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Adage is an incremental software development support 
environment**. Adage architecture is underlined by the concept 
of wide-spectrum services around a common data model, the 
GDL. This model extends the entity-relationships model and 
provides useful concepts to support genericity and 
incrementality like inheritance and self-reflexion. Services 
respond both to end-user and administrator requirements. The 
last point is achieved through an active help for tool integration 
and tool building and so for making the environment evolve to 
cover the needs. 

1 Introduction 

Adage (Adaptable graph-based environment) is an 
incremental software development support environment @SE). 
The aim of a SSE is twofold: 
- to integrate the different tools and products used and 

produced through the different phases of the software life 
cycle, e.g. to provide facilities to represent the various 
entities involved in the software development process; 

- to enable the management and the evolution of these entities, 
by introducing a comprehensive support for the user’s 
actions, monitoring the tools and maintaining the 
constraints. 

The kind of data an environment can manage, is strongly related 
to the phases of the life cycle it addresses. Generic 
environments, as opposed to ad-hoc environments, have the 
capacity to define the data handled by the system. The ability to 
cover different activities depends on the expressive power of the 
data model. Nevertheless, an adequate data model is not 
sufficient to define a generic SSE. A framework must also be 
provided, where tools are integrated and where users and tools 
can cooperate. Moreover such an integration must be 
incremental following the natural evolution of the target 
environment. 

* Consultant from LIP, Universite Pierre et Marie Curie, 4 Place Jussieu 
75252 Paris Cedex 05. 
** This project has been partially supported by the Esprit project 
METEOR P432 and is supported by AJXATEL funding. 

Tool to tool cooperation is a difficult problem: Each tool has its 
own point of view on the data it has to manage. And even if 
tools share a common point of view on entities, each one has its 
own internal representation of them. 
User to tool cooperation, and more generally users to 
environment cooperation, is usually left back in user-interface 
area. But more than graphical gadgets, the user-interface of an 
environment has to provide useful and suitable concepts to 
browse data, trigger tools in a cohesive and uniform way, 
manually create and update entities.. . 

Therefore, in a multi-users, multi-tools environment, data 
accesses and data updates must be monitored to avoid 
inconsistency. Nevertheless development should proceed in 
parallel as far as possible. 

The purpose of this paper is to expose the motivations of the 
Adage project and the consequent design decisions. We present 
in the following sections the goals of the project, the 
architecture of the Adage environment, the underlying data 
model, the status of the user-interface and of the tools and 
finally the concurrence problems which arise in a multi-users 
multi-tasks framework. Orthogonal to these investigations, 
incremental&y and applicability (choice of the right technology), 
which influenced the design, appear all along the text. 

2 An incremental environment 

Generic@ is the ability to generate an environment from a 
description. The benefits of this approach has been largely 
demonstrated, see for example Alma [23], Eclipse [13], 
Concerto [28], GIPE [9]. . . The nature of the final environment 
depends on the kind of data that can be described. For example, 
in GIPE, several description languages exist to describe 
grammars and manipulate syntax trees (LDF). It enables the 
generation of language centered environments. Here, the 
genericity lies in the independence of a language, but not of life 
cycle phases. What we wanted to produce was a software 
factory dedicated to programming in the large, independent of 
languages, methods and tools. From this point of view Adage 
[ 191 belongs to the family of environments such as GraphTalk 
[21] and The Virtual Software Factory [30]. Adage relies on a 
data model able to describe the data occurring within and 
exchanged between the various phases [l 11. 

0270.5257/90/0000/0086/$01 .OO 0 1990 IEEE 86 Recommended by: Dick Fairley 



The data model has to handle various kinds of software entities 
and relationships 1201: This naturally leads to the use of a kind 
of entity-relationship model [8]. It induces some ideological 
consequences, e.g. the development process is data-oriented 
and not activity-oriented. Moreover, the implementation of the 
model, the information system, constraints the data that can be 
reasonably managed. 

Related to the various activities, several formalisms can cohabit 
and must be supported together. Genericity solves this problem 
of profusion of needs. Besides, data organization and tools are 
evolving in time and the environment must be able to follow 
them. Incrementality improves the concept of genericity: At any 
time, the environment can be extended to handle evolution. 
Incremental&y is a key to secure the future. 

Producing an incremental environment w.r.t. the previous 
motivations implies multiple design decisions: choice of the data 
model, choice of an architecture, choice of task management, 
etc. 

3 Wide spectrum services 
A data model theoretically handles all the entities appearing in a 
software development process. However, the underlying 
implementation sets a barrier: the granularity of the data that are 
pertinent to manage. The problem is not to draw back these 
representation limits but to integrate the tools that fill the holes 
in the description of the entities. For example, it is not 
reasonable for a programming in the large environment to 
represent the syntax tree of a program; the environment 
delegates this work to the compiler. What we do need are ways 
to build, connect and integrate tools. The last point means, in 
particular, to be able to handle the interaction between entities 
owned by the environment and entities known by the tools. 

So we prefer to see an environment as a set of services rather 
than a set of fixed tools. The concept of service plays the same 
role for the architecture as the genericity for the data: Services 
can be extended, reused and specialized to fit evolution and 
needs. A service is defined through three points of view, the 
user of the service, its nature and its domain. 

3.1 Adage services 

The Adage workbench is not only intended for the end-user of 
the environment, but addresses tools, environment builders, 
administrators, expert and naive end-users. Naturally, 
competences may overlap and for example, an expert user often 
increases the common set of services provided by the 
administrator with its own tools. Services provide help to build 
tools in the following domains: data storage, data management 
and data visualization. 

Adage services go from basic libraries (persistency and 
graphical display) up to ready-for-use tools. A tool can be 
integrated at different levels according to the services it requires. 

A priori, the higher the used services are, the easier the 
integration is. The coupling between a tool and the framework 
is illustrated in figure 1. 
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pig. 1: The Adage framework as an ecosystem for the tools. 
BAG10 is used to display graphs for speech recognition in the SPI@ 
:sprit project and to display version graphs in the PEGASE environmen 
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3.2 Classes of services 

Higher Adage services use lower services. The services have 
different interfaces; we describe them very briefly, some of 
them are detailed in the rest of this paper: 

l Generic libraries: 
PRESTO (see $5.3) is a generic library introducing 
persistency in tbe C++ language. A second one is a portable 
window manager, SpokeWindows [22]: It ensures a 
common graphical shelf based either on X or on Sunview 
displays [ 161 [29]. 

l Kernel libraries: 
On top of the generic libraries, two kernel libraries are built, 
L3 (see $5.4) and ADAGIO. L3 implements Adage entities. 
ADAGIO extends SpokeWindows to display graphs, 

l “Compilers”: 
The GDL incremental compiler (see 54) translates a textual 
description of Adage entities into data owned by the 
environment. UTIL3 is used to maintain constraints among 
the data. It compiles a description of the changes that have 
to be monitored by the information system, to customize the 
genetic tools. 

l Generic tools: 
Graal (see $6) is the standard Adage shell and it is used to 
both manage data and provide a graphical user-interface. 
JuM (see §8) is the tool used to manage workspaces. 



PRESTO, SpokeW. 
L3, ADAGIO, 
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Fig. 2: Who does what and how. 

l Instantiations: 
Some Adage instantiations are interesting enough to be 
embedded as additional services. For example, the 
documentation of Adage is represented through Adage 
entities managed in the Adage framework. 

Figure 2 is an attempt to map users, services and activities. We 
qualify as wide the Adage services because they address several 
users and concern several activities. 

4 A specific data model 

4.1 An extension of the Entity-Relationship 
model 

The Adage data model had to fit well the software engineering 
needs, being able to represent the main characteristics of the 
data managed by a programming in the large environment. 
Multiple objects are involved, often numbering in the 
thousands. Elementary objects, e.g. operating system 
resources, have to be gathered into consistent entities, because 
they are different facets of pertinent abstractions for software 
developers. Unfortunately, such entities are meaningful only in 
the developer’s mind and exist virtually only as long as the 
developer maintains coherences between the basic objects. 

Each tool sees entities from its own viewpoint, i.e. it uses only 
a subset of its facets. For example, the abstraction “module” 
consists of a documentation, a source file, an object file.. ., that 
must be managed in an integrated way because they all represent 
the same logical entity with a well defined meaning for the end- 
user. The documentation is the point of view of the module that 
concerns the documentation editor, while the source and object 
files concern the compiler, as illustrated in figure 3. 

To be useful, abstractions must be able to be specialized: a 
Cmodule is also a module; and entities must be aggregated: a 
specification is also the set of the used sub-specifications. 
Aggregation, composition, hierarchy, refinement arc the way to 
structure the world of the entities. All these characteristics can 
be summed up by saying that the concerned objects are complex 
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and structured entities, with many arbitrary relationships 
between them. The goal of the data model in a SSE is to 
represent such entities and relationships; it is the purpose of the 
Adage framework to support the life cycle of theses objects. 

Standard uses of the Entity/Relationship model suffer of too 
many lacks to represent such objects [26]: 
- Data structuring is too flat, composition and specialization 

do not exist; 
- Complex attributes are not allowed, 
- Viewpoints are rather sub-schemas than real structuring; 
- Hierarchical decomposition is uneasy, refinement needs an 

explicit relationship between the refined object and its 
refining components. 

That led us to extend the standard E/R model into a model based 
upon structured typed graphs. Graphs are a universal concept to 
model objects and relationships. The Adage data model 
increases the expressive power of the E/R classical approaches 
with powerful means of data structuring. Our model is 
embodied in a language, the Graph Description Language 
(GDL). Other projects, as Damokles [lo] [15], have already 
adopted this kind of models but without providing specialization 
and self-reflexion (see below). 

Fig. 3: A module in the Adage point of view versus the 
tools point of view. 



4.2 GDL nodes 4.3 Typing 

The basic GDL entities are called nodes. A node exists by itself 
and can be manipulated in a global way. It is described on one 
side by its specific properties and on the other side by its 
interactions with the other nodes. 

The node in itself its attributes 

The attributes of a node describe its intrinsic properties. For 
example, every C module has an associated text file. This text 
file is an atibute of the node implementing the module concept. 
Furthermore, an attribute is a way to connect a node with 
existing tools and resources. For instance, declaring the 
athibutes “source” and “object” of type “file” in a module makes 
it accessible to an existing compiler. 

Attributes are named functional relationships between a node 
and typed values. These attribute values belong to the types 
boolean, integer, file, date, bounded string, and node. Node 
means that the type of an attribute can be that of a node (see 
further for node typing): This gives the possibility for a node to 
refer to another node through an attribute. The future version of 
the GDL will include type constructors as sets, multisets and 
lists. 

The node in the world: its graph 

The graph part of a node represents its interactions with other 
nodes. A graph is composed of nodes (its vertices) and 
arrows (its edges). An arrow can link a source to a target node 
and so establishes a binary relationship between two entities. 

Vertices of a graph are nodes: this is a structuration mechanism 
for Adage entities. This kind of structuration is more general 
that just a strict hierarchy. It can be used to represent functional 
decomposition or more complex aggregation relationships. A 
same node may appear in several graphs as it may be seen 
according to different viewpoints. 

Arrows are very thin entities. They have neither name nor 
attributes (but they have a type). They are just a light link 
between two nodes in the context of another node. Heavy or II- 
ary relationships will be described through the use of additional 
nodes. The semantics of an arrow is very broad: it can represent 
a constraint, an aggregation, a “part-of’ link or any kind of 
relationships (function calls, include dependencies, etc.). 

A powerjkl structuring 

In the Adage model, relationships, as well as attributes, are 
encapsulated inside the nodes, in contrast with PCTE or usual 
extensions of the E/R model where they are objects of the same 
level as the entities. That offers rich structuration means. Small 
specialized graphs and sub-graphs show immediatly numerous 
different points of view upon the database in a much more 
efficient way than in big flat graphs where filtering is necessary. 

Each node is typed: The type of a node describes its structure, 
i.e. it specifies the attributes types and which types of nodes 
and relations can belong to its graph. Therefore, the type of a 
node is also represented as a node. Thanks to this property 
(self-reflexivity), types and instances are manipulated in a 
uniform way. The creation of an entity is done through the 
instantiation of its type. The type allowing the creation of other 
GDL types is called r T describes its own type. 

Inheritance mechanisms are useful to make very fine-grained 
descriptions. The GDL sub-typing (or derivation) must be 
seen as a kind of specialization (similar to single inheritance in 
the object paradigm). Thus, if T2 is derived from Tl, all 
instances of T2 have the properties described by Tl. A type, 
derived from an existing one, defines additional attributes and 
specializes the base graph. An arrow is derived by specializing 
its source and its target. All the GDL types are derived, directly 
or transitively, from the weakest type called U. tr is also 
derived from V. A graph typed v has no attributes and 
possesses any kind of graph. 

5 Implementation of the data model 

5.1 Extendability 

In a flexible framework like Adage, it must be possible to define 
new types of data to take into account any evolution of the 
outside world: new organization, adoption of new tools.. . This 
can be achieved in Adage through the derivation and the self- 
reflexion properties: Adding a new type is done by extending an 
existing one (derivation) and this is possible because types are 
accessible in the system as data (self-reflexion). 

Therefore we built an incremental GDL compiler. The GDL 
compiler is responsible for translating a textual description of 
nodes into data owned by the system. Adding new types (or 
new instances of existing types) is just compiling a GDL 
program unlike many database management systems (DBMS), 
where extending a relationship forces to compile the whole 
schema again. 

5.2 Granularity issues 

What should be modeled, what kinds of objects should appear 
in a GDL modelization ? This problem is related to granularity 
of the description: the smallest object that can be managed. In a 
tine-grained description, the objects taken into account can be 
very small and the modelization very accurate (but “accurate” is 
not “pertinent” nor “useful”). One of the main motivations of 
our design is the ability to implement entities lighter than a file 
but heavier than a tuple in a relational database. They will be for 
example SADT boxes, PERT diagrams, SDL schemas, call 
graphs or hypertext structures.. . 
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module : T : : U { 
attributes : 

dot : documentation; 
owner : string32; 

graph : 
depends_on : :R : 

module-Mule; 
1; 

Chodule : T :: mdule { 
attributes : 

source : file; 
object : file; 

graph : 
includes :: depends-on : 

Mule-Xmzdule; 
calls :: depends-on : 

Cmdule-Xmodule; 
1; 

documentation : T :: U { 
attributes : 

text : file; 
); 

hash-code : Cmdule { 
attributes : 

dot : hash-dot; 
owner : "john"; 
source : #hash-c0de.c; 
object : #hash-code.0; 

graph : 
includes : 

hash-code-Xtring, 
hash-code->stdio; 

calls : 
hash-code->string; 

1; 

Fig, 4: A GDL declaration. 
In this toy example, we define a module as an entity with an associated documentation and an owner. The graph we associate 
arbitrarily with a module represents its direct dependancies. So, an instance of a module appears in its graph as the source of ah 
the arrows, the targets of these arrows are the modules used to built the previous one. 
Three types are defined: module, documentation, Cmodule ; hash-code is an instance of Cmodule. module and documentation 
are instances of T and inherit from U. Cmodule is an instance of T and is a specialization of module. The arrows of a module 
are of one type, depends-on, a specialization of the relation R the universal relation inherited from CI. depends-on is specialized 
in includes and calls for Cmodule. The value of the attribute owner of hash-code is john. The vertices of hash-code are 
hash-code itself, string and s&o (we assume that string and stdio types are sub-types of Cmodule). 

5.3 Persistency 

GDL entities must be implemented in a persistent fashion. A 
solution could have been to put an interface on top of a classical 
(relational) DBMS [24]. But the relational paradigm is not well 
suited for storing persistent GDL graphs, because of the 
following drawbacks: 
- A graph representation must be split in several tuples, 

loosing its perception as a whole and making its 
manipulation difficult and inefficient ; 

- A tuple exists through its values while a node needs to have 
an identity, i.e. a proper existence independently of its 
graph and the value of its attributes at a given time; 

- A usual relational database is well suited to manage a lot of 
tuples of few types; on the opposite, the Adage environment 
is expected to manage many types; 

- Navigation in relational databases is made by iterations upon 
tuples while browsing activities, very numerous in SSEs 
[ 171, needs navigation from object to object following the 
relationships that link them. 

As a matter of fact, traditional DBMSs simply fall far short of 
providing a viable base on which computer aided-design, 
software environment or any intensive data application can be 
built [14][10]. 
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An object oriented DBMS would have been more suitable. But 
the relational aspects of graphs would have been costly to 
manage. Another problem is that the kernel libraries that 
implement GDL concepts are part of the Adage services. Thus it 
is important to reduce the gap between the application programs 
and the data management functionalities. This problem is well 
known under the term impedance mismatch [25]. 

For all these reasons, the GDL implementation is supported by 
adding persistency [4] to the system language (the language 
giving access to the kernel). This strategy differs from the usual 
one as in PCTB [27] or CAIS: the use of an external data 
manager through a functional interface. If the functional 
interface makes the kernel accesses easier from various 
programming languages, the advantage of our approach is to 
remove all the impedance mismatch problems by embedding the 
data management in the system language. 

The system language for Adage is C++ [31]. PRESTO 
(PeRsistent Elementary Swappable Tiny Objects) is the 
package that adds persistency to C++ [ 181. In PRESTO, the 
persistent objects are those derived from a specific class called 
“resource”. The class descriptions are independent from the 
persistency concept, providing transparency to C++ 



programmers. Moreover, thanks to the encapsulation features 
offered by C++ Qrivate, protected or public visibility closes, 
const qualifier.. .), the security ensured by the kernel interface is 
equivalent to the security that can be enforced through a 
functional one. 

The concurrent access problems are not taken into account by 
PRESTO. They will be handled by the workspaces management 
described in the section working in team. 

5.4 L3: the Low Level Library 

The Low Level Library (LS) is the implementation of the GDL 
entities upon PRESTO objects: storage of the attributes, of the 
graphs... It assures some constraints satisfaction such as 
referential integrity: When a vertice is suppressed in a graph, all 
the pending relationships are also deleted. L3 also maintains the 
inverse of some structural relations to implement efficiently 
some requests: For example, maintaining the inverse of 
“belong” speeds up the computation of all the graphs containing 
a given node. 

6 GRaaL 

The set of data managed through Adage can be manipulated 
through the language named GRaaL (Graph Request 
Language). The design of GRaaL is driven by three goals: 
- to offer standard arithmetic and graph arithmetic, 
- to build, encapsulate and trigger tools, 
- to provide a graphical representation for Adage entities. 

The language is supported by an interpreter: graal. This 
interpreter acts as a glue between the tools, provides a graphical 
user-interface and implements the traditional concept of request 
language in database area. 

GRaaL can be seen as a language managing persistent data, 
where the data definition part is handled by the GDL. The GDL 
part may be explicitly called in a graal program, to create a node 
for example. GRaaL is a language based on the notion of 
function and its top-level consists in reading, evaluating and 
printing expressions. As usual with interpreted languages, type 
checking is delayed through the running of the interpreter. 

6.1 Arithmetics in GRaaL 

GRaaL expressions are used to compute new graphs, to browse 
among data, to retrieve information and so on. Expressions 
involving side-effects (attributes affectation, insertion or 
deletion of a vertice or an arrow) are used to update GDL 
entities. That is why GRaaL includes arithmetics on simple 
types (integer, boolean, bounded string, file, date) and on 
nodes. 

Expressions are built with system defined- and user’s defined 
functions. Functions are fist citizen values in GRaaL and, for 
example, they can be arguments of other functions. The 
capacity for a user to define its own functions (and to call them 
recursively) enables the computation of transitive closures and 

the use of powerful graph algorithms like the recursive descent. 
Such requests are useful to compute for example the set of 
entities depending on a node through a given relation. They are 
not provided in usual relational algebra but exist in some 
extended DBMS [7] [ 11. 

The graph arithmetic can be divided in two parts. On the one 
hand, the simple arithmetic allows the user to know if a node 
belongs to a graph, the number of nodes or arrows in a graph, 
and so on. On the other hand, the complex arithmetic computes 
new graphs through union, difference, intersection, copy.. , of 
graphs. The result is an ephemeral graph that exists only during 
the current graal session. The type of a computed graph is u 
the less constrained node type. 

6.2 Streams 

Browsing through the organization is done by means of 
iterators. Iterators are a kind of stream [3]. Built-in iterators 
list nodes satisfying a basic criterion: a given name, a given 
type, the membership of a given graph, source or target of a 
given vertice in a given graph, etc. User’s iterators can be built 
by filtering and/or by applying a function to each element of an 
iterator. 

Partial application of user’s functions (building a new function 
by instantiating some arguments of another function) is very 
powerful to create new iterators (see figure 5). 

Another kind of stream is used to monitor graal input/output. 
This includes reading and writing tiles and is also the standard 
mechanism to trigger tools and to communicate with them. 

sum-graph = lambda (sum, inc) 
{ sum = +(sum, clone(inc)) 1; 

flat = lamkia (x, result) 
{ for-node(x) 1 sum-graph(result), 

result 1; 

flat-module = la&da (x) 
{ if (x :< @module, 

flat (x, new-u0 ), 
?("arg not a nrxMe\n")) 1; 

Fig. 5: A GRaaL program 
Vith the data defined in fig. 4, the functicmflac-module creates the grapl 
esult of the union of the vertices of the argument. This can be used tl 
lbtain the dependence graph of a module.flaf-module verities fmt that it 
rgument is of a sub-type of module. The function sum-grph takes tw 
rguments and substitutes the union of the two for the first. The partia 
lpplication of sum-graph, “sum-graph (result)” inflat. produces a function 
hat adds its argument to the graph result. This function gets its successiv’ 
arguments from the iterator for-node.for-node lists the vertices of 
Faph.The function clone is used to copy a graph. new-u creates an empt 
qhemeral graph. The question mark operator prints a value. 
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Fig. 6: Hard copy of the window owned by the user interface 

6.3 User-interface 

The last kind of stream supplies graphical interactions. By 
default, the grail top-level is connected to a listener. The listener 
provides a textual input/output of graal values. At any time, it 
can be changed and connected to a window-stream to display 
graphically the results of the expressions. Such a display is the 
support for pop-up menus, mouse driven selections, etc. 

Incrementality is introduced into the user interface with two 
features: styles and user’s menus. The graphical appearance 
of a node, its style, depends on its type. Thus, it can be 
represented as the list of its vertices, as the value of its 
attributes, as the graphical drawing of its graph, as the viewing 
of one of its file attributes and so on. The style of a node can be 
changed on-the-fly. 

System menus are composed of syntactic operations, as nodes 
layout, and generic operations, as cut and copy. User’s menus 
propose a set of user’s selected GRaaL functions. They are 
used as short-cuts to call these functions on the current 
selection. Menus are linked with styles and thus, only the 
correct operations (w.r.t. the type of the selection) are 
accessible to the user. 

7 Tools integration and tools 
building 
The primitive activities are usually performed by invoking tools. 
Tools fall in several categories: configuration management, 
document preparation, language support, project management 
and so on. Openness and flexibility are achieved by enabling the 
building and the integration of new tools, to face new needs, 
without altering the architecture and the pre-existing tools. Our 
intention is to provide a high degree of integration of tools in the 
Adage environment. 

Each tool manages its objects according to an internal object 
model and stores them according to its own representation. 
Generally, a tool can be considered as an entity providing 
products for- and using products provided by other tools [32]. 
To integrate tools, the formalism of the database must be 
adapted to the data formalism required by tools: This is 
identified as a communication mechanism. It differs according 
to whether tools are pre-existent or built. 
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7.1 Pre-existing tool integration 

The integration of the pre-existing tools is done via a translation 
into a private representation. So, the translation is the way to 
embed existing tools and is carried out through GRaaL. A naive 
illustration can be the generation of the “makefile” 
corresponding to some relationships between nodes in order to 
use the unix “make” tool. The general mechanism to trigger a 
tool consists in getting the data from Adage and converting them 
into the tool data representation. Then the tool runs and the 
results are possibly collected and converted into the Adage 
framework. Moreover, to ensure entities consistency, the tool 
effects have to be propagated. 

The user-interface and GRaaL are services supporting tools 
integration (common user-interface. data collectihg and 
translation). UTIL3 (User-action Triggering In L3) 
implements daemons on top of L3 for constraints propagation 
and for actions triggering in response to data updates. 

7.2 New tools building 

Building a new tool can elude the problem of data 
representation: A new tool should adopt the Adage 
representation of the data; integration is achieved by sharing of 
representation. This is done using L3 and UTIL?. A graphical 
library, ADAGIO (Adage Input Ouput), extending the 
SpokeWindows window manager is also provided to represent 
graphs easily. 

Tools can be built in GRaaL for prototyping purposes or if 
efficiency is not the critical point. The benefits of using GRaaL 
are multiple: powerful control structures for data browsing and 
graph manipulations, interactivity of an interpreted language, 
integration with graphical interaction and so on. 

7.3 Using tools from the environment 

The interface between the different tools must be standardized in 
order to use them easily: A good integration reduces the effort 
of adaptation by the user and rationalizes the cost of the 
development of a tool producer. 

GRaaL is the standard Adage command language. It plays the 
role of a shell for a tool, verifying the conditions of application 
and the correctness of arguments, before triggering it. 

8 Working in team 

Considering the information sub-system as a monolithic server 
makes the concurrent access management easier but is a 
bottleneck for the data management. This is moreover increased 
by the fact that most of the software development transactions 
are long-lived. It is why the concept of a centralized server, 
although suitable for business applications, is not applicable 
here. A solution could be to split and distribute the server 
among the entities: each entity being responsible for processing 

the requests it is concerned with, as in the actor paradigm. But 
this is unmanageable because of the too many servers. 
Moreover, which entity should be in charge of answering a 
request concerning several entities? 

8.1 Workspace 

A better response is brought by the concept of workspace; we 
call workspace a set of entities involved in a task. Tasks are 
related to the unavoidable division of the work in big projects. 
Following NSE trends [2], the concurrence control scheme 
consists in making the task proceed locally on a copy of the 
entities needed for its achievement. The needed entities are 
copied only when required in the task private workspace. When 
the results are available, they must be integrated in the 
repository of the father task. This paradigm favours contractual 
working opposed to data sharing. Such a scheme is very 
flexible. For example, Adage workspaces are able to emulate 
the ISTAR contract database concepts [ 121. 

Unfortunately, a task is realized using multiple tools and the 
problem of monitoring concurrent activities is not solved and 
even worse, is duplicated. Indeed, tools have to be monitored 
on each workspace and workspaces have to be synchronized. 

8.2 Intra workspace management 

Monitoring tools on each workspace is solved by enforcing a 
two points policy. On the one hand, workspaces cannot be 
shared between user-interfaces. On the other hand, a user- 
interface can share its current workspace with the tools it 
triggers but they are serialized. This strategy is not ensured by 
tools themselves but by user-interfaces. However, stand alone 
tools can use a standard service to subscribe the same behavior. 
Note that graal is carefully designed to avoid interferences with 
tool working. 

Tools that must run concurrently have to work on separate 
workspaces. The multiplicity of workspaces is not a problem 
because they are relatively light objects (five files in the current 
implementation). 

This policy is very strict but avoid the multiplication of lock 
mechanisms. As a matter of fact, workspaces are the 
counterpart of the lock mechanisms (as, for example, 
implemented in PCI’E), with the advantages of not pre-empting 
ressources but with the inconvenient of the synchronization 
problems. 

8.3 Inter workspaces management 

Workspaces are organized in a hierarchical tree. A father 
workspace is the integration area for all its child workspaces. If 
an entity is not present, it is searched in the ancestors and 
copied. Later, workspaces must be joined up and this is done 
by an integrator service. So a workspace is characterized by 
three parameters: 
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- The father is used to search an entity, and that recursively. 
- A copy function interns an entity in the current workspace. 

Because the entities can refer complex attributes, copy 
functions can differ by the level of the copy. As an example, 
consider the status of a file attribute: It can be shared 
between versions of the same entity or private to each 
version. 

- A join function merges the entities to its father workspace. 

Different schemes for object management exist, from the safest 
to the most lax. The safest scheme is based on a derivation/lock 
model [5] and ensures, in addition to the concurrency control, a 
versioning mechanism. Each merge of workspaces creates a 
new version of the involved entities, keeping so a trace of the 
development. For that, a full copy function is employed. The 
merge function should be optimized not to duplicate unchanged 
objects. The lax scheme implements the fact that the last merged 
workspace “wins”, like usual text editors running on the same 
file. An intermediate issue consists in a full copy and a user- 
directed merge through a tool similar to the unix “diff ‘. This 
tool presents interactively to the user the pair of conflicting 
entities and it is his responsibility to merge them cleverly. 

We can note that graal integrates the concept of workspace at the 
user-level. It can browse on workspaces and can create a child 
workspace to run a tool on it. JaM, Join and Merge 
workspaces, manages workspaces: creation and integration. 

9 Conclusion 

Adage is based on Unix and runs on SUN 3, SUN 4 under OS 
3.4 or 4.0 and DEC Station 3100 under Ultrix. An Adage 
environment exists as soon as data am described: data storage, 
standard shell and graphical user-interface are ready to use 
tools. After that, the environment grows incrementally. 

A first prototype exists, developed in 1987 and continued in 
1988. This prototype validates the concepts and was used in the 
Esprit project METEOR. It is built upon a ftrst version of the 
GDL, not powerful enough (no inheritance, no attributes, no 
node sharing.. .). 

In 1988 has started the development of the current version of 
Adage. Presently exist PRESTO, L3, UTIL3, ADAGIO, GDL 
compiler, graal and the notion of hierarchical workspaces. We 
are currently working on a version of JaM integrating the 
derivation/lock model and we are studying the automatic 
derivation of actions to maintain constraints from a formal 
specification. 
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