
A Data Parallel Java Client-Server Architecture
for Data Field Computations over ZZn

Jean-Louis Giavitto, Dominique De Vito, Jean-Paul Sansonnet

LRI u.r.a. 410 du CNRS, Bâtiment 490 – Université de Paris-Sud,
F-91405 Orsay Cedex, France.

email: {giavitto|devito}@lri.fr

Abstract. We describe FieldBroker, a software architecture, dedicated
to data parallel computations on fields over ZZn. Fields are a natural ex-
tension of the parallel array data structure. From the application point
of view, field operations are processed by a field server, leading to a
client/server architecture. Requests are translated successively in three
languages corresponding to a tower of three virtual machines process-
ing respectively mappings on ZZn, sets of arrays and flat vectors in
core memory. The server is itself designed as a master/multithreaded-
slaves program. The aim of FieldBroker is to mutually incorporate ap-
proaches found in distributed computing, functional programming and
the data parallel paradigm. It provides a testbed for experiments with
language constructs, evaluation mechanisms, on-the-fly optimizations,
load-balancing strategies and data field implementations.

1 Introduction

Collections, Data Fields and Data Parallelism. The data parallel para-
digm relies on the concept of collection: it is an aggregate of data handled as
a whole [6]. A data field is a theoretically well founded abstract view of a col-
lection as a function from a finite index set to a value domain. Higher order
functions or intensional operations on these mappings correspond to data par-
allel operations: point-wise applied operation (map), reduction (fold), etc. Data
fields enable to represent irregular data by using a suitable index set. Another
attractive advantage of the data field approach, in addition to its generality and
abstraction, is that many ambiguities and semantical problems of “imperative”
data parallelism can be avoided in the declarative framework of data fields.

A Distributed Paradigm for Data Parallelism. Data parallelism was mo-
tivated to satisfy the increasing needs of computing power in scientific applica-
tions. Thus, the main target of data parallel languages has been supercomputers
and the privileged linguistic framework was Fortran (cf. HPF). Several factors
urge to reconsider this traditional framework:

– Advances in network protocols and bandwidths have made practical the de-
velopment of high performance applications whose processing is distributed
over several supercomputers (metacomputing).

– The widening of parallel programming application domains (e.g. data min-
ing, virtual reality, generalization of numerical simulations) urges to use
cheaper computing resources, like NOWs (networks of workstations).

– Development in parallel compilation and run-time environments have made
possible the integration of data parallelism and control parallelism, e.g. to
hide the communication latency with the multithreaded execution of inde-
pendent computations.

– New algorithms exhibit more and more a dynamic behavior and perform on
irregular data. Consequently, new applications depend more and more on the
facilities provided by a run-time (dynamic management of resources, etc.).

– Challenging applications consist of multiple heterogeneous modules inter-
acting with each other to solve an overall design problem. New software
architectures are needed to support the development of such applications.

All these points require the development of portable, robust, high-performance,
dynamically adaptable, architecture neutral applications on multiple platforms
in heterogeneous, distributed networks.

Many of theses attributes can be cited as descriptive characteristics of dis-
tributed applications. So, it is not surprising that distributed computing concepts
and tools, which precisely face this kind of problems, become an attractive frame-
work for supporting data parallel applications. In this perspective, we propose
FieldBroker, a client server architecture dedicated to data parallel computa-
tions on data field over ZZn. Data field operations in an application are requests
processed by the FieldBroker server.

FieldBroker has been developed to provide an underlying virtual machine
to the 81/2 language [5] and to compute recursive definitions of group based fields
[2]. However, FieldBroker aims also to investigate the viability of client server
computing for data parallel numerical and scientific applications, and the extent
to which this paradigm can integrate efficiently a functional approach of the data
parallel programming model. This combination naturally leads to an environ-
ment for dynamic computation and collaborative computing. This environment
provides and facilitates interaction and collaboration between users, processes
and resources. It also provides a testbed for experiments with language con-
structs, evaluation mechanisms, on-the-fly optimizations, load-balancing strate-
gies and data field implementations.

2 A Distributed Software Architecture for Scientific
Computation

The software architecture of the data field server is illustrated by Fig. 1 right.
Three layers are distinguished. They correspond to three virtual machines:

– The server handles requests on functions over ZZn. It is responsible for
parallelization and synchronization between requests from one client and
between different clients.

– The master handles operations between sets of arrays. This layer is respon-
sible for various high-level optimizations on data field expressions. It also
decides the load balancing strategy and synchronizes the computations of
the slaves.

– The slaves implement sequential computations over contiguous data in mem-
ory (vectors). They are driven by the master requests. Master requests are
of two kinds: computations to perform on the slave’s data or communica-
tions (send data to other slaves; receives are implicit). Computations and
communications are multithreaded in order to hide communication latency.

Our software architectures corresponds to a three levels language tower. Each
language specifies the communications between two levels of the architecture and
describes a data structure and the corresponding operations. Three languages
are used, going from the more abstract L0 (client view on a field) to L1 and to
the more concrete L2 (in core memory view on a field). The server-master and
the slave programs are implemented in Java. The rationale of this design decision
is to support portability and dynamic extensibility. The expected benefits of this
software architecture are the following:

– Accessibility and client independence: requests for the data field com-
putation are issued by a client through an API. However, because the slave
is a Java program, Java applets can be easily used to communicate with the
server. So, an interactive access could be provided through a web client at no
further cost. In this case, the server appears as a data field desk calculator.

– Autonomous services: the server lifetime is not linked to the client life-
time. Thus, implementing persistence, sharing and checkpointing will be
much easier with this architecture than with a monolithic SPMD program.

– Multi-client interactions: this architecture enables applications composi-
tion by pipelining, data sharing, etc.

The figure 1 illustrates that L0 terms are successively translated into L1 and L2

and that L2 terms are dispatched to the slaves to achieve the data parallel final
processing. More details about these languages can be found in [1].

3 Conclusion

The aim of our first ongoing implementation is to evaluate the functionalities
provided by such an architecture. At this stage, we have not pay attention to
its performance which is certainly disappointing. A promising way to tackle
this drawback consists in the use of just-in-time Java compiler that are able to
translate Java bytecode into executable machine-dependent code.

FieldBroker integrates concepts and technics that have been developed sep-
arately. For example, relationships between the definition of functions and data
fields are investigated in [4]. A proposal for an implementation is described in [3]
but focuses mainly on the management of the definition domain of data fields.

One specific feature of FieldBroker is the use of heterogeneous representa-
tions, i.e. extensional and intensional data fields, to simplify field expressions.

L0

(ZZn → Value) �
[[]]1

�

[[]] 0

L1

0T1

?

L2

1T2

?

�

[[]]
2

client application

server

master

L0

clientAPI

web client

HTTP-server

L1

L2

slave read
send

receive
compute

read
send
receive
compute

slave

Fig. 1. Left: Relationships between field algebras L0,L1 and L2. Right: A
client/server-master/multithreaded-slaves architecture for the data parallel evaluation
of data field requests. The software architecture described on the right implements
the field algebras sketched on the left. Functions iTi+1 are phases of the evaluation.
The functions [[]]i are the semantic functions that map an expression to the denoted
element of ZZn → Value. They are defined such that the diagram commutes, that is
[[ei]]i = [[iTi+1(ei)]]i+1 is true for i ∈ {0, 1} and ei ∈ Li. This property ensures the
soundness of the evaluation process.

Clearly, the algebraic framework is the right one to reason about the mixing of
multiple representations.

References

1. J.-L. Giavitto and D. De Vito. Data field computations on a data parallel Java client-
server distributed architecture. Technical Report 1167, Laboratoire de Recherche
en Informatique, Apr. 1998. 9 pages.

2. J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. Parallel Symbolic
Languages and Systems (International Workshop PSLS’95), vol. 1068 of LNCS,
pages 209–215, Beaune (France), 2-4 October 1995. Springer-Verlag.

3. J. Halén, P. Hammarlund, and B. Lisper. An experimental implementation of a
higly abstract model of data parallel programming. Technical Report TRITA-IT
9702, Royal Institute of Technology, Sweden, March 1997.

4. B. Lisper. On the relation between functional and data-parallel programming lan-
guages. In Proc. of the 6th. Int. Conf. on Functional Languages and Computer
Architectures. ACM, ACM Press, June 1993.

5. O. Michel. Introducing dynamicity in the data-parallel language 81/2. EuroPar’96
Parallel Processing, vol. 1123 of LNCS, pages 678–686. Springer-Verlag, Aug. 1996.

6. J. M. Sipelstein and G. Blelloch. Collection-oriented languages. Proceedings of the
IEEE, 79(4):504–523, Apr. 1991.

