
Data Structure as Topological Spaces

Jean-Louis Giavitto and Olivier Michel

LaMI, umr 8042 du CNRS, Université d’Evry – GENOPOLE
523 Place des terasses de l’agora, Tour Evry-2 91000 Evry, France

{giavitto,michel}@lami.univ-evry.fr

Abstract. In this paper, we propose a topological metaphor for
computations: computing consists in moving through a path in a data
space and making some elementary computations along this path. This
idea underlies an experimental declarative programming language called
mgs. mgs introduces the notion of topological collection: a set of values
organized by a neighborhood relationship. The basic computation step
in mgs relies on the notion of path : a path C is substituted for a
path B in a topological collection A. This step is called a transforma-
tion and several features are proposed to control the transformation
applications. By changing the topological structure of the collection,
the underlying computational model is changed. Thus, mgs enables
a unified view on several computational mechanisms. Some of them
are initially inspired by biological or chemical processes (Gamma and
the CHAM, Lindenmayer systems, Paun systems and cellular automata).

Keywords: Topological collection, declarative and rule-based program-
ming language, rewriting, Paun system, Lindenmayer system, cellular
automata, Cayley graphs, combinatorial algebraic topology.

1 Introduction

Our starting point is the following intuitive meaning of a data structure: a data
structure s is an organization o performed on a data set D. It is customary to
consider the pair s = (o, D) and to say that s is a structure o of D (for instance
a list of int, an array of float, etc.) and to use set theoretic constructions to
specify o. However, here, we want to stress the structure o as a set of places
or positions, independently of their occupation by elements of D. Following this
perspective, a data structure in [Gia00] is a function from a set of positions to
a set of values: this is the point of view promoted by the data fields approach.
Data fields have been mainly focussed on arrays and therefore on Z

n as the set
of positions [Lis93]. One of our motivations is to define in the same framework
the set of positions representing a tree, an array or a multiset independently of
the set of values.

Data Structure and Neighborhood. To define a data organization, we adopt a
topological point of view: a data structure can be seen as a space, the set of
positions between which the computation moves. This topological approach relies

C.S. Calude et al. (Eds.): UMC 2002, LNCS 2509, pp. 137–150, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

138 J.-L. Giavitto and O. Michel

on the notion of neighborhood to specify a move from one position to one of its
neighbor. Although speaking of neighborhood in a data structure is not usual,
the relative accessibility from one element to another is a key point considered
in a data structure definition:

1. In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).

2. In a circular buffer, or in a double-linked list, computation goes from one
element to the following or to the previous one.

3. From a node in a tree, we can access the sons.
4. The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
5. In a record, the various fields are locally related and this localization can be

named by an identifier.
6. Neighborhood relationships between array elements are left implicit in the

array data-structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
The standard example of index algebra is integer tuples with linear map-
pings λx.x ± 1 along each dimension (called “Von Neumann” or “Moore”
neighborhoods).

This accessibility relation defines a logical neighborhood. And the list of exam-
ples can be continued to convince ourselves that a notion of logical neighborhood
is fundamental in the definition of a data structure.

Elementary Shifts and Paths. The concept of logical neighborhood in a data
structure is not only an abstraction perceived by the programmer and vanishing
at the execution, but it does have an actual meaning for the computation. Very
often the computation indeed complies with the logical neighborhood of the
data elements. For example, the recursive definition of the fold function on
lists propagates an action to be performed from the the tail to the head of
the list. More generally, recursive computations on data structures respect so
often the logical neighborhood, that standard high-order functions (e.g. primitive
recursion) can be automatically defined from the data structure organization
(think about catamorphisms and others polytypic functions on inductive types
[MFP91]).

These considerations lead to the idea of path: in a sequential computation,
elements of the data structure are visited one after the other. We assume that
if element e′ is visited just after element e in a data structure s, then e′ must
be a neighbor of e. The move from e to e′ is called a shift and the succession of
visited elements makes a path in s. The idea of sequential path can be extended
to include parallel modes of computations: multi-dimensional paths must be used
instead of one-dimensional paths [GJ92].

Paths and Computations. At this point we can summarize our presentation:
we assume that a computation induces a path in a space defined by the neigh-
borhood relationship between the elements of a data structure. At each shift,

Data Structure as Topological Spaces 139

some elementary computation is done. Each topological operation used to build
a path can then be turned into a new control structure that composes program
fragments.

This schema is presented in an imperative setting but can be easily rephrased
into the declarative programming paradigm by just specifying the linking of com-
putational actions with path specifications. When a path specification matches
an actual path in a data structure, then the corresponding action is triggered.
It is very natural, especially in our topological framework, to require that the
results of the computational action be local : the corresponding data structure
transformation is restricted to the value of the the elements involved in the path
and eventually to the organization of the path elements and their neighborhood
relationships. Such transformation is qualified as local.

This declarative schema induces a rule-oriented style of programming: a rule
defines a local transformation by specifying the path to be matched and the
corresponding action. A program run consists in the transformation of a whole
data structure by the simultaneous application of local transformations to non-
intersecting paths. Obviously, such global transformation can then be iterated.

Organization of the paper. In section 2 we introduce the mgs programming lan-
guage. mgs is used as a vehicle to experiment our topological ideas. We start
by the definition of several types of topological collections. The notions under-
lying the selection of a path and path substitution are then sketched. Section 3
illustrates the previous constructions with two examples taken from the domain
of molecular computing and cellular automata. All examples given are real mgs
programs running on top of one or the other of the two available interpreters.
In the last section, we review some related works and some perspectives opened
by this research.

2 The MGS Programming Language

The topological approach sketched in section 1 is investigated through an ex-
perimental declarative programming language called mgs. mgs is aimed at the
representation and manipulation of local transformations of entities structured
by abstract topologies [GM01c,GM02]. A set of entities organized by an abstract
topology is called a topological collection. Topological means here that each col-
lection type defines a neighborhood relation specifying both the notion of locality
and the notion of sub-collection. A sub-collection B of a collection A is a subset
of elements of A defined by some path and inheriting its organization from A.
The global transformation of a topological collection C consists in the parallel
application of a set of local transformations. A local transformation is specified
by a rewriting rule r that specifies the change of a sub-collection. The application
of a a rewrite rule r = β ⇒ f(β, ...) to a collection A:

1. selects a sub-collection B of A whose elements match the path pattern β,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C in place of B into A.

140 J.-L. Giavitto and O. Michel

mgs embeds the idea of topological collections and their transformations into
the framework of a simple dynamically typed functional language. Collections are
just new kinds of values and transformations are functions acting on collections
and defined by a specific syntax using rules. Functions and transformations are
first-class values and can be passed as arguments or returned as the result of an
application. mgs is an applicative programming language: operators acting on
values combine values to give new values, they do not act by side-effect. In our
context, dynamically typed means that there is no static type checking and that
type errors are detected at run-time during evaluation. Although dynamically
typed, the set of values has a rich type structure used in the definition of pattern-
matching, rule and transformations.

2.1 Collection Types

There are several predefined collection types in mgs, and also several means
to construct new collection types. The collection types can range in mgs from
totally unstructured with sets and multisets to more structured with sequences
and GBFs [GMS95,Mic96,GM01a] (other topologies are currently under devel-
opment and include Voronöı partitions and abstract simplicial complexes). This
paper focuses on two families of collection types: monoidal collection and GBF.

For any collection type T, the corresponding empty collection is written ():T.
The name of a type is also a predicate used to test if a value has this type: T(v)
returns true only if v has type T. Each collection type can be subtyped:

collection U = T;;

introduces a new collection type U, which is a subtype of T. These two types
share the same topology but a value of type U can be distinguished from a value
of type T by the predicate U. Elements in a collection T can be of any type,
including collections, thus achieving complex objects in the sense of [BNTW95].

Monoidal Collections. Set, multiset (or bag) and sequences are members of the
monoidal collection family. As a matter of fact, a sequence (resp. a multiset)
(resp. a set) of values taken in V can be seen as an element of the free monoid
V ∗ (resp. the commutative monoid) (resp. the idempotent and commutative
monoid). The join operation in V ∗ is written by a comma “,” and induces the
neighborhood of each element: let E be a monoidal collection, then elements x
and y in E are neighbors iff E = u,x,y,v for some u and v. This definition
induces the following topology:

– for sets (type set), each element in the set is neighbor of any other element
(because the commutativity, the term describing a set can be reordered fol-
lowing any order);

– for multiset (type bag), each element is also neighbor of any other (however,
the elements are not required to be distinct as in a set);

– for sequence (type seq), the topology is the expected one: an element not at
one end has a neighbor at its right.

Data Structure as Topological Spaces 141

The comma operator is overloaded in mgs and can be used to build any monoidal
collection (the type of the arguments disambiguate the collection built). So, the
expression 1, 1+1, 2+1, ():set builds the set with the three elements 1, 2 and
3, while the expression 1, 1+1, 2+1, ():seq makes a sequence s with the same
three elements. The comma operator is overloaded such that if x and y are
not monoidal collections, then x,y builds a sequence of two elements. So, the
expression 1, 1+1, 2+1 evaluates to the sequence s too.

Group-Based Data Field. Group-based data fields (GBF in short) are used to
define organizations with uniform neighborhood. A GBF is an extension of the
notion of array, where the elements are indexed by the elements of a group,
called the shape of the GBF [GMS95,GM01a]. For example:

gbf Grid2 = < north, east >

defines a gbf collection type called Grid2, corresponding to the Von Neuman
neighborhood in a classical array (a cell above, below, left or right – not diagonal).
The two names north and east refer to the directions that can be followed to
reach the neighbors of an element. These directions are the generators of the
underlying group structure. The right hand side (r.h.s.) of the GBF definition
gives a finite presentation of the group structure. The list of the generators can
be completed by giving equations that constraint the displacements in the shape:

gbf Hexagon = < east, north, northeast; east + north = northeast >

defines an hexagonal lattice that tiles the plane, see. figure 1. Each cell has six
neighbors (following the three generators and their inverses). The equation east
+ north = northeast specifies that a move following northeast is the same
has a move following the east direction followed by a move following the north
direction.

A GBF value of type T is a partial function that associates a value to some
group elements (the group elements are the positions of collection and the the
empty GBF is the everywhere undefined function). The topology of T is easily
visualized as the Cayley graph of the presentation of T: each vertex in the Cayley
graph is an element of the group and vertices x and y are linked if there is a
generator g in the presentation such that x + g = y.

A presentation starting with < and ending with > introduces an Abelian
organization: they are implicitly completed with the equations specifying the
commutation of the generators g + g’ = g’ + g. Currently only free and Abelian
groups are allowed: free groups with n generators correspond to n-ary trees and
Abelian GBF corresponds to twisted and circular grids (the free Abelian group
with n generators generalizes n-dimensional arrays).

2.2 Matching a Path

Path patterns are used in the left hand side (l.h.s) of a rule to match a sub-
collection to be substituted. We give only a fragment of the grammar of the
patterns:

142 J.-L. Giavitto and O. Michel

Pat ::= x | <undef> | p , p′ | p |g> p′ | p * | p/exp | p as x

where p, p′ are patterns, g is a GBF generator, x ranges over the pattern variables
and exp is an expression evaluating to a boolean value.

Informally, a path pattern can be flattened into a sequence of basic filters
and repetition specifying a sequence of positions with their associated values.
The order of the matched elements can be forgotten to see the result of the
matching as a sub-collection. A pattern variable x matches exactly one element
(somewhere in the collection) and the identifier x can be used in the rest of the
rule to denote the value of the matched element. More generally, the naming
of the value of a sub-path is achieved using the construction as. The constant
<undef> is used to match an element with an undefined value (i.e., a position
with no value). The pattern p,p′ stands for a path beginning like p and ending
like p′ (i.e., the last element in path p must be a neighbor of the first element
in path p′). For example, x,y matches two connected elements (i.e., y must be
a neighbor of x). The neighborhood relationship depends of the collection kind
and is decomposed in several sub-relations in the case of a GBF. The comma
operator is then refined in the construction p |g> p′: the first element of p′ is the
g-neighbor of the last element in path p. The pattern p* matches a (possibly
empty) repetition p, . . . , p of path p. Finally, p/exp matches the path p only
if exp evaluates to true. For example

(
s/seq(s)

)
+ as S

/
size(S) == 5

selects a sub-collection S of size 5, each element of S being a sequence. If this
pattern is used against a set, S is a subset, if this pattern is used against a
sequence, S is a sub-sequence (that is, an interval of contiguous elements), etc.

2.3 Path Substitution and Transformations

There are several features to control the application of a rule: rules may have
priority or a probability of application, they may be guarded and depend on the
value of local variables, they “consume” their arguments or not, . . . , see [GM01b]
for more details.

Substitutions of Sub-collections. A rule β ⇒ c can be seen as a rule for substitut-
ing a path or a sub-collection (recall that a path can be seen as a sub-collection
by simply forgetting the order of the elements in the path). For example the rule

(x / x<3)+ as S ⇒ 3,4,5,():set

applied to the set 1,2,3,4,():set returns the set 3,4,5,():set because S
matches the subset 1,2,():set and is replaced by the set 3,4,5,():set. The
final result is computed as (3,4,():set) ∪ (3,4,5,():set).

Data Structure as Topological Spaces 143

Substitutions of Paths. Because the matched sub-collection is also a path, that
is a sequence of elements, the seq type has a special role when appearing in the
r.h.s. of a rule. If the r.h.s. evaluates to a sequence, and if this sequence has the
same length as the matched path, then the first element of the sequence is used
to replace the first element of the matched path, and so on. This convention
is coherent with the sub-collection substitution point of view and simplifies the
building of the r.h.s.

For example, suppose that in a GBF of type Grid2, we want to model the
random walk of a particle x. Then, two neighboring elements, one being x the
other undefined, must exchange their values. This is achieved with only one
simple rule

x, <undef> ⇒ <undef>, x

without the need to mention the precise neighborhood relationships between the
two elements.

Newtonian and Leibnizian Collections. We have mentioned above that the result
of replacing a sub-set by a set is computed using set union. More generally, the
insertion of a collection C in place of a sub-collection B depends on the “borders”
of the involved collections. For example, in a sequence, the sub-collection B
defines in general two borders which are used to glue the ends of collection C.
The gluing strategy may admit several variations. The programmer can select
the appropriate behavior using the rule’s attributes.

We discuss here only the flattening/nesting behavior linked with the Leib-
nizian/Newtonian kind of the involved collection. Consider the rule:

x ⇒ x, x

Intuitively, it defines the substitution of one element by two copies of it. However
the evaluation of the r.h.s. gives a couple and then, there are two possibilities
to replace x: one may replace the element matched by x by one element which
is a couple, or, one may “merge” the couple in place of x preserving the neigh-
borhood of x. For example, if this rule is used on the sequence 1,2,3, the first
interpretation gives the result (1,1), (2,2), (3,3) (a sequence of sequences of
integers) and the second interpretation returns 1,1,2,2,3,3 (a flat sequence of
integers).

The two possibilities, exemplified here for a sequence, hold for any monoidal
collection. For a GBF, e.g. Grid2, this rule has no meaning, because we cannot
insert arbitrary positions between two others without changing the topology of
Grid2. The set of positions of a GBF exists independently of the values involved
in the collection. GBF are Newtonian space: the positions exist a priori and can
be occupied or left empty by the values. In the opposite, monoidal collections
have a Leibnizian character in the sense that their topology exist only as a
relation between the actual values. A consequence is that there is no position
with an undefined value in a Leibnizian collection.

144 J.-L. Giavitto and O. Michel

Transformations. A transformation R is a set of rules:

trans R = { . . . rule ; . . . }
For example, the transformation trans Mf = { x ⇒ f(x); } defines a func-
tion Mf similar to the map(f) operator. The expression Mf(c) denotes the appli-
cation of one transformation step to the collection c and a transformation step
consists in the parallel application of the rules (modulo the rule application’s
features). Thus Mf(c) computes a new collection where each element e of col-
lection c is replaced with f(e). Transformations may have parameters, which
enables, e.g., the writing of a generic map: the transformation trans M[fct] = {
x ⇒ fct(x); } requires an additional argument when applied. The arguments
between brackets are passed to the transformation using a name as in [GAK94].
So, expression M[fct=\x.x+1](c) returns a collection where each element ofc
is increased by one. This transformation is polytypic in the sense that it can be
applied to any collection type. A transformation step can be easily iterated:

T[iter=n](c) denotes the application of n transformation steps
T[iter=fixpoint](c) application of T until a fixpoint is reached
T[iter=fixrule](c) the fixpoint is detected when no rule applies

3 Examples

Because the lack of space, we present here only two simple examples. However,
more examples can be found in [GM01b,GM01c,GGMP02] including the tok-
enization of a sequence of letters, the Eratosthene’s sieve, primitive recursion
operators on sequences and sets, the computation of the convex hull of a set of
points, the maximal segment sum and some other optimization problems, the
computation of the disjunctive normal form of a logical formula, direct coding
of Lindenmayer systems and Paun systems, Turing-like diffusion-reaction pro-
cesses, the simulation of a spatially distributed biochemical interaction networks,
examples in population dynamics, paradigmatic examples in the field of artificial
chemistry and cellular automata, etc.

3.1 Restriction Enzymes

This example shows the ability to nest different topologies to achieve the model-
ing of a biological structure. We want to represent the action of a set of restriction
enzymes on the DNA. The DNA structure is simplified as a sequence of letters
A, C, T and G. The DNA strings are collected in a multiset. Thus we have to
manipulate a multiset of sequences. The following declarations

collection DNA = seq;;
collection TUBE = bag;;

introduce a subtype called DNA of seq and a subtype of multisets called TUBE.
A restriction enzyme is represented as a rule that splits the DNA strings; for

instance a rule like:

Data Structure as Topological Spaces 145

EcoRI = x+ as X,
(cut+ as CUT / CUT = "G","A","A","T","T","C",():DNA),
y+ as Y

⇒ (X,"G") :: ("A","A","T","T","C",Y) :: ():TUBE ;

corresponds to the EcoRI restriction enzyme with recognition sequence GˆAATTC
(the point of cleavage is marked with ˆ). The x+ pattern filters the part of the
DNA string before the recognition sequence and the result is named X (the +
operator denotes repetition of neighbors). Identically, Y names the part of the
string after the recognition sequence. The r.h.s. of the rule constructs a TUBE
containing the two resulting DNA subsequences (the :: operator indicates the
“consing” of an element with a sequence).

We need an additional rule Void for specifying that a DNA string without
a recognition sequence must be inserted wrapped in a TUBE. The two rules are
collected into one transformation:

trans Restriction = {
EcoRI = . . . ;
Void = x+ as X ⇒ X :: ():TUBE ;

}
In this way, the result of applying the transformation Restriction on a DNA string
is systematically a sequence with only one element which is a TUBE. Note that
the rule Void is applied only when the rule EcoRI cannot be applied.

The transformation Restriction can then be applied to the DNA strings
floating in a TUBE using the simple transformation:

trans React = { dna ⇒ hd(Restriction(dna)) }
The operator hd gives the head of the result of the transformation Restriction,
i.e. a TUBE containing one or two DNA strings. These elements are then merged
with the content of the enclosing TUBE. The transformation can be iterated until
a fixpoint is reached :

React[fixpoint]((
("C","C","C","G","A","A","T","T","C","A","A",():DNA),
("T","T","G","A","A","T","T","C","G","G","G",():DNA),
():TUBE));;

returns the tube ("A","A","T","T","C","A","A",():DNA), ("T","T","G",():DNA),

("C","C","C","G",():DNA), ("A","A","T","T","C","G","G","G",():DNA), ():TUBE.

3.2 The Eden Model

We start with a simple model of growth sometimes called the Eden model (specif-
ically, a type B Eden model [YPQ58]). The model has been used since the 1960’s
as a model for such things as tumor growth and growth of cities. In this model,
a 2D space is partitioned in empty or occupied cells (we use the value true for

146 J.-L. Giavitto and O. Michel

C C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C
C

C

C

C

C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Fig. 1. Eden’s model on a grid and on an hexagonal mesh (initial state, and states after
the 3 and the 7 time steps). Exactly the same transformation is used for both cases.
These shapes correspond to a Cayley graph of Grid2 and Hexagon whit the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graphs
share an edge in this representation. An empty cell has an undefined value. Only a part
of the infinite domain is figured.

an occupied cell and left undefined the unoccupied cells). We start with only one
occupied cell. At each step, occupied cells with an empty neighbor are selected,
and the corresponding empty cell is made occupied.

The Eden’s aggregation process is simply described as the following trans-
formation:

trans Eden = { x,<undef> / x ⇒ x,true ; }
We assume that the boolean value true is used to represent an occupied cell,
other cells are simply left undefined. Then the previous rule can be read: an
occupied element x and an undefined neighbor are transformed into two occupied
elements. The transformation Eden defines a function that can then be applied
to compute the evolution of some initial state. One of the advantages of the mgs
approach, is that this transformation can apply indifferently on grid or hexagonal
lattices, or any other collection kind.

It is interesting to compare transformations on GBFs with the genuine cellu-
lar automata (CA) formalism. There are several differences. The notion of GBF

Data Structure as Topological Spaces 147

extends the usual square grid of CA to more general Cayley graphs. The value of
a cell can be arbitrary complex (even another GBF) and is not restricted to take
a value in a finite set. Moreover, the pattern in a rule may match an arbitrary
domain and not only one cell as it is usually the case for CA. For example the
transformation:

gbf G2 = <X, Y >;;
trans Turn = { a|X> b |Y-X> c |-X-Y> d |X-Y> e ⇒ a,e,b,c,d; }

specify the 90◦-turn of a cross in GBF G2 (see illustration 2). The pattern frag-
ment b |Y-X> c specifies that c is at the north-west of element b if we take the
X dimension as the east direction and the Y dimension as the north direction.

a

0

b d
e

c

1
4

2
3

a

0
3

2
1

4

e
d

c
b

a b
c

d
e

0 1
2

3
4

X

Y

Fig. 2. First and second iteration of transformation Turn on the GBF to the left (only
defined values are pictured). In contrast with cellular automata, the evolution of a
multi-cell domain can be easily specified by a single rule.

4 Related and Future Work

This topological approach formalizing the notion of collection is part of a long
term research effort [GMS95] developed for instance in [Gia00] where the fo-
cus is on the substructure and in [GM01a] where a general tool for uniform
neighborhood definition is developed.

Related Works. Seeing a computation as a path in some abstract space is hardly
new: the representation of the execution of a concurrent program as a trajectory
in the Cartesian product of the sequential processes dates back to the sixties(in
this representation, semaphore operations create topological obstructions and
one can study the topology of theses obstructions to decide if a deadlock may
occur). However, note that the considered space is based on the elementary
computations, not on the involved data structure.

In the same line, the methods for building domains in denotational semantics
have clearly topological roots, but they involve the topology of the set of values,
not the topology of a value.

148 J.-L. Giavitto and O. Michel

Another example of topological inspiration is the approach taken in [FM97],
that rephrased in our perspective, uses a regular language to model the displace-
ments resulting from following pointers in C data structures.

There exists strong links between GBF and cellular automata, especially
considering the work of Z. Róka which has studied CA on Cayley graphs [Rók94].
However, our own works focus on the construction of Cayley graphs as the shape
of a data structure and we develop an operator algebra and rewriting notions
on this new data type. This is not in the line of Z. Róka which focuses on
synchronization problems and establishes complexity results in the framework
of CA.

Obviously, Lindenmayer systems [Lin68] correspond to transformations on
sequences, and basic Paun systems [Pau00] can be emulated using transforma-
tions on multisets.

Formalizations and Implementations. A unifying theoretical framework can be
developed [GM01b,GM02], based on the notion of chain complex developed in al-
gebraic combinatorial topology. However, we do not claim that we have achieved
a useful theoretical framework encompassing the cited paradigm. We advocate
that few (topological) notions and a single syntax can be consistently used to
allow the merging of these formalisms for programming purposes.

Currently, two versions of an mgs interpreter exist: one written in OCAML (a
dialect of ML) and one written in C++. There are some slight differences between
the two versions. For instance, the OCAML version is more complete with respect
to the functional part of the language. These interpreters are freely available
(see url http://www.lami.univ-evry.fr/mgs).

Perspectives. The perspectives opened by this preliminary work are numerous.
We want to develop several complementary approaches to defines new topologi-
cal collection types. One approach to extend the GBF applicability is to consider
monoids instead of groups, especially automatic monoids which exhibits good al-
gorithmic properties. Another direction is to handle general combinatorial spatial
structures like simplicial complexes or G-maps [Lie91].

At the language level, the study of the topological collections concepts must
continue with a finer study of transformation kinds. Several kinds of restriction
can be put on the transformations, leading to various kind of pattern languages
and rules. The complexity of matching such patterns has to be investigated.
The efficient compilation of a mgs program is a long-term research. We have
considered in this paper only one-dimensional paths, but a general n-dimensional
notion of path exists and can be used to generalize the substitution mechanisms
of mgs.

From the applications point of view, we are targeted by the simulation of
developmental processes in biology [GGMP02]. Another motivating application
is the case of a spatially distributed biochemical interaction networks, for which
some extension of rewriting as been advocated, see [FMP00].

http://www.lami.univ-evry.fr/mgs

Data Structure as Topological Spaces 149

Acknowledgments. The authors would like to thanks the members of the
“Simulation and Epigenesis” group at Genopole for fruitful discussions and bi-
ological motivations. They are also grateful to C. Godin, P. Prusinkiewicz, F.
Delaplace and J. Cohen for numerous challenging questions and useful com-
ments. This research is supported in part by the CNRS, the GDR ALP, IMPG
and Genopole/Evry.

References

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Prin-
ciples of programming with complex objects and collection types. Theo-
retical Computer Science, 149(1):3–48, 18 September 1995.

[FM97] P. Fradet and D. Le Metayer. Shape types. In Proc. of Principles of
Programming Languages, Paris, France, Jan. 1997. ACM Press.

[FMP00] Michael Fisher, Grant Malcolm, and Raymond Paton. Spatio-logical pro-
cesses in intracellular signalling. BioSystems, 55:83–92, 2000.

[GAK94] Jacques Garrigue and H. A¨-Kaci. The typed polymorphic label-selective
lambda-calculus. In Principles of Programming Languages, Portland,
1994.

[GGMP02] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Biological
Modeling in the Genomic Context, chapter Computational Models for In-
tegrative and Developmental Biology. Hermes, July 2002.

[Gia00] Jean-Louis Giavitto. A framework for the recursive definition of data
structures. In Proceedings of the 2nd International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP-
00), pages 45–55. ACM Press, September 20–23 2000.

[GJ92] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata.
In Proc. of CONCUR’92, Stonybrook, August 1992. Springer-Verlag.

[GM01a] J.-L. Giavitto and O. Michel. Declarative definition of group indexed data
structures and approximation of their domains. In Proceedings of the 3nd
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-01). ACM Press, September 2001.

[GM01b] J.-L. Giavitto and O. Michel. MGS: a programming language for the trans-
formations of topological collections. Technical Report 61-2001, LaMI –
Université d’Évry Val d’Essonne, May 2001. 85p.

[GM01c] Jean-Louis Giavitto and Olivier Michel. Mgs: a rule-based programming
language for complex objects and collections. In Mark van den Brand and
Rakesh Verma, editors, Electronic Notes in Theoretical Computer Science,
volume 59. Elsevier Science Publishers, 2001.

[GM02] J.-L. Giavitto and O. Michel. The topological structures of membrane
computing. Fundamenta Informaticae, 49:107–129, 2002.

[GMS95] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In
I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Sym-
bolic Languages and Systems (International Workshop PSLS’95), volume
1068 of Lecture Notes in Computer Sciences, pages 209–215, Beaune
(France), 2–4 October 1995. Springer.

[Lie91] P. Lienhardt. Topological models for boundary representation : a com-
parison with n-dimensional generalized maps. Computer-Aided Design,
23(1):59–82, 1991.

150 J.-L. Giavitto and O. Michel

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in devel-
opment, Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lis93] B. Lisper. On the relation between functional and data-parallel program-
ming languages. In Proc. of the 6th. Int. Conf. on Functional Languages
and Computer Architectures. ACM, ACM Press, June 1993.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire. In 5th ACM Conference on
Functional Programming Languages and Computer Architecture, volume
523 of Lecture Notes in Computer Science, pages 124–144, Cambridge,
MA, August 26–30, 1991. Springer, Berlin.

[Mic96] O. Michel. Représentations dynamiques de l’espace dans un langage
déclaratif de simulation. PhD thesis, Université de Paris-Sud, Centre
d’Orsay, December 1996. N◦4596, (in french).

[Pau00] G. Paun. From cells to computers: Computing with membranes (P sys-
tems). In Workshop on Grammar Systems, Bad Ischl, Austria, July 2000.

[Rók94] Zsuzsanna Róka. One-way cellular automata on Cayley graphs. Theoret-
ical Computer Science, 132(1–2):259–290, 26 September 1994.

[YPQ58] Hubert P. Yockey, Robert P. Platzman, and Henry Quastler, editors. Sym-
posium on Information Theory in Biology. Pergamon Press, New York,
London, 1958.

	Introduction
	The texttt {MGS} Programming Language
	Collection Types
	Matching a Path
	Path Substitution and Transformations

	Examples
	Restriction Enzymes
	The Eden Model

	Related and Future Work
	References

