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Abstract. We propose a computational model for analogy solving simplexs is equal toCard(s) — 1. The dimension of the complex is
based on @opologicalformalism of representation. The source and the dimension of its biggest simplex [13, 15].

the target analogs are representediagplexesnd the analogy solv-

ing is modeled as a topologica¢formationof these simplexes along

apolygonal chairand according to some constraints. We apply this

framework to the resolution of 1Q-tests typically presentetbagen

A, B and C, find D such that A is to B what C is to.D”

1 Introduction ®

In this paper, we present a topological framework for knowledge rep-
resentation based on the concept of simplicial complex. We present
then the ESQIMO system which is the application of this framewaork
to an analogy solving problem.

The underlying idea developed here is that spatial relationships
and more precisely topological relationships such as neighbor, bor-
der, dimension, obstruction, deformation, separabitily, path, etc, en-_ ) ) ) )
able the building and structuration of knowledge representation. '9ure 1. Geometrical representtgtz'onpfs'mplexes fopp varying fromo
More precisely, we explore the possibility of a topological represen- '
tation to support analogy and we take the elementary spatial entities

to be simplicial complexes. The analogy solving between a source A y,.simplexs is noted:s = (v%v'...v?), wherev’ € V, the fig-

and a target domain is then modeled as a topological transformatiofye 1 shows the geometrical representatio, afand2-simplexes. A

of the representation of the source into the representation of the targgbmplex is a set of sets closed for the inclusion and the intersection.

in some underlying abstract space of knowledge representation.  Thys, simplicial complexes are particularly attractive to generalize
semantic networks by keeping the possibility to express hierarchies

2 Topological Representation of Knowledge like in a relational graph (a hierarchical structure is highly recom-

. ) ) ) . mended and trees are often not sufficient for that [14]).
Topology studies objects and properties that are invariant under con-

tinuous deformations. Combinatorial topology focuses on the study

of a finite sets of objects satisfying some spatial relations, and alge2.2  Knowledge Representation with Simplicial
braic topology develops the application of algebraic tools to topolog- Complexes.

ical problems. The combinatorial algebraic topologidaAT) ap-

proach is thus attractive for constructivist models and applications. 2.2.1 Representation of a Binary Relation

(a) 0-simplex (b) 1-simplex (c) 2-simplex

i . Atkin already proposed to represent a binary relafidretween two
2.1 Simplicial Complexes sets with a simplicial complex: it is th@-Analysis [2, 3, 19]. Q-
Simplicial complexes are topological abstract structures that genefAnalysis have been used to model traffics [20], interactions between
alize the notion of graph. Indeed, all complexes of dimension les@9€Nts [5, 22, 4, chap. 8], position analysis at chess [1] and social

than 2 are graphs. The following definition is standard in algebrai¢€lations [2, 11, 4]. _ . .
topology. Let A be the incidence matrix of a binary relatianCc A x B. Let

Definition 1 (Abstract simplicial | a € A, and the seB, of b; € B such that(a,b;) € A\. The setB,
Ae "E: |:)n t(' Sl.ra.cl simp IICIa. comp ex“)Z K)whereV i t of can be directly read from, as thea-column (see table 1).
cloments called verioes of the cormple 40ds  setof s pants Ve eprESEnt th elemerisot 5. a5 vertces and o5 a simplex

. build on these vertices. The dimension of the simgiexepresent-
of V such that ifs € K, then all the partss’ C s belongs also td<. Wexrep

. . . ing a depends on the number of verticesRq.
The elements dk are called abstract simplexes. The dimension of a The whole matrixA can then be represented as a simplicial com-

1 LRI, ura410 CNRS, UniversitParis-Sud, 91405 Orsay, France plex containing all the simplexes representing each elemeat A,
2 LRI, ura410 CNRS, UniversitParis-Sud, 91405 Orsay, France we note it 4 (B, \) (see figure 2.2.1).
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A al as as
by 1 0 0
bo 0 1 1
b3 1 1 0

Table 1. Incidence matrix associated with

(b) Dual simplicial repre-
sentation of\ taking a; as
vertices and; as simplexes

(&) Simplicial representa-
tion of X\ taking b; as ver-
tices andz; as simplexes

Figure 2. Simplicial representation of a binary relatianWe have
A(a1) = {b1,b2}. So we represent; as al-simplex,b; andbs being its
two vertices.

Likewise, we can represet—! with the dual simplicial complex
Kgp(A, 271, In this case, the elemenis are taken as vertices and

p2 p1
3 48,10
9 p4 6,7

Figure 3. Dual complex associated with
A C{1,2,3,4,5,6,7,8,9,10} x {p1,p2,Dp3,psa} Where we can see that
the integerst, 8 and10 are identical with respect to these criteria.

P1 | P2 | P3 | P4

1 0 1 0 0
2 1 0 1 0
3 0 1 1 1
4 1 0 0 0
5 0 1 1 0
6 1 0 0 1
7 0 1 1 0
8 1 0 0 0
9 0 1 0 1
10| 1 0 0 0

Table 2. Incidence matrix associated within the numbers example.

based upon simplicial complexes associates the same simplex to
elements ofA that cannot be distinguished. In other words, two
elements will be separated only if there is at least one predicate that
allows the differentiation. The same situation occurs with the dual
complex.

Two simplexes that have a smallersimplex in common are said
to share &-face. In terms of representation, it means thaty have

the elements; are represented as simplexes (see figure 2.2.1). Wé features in commarAs Freska emphasized it, we call here for the

say thatK 4 (B, \) and K5(A, A\™*) are conjugates, they contain

use of discriminating features rather than for precise characterization

the same information but present it in a different and complementaryn terms of universally applicable reference system [8].

way.
We say that two simplexes, ando, areg-connected if there is a
polygonal chain of dimensiogthat connects; with .

Definition 2 (Polygonal chain)

We can say that the identity of an element is represented by the
features he shares with others and also by the ones that are specific
to it [18].

Leta = (00,01, ...,0n) be a sequence of simplexes belonging to a3 The ESQIMO System for Analogy Solving

complexX. It is called a polygonal chain of origiao and endo, if
for all couple(o;, 0i+1), 0; N oir1 # 0. The dimension of is the
smallest dimension @f; N o;41.

Any p-simplex isp-connected to himself with @&chain.

2.2.2 Representation of a Set of Predicates

We extend the Q-Analysis to allow the representation of sets of predC what B is to
icates as a simplicial complex too. The idea, which is very simple,

is to take a set of predicatd3 = {p1, p2, ..., p» } and represent the
binary relation\ C A x P such that{a;,p;) € X if p;(a;) holds.
Take for example the set of integersA
{1,2,3,4,5,6,7,8,9,10} and the set of predicated’
{p1,p2,p3, P41} {parity, oddity, primality, multiple of 3}.
The incidence matrix ol is then obviously the one given on table
2. We can represent the dual complex)ofeach element; € A
being a simplex build with vertices; € P. this dual representation
enlighten the fact that elements 8,10 have exactly the same

3.1 Solving an Analogy

To model a process of analogy solving on the basis of the previous
topological setting, we chose a small and paradigmatic application
domain [25]. The task is to answer a typical 1Q-test by giving an
element calledD such that it completes a four-term analogy with
three other given element$, B and C: “find D such that it is to

A”. This kind of analogy solving has already been
studied by Evans [6], but in our work the solution has to be build from
scratch since no set of possible solutions is given to choice. We call
this kind of 1Q-test-like problemspon supervisedThis four-term
analogy solving is usually decomposed into four steps [6]:

e Find the possible relation8 4 5 betweenA and B.

e Find the possible relation® 4 betweenA andC.

e Apply Rap to C only on a domain determined witR ¢
e Verify the symmetry by applyindR ac to B.

To solve a four-term analogy, we propose to represent each figure

representation when taking these few predicates. A representatidyy a simplex and the relation between the first two figures by a path
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(a polygonal chain) into the problem space (a complex). Building the
fourth figure from the third will thus be deforming this third figure
according to the precedent path.

3.2 The Objects of ESQIMO

Usually, IQ-tests are given in terms of geometrical elements so that
they can express many different properties at the same level and still
stay simples. We chose a geometrical universe similar to the one in-
vestigated in [26] of twelve basic elemenis = {el,...,e12}, as
shown on figure 4. These elements are all the possible combina-
tions of the seven properties (or predicateB):= {pi,...,pr} =
{round, square, triangle, white, dark, big, srall

S(A) S(©)

(a) FiguresA, B and
C are represented as
simplexes belonging to

(b) Transformation

Tap is modeled as a
polygonal chain from

S toSpinto K/ (Q
simpl 41055 (@)

O/ ol A T

Q Squares Triangles
. . A SRV
o AN

(a) Elements of the uni- Rounds
versel) of ESQIMO, re-
spectively callede; to
e12 Starting from the top
left element

Whiteness

(b) A 2D view of the dual com-

plex K’/ (Omega), the elements
of E are the vertices and the
propertiegp; € P are simplexes
of K'(£2). Notice that the6-
simplex representing the prop-
erty of blackness is normally-
dimensional

(d) Sp is the deforma-
tion of S alongTap
applied to the relevant
domain ofS¢

(c) The domain ofS¢
to which applyTsp is
determined with the help
of Tac

Figure 5. Four steps of ESQIMQ's algorithm to solve IQ tests in the case
Figure 4. Elements manipulated by ESQIMO and their representation as aof simple figuresA, B andC respectively represented as the simpleSgs
simplicial complex. Sp andSc.

These two sets are the only knowledge used by ESQIMO to solvg@.3.2 Case of simple figures
the tests. We can represent this knowledge with a simplicial complex
K () or its conjugatek”’ () (see figure 4) by representing the bi-
nary relation C A x P such thai(a;,p;) € Xif p;(a;) holds. The
complexK’(€2) is then the space of the problem in which ESQIMO
solves analogies by deforming simplexes into others.

In the case of simple figures, the transformatibnzs is seen as a
polygonal chain fronf 4 to S in K(€2). An elementary step linking

S; t0 S;4+1 inachain is then viewed as an elementary transformation
Ts;,s;,,- A polygonal chain fromf 4 to Sp is then a transformation

of Aiinto B given by:Ts, s; 0...0Ts, s, .

If there are several chains, then we say that there are several pos-
sible relations betweerl and B. We can choose to minimize the
number of possible solutions, by giving a higher priority to polygo-
nal chains that are short and of higher dimension, that corresponds
When a problem is presented, each figdré3 andC is composed of  to choose a transformation that requires less steps and that preserves
one or more elements € E. Each element; can be represented as more properties. This is comparable with selectinigeatsolution
asimplex ofK (2), the propertiep; such thap;(e;) holds, beingits  according to some measure of satisfaction like in [6].
vertices. Thus, a simple figure (composed of only one element) will To applyTas to Sc we have to extend the domain %, 5, and
be represented as a simplex and a composed figure (more than ose extendl’s s to T% 5 such thatl’, 5 (Sc) = Sp andT% 5(Sa) =
element) will be represented with a set of simplexes. The problem i$5 (close to a simplicial application [13, 15]). There are different
now to find a relation between the (set of) simplex(es) representingossible strategies to determine the domaifi @) on which we can
A and the (set of) simplex(es) representiB@nd apply it to the (set  apply Tap. Several strategies have been implemented considering
of) simplex(es) representing. Note that the representations 4f only the things that changed betwegf4) andS(C), or considering
B andC are all included into the complei’ (). only the invariants between them, or some other hybrid methods.

3.3 Algorithm

3.3.1 Representing the Problem
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3.3.3 Case of composed figures where Par means a parallel application arfSeq a sequential
i . application of the elementary transformation described in terms
For composed figures, the transformations can be of several type

destructi i t hosis. division. iuncti like in th of change of properties (or predicates). Finally the solution is
estruction, creation, metamorphosis, division, Junc |on_(| € in e1pomposed of two elements represented by the simplé&fges—=
changes introduced by Hornsby [18]). We first pair the simplexes o{< ) ( )} — feo,es} (see figure 6), the corre-
{5} with those of{ S} and look for transformations between the D3, Pa, P8/, \P1, D5, P1 9 '
: . . sponding output is:
simplexes of each pair. The transformatibag is then the parallel
application of the transformation found for each pair. Choose[{e9,e4}]

There are many possible pairings leading to different or to theAII along the solving process, ESQIMO uses the préefhoose in

same solution. The only constraint we need is that all the vertlce%” its outputs. That is because many different solutions are possible

and fflcesfgfi(lB) _r:lrr]e@palred V\_/tlthdverttlce? frori(A). A palr;ng Oft and acceptable for a psychological plausibility. ESQIMO can com-
avertex ofS/(A) wi means I1s destruction, the pairing of a vertex pute many solutions in parallel without selectingpestone, in that

of .S.(A) with one vertex OS(B.) means its trqnsformatlon and the case there are many solutions that the uselGlaosose at the end.
pairing of a vertex from5(A) with several vertices of (B) means

its duplication with transformation.

3.4 Examples of Analogy Solving with ESQIMO o Q u A0 A ®

We give three examples of 1Q-test solving with ESQIMO on figures @) (b) © (d)

6, 7 and 8. In the first example, we ask ESQIMO to solve the 1Q-test

with the call of the functiorResolve with the pairing parameters

App2 andAppApp2 as shown below (for more details see [24]). The

three given figuresl, B andC' are defined in terms of; elements  rigyre 6. The first element becomes bigger and the second becomes black.
of E. As seen on figure 64 is composed of a white small circle plus

a white small square.

The two other examples are solved with the same pairing strategies
A={el,e2}; and are not detailed here.
B={e7,e5};
C={e3,el};
Resolve[A,B,C,App2,AppApp2]

om | eol ] |ANe | Ac()

Here, A is a composed figure, its representation corresponds
to the set of simplexesSa = {(p1,p4,p7), (p2papr)} = @) (b) (© (d)
{(S4,5%)}. Likewise, the representations & and C are respec-
tively, Sp = {(p1,pa,Ds), (p2pspr)} = {(Sk,SE)} andSc =
{(ps, pa, p7), (p1papr)} = {(S¢, S&)}.

App2 is a strategy for the pairing between the set of simplexes ofFigure 7. The first element becomes black and the second becomes white,
A, and the set of simplexes & that gives the following pairing: is duplicated and one of the duplicates is bigger.

(Sh — SB), (S4 — SB)

ESQIMO gives output about intermediate results such as pairings,

the result of applying strategdpp?2 is given by the following output: O on A A @
Choose[AssocSet[FromTo[1,{1}],FromTo[2,{2}]],
AssocSet[FromTo[1,{1}],FromTo[2,{2}]]]} @) (b) (@) (d)

Where anAssocSet is a set of pairings anBromTo is a pairing,
which means also an elementary transformakoom the first ele-
ment of the.pal_ﬂ'o the second one. _For each pa””?l: .an elementary Figure 8. The first element is duplicated and one duplicate is squared.
transformation is proposed, depending on the heuristic used which igvhen squared, the property of triangleness is not taken off, this creates then
another parameter (that is internally settled until now [24]). we call an unstable solution, called a monster.
them respectivelyf’; andT». Then, the pairing strateg&ppApp2
is used to apply these elementary transformations to the elements of
the set of simplexes representi@y it proposes to apply in parallel:
L ) 3.5 Discussion and Conclusion
T1(Sc)//T2(S¢c) . : . :
Many choices made in ESQIMO’s algorithm can be discussed. In
The corresponding output is: fact, they can be seen as additional strategies parameterizing the ES-

IMO k I.F le:
Par[Domain[1,Seq["'D-elem"[SmallQ->0,BigQ->1]] Q enel. For example

{e3}l, e The description of the properties of each figure in terms of pred-
Domain[2,Seq["'D-elem"[WhiteQ->0,BlackQ->1]] icates can be a problem for properties such as position. We could
{el}} give each possible position a predicate that could be true or false.
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e The way we associate a transformation to a given polygonal chain8]
is not unique. In particular, our transformations could be called
0—degree since they preserve the minimum of topological prop-
erties along a chain. The next step consists in pairing higher-ordel[g]
structures between the sets of simplexes.

e The way we determine the domain 8¢ on which to applyTxz  [10]
can also lead to different strategies depending on whether we con-
sider only the intersection betweéh andS¢ or the wholeSc. 11]

e The measure of satisfaction to selettestsolution is here to take
the shorter and wider polygonal chain between the two complexes.
Other measures of satisfaction can be tested. (12]

Furthermore, note that our formalization of 1Q-test problems doedlsl
not depend on their geometrical nature. Indeed, only the representg,
tional level is based on topology while the objects manipulated by the
system could have been non geometrical. We could, for example try
ESQIMO on verbal 1Q-tests more like in the Copycat system [16].

Different computational models have been developed to modéi->!
analogy solving. Among them, the ANALOGY system proposed by
Evans [6, 12], the SME system proposed by Falkenhainer to illustrate
Gentner's theory for analogy [7, 9], the ARCS system developed b
Thagard and Holyoak to simultaneously satisfy the structural, semaiﬂ]
tic and pragmatic constraints. We can hardly compare these systems
to ESQIMO in terms of performances since we only studied intra{1g]
domain analogies with the only structural constraint in this first work.
Our contribution lies principally in the search for a new representa-
tional structure to model analogy, which has often been described i
terms of a morphism. The topological structure of representation ca
be seen as a hybrid structure between a purely symbolic and a purely
analogical approach. [20]

ESQIMO has been prototyped in tihdathematica [27] pro-
gramming language and we find the results presented here alrea M)
surprisingly satisfying with respect to the simplicity of the under-[22]
lying machinery. This clearly motivates further investigations and
a more complete version is being implemented inheprogram-  [23]
ming language [21]. Indeed, we intend to explore a possible use of
the notions of homotopy and cobordism to formalize the concept of
similarity between polygonal chains or between paths on topologicgb4]
representations. This could lead to a generalization of our topological
model for analogy.

Finally, the representational formalism presented here has beé%s]
considered in the wider field of diagrammatic reasoning [10]. Thus,
ESQIMO could also lead to the conception of a toolkit for the as-
sistance to diagrammatic tasks such as system architecture desi&g
(software or hardware). More details on the application of our mode ]
to diagrammatic reasoning are given in [23], where the constructiomﬂ
of our topological representational structure is inspired by Holland’s
guasi-homomorphism model [17].

9]
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