
G r o u p - b a s e d f ie lds

Jean-Louis Giavitto, Olivier Michel, Jean-Paul Sansonnet

LRI u.r.a. 410 du CNRS, Bs 490, Universit$ de Paris-Sud,
F-91405 Orsay Cedex, France.

email: {michel [giavitto J j ps}Qlri, fr

1 Introduction

This paper reports the preliminary work on extending the concept of collection
in 81/2. 81/2 is a declarative language that allows the functional definition of
streams and collections [1, 2]. In this paper, we focus our interest on a high-level
programming abstraction which extends the concept of collection in 81/2. The
new construct is based on an algebra of index set, called shape, and an extension
of the array type, the field type.

The rest of this paper has the following structure. Section 2 gives some back-
ground on collections and arrays. Some shortcomings of data-parallel arrays are
sketched. Section 3 describes the 81/2 answers to the previous problem and intro-
duces group-based shapes and fields. Section 4 is devoted to the shape algebra.
Section 5 introduces the main field operations and field definitions. Section 6
sketches the implementation. Related and future works are discussed in the last
section.

2 Arrays and collections

A collection is an aggregate of elements handled as a whole: no index manipu-
lation or iteration loop appear in expressions over collections. Collections have
been advocated as a good support for data-parallelism [3]. Usual structures of
aggregation are sets (SETL [4]), bags (Gamma [5]), relations (set of tuples, e.g. in
SQL), vectors (*LISP), nested vectors (NESL [6]), and multidimensional arrays
(HPF, MOA [7], new Lucid [8]). Typical operations on "arrays as collections" are
pointwise applied scalar functions, reductions, scans and various permutations
or rearranging operations that can be interpreted as communication operations
in a data-parallel implementation.

Nowadays, simulation of large dynamical systems (resolution of PDE, discrete
events simulations, etc.) represents the majority of supercomputer applications.
Collections are often used in these algorithms to represent the variation of some
quantity over a bounded spatial or temporal domain: for example a vector can
be used to record the temperature at the discretisation points of a uniform
rod in the simulation of heat diffusion. Indeed, collection managed as a whole
are very well fitted to such computation because the same physical laws apply
homogeneously to each point in space or in time. The array data structure is
the most expressive (with respect to set, bag. . .) to implement space or time

210

discretisation because it matches canonically the grid lattice. They have a simple
and fast implementation on homogeneous random-access memory architectures.
Yet this generality has its costs. High-performance architectures do not have
a homogeneous memory model. On vector architectures, access to sequential
elements is faster than to random elements. The optimal storage layout for an
array depends on its access pat tern, and a poor layout can have a dramatic
impact on execution speed. Moreover, while tradit ional arrays are shaped like
n-dimensional box, defined by a lower and an upper bound in each dimension,
grids may have more complex shapes. And simulation of growing processes (like
plant growing) requires dynamically bounded arrays.

3 Shapes and fields

This motivates the development of a new collection structure. 81/2 abandons the
concept of a general-purpose array type, and specializes it towards two direc-
tions. The first one is a specialization towards finite difference algorithms and
space discretisations by considering more general grid topology and grid shape.
The second specialization we consider is towards the simulation of growing pro-
cesses by considering partial data-structure. The goal of theses extensions is to
relieve the programmer from making many low-level implementation decisions
and to concentrate in a sophisticated data-structure the complexity of the algo-
rithms. Certainly this implies some loss of run-time performance but in return
for programming convenience. Future work must establish how much loss we can
tolerate and and what we do get in exchange.

81/2 introduces two new primitive types: shapes and fields. A shape repre-
sents a set of coordinates. An example of coordinates is integer tuples, but more
generally, 81/2 uses a group element to index a point. A field is an array whose
index set is an arbitrary set in a shape. Operations on fields are data-parallel
ones. A field is virtually defined over its entire shape, even if the shape has
an infinite number of elements, but the values of the field are computed only if
needed: that is, a field is a lazy data-structure.

4 Shape constructs

A shape specify both the group used to denote the array elements and the
neighbourhood of an element. Let G be a group and S a subset of G. Space(G, S)
denotes the directed graph having G as its set of vertices and G x S as its set
of edges. For each edge (g, 8) E G • S, the starting vertex is g and the target
vertex is g.s. The direction or the label of edge (y, s) is s. Each element of the
subgroup generated by S corresponds either to a path (a succession of elementary
displacements) and a point (the point reached starting from the identity point
e of G and following this path). We use P.s for the s neighbour of P. In other
words, Space(G, S) is a graph where: 1) each vertex represents a group element,
2) an edge labelled 8 is between the nodes P and Q if P.s = Q, and 3) the labels

211

of the edges are in S. If S is a basis of G, Space(G, S) is called the Cayley graph
of the group G.

We use a finite presentation to specify a group. A finite presentation gives
a finite list of group generators and a finite list of equations constraining the
equality of two words. An equation takes the following form: v = w where v
and w are products of generators and their inverses. The presentation of a group
is not unique: different presentations may define the same group. However, a
presentation uniquely defines the shape Space(G, S): we use the generator list
in the presentation to specify S. So the generators in the presentation are the
distinguished group elements representing the elementary displacements from a
point towards its neighbours.

We gives some example of shapes. A free abelian groups corresponds to a n-
dimensional grid (n is the number of generators). The hexagonal lattice: H2 =
(a ,b ,c ; b = a.c) is an abelian shape that can be used for example in image
processing (the underlying space has the Jordan property, which is not the case
for NEWS meshes). A (non abelian) free group is simply a tree (n generators for
n sons). Another example of non abelian shape is the triangular neighbourhood:
the vertices of T are at the center of equilateral triangles, and the neighbours of a
vertex are the nodes located at the center of the triangles which are adjacent side
by side. A possible shape is: T = ~a, b, c ; a 2 = b 2 = c 2 = e, (a.b.c) 2 = e~. Such a
lattice occurs for example in flow dynamics because its symmetry matches well
the symmetry of fluid laws.

5 F i e l d d e f i n i t i o n s

A field F can be thought as a function over a group that complies with the shape
structure: the value of a field in some point depends only on the values of the
neighbours points. That is, for each point P of Space(G, S) we have

F(P) = f(F(P.a), F(P.b), ...)

with a, b, . . . , in S and f the functional dependency between a point value and
the values of its neighbours. Because such a relationship must hold for every
point P , we make it implicit and write:

F[E] = f(F.a, F.b, ...)

for a field F over a shape E. Field expressions f are of three kinds: extension of
scalar functions, geometric operations and reductions.

Extension of a scalar function is just the pointwise application of the function
to the value of a field in each point.

A geometric operation on a collection consists in rearranging the collection
values or in selecting some part of the collection to build a new one. A main
geometric operation is the translation of the field values along the displacement
specified by a generator: F.a where a E S. The shape of F.a is the shape o f F . The
value of F.a at point is (F.a)(w) = When the field F is non-abelian,
it is necessary to define another operation a.F specified as: (a.F)(w) .=- F(a.w).

212

Reduction of an n-dimensional array in APL is parameterised by the axis of
the operation [9] (e.g. a matr ix can be reduced by row or by column). A normal
subgroup is used for axis in the case of group based shape. More details are given
in [10].

When using recursive definition, "terminal cases" stop the recurs[on. For
group-based fields, we will make a part i t ion of the shape and define the fe ld
giving an equation for each element of the partit ion. It implies tha t each element
of the part i t ion can be viewed as a shape in itself. We use cosets to part i t ion the
shape. Cosets may overlap, so additional constraints are put on the partit ion,
Cf. [10].

6 Implementation

For the sake of simplicity, we suppose that field definitions take the following
form:

F ~ C 1 = c1, . . . , _P~CT~ = On, F [G] = h(F.gl,~.g2,...,F.gp)

where Ci are cosets, ci are constants and h is some extension of a scalar function.
F@Ci = ' . . . is the equation defining the field F on coset Ci whilst FIG] = . . . is
the general definition valid for the remaining points.

We assume the existence of a mechanism for ordering the cosets and to
establish if a given word w 6 G belongs to some coset. We suppose further
that we have a mechanism to decide if two words are equal. For example, these
mechanisms exist for free groups and for abel[an groups. There is no general
algorithm to decide word equality in general non-abel[an groups. So our proposal
is that non abel[an shapes are part of a library and come equipped with the
requested mechanisms. A future work is then to develop useful families of (non
abel[an) shapes.

With these restrictions, a first strategy to implement lazy fields is the use
of memoised functions. A field F[G] is stored as a dictionary with entry w 6 G
and value F(w) . If the value F(w) of w is required, we check first if w is in
the dictionary (this is possible because we have a mechanism to check word
equality). If not, we have to decide which definition applies, that is, if w belongs
to some Ci or not. In the first case, we finish returning cl and storing (w, cl) in
the dictionary. In the second case, we have to compute the value of F at points
w.g l , . . . ,w.gp, recurring the process, and then the results are combined by h.

We can do bet ter if each word w can be reduced to a normal form @. For
instance, a normal form can be computed for abel[an groups (the Smith Normal
Form) or for free groups. In this case, the dictionary can be optimised to an
hash-table with key @ for w.

In case of an abet[an group G, we can further improve the implementation
using the fundamental isomorphism between G and a product of 77-modules.
Confer [11, 12]. As a mat ter of fact, a function over a Z-module is simply imple-
mented as a vector. The only difficulty here is to handle the case of Z n which
corresponds to an unbounded array.

213

7 Conclusions

We advocate in this paper the use of theoretical group constructions for the
index set of an array. The resulting data-structure, called group-based field, is
managed in a lazy way and extends the traditional array type. More details
are given in [10]. We currently implement a r library for the management
of sets of bounded rectangular regions in 7/n. This library will be used for the
implementation of abelian fields. It is itself based on AVTL [13], a portable MPI
[14] based parallel vector template library.

There is a small number of research efforts to extend the concept of array:
Lucid [8], LPARKX [15], Infidel [16], A M R + + [17]. They all consider more
general shapes for arrays but always rely on grids (that is, a point is indexed by
a tuple of integer). This forbids for example the natural representation of a tree
or a triangular lattice.

In field definitions, the decomposition of a field into subfields is a funda-
mental mechanism. The need of powerful decomposition mechanisms appears in
quantification of definitions and in reduction expressions. We use respectively
cosets and normal subgroups. It is interesting to compare this situation with
the approach of Bird-Meertens algebra [18] or with the power-list algebra [19].
These theories develop a basis for the (recursive) definition of lists or arrays.
The decomposition relies on the concatenation leading to a divide-and-conquer
computation strategy. In group based fields, the decomposition relies on cosets
or on a normal subgroup (which decomposes naturally the group into a product).
A direction for future work is to investigate other possible and useful decompo-
sitions of shapes. The use of a group as the underlying domain of a field gives
a rich structure to the computation dependencies: they can be interpreted as
paths in well-handled spaces. Another direction of work is then the use of tools
from algebraic topology to characterise the domain of computation (homotopy
theory, etc.). Such mathematical tools have already be proved useful [20, 21].

Acknowledgments. We are grateful to the members of the Parallel Architectures
team in LRI for many fruitful discussions, and we thank especially Dominique
De Vito and Abderrahmane Mahiout.

References

1. J.-L. Giavitto. A synchronous data-flow language for massively parallel computer.
In D. J. Evans, G. R. Joubert, and H. Liddell, editors, Proc. of Int. Conf. on Par-
allel Computing (ParCo'91), pages 391-397, London, 3-6 September 1991. North-
Holland.

2. O. Michel and J.-L. Giavitto. Design and implementation of a declarative data-
parallel language. In post-ICLP~94 workshop W6 on Parallel and Data Parallel
Execution of Logic Prograras, S. Margherita Liguria, Italy, 17 June 1994. Uppsala
University, Computing Science Department.

3. J. M. Sipelstein and G. E. Belloch. Collection-oriented languages. Proc. of the
IEEE, 79(4), April 1991.

214

4. J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming
with sets: and introduction to SETL. Springer-Verlag, 1986.

5. J.-P. Bfmatre, A. Coutant, and D. Le Metayer. A parallel machine for multiset
transformation and its programming style. Future Generation Computer Systems,
4:133-144, 1988.

6. G. E. Blelloch. NESL: A nested data-parallel language (version 2.6). Technical
Report CMU-CS-93-129, School of Computer Science, Carnegie Mellon University,
April 1993.

7. G. Hains and L. M. R. Mullin. An algebra of multidimensional arrays. Technical
Report 782, Universit~ de Montreal, 1991~

8. E. Ashcroft, A. Faustini, R. Jagannatha, and W. Wadge. Multidimensional Pro-
gramming. Oxford University Press, February 1995. ISBN 0-19-507597-8.

9. K. E. Iverson. A dictionnary of APL. APL quote Quad, 18(1), September 1987.
10. O. Michel. A guided tour to 81/2 and its dynamical extensions. Technical report,

Laboratoire de Recherche en Informatique, December 1995.
11. H. Cohen. A course in computational algebraic number theory, volume 138 of

Graduate Test in Mathematics. Springer-Verlag, 1993.
12. C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the

canonical structure of finite abelian groups and the hermite and smith normal
forms of an integer matrix. SIAM Journal on Computing, 18(4):658-669, August
1989.

13. T. J. Scheffier. A portable MPI-based parallel vector template library. Technical
Report 95.04, RIACS, 1995.

14. Message-Passing Interface Forum. MPI: a message-passing interface standard,
May 1994.

15. S. R. Kohn and S. B. Baden. A robust parallel programming model for dynamic
non-uniform scientific computation. Technical Report TR-CS-94-354, U. of Cali-
fornia at San-Diego, March 1994.

16. L. Semenzato. An abstract machine for partial differential equations. PhD thesis,
U. of California at Berkeley, 1994.

17. D. Balsara, M. Lemke, and D. Quinlan. Adaptative, Multilevel and hierachicaI
Computational strategies, chapter AMR++, a C-t-+ object-oriented class library
for parallel adaptative mesh refinment in fluid dynamics application, pages 413-
433. Amer. Soc. of Mech. Eng., November 1992.

18. R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, NATO ASI Series, vol. F36, pages
217-245. Springer-Verlag, 1987.

19. J. Misra. Powerlist: a structure for parallel recursion. ACM Trans. on Prog. Lan-
guages and Systems, 16(6):1737-1767, November 1994.

20. E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In
Proc. of CONCUR'92. Springer-Verlag, 1992.

21. C. C. Squiers and Y. Kobayashi. A finiteness condition for rewriting systems.
Theoretical Computer Science, 131(2):271-294, 12 September 1994.

