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1 Introduction 

This paper reports the preliminary work on extending the concept of collection 
in 81/2. 81/2 is a declarative language that  allows the functional definition of 
streams and collections [1, 2]. In this paper, we focus our interest on a high-level 
programming abstraction which extends the concept of collection in 81/2. The 
new construct is based on an algebra of index set, called shape, and an extension 
of the array type, the field type. 

The rest of this paper has the following structure. Section 2 gives some back- 
ground on collections and arrays. Some shortcomings of data-parallel arrays are 
sketched. Section 3 describes the 81/2 answers to the previous problem and intro- 
duces group-based shapes and fields. Section 4 is devoted to the shape algebra. 
Section 5 introduces the main field operations and field definitions. Section 6 
sketches the implementation. Related and future works are discussed in the last 
section. 

2 Arrays and collections 

A collection is an aggregate of elements handled as a whole: no index manipu- 
lation or iteration loop appear in expressions over collections. Collections have 
been advocated as a good support for data-parallelism [3]. Usual structures of 
aggregation are sets (SETL [4]), bags (Gamma [5]), relations (set of tuples, e.g. in 
SQL), vectors (*LISP), nested vectors (NESL [6]), and multidimensional arrays 
(HPF, MOA [7], new Lucid [8]). Typical operations on "arrays as collections" are 
pointwise applied scalar functions, reductions, scans and various permutations 
or rearranging operations that  can be interpreted as communication operations 
in a data-parallel implementation. 

Nowadays, simulation of large dynamical systems (resolution of PDE, discrete 
events simulations, etc.) represents the majority of supercomputer applications. 
Collections are often used in these algorithms to represent the variation of some 
quantity over a bounded spatial or temporal domain: for example a vector can 
be used to record the temperature at the discretisation points of a uniform 
rod in the simulation of heat diffusion. Indeed, collection managed as a whole 
are very well fitted to such computation because the same physical laws apply 
homogeneously to each point in space or in time. The array data  structure is 
the most expressive (with respect to set, bag. . .  ) to implement space or time 
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discretisation because it matches canonically the grid lattice. They have a simple 
and fast implementation on homogeneous random-access memory architectures. 
Yet this generality has its costs. High-performance architectures do not have 
a homogeneous memory model. On vector architectures, access to sequential 
elements is faster than to random elements. The optimal storage layout for an 
array depends on its access pat tern,  and a poor layout can have a dramatic 
impact on execution speed. Moreover, while tradit ional arrays are shaped like 
n-dimensional box, defined by a lower and an upper bound in each dimension, 
grids may have more complex shapes. And simulation of growing processes (like 
plant growing) requires dynamically bounded arrays. 

3 Shapes  and fields 

This motivates the development of a new collection structure. 81/2 abandons the 
concept of a general-purpose array type, and specializes it towards two direc- 
tions. The first one is a specialization towards finite difference algorithms and 
space discretisations by considering more general grid topology and grid shape. 
The second specialization we consider is towards the simulation of growing pro- 
cesses by considering partial data-structure.  The goal of theses extensions is to 
relieve the programmer from making many low-level implementation decisions 
and to concentrate in a sophisticated data-structure the complexity of the algo- 
rithms. Certainly this implies some loss of run-time performance but  in return 
for programming convenience. Future work must establish how much loss we can 
tolerate and and what we do get in exchange. 

81/2 introduces two new primitive types: shapes and fields. A shape repre- 
sents a set of coordinates. An example of coordinates is integer tuples, but  more 
generally, 81/2 uses a group element to index a point. A field is an array whose 
index set is an arbitrary set in a shape. Operations on fields are data-parallel 
ones. A field is virtually defined over its entire shape, even if the shape has 
an infinite number of elements, but  the values of the field are computed only if 
needed: that  is, a field is a lazy data-structure.  

4 Shape constructs  

A shape specify both  the group used to denote the array elements and the 
neighbourhood of an element. Let G be a group and S a subset of G. Space(G, S) 
denotes the directed graph having G as its set of vertices and G x S as its set 
of edges. For each edge (g, 8) E G • S, the starting vertex is g and the target 
vertex is g.s. The direction or the label of edge (y, s) is s. Each element of the 
subgroup generated by S corresponds either to a path (a succession of elementary 
displacements) and a point (the point reached starting from the identity point 
e of G and following this path).  We use P.s for the s neighbour of P.  In other 
words, Space(G, S) is a graph where: 1) each vertex represents a group element, 
2) an edge labelled 8 is between the nodes P and Q if P.s = Q, and 3) the labels 
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of the edges are in S. If S is a basis of G, Space(G, S) is called the Cayley graph 
of the group G. 

We use a finite presentation to specify a group. A finite presentation gives 
a finite list of group generators and a finite list of equations constraining the 
equality of two words. An equation takes the following form: v = w where v 
and w are products of generators and their inverses. The presentation of a group 
is not unique: different presentations may define the same group. However, a 
presentation uniquely defines the shape Space(G, S): we use the generator list 
in the presentation to specify S. So the generators in the presentation are the 
distinguished group elements representing the elementary displacements from a 
point towards its neighbours. 

We gives some example of shapes. A free abelian groups corresponds to a n- 
dimensional grid (n is the number of generators). The hexagonal lattice: H2 = 
(a ,b ,c ;  b = a.c) is an abelian shape that  can be used for example in image 
processing (the underlying space has the Jordan property, which is not the case 
for NEWS meshes). A (non abelian) free group is simply a tree (n generators for 
n sons). Another example of non abelian shape is the triangular neighbourhood: 
the vertices of T are at the center of equilateral triangles, and the neighbours of a 
vertex are the nodes located at the center of the triangles which are adjacent side 
by side. A possible shape is: T = ~a, b, c ; a 2 = b 2 = c 2 = e, (a.b.c) 2 = e~. Such a 
lattice occurs for example in flow dynamics because its symmetry matches well 
the symmetry of fluid laws. 

5 F i e l d  d e f i n i t i o n s  

A field F can be thought as a function over a group that  complies with the shape 
structure: the value of a field in some point depends only on the values of the 
neighbours points. That  is, for each point P of Space(G, S) we have 

F(P) = f(F(P.a),  F(P.b), ...) 

with a, b, . . . ,  in S and f the functional dependency between a point value and 
the values of its neighbours. Because such a relationship must hold for every 
point P ,  we make it implicit and write: 

F[E] = f(F.a, F.b, ...) 

for a field F over a shape E. Field expressions f are of three kinds: extension of 
scalar functions, geometric operations and reductions. 

Extension of a scalar function is just the pointwise application of the function 
to the value of a field in each point. 

A geometric operation on a collection consists in rearranging the collection 
values or in selecting some part  of the collection to build a new one. A main 
geometric operation is the translation of the field values along the displacement 
specified by a generator: F.a where a E S. The shape of F.a is the shape o f F .  The 
value of F.a at point is (F.a)(w) = When the field F is non-abelian, 
it is necessary to define another operation a.F specified as: (a.F)(w) .=- F(a.w). 
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Reduction of an n-dimensional array in APL is parameterised by the axis of 
the operation [9] (e.g. a matr ix can be reduced by row or by column). A normal 
subgroup is used for axis in the case of group based shape. More details are given 
in [10]. 

When using recursive definition, "terminal cases" stop the recurs[on. For 
group-based fields, we will make a part i t ion of the shape and define the fe ld  
giving an equation for each element of the partit ion. It implies tha t  each element 
of the part i t ion can be viewed as a shape in itself. We use cosets to part i t ion the 
shape. Cosets may overlap, so additional constraints are put  on the partit ion, 
Cf. [10]. 

6 Implementation 

For the sake of simplicity, we suppose that  field definitions take the following 
form: 

F ~ C 1  = c1, . . . ,  _P~CT~ = On, F [ G ]  = h(F.gl,~.g2,...,F.gp) 

where Ci are cosets, ci are constants and h is some extension of a scalar function. 
F@Ci = ' . . .  is the equation defining the field F on coset Ci whilst FIG] = . . .  is 
the general definition valid for the remaining points. 

We assume the existence of a mechanism for ordering the cosets and to 
establish if a given word w 6 G belongs to some coset. We suppose further 
that  we have a mechanism to decide if two words are equal. For example, these 
mechanisms exist for free groups and for abel[an groups. There is no general 
algorithm to decide word equality in general non-abel[an groups. So our proposal 
is that  non abel[an shapes are part  of a library and come equipped with the 
requested mechanisms. A future work is then to develop useful families of (non 
abel[an) shapes. 

With these restrictions, a first strategy to implement lazy fields is the use 
of memoised functions. A field F[G] is stored as a dictionary with entry w 6 G 
and value F(w) .  If the value F(w) of w is required, we check first if w is in 
the dictionary (this is possible because we have a mechanism to check word 
equality). If not, we have to decide which definition applies, that  is, if w belongs 
to some Ci or not. In the first case, we finish returning cl and storing (w, cl) in 
the dictionary. In the second case, we have to compute the value of F at points 
w.g l , . . .  ,w.gp, recurring the process, and then the results are combined by h. 

We can do bet ter  if each word w can be reduced to a normal form @. For 
instance, a normal form can be computed for abel[an groups (the Smith Normal 
Form) or for free groups. In this case, the dictionary can be optimised to an 
hash-table with key @ for w. 

In case of an abet[an group G, we can further improve the implementation 
using the fundamental isomorphism between G and a product  of 77-modules. 
Confer [11, 12]. As a mat ter  of fact, a function over a Z-module is simply imple- 
mented as a vector. The only difficulty here is to handle the case of Z n which 
corresponds to an unbounded array. 
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7 Conclusions 

We advocate in this paper the use of theoretical group constructions for the 
index set of an array. The resulting data-structure, called group-based field, is 
managed in a lazy way and extends the traditional array type. More details 
are given in [10]. We currently implement a r library for the management 
of sets of bounded rectangular regions in 7/n. This library will be used for the 
implementation of abelian fields. It is itself based on AVTL [13], a portable MPI 
[14] based parallel vector template library. 

There is a small number of research efforts to extend the concept of array: 
Lucid [8], LPARKX [15], Infidel [16], A M R + +  [17]. They all consider more 
general shapes for arrays but always rely on grids (that is, a point is indexed by 
a tuple of integer). This forbids for example the natural representation of a tree 
or a triangular lattice. 

In field definitions, the decomposition of a field into subfields is a funda- 
mental mechanism. The need of powerful decomposition mechanisms appears in 
quantification of definitions and in reduction expressions. We use respectively 
cosets and normal subgroups. It is interesting to compare this situation with 
the approach of Bird-Meertens algebra [18] or with the power-list algebra [19]. 
These theories develop a basis for the (recursive) definition of lists or arrays. 
The decomposition relies on the concatenation leading to a divide-and-conquer 
computation strategy. In group based fields, the decomposition relies on cosets 
or on a normal subgroup (which decomposes naturally the group into a product). 
A direction for future work is to investigate other possible and useful decompo- 
sitions of shapes. The use of a group as the underlying domain of a field gives 
a rich structure to the computation dependencies: they can be interpreted as 
paths in well-handled spaces. Another direction of work is then the use of tools 
from algebraic topology to characterise the domain of computation (homotopy 
theory, etc.). Such mathematical tools have already be proved useful [20, 21]. 
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