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Abstract. We propose a computational model for analogy solving
based on atopologicalformalism of representation. The source and
the target analogs are represented assimplexesand the analogy solv-
ing is modeled as a topologicaldeformationof these simplexes along
a polygonal chainand according to some constraints. We apply this
framework to the resolution of IQ-tests typically presented as“given
A, B and C, find D such that A is to B what C is to D”.

1 Introduction

In this paper, we present a topological framework for knowledge rep-
resentation based on the concept of simplicial complex. We present
then the ESQIMO system which is the application of this framework
to an analogy solving problem.

The underlying idea developed here is that spatial relationships
and more precisely topological relationships such as neighbor, bor-
der, dimension, obstruction, deformation, separabitily, path, etc, en-
able the building and structuration of knowledge representation.
More precisely, we explore the possibility of a topological represen-
tation to support analogy and we take the elementary spatial entities
to be simplicial complexes. The analogy solving between a source
and a target domain is then modeled as a topological transformation
of the representation of the source into the representation of the target
in some underlying abstract space of knowledge representation.

2 Topological Representation of Knowledge

Topology studies objects and properties that are invariant under con-
tinuous deformations. Combinatorial topology focuses on the study
of a finite sets of objects satisfying some spatial relations, and alge-
braic topology develops the application of algebraic tools to topolog-
ical problems. The combinatorial algebraic topological (CAT ) ap-
proach is thus attractive for constructivist models and applications.

2.1 Simplicial Complexes

Simplicial complexes are topological abstract structures that gener-
alize the notion of graph. Indeed, all complexes of dimension less
than 2 are graphs. The following definition is standard in algebraic
topology.

Definition 1 (Abstract simplicial complex)
An abstract simplicial complex is a couple(V, K) whereV is a set of
elements called vertices of the complex andK is a set of finite parts
of V such that ifs ∈ K, then all the partss′ ⊆ s belongs also toK.
The elements ofK are called abstract simplexes. The dimension of a
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simplexs is equal toCard(s)− 1. The dimension of the complex is
the dimension of its biggest simplex [13, 15].

(a) 0-simplex (b) 1-simplex (c) 2-simplex

Figure 1. Geometrical representation ofp-simplexes forp varying from0
to 2.

A p-simplexs is noted:s = 〈v0v1...vp〉, wherevi ∈ V , the fig-
ure 1 shows the geometrical representation of0, 1 and2-simplexes. A
complex is a set of sets closed for the inclusion and the intersection.
Thus, simplicial complexes are particularly attractive to generalize
semantic networks by keeping the possibility to express hierarchies
like in a relational graph (a hierarchical structure is highly recom-
mended and trees are often not sufficient for that [14]).

2.2 Knowledge Representation with Simplicial
Complexes.

2.2.1 Representation of a Binary Relation

Atkin already proposed to represent a binary relationλ between two
sets with a simplicial complex: it is theQ-Analysis [2, 3, 19]. Q-
Analysis have been used to model traffics [20], interactions between
agents [5, 22, 4, chap. 8], position analysis at chess [1] and social
relations [2, 11, 4].

Let Λ be the incidence matrix of a binary relationλ ⊂ A×B. Let
a ∈ A, and the setBa of bi ∈ B such that(a, bi) ∈ λ. The setBa

can be directly read fromΛ, as thea-column (see table 1).
We represent the elementsbi of Ba as vertices anda as a simplex

build on these vertices. The dimension of the simplexSa represent-
ing a depends on the number of vertices inBa.

The whole matrixΛ can then be represented as a simplicial com-
plex containing all the simplexes representing each elementai ∈ A,
we note itKA(B, λ) (see figure 2.2.1).
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λ a1 a2 a3

b1 1 0 0
b2 0 1 1
b3 1 1 0

Table 1. Incidence matrix associated withλ.

b3

b1

b2

a1

a3

a2

(a) Simplicial representa-
tion of λ taking bi as ver-
tices andai as simplexes
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(b) Dual simplicial repre-
sentation ofλ taking ai as
vertices andbi as simplexes

Figure 2. Simplicial representation of a binary relationλ. We have
λ(a1) = {b1, b2}. So we representa1 as a1-simplex,b1 andb2 being its

two vertices.

Likewise, we can representΛ−1 with the dual simplicial complex
KB(A, λ−1). In this case, the elementsai are taken as vertices and
the elementsbi are represented as simplexes (see figure 2.2.1). We
say thatKA(B, λ) and KB(A, λ−1) are conjugates, they contain
the same information but present it in a different and complementary
way.

We say that two simplexesσ1 andσ2 areq-connected if there is a
polygonal chain of dimensionq that connectsσ1 with σ2.

Definition 2 (Polygonal chain)
Let α = (σ0, σ1, ..., σn) be a sequence of simplexes belonging to a
complexK. It is called a polygonal chain of originσ0 and endσn if
for all couple(σi, σi+1), σi ∩ σi+1 6= ∅. The dimension ofα is the
smallest dimension ofσi ∩ σi+1.

Any p-simplex isp-connected to himself with a0-chain.

2.2.2 Representation of a Set of Predicates

We extend the Q-Analysis to allow the representation of sets of pred-
icates as a simplicial complex too. The idea, which is very simple,
is to take a set of predicatesP = {p1, p2, ..., pn} and represent the
binary relationλ ⊂ A× P such that(ai, pj) ∈ λ if pj(ai) holds.

Take for example the set of integersA =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the set of predicatesP =
{p1, p2, p3, p4} = {parity, oddity, primality, multiple of 3}.
The incidence matrix ofλ is then obviously the one given on table
2. We can represent the dual complex ofλ, each elementai ∈ A
being a simplex build with verticespi ∈ P . this dual representation
enlighten the fact that elements4, 8, 10 have exactly the same
representation when taking these few predicates. A representation

p3

p4

p1p2

3
9 6,7

4,8,10

25
1

Figure 3. Dual complex associated with
λ ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {p1, p2, p3, p4} where we can see that

the integers4, 8 and10 are identical with respect to these criteria.

p1 p2 p3 p4

1 0 1 0 0
2 1 0 1 0
3 0 1 1 1
4 1 0 0 0
5 0 1 1 0
6 1 0 0 1
7 0 1 1 0
8 1 0 0 0
9 0 1 0 1
10 1 0 0 0

Table 2. Incidence matrix associated withλ in the numbers example.

based upon simplicial complexes associates the same simplex to
elements ofA that cannot be distinguished. In other words, two
elements will be separated only if there is at least one predicate that
allows the differentiation. The same situation occurs with the dual
complex.

Two simplexes that have a smallerk-simplex in common are said
to share ak-face. In terms of representation, it means thatthey have
k features in common. As Freska emphasized it, we call here for the
use of discriminating features rather than for precise characterization
in terms of universally applicable reference system [8].

We can say that the identity of an element is represented by the
features he shares with others and also by the ones that are specific
to it [18].

3 The ESQIMO System for Analogy Solving

3.1 Solving an Analogy

To model a process of analogy solving on the basis of the previous
topological setting, we chose a small and paradigmatic application
domain [25]. The task is to answer a typical IQ-test by giving an
element calledD such that it completes a four-term analogy with
three other given elementsA, B andC: “find D such that it is to
C what B is to A”. This kind of analogy solving has already been
studied by Evans [6], but in our work the solution has to be build from
scratch since no set of possible solutions is given to choice. We call
this kind of IQ-test-like problems,non supervised. This four-term
analogy solving is usually decomposed into four steps [6]:

• Find the possible relationsRAB betweenA andB.
• Find the possible relationsRAC betweenA andC.
• Apply RAB to C only on a domain determined withRAC .
• Verify the symmetry by applyingRAC to B.

To solve a four-term analogy, we propose to represent each figure
by a simplex and the relation between the first two figures by a path
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(a polygonal chain) into the problem space (a complex). Building the
fourth figure from the third will thus be deforming this third figure
according to the precedent path.

3.2 The Objects of ESQIMO

Usually, IQ-tests are given in terms of geometrical elements so that
they can express many different properties at the same level and still
stay simples. We chose a geometrical universe similar to the one in-
vestigated in [26] of twelve basic elementsE = {e1, ..., e12}, as
shown on figure 4. These elements are all the possible combina-
tions of the seven properties (or predicates):P = {p1, ..., p7} =
{round, square, triangle, white, dark, big, small}.

(a) Elements of the uni-
verseΩ of ESQIMO, re-
spectively callede1 to
e12 starting from the top
left element

Blackness

Whiteness

TrianglesSquares

Rounds

(b) A 2D view of the dual com-
plexK′(Omega), the elements
of E are the vertices and the
propertiespi ∈ P are simplexes
of K′(Ω). Notice that the6-
simplex representing the prop-
erty of blackness is normally5-
dimensional

Figure 4. Elements manipulated by ESQIMO and their representation as a
simplicial complex.

These two sets are the only knowledge used by ESQIMO to solve
the tests. We can represent this knowledge with a simplicial complex
K(Ω) or its conjugateK′(Ω) (see figure 4) by representing the bi-
nary relationλ ⊂ A× P such that(ai, pj) ∈ λ if pj(ai) holds. The
complexK′(Ω) is then the space of the problem in which ESQIMO
solves analogies by deforming simplexes into others.

3.3 Algorithm

3.3.1 Representing the Problem

When a problem is presented, each figureA, B andC is composed of
one or more elementsei ∈ E. Each elementei can be represented as
a simplex ofK(Ω), the propertiespj such thatpj(ei) holds, being its
vertices. Thus, a simple figure (composed of only one element) will
be represented as a simplex and a composed figure (more than one
element) will be represented with a set of simplexes. The problem is
now to find a relation between the (set of) simplex(es) representing
A and the (set of) simplex(es) representingB and apply it to the (set
of) simplex(es) representingC. Note that the representations ofA,
B andC are all included into the complexK′(Ω).
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S(A)

S(B)

S(C)

(a) FiguresA, B and
C are represented as
simplexes belonging to
K′(Ω)

C(U)

S(A)

S(B)

(b) Transformation
TAB is modeled as a
polygonal chain from
SA to SB into K′(Ω)

C(U)

S(A)

S(C)

(c) The domain ofSC

to which applyTAB is
determined with the help
of TAC

C(U)

S(A)

S(C)

(d) SD is the deforma-
tion of SC along TAB
applied to the relevant
domain ofSC

Figure 5. Four steps of ESQIMO’s algorithm to solve IQ tests in the case
of simple figuresA, B andC respectively represented as the simplexesSA,

SB andSC .

3.3.2 Case of simple figures

In the case of simple figures, the transformationTAB is seen as a
polygonal chain fromSA toSB in K(Ω). An elementary step linking
Si to Si+1 in a chain is then viewed as an elementary transformation
TSi,Si+1 . A polygonal chain fromSA to SB is then a transformation
of A into B given by:TSl,SB ◦ ... ◦ TSA,S1 .

If there are several chains, then we say that there are several pos-
sible relations betweenA andB. We can choose to minimize the
number of possible solutions, by giving a higher priority to polygo-
nal chains that are short and of higher dimension, that corresponds
to choose a transformation that requires less steps and that preserves
more properties. This is comparable with selecting abestsolution
according to some measure of satisfaction like in [6].

To applyTAB to SC we have to extend the domain ofTAB , and
so extendTAB to T ′AB such thatT ′AB(SC) = SD andT ′AB(SA) =
SB (close to a simplicial application [13, 15]). There are different
possible strategies to determine the domain ofS(C) on which we can
apply TAB . Several strategies have been implemented considering
only the things that changed betweenS(A) andS(C), or considering
only the invariants between them, or some other hybrid methods.
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3.3.3 Case of composed figures

For composed figures, the transformations can be of several types:
destruction, creation, metamorphosis, division, junction (like in the
changes introduced by Hornsby [18]). We first pair the simplexes of
{SA} with those of{SB} and look for transformations between the
simplexes of each pair. The transformationTAB is then the parallel
application of the transformation found for each pair.

There are many possible pairings leading to different or to the
same solution. The only constraint we need is that all the vertices
and faces ofS(B) are paired with vertices fromS(A). A pairing of
a vertex ofS(A) with ∅means its destruction, the pairing of a vertex
of S(A) with one vertex ofS(B) means its transformation and the
pairing of a vertex fromS(A) with several vertices ofS(B) means
its duplication with transformation.

3.4 Examples of Analogy Solving with ESQIMO

We give three examples of IQ-test solving with ESQIMO on figures
6, 7 and 8. In the first example, we ask ESQIMO to solve the IQ-test
with the call of the functionResolve with the pairing parameters
App2 andAppApp2 as shown below (for more details see [24]). The
three given figuresA, B andC are defined in terms ofei elements
of E. As seen on figure 6,A is composed of a white small circle plus
a white small square.

A={e1,e2};
B={e7,e5};
C={e3,e1};
Resolve[A,B,C,App2,AppApp2]

Here, A is a composed figure, its representation corresponds
to the set of simplexesSA = {〈p1, p4, p7〉, 〈p2p4p7〉} =
{〈S1

A, S2
A〉}. Likewise, the representations ofB andC are respec-

tively, SB = {〈p1, p4, p6〉, 〈p2p5p7〉} = {〈S1
B , S2

B〉} andSC =
{〈p3, p4, p7〉, 〈p1p4p7〉} = {〈S1

C , S2
C〉}.

App2 is a strategy for the pairing between the set of simplexes of
A, and the set of simplexes ofB that gives the following pairing:

(S1
A → S1

B), (S2
A → S2

B)

ESQIMO gives output about intermediate results such as pairings,
the result of applying strategyApp2 is given by the following output:

Choose[AssocSet[FromTo[1,{1}],FromTo[2,{2}]],
AssocSet[FromTo[1,{1}],FromTo[2,{2}]]]}

Where anAssocSet is a set of pairings andFromTo is a pairing,
which means also an elementary transformationFrom the first ele-
ment of the pairTo the second one. For each paring, an elementary
transformation is proposed, depending on the heuristic used which is
another parameter (that is internally settled until now [24]). we call
them respectivelyT1 andT2. Then, the pairing strategyAppApp2
is used to apply these elementary transformations to the elements of
the set of simplexes representingC, it proposes to apply in parallel:

T1(S
1
C)//T2(S

2
C)

The corresponding output is:

Par[Domain[1,Seq["D-elem"[SmallQ->0,BigQ->1]]
,{e3}],
Domain[2,Seq["D-elem"[WhiteQ->0,BlackQ->1]]

,{e1}]]}

where Par means a parallel application andSeq a sequential
application of the elementary transformation described in terms
of change of properties (or predicates). Finally the solution is
composed of two elements represented by the simplexesSD =
{〈p3, p4, p6〉, 〈p1, p5, p7〉} = {e9, e4} (see figure 6), the corre-
sponding output is:

Choose[{e9,e4}]

All along the solving process, ESQIMO uses the prefixChoose in
all its outputs. That is because many different solutions are possible
and acceptable for a psychological plausibility. ESQIMO can com-
pute many solutions in parallel without selecting abestone, in that
case there are many solutions that the user canChoose at the end.

(a) (b) (c) (d)

Figure 6. The first element becomes bigger and the second becomes black.

The two other examples are solved with the same pairing strategies
and are not detailed here.

(a) (b) (c) (d)

Figure 7. The first element becomes black and the second becomes white,
is duplicated and one of the duplicates is bigger.

(a) (b) (c) (d)

Figure 8. The first element is duplicated and one duplicate is squared.
When squared, the property of triangleness is not taken off, this creates then

an unstable solution, called a monster.

3.5 Discussion and Conclusion

Many choices made in ESQIMO’s algorithm can be discussed. In
fact, they can be seen as additional strategies parameterizing the ES-
QIMO kernel. For example:

• The description of the properties of each figure in terms of pred-
icates can be a problem for properties such as position. We could
give each possible position a predicate that could be true or false.
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• The way we associate a transformation to a given polygonal chain
is not unique. In particular, our transformations could be called
0−degree since they preserve the minimum of topological prop-
erties along a chain. The next step consists in pairing higher-order
structures between the sets of simplexes.

• The way we determine the domain ofSC on which to applyTAB

can also lead to different strategies depending on whether we con-
sider only the intersection betweenSA andSC or the wholeSC .

• The measure of satisfaction to select abestsolution is here to take
the shorter and wider polygonal chain between the two complexes.
Other measures of satisfaction can be tested.

Furthermore, note that our formalization of IQ-test problems does
not depend on their geometrical nature. Indeed, only the representa-
tional level is based on topology while the objects manipulated by the
system could have been non geometrical. We could, for example try
ESQIMO on verbal IQ-tests more like in the Copycat system [16].

Different computational models have been developed to model
analogy solving. Among them, the ANALOGY system proposed by
Evans [6, 12], the SME system proposed by Falkenhainer to illustrate
Gentner’s theory for analogy [7, 9], the ARCS system developed by
Thagard and Holyoak to simultaneously satisfy the structural, seman-
tic and pragmatic constraints. We can hardly compare these systems
to ESQIMO in terms of performances since we only studied intra-
domain analogies with the only structural constraint in this first work.
Our contribution lies principally in the search for a new representa-
tional structure to model analogy, which has often been described in
terms of a morphism. The topological structure of representation can
be seen as a hybrid structure between a purely symbolic and a purely
analogical approach.

ESQIMO has been prototyped in theMathematica [27] pro-
gramming language and we find the results presented here already
surprisingly satisfying with respect to the simplicity of the under-
lying machinery. This clearly motivates further investigations and
a more complete version is being implemented in theMLprogram-
ming language [21]. Indeed, we intend to explore a possible use of
the notions of homotopy and cobordism to formalize the concept of
similarity between polygonal chains or between paths on topological
representations. This could lead to a generalization of our topological
model for analogy.

Finally, the representational formalism presented here has been
considered in the wider field of diagrammatic reasoning [10]. Thus,
ESQIMO could also lead to the conception of a toolkit for the as-
sistance to diagrammatic tasks such as system architecture design
(software or hardware). More details on the application of our model
to diagrammatic reasoning are given in [23], where the construction
of our topological representational structure is inspired by Holland’s
quasi-homomorphism model [17].
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