1 = ⟨left , right ; left = right−1⟩

Cyl(n) = D1 (n) ∗G1

F@⟨⟩ = 0 (5)

F@D1 (4) = 1 (6)

(F@G1 ) as L = L.left + 1 (7)

f [Cyl(4)] = F.left + F.a (8)

This example introduces parameterised shapes (e.g. D1 (n)) and uses a local
name (the construction “. . . as L” to denote a subfield. A group H denotes
implicitly the coset e.H if needed and the elements of a product are implicitly
subgroups of the product. So D1 (4) in equation (6) really means e.(D1 (4) :
Cyl(4)). In the definition of F , we have e.G1 ∩ e.D1 (4) = e.(⟨⟩ : Cyl(4)) = {e},
thus the shapes are well defined (and in equation (5), ⟨⟩ really means e.(⟨⟩ :
Cyl(4))). See figure 10 to visualise the corresponding partition.
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Fig. 10. Definition of a field over a more complex partition of the shape.

8.3 A more concrete example

The problem consists in the simulation of the diffusion of heat in a thin uniform
rod. Both extremities of the rod are held to 0◦C. The equation of the diffusion
takes the following form: ∂heat/∂t = k ∂2heat/∂x2 where x is the coordinate of
a point on the rod. For its numerical resolution, this partial differential equation
is discretised as

heati,t+1 − heati,t
k

=
heati+1,t − 2heati,t + heati−1,t

h2

where i represents the coordinate of the point on the discretised rod and t the
discrete time coordinate (the constant h depends on the discretisation). In fact,
t + 1 is a trick to address the instant following t (which is the meaning of ∂t)
and i + 1 and i − 1 are the encoding of the left and right neighbours of point i
on the rod (in other words, the additive group on integers is used to code the
group of translations on a one dimensional line).

This example can be easily turned into the formalism of group based field.
To define the space-time domains we use the free product of simpler domains.

Time = ⟨past⟩ in time we can only progress, so
no inverse of generators appears

Rod = ⟨left , right ; left = right−1⟩ an infinite rod

SpaceT ime = Time ∗Rod

We define the cosets corresponding to the initial and boundary conditions (Cf.
figure 11).

InitialLeftBorder = e.(⟨⟩ : SpaceT ime)

InitialRightBorder = rightn.(⟨⟩ : SpaceT ime)

Initial = e.(Rod : SpaceT ime) the rod at time 0



LeftBorder = e.(Time : SpaceT ime) left border along the time

RightBorder = rightn.(Time : SpaceT ime) right border along the time

Now we are able to define the field heat:

heat@InitialLeftBorder = 0

heat@InitialRightBorder = 0

heat@Initial = start some initial heat distribution

heat@LeftBorder = 0

heat@RightBorder = 0

heat[SpaceT ime] = 0.4 ∗ heat.past+
0.3 ∗ (heat.past.left + heat.past.right)

The general equation of heat states simply that the current value of heat in
some point is a linear combination of the heat of the neighbourhood at the
previous instant. The field start is a parameter of the program and corresponds
to some initial heat distribution. The following definition can be used to specify
a symmetrical distribution:

ramp@⟨⟩ = 0

ramp[Rod] = 1 + ramp.left

r = ramp/n

start[Rod] = r ∗ (1− r)

Note that an infinite shape is used for the modelisation of the finite rod discre-
tisation. Following the remarks at the end of the previous section, we ideally
would have undefined values outside the domain implementing the rod. This can
be achieved using an explicit restriction operator, like:

start[Rod] = r ∗ (1− r) in {rightp : 0 ≤ p < n} otherwise ⊥

9 Implementing fields

9.1 Solving field equations

Because a field can be viewed as a function over a shape, the semantic of a
system of field equations is the same as the recursive definition of functions in
denotational semantics [22]. Solving field definitions over the Scott domain on
flat values, ensures the existence of a solution and the computation of the least
solution by means of a fixpoint iteration.

An immediate question is to know if the fixpoint iteration converges on a
point in a finite number of steps. For general functions this amount to solve
the halting problem but here we are restricted to group based fields. However,
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Fig. 11. Field encoding of the explicit numerical resolution of the parabolic partial
differential equation governing the heat diffusion in a thin uniform rod.



the expressive power of group based fields is enough to confront to the same
problem: suppose a field defined by

F [E] = f(F.a, F.b, . . .)

the points accessed for the computation of the value of w are: w.a, w.b, . . .. As a
matter of fact, if the computation of a field value on a point w depends on itself,
the fixpoint iteration cannot converge; so we face to the problem of deciding if
w.a = w, w.b = w, etc. In other words, we have to decide if two words in a
finite presentation represent the same group element. This problem is known as
the word problem for groups and is not decidable (but it is decidable for finitely
presented abelian groups).

9.2 Implementation

For the sake of simplicity, we suppose that field definitions take the following
form:

F@C1 = c1

. . .

F@Cn = cn

F [G] = h(F.g1, F.g2, . . . , F.gp)

where Ci are cosets, ci are constants and h is some extension of a scalar function.
The set dF = {g1, . . . , gp} is called the dependency set of F .

We assume the existence of a mechanism for ordering the cosets and to
establish if a given word w ∈ G belongs to some coset. We suppose further
that we have a mechanism to decide if two words are equal. For example, these
mechanisms exist for free groups and for abelian groups. There is no general
algorithm to decide word equality in general non-abelian groups. So our proposal
is that non abelian shapes are part of a library and come equipped with the
requested mechanisms. A future work is then to develop useful families of (non
abelian) shapes.

With these restrictions, a first strategy to implement fields is the use of
memoised functions. A field F [G] is stored as a dictionary with entry w ∈ G
and value F (w). If the value F (w) of w is required, we check first if w is in
the dictionary (this is possible because we have a mechanism to check word
equality). If not, we have to decide which definition applies, that is, if w belongs
to some Ci or not. In the first case, we finish returning ci and storing (w, ci) in
the dictionary. In the second case, we have to compute the value of F at points
w.g1, . . . , w.gp, recurring the process, and then the results are combined by h.

We can do better if each word w can be reduced to a normal form w̄. A
normal form can be computed for abelian groups (the Smith Normal Form) or
for free groups. In this case, the dictionary can be optimised to an hash-table
with key w̄ for w.



In case of an abelian group G, we can further improve the implementation
using the fundamental isomorphism between G and a product of ZZ-modules.
Confer [16, 23]. As a matter of fact, a function over a ZZ-module is simply im-
plemented as a vector. The difficulty here is to handle the case of ZZn which
corresponds to an unbounded array.

The previous evaluation scheme corresponds to a demand-driven evaluation
strategy: e.g. to evaluate iota(e), we have to compute iota(left) which triggers
the computation of iota(left2) which returns 0. So, we can associate to each
point w ∈ G a set p(w) of directed paths corresponding to the points visited to
compute F (w). An element p of p(w) is a word of the subgroup generated by dF .
The evaluation of F (w) fails if some p ∈ p(w) has an infinite length. Two cases
can arise: p is cyclic or p has infinitely many vertices. Bounding the number of
vertices in a computation path is similar to the “stack overflow” limit. Static
analysis can be used to characterize the domains of G with finite paths (Cf.
[17]). Sufficient condition can also be checked at compile-time to detect cyclic
paths (e.g. a raw criterion can be dF ∩ dF−1 = ∅ and/or it can be detected at
run-time using an occur-check mechanism.

Tools developed for the scheduling of uniform recurrence equations can also
be used to implement a data-driven evaluation strategy (but a data-driven strat-
egy is not well fitted to a lazy evaluation strategy). The idea is to propagate the
values from defined points to undefined ones, like a wavefront. At time 0, the
value of F is known for the points in domain

Def0 = C1 ∪ C2 ∪ . . . ∪ Cn

Thus, at time 1, it is possible to compute in parallel the values for points in
domain

L0 = Def0.g1 ∩ . . . ∩Def0.gp

So, at time 1, the values for F are known for

Def1 = Def0 ∪ L0

More generally, it is possible at time t to know the values for Deft and to compute
the values of Lt)

Deft = Deft−1 ∪ Lt−1

Lt = Deft.g1 ∩ . . . ∩Deft.gp

The computations of the values of Lt are independent and can be carried in
parallel.

A compiled approach of a data-driven evaluation strategy would try to infer
at compile-time the frame of Lt but in general this is difficult: for example,
Lt is not necessarily a coset. A possible approach would be to find a tractable
approximation of Lt. In the case of recursively defined arrays (which corresponds



to free abelian fields), the hyperplane scheduling method makes the assumption
that the time at which an array element will be computed is given by a linear
combination of the array subscripts [18] (that is, the approximation of Lt is an
hyperplane, or in our context, a coset).

10 Conclusions and future work

This paper reports the very preliminary work on extending the concept of collec-
tion in the 81/2 language. We propose to consider a collection as a partial function
over a group compliant with a shape. A shape is a directed graph defining the
possible dependencies in the computation of a point value. This approach makes
the definition of point neighbourhood explicit. It also enables the definition of
much richer shapes than in previous data-parallel languages.

The specification of a shape is directly done using a finite presentation or
build through a group theoretic construction: examples of direct product, free
product and quotient have been given. It remains to extend these constructions
(e.g. defining an amalgamated product) and to check if, starting from groups
owning the required properties (e.g. existence of a mechanism to test coset
membership), these properties can be constructively lifted through the group
constructions. Computational group theory is an extensively studied area, see
for example [24] and a large corpus of results is available.

We currently implement a C++ library for the management of sets of bounded
rectangular regions in ZZn. This library will be used for the implementation of
abelian fields. It is itself based on AVTL [25], a portable MPI [26] based parallel
vector template library.

There is a small number of research efforts to extend the concept of array:
Lucid [10], LPARKX [27], Infidel [28], AMR++ [29]. They all consider more
general shapes for arrays than n-dimensional bounding box, but always rely on
grids (that is, a point is indexed by a tuple of integer). This forbids for example
the natural representation of a tree or a triangular lattice.

In field definitions, the decomposition of a field into subfields is a funda-
mental mechanism. The need of powerful decomposition mechanisms appears in
quantification of definitions and in reduction expressions. We use respectively
cosets and normal subgroups. It is interesting to compare this situation with
the approach of Bird-Meertens algebra [30] or with the power-list algebra [31].
These theories develop a basis for the (recursive) definition of lists or arrays. The
decomposition relies on the concatenation: appending two lists gives another list
and catenating two homogeneous arrays gives another array, leading to a divide-
and-conquer computation strategy. In group based fields, the decomposition re-
lies on cosets (the sets Lt giving the decomposition of the computations) or on
a normal subgroup (which decomposes naturally the group into a product). A
direction for future work is to investigate other possible and useful decomposi-
tions of shapes. An equivalence for the concept of list-homomorphism must also
be worked out for group based fields.



The use of a group as the underlying domain of a field gives a rich structure to
the computation dependencies: they can be interpreted as paths in well-handled
spaces. Another direction of work is then the use of tools from algebraic topol-
ogy to characterise the domain of computation (homotopy theory, etc.). Such
mathematical tools have already be proved useful [32–34].

Acknowledgements. We are grateful to the members of the Parallel Architectures
team in LRI for many fruitful discussions, and we thank especially Dominique
De Vito and Abderrahmane Mahiout.

References

1. J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In R. H. Hal-
stead, I. Takayasu, and C. Queinnec, editors, Proceedings of the Parallel Symbolic
Languages and Systems (PSLS’95), volume ? of LNCS, page ?, Beaune (France),
2-4 October 1995. Springer-Verlag. to be published.

2. J.-L. Giavitto. A synchronous data-flow language for massively parallel computer.
In D. J. Evans, G. R. Joubert, and H. Liddell, editors, Proc. of Int. Conf. on Par-
allel Computing (ParCo’91), pages 391–397, London, 3-6 September 1991. North-
Holland.

3. O. Michel and J.-L. Giavitto. Design and implementation of a declarative data-
parallel language. In post-ICLP’94 workshop W6 on Parallel and Data Parallel
Execution of Logic Programs, S. Margherita Liguria, Italy, 17 June 1994. Uppsala
University, Computing Science Department.

4. J.-L. Giavitto. Typing geometries of homogeneous collection. In 2nd Int. workshop
on array manipulation, (ATABLE), Montréal, 1992.
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