
Design

Abstract

Decisions for the Incremental Adage Framework

Jean-Louis Giavitto Guy Rosuel Agnbs Devarenne Anne Mauboussin”

Laboratoires de Marcoussis - CGE Corporate Research Center
Route de Nozay

91460 Marcoussis, FRANCE

Adage is an incremental software development support
environment**. Adage architecture is underlined by the concept
of wide-spectrum services around a common data model, the
GDL. This model extends the entity-relationships model and
provides useful concepts to support genericity and
incrementality like inheritance and self-reflexion. Services
respond both to end-user and administrator requirements. The
last point is achieved through an active help for tool integration
and tool building and so for making the environment evolve to
cover the needs.

1 Introduction

Adage (Adaptable graph-based environment) is an
incremental software development support environment @SE).
The aim of a SSE is twofold:
- to integrate the different tools and products used and

produced through the different phases of the software life
cycle, e.g. to provide facilities to represent the various
entities involved in the software development process;

- to enable the management and the evolution of these entities,
by introducing a comprehensive support for the user’s
actions, monitoring the tools and maintaining the
constraints.

The kind of data an environment can manage, is strongly related
to the phases of the life cycle it addresses. Generic
environments, as opposed to ad-hoc environments, have the
capacity to define the data handled by the system. The ability to
cover different activities depends on the expressive power of the
data model. Nevertheless, an adequate data model is not
sufficient to define a generic SSE. A framework must also be
provided, where tools are integrated and where users and tools
can cooperate. Moreover such an integration must be
incremental following the natural evolution of the target
environment.

* Consultant from LIP, Universite Pierre et Marie Curie, 4 Place Jussieu
75252 Paris Cedex 05.
** This project has been partially supported by the Esprit project
METEOR P432 and is supported by AJXATEL funding.

Tool to tool cooperation is a difficult problem: Each tool has its
own point of view on the data it has to manage. And even if
tools share a common point of view on entities, each one has its
own internal representation of them.
User to tool cooperation, and more generally users to
environment cooperation, is usually left back in user-interface
area. But more than graphical gadgets, the user-interface of an
environment has to provide useful and suitable concepts to
browse data, trigger tools in a cohesive and uniform way,
manually create and update entities.. .

Therefore, in a multi-users, multi-tools environment, data
accesses and data updates must be monitored to avoid
inconsistency. Nevertheless development should proceed in
parallel as far as possible.

The purpose of this paper is to expose the motivations of the
Adage project and the consequent design decisions. We present
in the following sections the goals of the project, the
architecture of the Adage environment, the underlying data
model, the status of the user-interface and of the tools and
finally the concurrence problems which arise in a multi-users
multi-tasks framework. Orthogonal to these investigations,
incremental&y and applicability (choice of the right technology),
which influenced the design, appear all along the text.

2 An incremental environment

Generic@ is the ability to generate an environment from a
description. The benefits of this approach has been largely
demonstrated, see for example Alma [23], Eclipse [13],
Concerto [28], GIPE [9]. . . The nature of the final environment
depends on the kind of data that can be described. For example,
in GIPE, several description languages exist to describe
grammars and manipulate syntax trees (LDF). It enables the
generation of language centered environments. Here, the
genericity lies in the independence of a language, but not of life
cycle phases. What we wanted to produce was a software
factory dedicated to programming in the large, independent of
languages, methods and tools. From this point of view Adage
[191 belongs to the family of environments such as GraphTalk
[21] and The Virtual Software Factory [30]. Adage relies on a
data model able to describe the data occurring within and
exchanged between the various phases [l 11.

0270.5257/90/0000/0086/$01 .OO 0 1990 IEEE 86 Recommended by: Dick Fairley

The data model has to handle various kinds of software entities
and relationships 1201: This naturally leads to the use of a kind
of entity-relationship model [8]. It induces some ideological
consequences, e.g. the development process is data-oriented
and not activity-oriented. Moreover, the implementation of the
model, the information system, constraints the data that can be
reasonably managed.

Related to the various activities, several formalisms can cohabit
and must be supported together. Genericity solves this problem
of profusion of needs. Besides, data organization and tools are
evolving in time and the environment must be able to follow
them. Incrementality improves the concept of genericity: At any
time, the environment can be extended to handle evolution.
Incremental&y is a key to secure the future.

Producing an incremental environment w.r.t. the previous
motivations implies multiple design decisions: choice of the data
model, choice of an architecture, choice of task management,
etc.

3 Wide spectrum services
A data model theoretically handles all the entities appearing in a
software development process. However, the underlying
implementation sets a barrier: the granularity of the data that are
pertinent to manage. The problem is not to draw back these
representation limits but to integrate the tools that fill the holes
in the description of the entities. For example, it is not
reasonable for a programming in the large environment to
represent the syntax tree of a program; the environment
delegates this work to the compiler. What we do need are ways
to build, connect and integrate tools. The last point means, in
particular, to be able to handle the interaction between entities
owned by the environment and entities known by the tools.

So we prefer to see an environment as a set of services rather
than a set of fixed tools. The concept of service plays the same
role for the architecture as the genericity for the data: Services
can be extended, reused and specialized to fit evolution and
needs. A service is defined through three points of view, the
user of the service, its nature and its domain.

3.1 Adage services

The Adage workbench is not only intended for the end-user of
the environment, but addresses tools, environment builders,
administrators, expert and naive end-users. Naturally,
competences may overlap and for example, an expert user often
increases the common set of services provided by the
administrator with its own tools. Services provide help to build
tools in the following domains: data storage, data management
and data visualization.

Adage services go from basic libraries (persistency and
graphical display) up to ready-for-use tools. A tool can be
integrated at different levels according to the services it requires.

A priori, the higher the used services are, the easier the
integration is. The coupling between a tool and the framework
is illustrated in figure 1.

L3 \

/ PRESTO \

pig. 1: The Adage framework as an ecosystem for the tools.
BAG10 is used to display graphs for speech recognition in the SPI@
:sprit project and to display version graphs in the PEGASE environmen
51

3.2 Classes of services

Higher Adage services use lower services. The services have
different interfaces; we describe them very briefly, some of
them are detailed in the rest of this paper:

l Generic libraries:
PRESTO (see $5.3) is a generic library introducing
persistency in tbe C++ language. A second one is a portable
window manager, SpokeWindows [22]: It ensures a
common graphical shelf based either on X or on Sunview
displays [161 [29].

l Kernel libraries:
On top of the generic libraries, two kernel libraries are built,
L3 (see $5.4) and ADAGIO. L3 implements Adage entities.
ADAGIO extends SpokeWindows to display graphs,

l “Compilers”:
The GDL incremental compiler (see 54) translates a textual
description of Adage entities into data owned by the
environment. UTIL3 is used to maintain constraints among
the data. It compiles a description of the changes that have
to be monitored by the information system, to customize the
genetic tools.

l Generic tools:
Graal (see $6) is the standard Adage shell and it is used to
both manage data and provide a graphical user-interface.
JuM (see §8) is the tool used to manage workspaces.

PRESTO, SpokeW.
L3, ADAGIO,

uTIL3
GDL
JAM
tools

GRaaL

Fig. 2: Who does what and how.

l Instantiations:
Some Adage instantiations are interesting enough to be
embedded as additional services. For example, the
documentation of Adage is represented through Adage
entities managed in the Adage framework.

Figure 2 is an attempt to map users, services and activities. We
qualify as wide the Adage services because they address several
users and concern several activities.

4 A specific data model

4.1 An extension of the Entity-Relationship
model

The Adage data model had to fit well the software engineering
needs, being able to represent the main characteristics of the
data managed by a programming in the large environment.
Multiple objects are involved, often numbering in the
thousands. Elementary objects, e.g. operating system
resources, have to be gathered into consistent entities, because
they are different facets of pertinent abstractions for software
developers. Unfortunately, such entities are meaningful only in
the developer’s mind and exist virtually only as long as the
developer maintains coherences between the basic objects.

Each tool sees entities from its own viewpoint, i.e. it uses only
a subset of its facets. For example, the abstraction “module”
consists of a documentation, a source file, an object file.. ., that
must be managed in an integrated way because they all represent
the same logical entity with a well defined meaning for the end-
user. The documentation is the point of view of the module that
concerns the documentation editor, while the source and object
files concern the compiler, as illustrated in figure 3.

To be useful, abstractions must be able to be specialized: a
Cmodule is also a module; and entities must be aggregated: a
specification is also the set of the used sub-specifications.
Aggregation, composition, hierarchy, refinement arc the way to
structure the world of the entities. All these characteristics can
be summed up by saying that the concerned objects are complex

88

and structured entities, with many arbitrary relationships
between them. The goal of the data model in a SSE is to
represent such entities and relationships; it is the purpose of the
Adage framework to support the life cycle of theses objects.

Standard uses of the Entity/Relationship model suffer of too
many lacks to represent such objects [26]:
- Data structuring is too flat, composition and specialization

do not exist;
- Complex attributes are not allowed,
- Viewpoints are rather sub-schemas than real structuring;
- Hierarchical decomposition is uneasy, refinement needs an

explicit relationship between the refined object and its
refining components.

That led us to extend the standard E/R model into a model based
upon structured typed graphs. Graphs are a universal concept to
model objects and relationships. The Adage data model
increases the expressive power of the E/R classical approaches
with powerful means of data structuring. Our model is
embodied in a language, the Graph Description Language
(GDL). Other projects, as Damokles [lo] [15], have already
adopted this kind of models but without providing specialization
and self-reflexion (see below).

Fig. 3: A module in the Adage point of view versus the
tools point of view.

4.2 GDL nodes 4.3 Typing

The basic GDL entities are called nodes. A node exists by itself
and can be manipulated in a global way. It is described on one
side by its specific properties and on the other side by its
interactions with the other nodes.

The node in itself its attributes

The attributes of a node describe its intrinsic properties. For
example, every C module has an associated text file. This text
file is an atibute of the node implementing the module concept.
Furthermore, an attribute is a way to connect a node with
existing tools and resources. For instance, declaring the
athibutes “source” and “object” of type “file” in a module makes
it accessible to an existing compiler.

Attributes are named functional relationships between a node
and typed values. These attribute values belong to the types
boolean, integer, file, date, bounded string, and node. Node
means that the type of an attribute can be that of a node (see
further for node typing): This gives the possibility for a node to
refer to another node through an attribute. The future version of
the GDL will include type constructors as sets, multisets and
lists.

The node in the world: its graph

The graph part of a node represents its interactions with other
nodes. A graph is composed of nodes (its vertices) and
arrows (its edges). An arrow can link a source to a target node
and so establishes a binary relationship between two entities.

Vertices of a graph are nodes: this is a structuration mechanism
for Adage entities. This kind of structuration is more general
that just a strict hierarchy. It can be used to represent functional
decomposition or more complex aggregation relationships. A
same node may appear in several graphs as it may be seen
according to different viewpoints.

Arrows are very thin entities. They have neither name nor
attributes (but they have a type). They are just a light link
between two nodes in the context of another node. Heavy or II-
ary relationships will be described through the use of additional
nodes. The semantics of an arrow is very broad: it can represent
a constraint, an aggregation, a “part-of’ link or any kind of
relationships (function calls, include dependencies, etc.).

A powerjkl structuring

In the Adage model, relationships, as well as attributes, are
encapsulated inside the nodes, in contrast with PCTE or usual
extensions of the E/R model where they are objects of the same
level as the entities. That offers rich structuration means. Small
specialized graphs and sub-graphs show immediatly numerous
different points of view upon the database in a much more
efficient way than in big flat graphs where filtering is necessary.

Each node is typed: The type of a node describes its structure,
i.e. it specifies the attributes types and which types of nodes
and relations can belong to its graph. Therefore, the type of a
node is also represented as a node. Thanks to this property
(self-reflexivity), types and instances are manipulated in a
uniform way. The creation of an entity is done through the
instantiation of its type. The type allowing the creation of other
GDL types is called r T describes its own type.

Inheritance mechanisms are useful to make very fine-grained
descriptions. The GDL sub-typing (or derivation) must be
seen as a kind of specialization (similar to single inheritance in
the object paradigm). Thus, if T2 is derived from Tl, all
instances of T2 have the properties described by Tl. A type,
derived from an existing one, defines additional attributes and
specializes the base graph. An arrow is derived by specializing
its source and its target. All the GDL types are derived, directly
or transitively, from the weakest type called U. tr is also
derived from V. A graph typed v has no attributes and
possesses any kind of graph.

5 Implementation of the data model

5.1 Extendability

In a flexible framework like Adage, it must be possible to define
new types of data to take into account any evolution of the
outside world: new organization, adoption of new tools.. . This
can be achieved in Adage through the derivation and the self-
reflexion properties: Adding a new type is done by extending an
existing one (derivation) and this is possible because types are
accessible in the system as data (self-reflexion).

Therefore we built an incremental GDL compiler. The GDL
compiler is responsible for translating a textual description of
nodes into data owned by the system. Adding new types (or
new instances of existing types) is just compiling a GDL
program unlike many database management systems (DBMS),
where extending a relationship forces to compile the whole
schema again.

5.2 Granularity issues

What should be modeled, what kinds of objects should appear
in a GDL modelization ? This problem is related to granularity
of the description: the smallest object that can be managed. In a
tine-grained description, the objects taken into account can be
very small and the modelization very accurate (but “accurate” is
not “pertinent” nor “useful”). One of the main motivations of
our design is the ability to implement entities lighter than a file
but heavier than a tuple in a relational database. They will be for
example SADT boxes, PERT diagrams, SDL schemas, call
graphs or hypertext structures.. .

89

module : T : : U {
attributes :

dot : documentation;
owner : string32;

graph :
depends_on : :R :

module-Mule;
1;

Chodule : T :: mdule {
attributes :

source : file;
object : file;

graph :
includes :: depends-on :

Mule-Xmzdule;
calls :: depends-on :

Cmdule-Xmodule;
1;

documentation : T :: U {
attributes :

text : file;
);

hash-code : Cmdule {
attributes :

dot : hash-dot;
owner : "john";
source : #hash-c0de.c;
object : #hash-code.0;

graph :
includes :

hash-code-Xtring,
hash-code->stdio;

calls :
hash-code->string;

1;

Fig, 4: A GDL declaration.
In this toy example, we define a module as an entity with an associated documentation and an owner. The graph we associate
arbitrarily with a module represents its direct dependancies. So, an instance of a module appears in its graph as the source of ah
the arrows, the targets of these arrows are the modules used to built the previous one.
Three types are defined: module, documentation, Cmodule ; hash-code is an instance of Cmodule. module and documentation
are instances of T and inherit from U. Cmodule is an instance of T and is a specialization of module. The arrows of a module
are of one type, depends-on, a specialization of the relation R the universal relation inherited from CI. depends-on is specialized
in includes and calls for Cmodule. The value of the attribute owner of hash-code is john. The vertices of hash-code are
hash-code itself, string and s&o (we assume that string and stdio types are sub-types of Cmodule).

5.3 Persistency

GDL entities must be implemented in a persistent fashion. A
solution could have been to put an interface on top of a classical
(relational) DBMS [24]. But the relational paradigm is not well
suited for storing persistent GDL graphs, because of the
following drawbacks:
- A graph representation must be split in several tuples,

loosing its perception as a whole and making its
manipulation difficult and inefficient ;

- A tuple exists through its values while a node needs to have
an identity, i.e. a proper existence independently of its
graph and the value of its attributes at a given time;

- A usual relational database is well suited to manage a lot of
tuples of few types; on the opposite, the Adage environment
is expected to manage many types;

- Navigation in relational databases is made by iterations upon
tuples while browsing activities, very numerous in SSEs
[171, needs navigation from object to object following the
relationships that link them.

As a matter of fact, traditional DBMSs simply fall far short of
providing a viable base on which computer aided-design,
software environment or any intensive data application can be
built [14][10].

90

An object oriented DBMS would have been more suitable. But
the relational aspects of graphs would have been costly to
manage. Another problem is that the kernel libraries that
implement GDL concepts are part of the Adage services. Thus it
is important to reduce the gap between the application programs
and the data management functionalities. This problem is well
known under the term impedance mismatch [25].

For all these reasons, the GDL implementation is supported by
adding persistency [4] to the system language (the language
giving access to the kernel). This strategy differs from the usual
one as in PCTB [27] or CAIS: the use of an external data
manager through a functional interface. If the functional
interface makes the kernel accesses easier from various
programming languages, the advantage of our approach is to
remove all the impedance mismatch problems by embedding the
data management in the system language.

The system language for Adage is C++ [31]. PRESTO
(PeRsistent Elementary Swappable Tiny Objects) is the
package that adds persistency to C++ [181. In PRESTO, the
persistent objects are those derived from a specific class called
“resource”. The class descriptions are independent from the
persistency concept, providing transparency to C++

programmers. Moreover, thanks to the encapsulation features
offered by C++ Qrivate, protected or public visibility closes,
const qualifier.. .), the security ensured by the kernel interface is
equivalent to the security that can be enforced through a
functional one.

The concurrent access problems are not taken into account by
PRESTO. They will be handled by the workspaces management
described in the section working in team.

5.4 L3: the Low Level Library

The Low Level Library (LS) is the implementation of the GDL
entities upon PRESTO objects: storage of the attributes, of the
graphs... It assures some constraints satisfaction such as
referential integrity: When a vertice is suppressed in a graph, all
the pending relationships are also deleted. L3 also maintains the
inverse of some structural relations to implement efficiently
some requests: For example, maintaining the inverse of
“belong” speeds up the computation of all the graphs containing
a given node.

6 GRaaL

The set of data managed through Adage can be manipulated
through the language named GRaaL (Graph Request
Language). The design of GRaaL is driven by three goals:
- to offer standard arithmetic and graph arithmetic,
- to build, encapsulate and trigger tools,
- to provide a graphical representation for Adage entities.

The language is supported by an interpreter: graal. This
interpreter acts as a glue between the tools, provides a graphical
user-interface and implements the traditional concept of request
language in database area.

GRaaL can be seen as a language managing persistent data,
where the data definition part is handled by the GDL. The GDL
part may be explicitly called in a graal program, to create a node
for example. GRaaL is a language based on the notion of
function and its top-level consists in reading, evaluating and
printing expressions. As usual with interpreted languages, type
checking is delayed through the running of the interpreter.

6.1 Arithmetics in GRaaL

GRaaL expressions are used to compute new graphs, to browse
among data, to retrieve information and so on. Expressions
involving side-effects (attributes affectation, insertion or
deletion of a vertice or an arrow) are used to update GDL
entities. That is why GRaaL includes arithmetics on simple
types (integer, boolean, bounded string, file, date) and on
nodes.

Expressions are built with system defined- and user’s defined
functions. Functions are fist citizen values in GRaaL and, for
example, they can be arguments of other functions. The
capacity for a user to define its own functions (and to call them
recursively) enables the computation of transitive closures and

the use of powerful graph algorithms like the recursive descent.
Such requests are useful to compute for example the set of
entities depending on a node through a given relation. They are
not provided in usual relational algebra but exist in some
extended DBMS [7] [11.

The graph arithmetic can be divided in two parts. On the one
hand, the simple arithmetic allows the user to know if a node
belongs to a graph, the number of nodes or arrows in a graph,
and so on. On the other hand, the complex arithmetic computes
new graphs through union, difference, intersection, copy.. , of
graphs. The result is an ephemeral graph that exists only during
the current graal session. The type of a computed graph is u
the less constrained node type.

6.2 Streams

Browsing through the organization is done by means of
iterators. Iterators are a kind of stream [3]. Built-in iterators
list nodes satisfying a basic criterion: a given name, a given
type, the membership of a given graph, source or target of a
given vertice in a given graph, etc. User’s iterators can be built
by filtering and/or by applying a function to each element of an
iterator.

Partial application of user’s functions (building a new function
by instantiating some arguments of another function) is very
powerful to create new iterators (see figure 5).

Another kind of stream is used to monitor graal input/output.
This includes reading and writing tiles and is also the standard
mechanism to trigger tools and to communicate with them.

sum-graph = lambda (sum, inc)
{ sum = +(sum, clone(inc)) 1;

flat = lamkia (x, result)
{ for-node(x) 1 sum-graph(result),

result 1;

flat-module = la&da (x)
{ if (x :< @module,

flat (x, new-u0),
?("arg not a nrxMe\n")) 1;

Fig. 5: A GRaaL program
Vith the data defined in fig. 4, the functicmflac-module creates the grapl
esult of the union of the vertices of the argument. This can be used tl
lbtain the dependence graph of a module.flaf-module verities fmt that it
rgument is of a sub-type of module. The function sum-grph takes tw
rguments and substitutes the union of the two for the first. The partia
lpplication of sum-graph, “sum-graph (result)” inflat. produces a function
hat adds its argument to the graph result. This function gets its successiv’
arguments from the iterator for-node.for-node lists the vertices of
Faph.The function clone is used to copy a graph. new-u creates an empt
qhemeral graph. The question mark operator prints a value.

91

Fig. 6: Hard copy of the window owned by the user interface

6.3 User-interface

The last kind of stream supplies graphical interactions. By
default, the grail top-level is connected to a listener. The listener
provides a textual input/output of graal values. At any time, it
can be changed and connected to a window-stream to display
graphically the results of the expressions. Such a display is the
support for pop-up menus, mouse driven selections, etc.

Incrementality is introduced into the user interface with two
features: styles and user’s menus. The graphical appearance
of a node, its style, depends on its type. Thus, it can be
represented as the list of its vertices, as the value of its
attributes, as the graphical drawing of its graph, as the viewing
of one of its file attributes and so on. The style of a node can be
changed on-the-fly.

System menus are composed of syntactic operations, as nodes
layout, and generic operations, as cut and copy. User’s menus
propose a set of user’s selected GRaaL functions. They are
used as short-cuts to call these functions on the current
selection. Menus are linked with styles and thus, only the
correct operations (w.r.t. the type of the selection) are
accessible to the user.

7 Tools integration and tools
building
The primitive activities are usually performed by invoking tools.
Tools fall in several categories: configuration management,
document preparation, language support, project management
and so on. Openness and flexibility are achieved by enabling the
building and the integration of new tools, to face new needs,
without altering the architecture and the pre-existing tools. Our
intention is to provide a high degree of integration of tools in the
Adage environment.

Each tool manages its objects according to an internal object
model and stores them according to its own representation.
Generally, a tool can be considered as an entity providing
products for- and using products provided by other tools [32].
To integrate tools, the formalism of the database must be
adapted to the data formalism required by tools: This is
identified as a communication mechanism. It differs according
to whether tools are pre-existent or built.

92

7.1 Pre-existing tool integration

The integration of the pre-existing tools is done via a translation
into a private representation. So, the translation is the way to
embed existing tools and is carried out through GRaaL. A naive
illustration can be the generation of the “makefile”
corresponding to some relationships between nodes in order to
use the unix “make” tool. The general mechanism to trigger a
tool consists in getting the data from Adage and converting them
into the tool data representation. Then the tool runs and the
results are possibly collected and converted into the Adage
framework. Moreover, to ensure entities consistency, the tool
effects have to be propagated.

The user-interface and GRaaL are services supporting tools
integration (common user-interface. data collectihg and
translation). UTIL3 (User-action Triggering In L3)
implements daemons on top of L3 for constraints propagation
and for actions triggering in response to data updates.

7.2 New tools building

Building a new tool can elude the problem of data
representation: A new tool should adopt the Adage
representation of the data; integration is achieved by sharing of
representation. This is done using L3 and UTIL?. A graphical
library, ADAGIO (Adage Input Ouput), extending the
SpokeWindows window manager is also provided to represent
graphs easily.

Tools can be built in GRaaL for prototyping purposes or if
efficiency is not the critical point. The benefits of using GRaaL
are multiple: powerful control structures for data browsing and
graph manipulations, interactivity of an interpreted language,
integration with graphical interaction and so on.

7.3 Using tools from the environment

The interface between the different tools must be standardized in
order to use them easily: A good integration reduces the effort
of adaptation by the user and rationalizes the cost of the
development of a tool producer.

GRaaL is the standard Adage command language. It plays the
role of a shell for a tool, verifying the conditions of application
and the correctness of arguments, before triggering it.

8 Working in team

Considering the information sub-system as a monolithic server
makes the concurrent access management easier but is a
bottleneck for the data management. This is moreover increased
by the fact that most of the software development transactions
are long-lived. It is why the concept of a centralized server,
although suitable for business applications, is not applicable
here. A solution could be to split and distribute the server
among the entities: each entity being responsible for processing

the requests it is concerned with, as in the actor paradigm. But
this is unmanageable because of the too many servers.
Moreover, which entity should be in charge of answering a
request concerning several entities?

8.1 Workspace

A better response is brought by the concept of workspace; we
call workspace a set of entities involved in a task. Tasks are
related to the unavoidable division of the work in big projects.
Following NSE trends [2], the concurrence control scheme
consists in making the task proceed locally on a copy of the
entities needed for its achievement. The needed entities are
copied only when required in the task private workspace. When
the results are available, they must be integrated in the
repository of the father task. This paradigm favours contractual
working opposed to data sharing. Such a scheme is very
flexible. For example, Adage workspaces are able to emulate
the ISTAR contract database concepts [121.

Unfortunately, a task is realized using multiple tools and the
problem of monitoring concurrent activities is not solved and
even worse, is duplicated. Indeed, tools have to be monitored
on each workspace and workspaces have to be synchronized.

8.2 Intra workspace management

Monitoring tools on each workspace is solved by enforcing a
two points policy. On the one hand, workspaces cannot be
shared between user-interfaces. On the other hand, a user-
interface can share its current workspace with the tools it
triggers but they are serialized. This strategy is not ensured by
tools themselves but by user-interfaces. However, stand alone
tools can use a standard service to subscribe the same behavior.
Note that graal is carefully designed to avoid interferences with
tool working.

Tools that must run concurrently have to work on separate
workspaces. The multiplicity of workspaces is not a problem
because they are relatively light objects (five files in the current
implementation).

This policy is very strict but avoid the multiplication of lock
mechanisms. As a matter of fact, workspaces are the
counterpart of the lock mechanisms (as, for example,
implemented in PCI’E), with the advantages of not pre-empting
ressources but with the inconvenient of the synchronization
problems.

8.3 Inter workspaces management

Workspaces are organized in a hierarchical tree. A father
workspace is the integration area for all its child workspaces. If
an entity is not present, it is searched in the ancestors and
copied. Later, workspaces must be joined up and this is done
by an integrator service. So a workspace is characterized by
three parameters:

93

- The father is used to search an entity, and that recursively.
- A copy function interns an entity in the current workspace.

Because the entities can refer complex attributes, copy
functions can differ by the level of the copy. As an example,
consider the status of a file attribute: It can be shared
between versions of the same entity or private to each
version.

- A join function merges the entities to its father workspace.

Different schemes for object management exist, from the safest
to the most lax. The safest scheme is based on a derivation/lock
model [5] and ensures, in addition to the concurrency control, a
versioning mechanism. Each merge of workspaces creates a
new version of the involved entities, keeping so a trace of the
development. For that, a full copy function is employed. The
merge function should be optimized not to duplicate unchanged
objects. The lax scheme implements the fact that the last merged
workspace “wins”, like usual text editors running on the same
file. An intermediate issue consists in a full copy and a user-
directed merge through a tool similar to the unix “diff ‘. This
tool presents interactively to the user the pair of conflicting
entities and it is his responsibility to merge them cleverly.

We can note that graal integrates the concept of workspace at the
user-level. It can browse on workspaces and can create a child
workspace to run a tool on it. JaM, Join and Merge
workspaces, manages workspaces: creation and integration.

9 Conclusion

Adage is based on Unix and runs on SUN 3, SUN 4 under OS
3.4 or 4.0 and DEC Station 3100 under Ultrix. An Adage
environment exists as soon as data am described: data storage,
standard shell and graphical user-interface are ready to use
tools. After that, the environment grows incrementally.

A first prototype exists, developed in 1987 and continued in
1988. This prototype validates the concepts and was used in the
Esprit project METEOR. It is built upon a ftrst version of the
GDL, not powerful enough (no inheritance, no attributes, no
node sharing.. .).

In 1988 has started the development of the current version of
Adage. Presently exist PRESTO, L3, UTIL3, ADAGIO, GDL
compiler, graal and the notion of hierarchical workspaces. We
are currently working on a version of JaM integrating the
derivation/lock model and we are studying the automatic
derivation of actions to maintain constraints from a formal
specification.

References

VI

PI

131

[41

PI

[61

[71

PI

191

WI

l.111

WI

v31

r.141

WI

S. Abiteboul, C. Beeri, On the power of languuges for rhe
manipulation of complex objects, Inria Research Report
No 846, May 1988.

E. W. Adams, M. Honda, T. C. Miller, 0 bject
Management in a CASE Environment, Proceedings of the
1 lth ICSE, Pittsburg, Pennsylvania, May 1989.

Arvind, J.D. Brock, Streams and Managers, Proceedings
of the 14th IBM Computer Science Symposium, 1983.

M.P. Atkinson, O.P. Buneman, Types and Persistence in
Database Programming Languages, ACM Computing
surveys, Vol. 19, No. 2, June 1987.

P. Bemas, M. Ferrario, A Database Structure For
Software Engineering Environment, METEOR Technical
Report t13/LRI/3-12, September 1987.

P. Bemas, The Pegase environment users’s manual,
METEOR Technical Report t13/LRI/5,1989.

S. Ceri, S. Crespi-Reghizzi, G. lamperti, L. Lavazza, R.
Zicari, Algres : a system for the specification and
prototyping of complex databases, IEEE software 1988.

P. Chen, The Entity-Relationship Model: Towards a
Unified View of Data, ACM Transaction on Database
Systems, January 1976.

D. Clement, J. Heering, P Klint, J. Incerpi, G. Kahn, B.
Lang, V. Pascual, Preliminary of an environment
generator, GIPE CEC 348/A/l91/1,23.12.1986.

K. R. Dittrich, W. Gotthard, P. C. Lockemann,
DAMOKLES - A Database System for Software
Engineering Environments, IFIP WG2.4 International
Workshop on Advanced Programming Environnements,
Trondheim, Norway, June 1986.

A. Doucet, M.-C. Gaudel, Bases de donnees et Genie
logiciel: vers I’lntegration des Outils de Dkveloppement de
Logiciel, JoumCes Bases de Don&es de I’AFCET, La
Rochelle, September 1986.

M. Dowson, ISTAR - An integrated Project Support
Environment, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium
on Pratical Software Development Environments, January
1987.

ECLIPSE, ECLISPE - a Technical Overview, Ref. 6329,
Software Science, September 1987.

G. C. Everest, Object-Oriented DBMS, Proceedings of
the CASE 88 Workshop, Cambridge, Massachussets,
July 1988.

T. Gallo, G. Serrano, F. Tisato, ObNet: An Object-
Oriented Approach for Supporting Large, Long-Lived,
Highly Configurable Systems, Proceedings of the 1 lth
ICSE, Pittsburg, Pennsylvania, May 1989.

94

[16] J.Gettys, R.W.Scheifler. R.Newman, Xlib-C Language
X Interface, X Window System X.lI.R3, MIT, 1988.

[17] J.-L. Giavitto, Y. Holvoet, A. Mauboussin, P. Pauthe,
Guide-Lines for Building Adaptable Browsing Tools,
Esprit Technical Week, September 1987.

[18] J.-L. Giavitto, A. Devarenne, G. Rosuel, Presto: des
objets C++ persistants pour le systeme d’information
d’Adage, AFCET Journees d’Etudes Bases de Donnt5es
Deductives et Bases de Donntes Orientees Objets, Paris,
December 1988.

[19] J.L. Giavitto, A. Devarenne, G. Rosuel, Y. Holvoet,
Adage: New Trends in CASE Environments, Proceedings
of the International Conference on System Development
Environments & Factories, Berlin, May 1989.

[20] Imperial Software Technology Ldt, Requirements for
Software Engineering Databases, Final Report, Imperial
College DoC, 1983

[21] P. Jeulin, P. Sauge, GraphTalk : la Maitrise de la Qualite,
Genie Logiciel et Systeme Expert, December 1988.

[22] ISR, Spokewindows Reference Manual, Alacatel -1.S.R.
1989.

[23] A. van Lamsweerde, B. Delcourt, E. Delor, M.C.
Schayes, and R. Champagne, Generic Lifecycle Support
in the ALMA Environment, IEEE Transactions on
Software Engineering, No 6 Vol 14, June 1988.

[24] D. E. Langworthy, Object Oriented versus Relational
Database Capabilities, Proceedings of the CASE 88
Workshop, Cambridge, Massachussets, July 1988.

[25] D. Maier, J. Stein, A. Otis, A. Purdy, Development of an
Object Oriented DBMS, Proceedings of OOPSLA,
Portland, Oregon, September 1986.

[26] C. Parent, S. Spaccapietra, Gestion &Objets Complexes
avec des Entites Complexes, AFCET JoumCes d’Etude
Bases de DonnCes Deductives et Bases de Donnees
Orientees Objets, Paris, December 1988.

[27] PCTE, PCTE, A Basis for a Portable Common Tool
Environment, Functional Specifications, Fourth Edition,
NCC Ltd, November 1987.

[28] Sema-Group, The Concerto Software Factory (general
presentation), Sema-Group v1.4,1989.

[29] Sun, Sunwindows reference manual, Sun, 1988.

[30] Systematica, The Virtual Software Factory, Software
Product Description, 1988.

[31] B. Stroustrup, The C++ Programming Language,
Addison-Weslay, 1987.

[32] M. Verrall, Tool Interaction and Integration in Software
Engineering Environments, Proceedings of the
International Conference on System Development
Environments & Factories, Berlin, May 1989.

95

