
LaMI
Laboratoire de Méthodes Informatiques

Unconventional Programming Paradigms
Preliminary Notes for a Debate

Jean-Louis Giavitto

email(s) : giavitto@lami.univ-evry.fr

Rapport de Recherche no 104-2004

Septembre 2004

CNRS – Université d’Evry Val d’Essonne
523, Place des Terrasses de l’agora

F–91000 Evry France





Unconventional Programming Paradigms

Preliminary Notes for a Debate

“. . . today . . . 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.” — Computer Software
Issues, an American Mathematical Association Prospectus, July
1965.

This text and these questions were written in order to cause discussions at the Unconven-
tional Programming Paradigms (UPP04) international workshop held the 15–17 September
2004 at the Mont Saint-Michel, France. This workshop is dedicated to “Challenges, Vi-
sions and Research Issues for New Programming Paradigms”. We hope that this text will
stimulate fertile exchanges between the participants.

1 Metaphors for Computations

Programming paradigms, or their concrete instantiations in programming languages, are not
coming “out of the blue”. They are inspired either by the peculiarities of a computer1 or by
a metaphor of what a computation should be. A few examples: the typewriter for the Turing
machine, desk, scissor and trash can for user-interfaces, classification and ontology for the
object based languages, building and architecture for design patterns, meta-mathematical
theories (e.g. λ-calculus) for functional programming. Considering the programming lan-
guages history, it seems that the metaphors that are really working are mainly based on
artifacts or on the notions and concepts that structure a domain of abstract activities (office,
mathematics).

We are now experiencing a renewed period of proposals based on “natural metaphors”:
artificial chemistry, DNA computing, quantum computing, P systems, PPSN (parallel prob-
lem solving from nature: simulated annealing, evolutionary algorithms, etc.), cell and tissue
computing. . . This is not to say that the metaphors of the biological and physical world
were absent until now. On the contrary, formal neurons and cellular automata, both inspired
by biological notions, have been elaborated from the very origin of computer science. But
this opposition between the relatively few impacts of natural metaphors in programming
language compared to the large widespread of metaphors of other human specific activities,
asks from the following interrogations:

0The introductory statement is quoted by P. J. Landin in front of his famous article “The Next 700 Programming
Languages”.

1“While it is perhaps natural and inevitable that languages like Fortran and its successors should have developed
out of the concept of the von Neumann computer as they did, the fact that such languages have dominated our
thinking for twenty years is unfortunate. It is unfortunate because their long-standing familiarity will make it
hard for us to understand and adopt new programming styles which one day will offer far greater intellectual and
computational power.” John Backus (1981).



• What do we expect from the natural metaphors that we do not have with the metaphors
of human activities? To answer which needs, to support which applications, to answer
which failures?

• What are the links between Physics and Computation? Physics obviously determines
the phenomena that can be used for computing (the hardware). However, on what
extend can it be a source of inspirations for programming? For instance, what are the
impacts on programming of Feynman’s lectures on the physics of the computation?
What lessons have we learned from the “analog computation” developed during the
’50s and the ’60s?

• What are the links between Biology and Computation? Biology is obviously a source
of inspirations for new computational models. And the computer scientists are deses-
perately looking for design principles to achieve systems with properties usually at-
tributed to life: self-sustaining systems, self-healing systems, self-organizing systems,
autonomous systems, etc. However, are we sure to agree on the meaning of these char-
acteristics? For example, these properties are often exhibited at a collective level at
a large scale and on the long time, not at the level of an individual: a specie, robust
against the variations of its environment, does not mean that the individuals adapt
easily to these variations.

• Do we have exhausted the metaphor of human activities (engineering, liberal art, eco-
nomics, math, literature, philosophy, etc.)? For instance, logic and meta-mathematics
are tightly coupled with computer science. What about geometry or topology? (the
geometrization of physics since the end of the nineteenth century is a major trend but
it does not seem to appear in computation).

• Is the physical world a right source of inspirations? In other words, are the relation-
ships between physical objects a good framework to conceptualize the relationships
between immaterial objects like softwares or computations? For example, synchronous
languages make the assumptions that the reaction to events are instantaneous. De-
spite the apparent violation of physical laws, this model is very successful to reason
and implement real-time applications.

2 Programming in the Small and Programming in the Large

Programming in the Small. The slogan:

program = data-structures + algorithms

has shaped our approach of what a program is.

• Is this manifesto still relevant in front of the new programming paradigms (and the
new problems and applications)?

• What are the new data-structures offered by the chemical, the tissue and other com-
puting paradigms?

• Are there new algorithms or only a speed-up of existing mechanisms?



Control structure are the means by which we organize the set of computations that must
be done to achieve a given task. Organizing natural computations seems very difficult:
thinks on how to really implement sequentiality in a chemical computation2. This issue is
perhaps related to Landin’s splitting of a programming language into two independent parts:
(a) the part devoted to the data and their primitive operations supported by the language,
and (b) the part devoted to the expression of the functional relations amongst them and
the way of expressing things in terms of other things (independently of the precise nature
of these things). An example of the latter is the notion of identifier and the rule about the
contexts in which a name is introduced, defined, declared or used. The appropriate choice of
data and primitive gives an “API” or a “problem-oriented”, “domain specific”, “dedicated”
language. A good choice of the features in the second part can make a language flexible,
concise, expressive, adaptable, reusable, general. So,

• What are the new control structures?

• Are the new programming paradigms concentrating only on dedicated and specialized
data-structures and operations well fitted to optimize some costly specialized task; or
is there also some emergence of new ways of expressing things in term of other things?

Programming in the Large. The research on chemical computing, biological computation,
quantum computing, . . . , mainly focus on the complexity achieved for algorithmic tasks
(sorting, prime factorization, etc.). These studies illustrate only the “programming in the
small” task and do not address the problem of the “programming in the large”, that is
the problems raised by the support of large software architecture, the interconnection of
modules, the hiding of information, the capitalization and the reuse of existing code, etc.
Programming in the large is certainly one of the major challenges a programming language
must face.

Concepts of modules, packages, functors, classes, objects, mixins, design patterns, frame-
work, middleware, software buses, etc., have been developed to face these needs. And,
following some opinions, have failed3:

Computer Science is in deep trouble. Structured design is a failure. Systems, as
currently engineered, are brittle and fragile. They cannot be easily adapted to new
situations. Small changes in requirements entail large changes in the structure
and configuration. Small errors in the programs that prescribe the behavior of
the system can lead to large errors in the desired behavior. Indeed, current
computational systems are unreasonably dependent on the correctness of the
implementation, and they cannot be easily modified to account for errors in the
design, errors in the specifications, or the inevitable evolution of the requirements
for which the design was commissioned. (Just imagine what happens if you cut
a random wire in your computer!) This problem is structural. This is not a
complexity problem. It will not be solved by some form of modularity. We need
new ideas. We need a new set of engineering principles that can be applied to
effectively build flexible, robust, evolvable, and efficient systems.
Gerald Jay Sussman, (1999).

2How to start a given chemical reaction in a test tube only whenever the equilibrium of another one has been
reached?

3See also the notes of the debate “Object have failed” organized by R. Gabriel at OOPSLA 2002: www.dreamsongs.
org.



• Is this failure a consequence of the existing programming language or of our methods
of software development?

• Why are the programming paradigms discussed here, more fitted to fight against this
fragility and inflexibility?

• Which features help to discover/localize/correct program errors or reliably to live with?

The Disappearing Program. For many reasons, the notion of monolithic, standalone,
single author program is vanishing. The classic “separate compilation and linking” model
of compiler-based languages is no more adapted to our use of programs. After the use of
preprocessing and code generation tools we have invented dynamic linking, templates, multi-
stage compilation, aspects weaving, just-in-time compilation, automatic update, push and
pull technologies, deployment, etc. In the same time, our systems must include thousands
of disparate components, partial applications, services, sensors, actuators on a variety of
hardware, written by many developers around the world (and not always in a cooperative
fashion).

• In which ways the new programming paradigms discussed here contribute to these
trends?

3 The Future of Syntax, Semantic, etc.

The Future of Syntax. The question of syntax always causes brutal reactions. There is
a large trend to become “syntax independent”. For example, standards like XML provide
flexible and generic tools to translate a deep representation to various surface expressions. In
programming languages, features like overloading, preprocessor, macro, combinators, . . . ,
are also used to tailor the syntax in order to offer to the user an interface close to the
standard of the application domain. The Mathematica system is a good example of such
achievement. However, the deep representation is exclusively relying on the notion of terms.

• Does the handling of new programming paradigms require new syntactic representa-
tion? Are there needs for diagrammatic, visual, kinesthetic, . . . , representations of a
program? Will a program necessarily need to be represented as a tree of symbols?

Semantics and theoretical models. The influence of logic in the study of the semantics of
programming languages is preeminent (with, perhaps, the notable exception of denotational
semantics). However, the new programming models seem to put an emphasis on the notion
of dynamical systems. So:

• What is “the right” mathematical framework allowing the building and the manipula-
tion of dynamical systems in conformity with the concepts of software architectures?

• Can we expect a cross fertilization between theoretical computer science and control
system theory?

• Considering the distributed nature of computer resources and of the applications, can
we develop a theory of distributed dynamical systems without a global time or a global
state?



• Are the new paradigms fitted to the development of a notion of “approximate”, “prob-
abilistic”, “fuzzy”, “non-deterministic” computations? Can they handle in a better
way uncertainty and incomplete information?

• Is it possible to define a useful notion of open systems within the new paradigms? What
are the mechanisms of openness? its control structures? How to maintain coherence
and adequation of open systems?

The destiny of a program is to be run in order to accomplish some task. But in order
to be sure that the task will be well accomplished, we have developed several concepts
and techniques like: typing, static analysis, abstract interpretation, bisimulation, model
checking, test, validation, correctness by construction. . . These techniques consider the
program as an object of study. So:

• Are these techniques applicable to the new programs? For instance, what can be the
type of a DNA in a test tube? What can be the “correctness by construction” of an
amorphous program? What can be the model-checking of a P systems?

• These techniques share the same approach: establishing efficiently and as much auto-
matically as possible, some assertions about programs. This will undoubtedly imposes
some (severe ?) limitations on what kind of assertions we can do. We also do not
want our assertions be larger than our programs or more difficult to establish than to
develop the program.

Is there an opportunity for other approaches? For example, instead of ensuring stati-
cally and a priori the correct execution of a program, we can try to correct it incre-
mentally to finally achieve its prescribed task. This approach is tightly coupled with
notions like evolution, emergence, self-organization, learning. . . What new approaches
of program correction can be supported by the new paradigms?

• More generally, how can the programmer be helped in creating, understanding, en-
hancing, debugging, testing and reusing programs in the new paradigms?

4 New Applications, New Opportunities

New Computing Resources. Our favored programming languages often reflect a sequen-
tial dogma: we use a step-by-step modification of a global state. This is also true at the
hardware level, even in our parallel machines: we partition the processing element between
a very big passive part: the memory and a very fast processing part: the processor. While
this dogma was adapted to the early days of computers (it can be implemented with as little
as 2250 transistors), it is likely to become obsolete as the numbers of resources increases (109

transistors by 2007). New developments such as nano-technologies or 3D circuits, or more
simply parallel multichips systems can potentially provide thousand times more resources.

• So, can new programming paradigms take profit of all this available computational
power? The technological progress focused on quantitative improvements of current
hardware architecture and little effort has been spent on investigating alternative com-
puting architecture. The point here is not to change from the silicon medium to another
one, but to fully exploit the silicon potential: 109 transistors by 2007! What can we
do with this “ocean of gates”?



• Advances in nanosciences and in biological sciences are being used to drive innovation
in the design of novel computing architectures based on biomolecules. The ability
of DNA and RNA nucleotides to perform massively parallel computations to solve
difficult, NP-hard, computational problems are now recognized and DNA molecules
will be utilized to construct two- and three-dimensional physical nanostructures, thus
providing the ability to self-assemble physical scaffolds. However, we already met such
opportunities in the past, for instance with optoelectronics: FFT comes at virtually no
cost, switching too, etc. But until now, optoelectronic devices have a little impact on
our computations. An explanation can be that the operations provided are too rigid
and cannot be integrated easily into a more generic framework to allow ease of use and
the generality of the applications.

So, are the new paradigms generic enough? Can they be integrated into mixed-
paradigms languages? Can we harness the computationnal power of the new paradigms
within more classical languages? What is the price of mixing them? If they are sup-
ported by dedicated new hardware, can we interconnect these hardware and make them
cooperate at a little cost?

• Do we have to make a difference between bio-inspired (quantum-inspired, chemistry-
inspired, xxx -inspired. . . ) programming languages and bio-based (quantum-based,
chemistry-based, xxx -based. . . ) hardware?

• If hardware will evolve towards bioware, does the software must evolve towards bioware?

Programming Immense Interaction Networks. An area of explosive growth in comput-
ing is that of the World Wide Web. Computing over the WWW provides challenges whose
solutions will involve the development of new paradigms. One of the challenges is to ensure
global requirements (properties of the network as a whole). This challenge exactly meets
the challenge raised by the programming of smart materials or biological devices: “how do
we obtain coherent behavior from the cooperation of large numbers of unreliable parts that
are interconnected in unknown, irregular, and time varying ways ?”4.

• Is there an unified framework that can be useful to reason generically on the collective
behavior at a population level, both at a very large scale (the WWW) and at the small
scale (nanodevice)?

• What is missing in our current established algorithmic approach, architecture design
and formal methods, so that the issues of tolerance, trust, cooperation, antagonism
and control of complex global systems cannot be handled properly?

Building an Home for Mister John. I will conclude these notes by some extracts of a very
stimulating paper by Tommaso Toffoli5. Entitled “A Knowledge Home: Personal knowledge
structuring in a computer world”, this paper discusses the ways in which a computer can
be used to support an expanded personal information space — one’s knowledge home.

Besides a physical home, we all need some sort of personal information storage and
processing” homestead — a conceptual space which we inhabit as individuals and as
individuals maintain, furbish, and continually renovate to provide us with a base from

4Gerald L. Sussman, speaking about the programming of programmable materials.
5http://pm1.bu.edu/~tt



which to operate in the world. If well integrated with our mind, the computer can make
possible a vast expansion of this personal space and of the resources available within
it, and can provide a channel for the sharing and compounding of such personal wealth
across society.

Hardware is not really an issue; the main task will be developing the infrastructure needed
to support this cultural graft. Obviously, this implies the development of a language:

In the knowledge home, the computer will be viewed not as much as an external
appliance as an extension of our mind. We know how to talk to ourselves; how will we
talk to this new piece of our mind? Will we be able to think point-and-click language?
Shall we all learn to speak Java?

(emphasis are mine). In a vivid description, Tommaso Toffoli sketches what can be a
knowledge home. It turns that a knowledge home can be a script in some verbing language:

“But your script is only a few pages long, and you have a hundred terabytes in your
hard disk,” we observe. Where does all that information come from, when you have to
rebuild your knowledge home from scratch? And what kind of wizard do you have to
be to insure that everything will come together as it should?”

“As far as I’m concerned, there are basically only two kinds of objects — the ones I
made myself and those I got from outside. For the latter, which constitute most of the
bulk, my script has pointers to the sources and can download materials and automated
assembly instructions from there; I don’t have to know the details.”

“If the limits of my language are also the limits of my world”, to quote Wittgenstein,

• what programming language will support, extend and shape our thinking in the futur?

Hopefully, whatever the answer will be, we can be sure with Gershom Scholem that “an
infinite multitude of languages floods the world”.


