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Summary

This report summarizes in English the French Rapport Scientifique of my Dossier d’Habili-
tation. It also includes some additional materials from technical reports that do not appear
in the provided publications.

This report mainly describe the 81/2 project. Started in 1991, the motivations of the project
have evolved from the development of compilation techniques for parallel declarative pro-
grams to the declarative dynamic representations of time and space in programming lan-
guages.

This document outlines the works centered around the 81/2 project and then eludes the
researches I have conducted in the areas of

• concurrency in object oriented languages [BG86, Gia86b, Gia86a, GDR+90];

• persistent objects [GDR88b, Lag89, RGD91];

• CASE tools and software engineering environment and methods [GHM86, GHMP87,
Gia88, BG89, ttp89, GDRH89, GDR89, GM89, GDRY89, GDR+90];

• process migration [DG91];

• 3D interconnection network (the MEGA parallel architecture) [BGG90, BGG+91,
BEG+91, GGB+93b];

• parallel functional languages and actor languages for MEGA [GGS91, GGF91];

• message routing [GG90b, GG90a];

• static execution model for reconfigurable parallel architecture (the PTAH parallel ar-
chitecture) [CBG92, CBD+93, CGBD93, CBD+94].

For further informations, please contact me at:

LRI u.r.a. 410 du CNRS
btiment 490, Universit de Paris-Sud,
91405 Orsay cedex.
phone: +33 (0)1 69 15 42 25 email: giavitto@lri.fr
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Research Projects Outline

I have started my first research project during my engineering master thesis (stage de
recherche de 3me anne de diplme d’ingnieur). Then, I worked as a research engineer and
then as a project leader at the Alcatel-Alsthom Corporate Research Center (Laboratoires de
Marcoussis).

The wish of more fundamental studies motivated my departure from the Marcoussis
Laboratories for a PhD thesis at Laboratoire de Recherche en Informatique, in the Parallel
Architecture team. After that, I joined the C.N.R.S. as a “Charg de Recherche” (computer
scientist) at LRI (Cf. figure ?? page ??).

My research activities are briefly presented in a chronological order, based on the research
projects I have done1: CLORE, METEOR, Adage, MEGA and PTAH, 81/2 and finally
TopoAi which has just started this year.

II.1 CLORE:
a Study of Concurrency in Object Oriented Lan-
guages

The work done during my engineering master thesis (4 months full time and 8 months 2/3
of the time) and during my research master thesis (4 months) lead my interest towards
object oriented languages and to the expression of concurrency and parallelism in these
languages. This work has been done in the Language Design Group at the Marcoussis
Laboratories (Alcatel-Alsthom research center) on the LORE language. LORE is a relational
and set based object oriented language (LORE has been spread under the commercial name
SPOKE).

During this work, I had first to translate the LORE reflexive interpreter into Common-
Lisp. Then, I had to adapt it to the the Symbolics 3600 Lisp-machine. I also designed and
developed a dedicated graphic server and developed an interactive graphical object browser.

But my research was mainly focused on the study of a set of concurrent communication
primitives extending LORE to concurrency. This study leads to the implementation of a
concurrent message-passing system on top of a shared memory model (similar for object
oriented languages to the approach followed by MULTILISP in functional languages).

This was followed by the proposition and the realization of a network of interpreters on
a network of Unix workstations: CLORE [Gia86b, Gia86a].

1I have participated to METEOR (a European ESPRIT project), to MEGA (which was directed by J.-P.
Sansonnet) and to PTAH (managed by F. Cappello). I have personnaly conceived and managed the others
ones.
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II.2 METEOR:
a Formal Approach of the Software Development
Process

My position evolved at the Marcoussis Laboratories as a research engineer in the software
engineering team. I have participated to technologies transfer to Alsthom subsidiaries. The
collaboration with the industrial units was materialized by teaching activities (formal meth-
ods, new programming languages, techniques of code generation) and by the development of
specific tools for a software environment for real time programs [GHM86, Gia87] (the target
application was the driver of the MAGALY engine, the Lyon underground).

This activity was based on research activities done in the framework of a European
ESPRIT project called METEOR. METEOR investigated the application of algebraic spec-
ifications to the development of industrial programs. The Marcoussis labs. were responsible
for the task number 11: “Experimentation and Investigation on Tools”. More specifically,
my work in METEOR consisted mainly in the the studies of a generic environment support-
ing the development of algebraic specifications: IDEAS [GHMP87, PMG87, Gia88]. I also
took part in the realization of the graphical interface of PEGASE [BG89], a specification
manager integrating a versioning mechanism and in two case studies [Des90, GM89] making
possible to validate and guide the methods and the developed tools. Finally, I wrote the
“final report” for task 11.

II.3 ADAGE:
a Generic Development Environment based on Hi-
erarchical Typed Graphs

Starting in 1988 from the IDEAS achievements, I designed and directed the ADAGE project,
an Alcatel-NV research program in generic CASE tools [GDR+90, GDR88a, GDR89].

ADAGE is a generic environment for the definition and management of software entities
during the software life cycle [GDR+90]. The software objects are described using a for-
malism based upon typed and attributed graphs (the type of a graph is also a graph and it
is possible to refine, at any time, an existing type). The data model is an extension of the
entity-relationship model which allows, through incremental and reflexive properties, the
building of generic and evolutive environments.

In this context, my team (up to 6 people) studied the problems brought up by the
genericity [GDRY89, GDRH89, Des90], the persistence in programming languages [GDR88b,
GDR88a, GDR89], the interpretation and compilation of requests and constraint satisfaction
in this data base [Lag89, GDR89], and also the problems raised by users interfaces and the
interactive representation of large sets of data [Ber88, Rob89, Gui90]. The implementation
of the environment [RGD91] represents more than 70 000 lines of C++ source code.

The softwares and some of the libraries have been evaluated or used in METEOR and
in other ESPRIT projects (SPIN, IKAROS and ICARUS ), by Alcatel-Alsthom subsidiaries
as well as some external companies (for example: Sextant-Avionique and Rational U.S.A.).
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From Industrial Research to Academic Research.

My very own interests (parallelism, intensional expression and manipulation of data in pro-
gramming languages), the wish of a more fundamental research and of longer term projects,
motivated my departure (beginning in September 1989 and achieved in March 1990), to join
the “Parallel Architecture” team at LRI, where I started a PhD thesis.

II.4 MEGA and PTAH:
Massively Parallel Architectures

The research work of the Architecture Team was focused on the MEGA project and then
on the PTAH project. MEGA, developed at the LRI from 1988 to 1992 by J.-P. Sansonnet,
studied a 106 elementary PEs parallel architecture. The supported execution model was the
actor model: dynamical and communicating asynchronous processes. I collaborated to the
general development of the project [BGG90, BGG+91, BEG+91] and more precisely to the
definition of a functional language close to the machine [GGS91]. I also developed an actor
language suited to this architecture [GGF91].

One of the main problems raised by massively parallel architectures is the manag-
ing of the communication of informations between PEs, whether these communications
refer to the interaction between processes (message passing) or to the processes them-
selves (migration of tasks, for example for dynamic load balancing). I worked in col-
laboration with C. Germain for the parallel simulation2 of message routing algorithms
[GG90a, GG90b, GGB+93a, GGB+93b] and with F. Delaplace for a strategy of processes
migration [DG91].

The conclusions of the MEGA project lead to the definition of a new research direction:
PTAH. The main concern of this project was to study the adequacy between the commu-
nication and computation resources. The use of a fully static routing through a dynamical
interconnection network has been investigated. My collaboration to this project lead to the
publications of three articles [CBG92, CBD+93, CGBD93].

In the same time, I developed my own researches: the 81/2 project. The 81/2 project
confronts the problems raised by the simulation of dynamical systems. It has been initially
influenced by the directions taken by the PTAH project (the static execution model).

II.5 81/2:
a Parallel Computation Model for the Simulation
of Large Dynamical Systems

The main objective of the 81/2 project is the definition of a high-level parallel computation
model for the simulation of large dynamical systems. This computation model has been
materialized by the development of a language [Gia91c, Gia91a, Gia92b, GS94], also called
81/2, and has been validated by an experimentation platform (interpreter, compiler, visual-
izing tool, workbench for the data distribution strategies, etc.) [MGS94c, MG94b, MDV94,
MG94a, DVM96]. I supervised five Master Thesis and three PhD Thesis during the 81/2

project.

A dynamical system corresponds to a phenomenon described by a state that evolves
in time. The state has often a spatial extent (the speed of a fluid in every point of a

2The simulations have been performed on the Connection-Machine of the “site d’tude en Hyper-
Paralllisme” of the ETCA, a research laboratory of the french army.
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pipe for example). This very general model covers the major part of the applications on
high-performance computers. My goal was to define an expressive language for this kind of
application. Consequently, I headed to the declarative model naturally close to the mathe-
matical formalisms used to describe the evolution of systems [Gia91b, MGS94c]. I developed
a new declarative data structure, the fabric which represents the trajectory of a dynamical
system. A fabric is a temporal sequence of collections (a collection is a set of data that is
managed as a whole).

The static execution model corresponds to programs where the execution parameters
are set before the execution (like the size and distribution of the data, the scheduling of
the computations...). Programs of that kind can be efficiently compiled (by minimizing the
requirement of a dynamical execution support, by optimizing the resources management,
etc.) Consequently, I developed new compilation and analysis techniques that detect and
exploit the static part of declarative programs [Gia92a, GSM92, Mah92, MGS93, DV94,
MGS94b, MGS94a, MG94a, DV96a, GDVM97, DVM96, DV96a, DV96c, DV97, DV98].

Relationships between the declarative and the implicit and static approach of the paral-
lelism have been more precisely detailed in [Gia91c, GS93, MDVS96, MG98a].

Since 1994, the 81/2 project has evolved to take into account dynamical structures in
applications. As a matter of fact, this aspect was not covered by the study of the static
kernel of the language. Nevertheless, these applications represents nowadays a new frontier in
the applications of large simulations. The goal was to extend the notions of 81/2’s collection
and streams to deal with dynamical structures [GMS95, MG95, Mic96b, Mic96e, Mic96c,
Mic96d, Seg97, MG98a, GDVS98b, GDVS98a, DV98]. For example, dynamical structures
are found in the modeling of growing structures, the adaptative methods for the resolution
of partial differential equations, the exploration of state trees, morphogenesis process, etc.

II.6 TopoAi:
Spatial and Temporal Representation for Program-
ming

My researches in the field of parallel languages lead me directly to the study of the temporal
and spatial relations: it is necessary to describe and to control the computation scheduling,
the spatial localization of the data, etc. These spatio-temporal structures are related to the
evaluation of the program.

Nevertheless, these spatio-temporal structures may also be explicited in the program
itself. This is the case when a dynamical system is simulated: the programmer has to
describe in its program an object that has spatial and temporal aspects.

More generally, it appears that computational structures can be considered as spatial or
temporal entities, that is, they can be defined or characterized by the programmer as spatial
and temporal relations (like neighborhood, succession, containment, . . . ). For example, a
tree or an array data structure becomes a space where the computations (the functions
defined by induction on the data structure) moves itself. This is the point of view adopted
by the GBF or the amalgams [GMS95, MG95, Sou96, Mic96c, Mic96d, MG98a].

In the TopoAi project, I want to make this point of view more systematic and apply it
to other domains than the simulation of dynamical systems (some problems raised by the
Cognitive Sciences are the background motivations now).

My idea is that the evaluation of a program corresponds to the execution of actions
along a path in a space more or less abstract and more or less explicit for the programmer.
Making this space explicit, constructing it dynamically, specifying and characterizing the
paths taken by the evaluation process, promote a new programming framework where new
control mechanisms and new data structures can be proposed.
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A first application of this new framework has been investigated in the field of knowl-
edge representation and diagrammatic reasoning. I used the notion of simplicial complex
developed in algebraic topology, to construct an abstract space where the resolution of an
analogy problem becomes the construction of a path [Val97, VG98, VGS98, GV98].
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Chapter III

Introduction and Motivations

III.1 Introduction

Our research project at the French Center for National Scientific Research (CNRS) is entitled
“Models and Tools for Large Simulations”. The goal of this project is to integrate in a
programming language data and control structures reducing the semantical gap between the
mathematical models of dynamical systems (DS) and their parallel computer simulations.

The motivation is to relieve the programmer from making many low-level implementation
decisions and to concentrate in sophisticated data and control structure the complexity
of the algorithms. This may imply some loss of run-time performance but in return for
programming convenience.

Our research is materialized by an experimental programming language, called 81/2.

Our target is not to design a specific language dedicated to the simulation of some kind
of dynamical systems but to import some of the notions necessary for the simulation of DS
that have a general interest for programming. And we want to study them from the design
and implementation of a programming language point of view.

This leads to the development and the enhancement of declarative representation of time
and space in a programming language.

In the long term, we hope to develop a new programming paradigm where the objects and
the resources handled by the programmer are abstractly considered through a geometrical
point of view (see chapters VI and IX).

The 81/2’s achievement motivates now the beginning of a new project called TopoAi. The
background target applications are now those from the Cognitives Sciences and knowledge
representation in Artificial Intelligence. We have used simple topological objects, enabling
the construction of a space and the definition of an abstract notion of path, to represent
knowledges.

However, the articulation between the target applications and our work remains the
same: the aim is to design and implement new concepts in programming languages.

III.2 Structure of the 81/2 Project

The problems and the questions that have driven the 81/2 project fit naturally in four classes:

1. time representation,

2. space representation,

3. declarative representation,

4. parallel implementation of declarative representations of space and time.

9



These four themes represent a giant body of existing works. Our own researches have focused
more specifically on

1. the concept of trajectory as a primitive data structure for programming;

2. the concept of field as a primitive data structure for programming;

3. the specification and the management of these data structures in a declarative frame-
work;

4. the parallel implementation of these data structures.

The first two points correspond to the explicit representation by a data structure, that is,
by a computed value, of temporal and spatial objects. We will show in the following that
these objects are infinite: either because they are “unending” or because only finite parts
are computed.

The third point corresponds to the handling of these objects in a “clean” framework,
close to the mathematical formalism where they are usually defined. Our main problem is
to infer from a description of these entities an effective construction.

The last point advocates an implicit approach of parallel programming, where the par-
allelism is an operational property regarding the compiler or the interpreter, but not the
concern of the programmer.

III.3 Organization of the Presentation

We have organized this part in chapters, each corresponding to a different data structure:
the stream in chapter V, the GBF in chapter VI, the amalgam in chapter VIII and the
simplicial complex in chapter IX. Chapter VII is dedicated to the parallel implementation
of collections and data fields. Chapter IV gives a general perspective on the 81/2 language.

The table below gives the relationships between the structuring themes of the 81/2 project
and the chapters of this document.

Table III.1: Relations between the themes and the chapters of this document

Themes Chapters

1. Time Representation V

2. Space Representation VI, VIII, IX

3. Declarative Representation IV, V, VI, VIII

4. (Parallel) Implementations IV, V, VII

III.4 The simulation of Dynamical Systems

In the rest of this chapter, we briefly describe the target applications that have motivated
in background the development of the 81/2 project. We introduce some definitions (state,
trajectory, field), that are used in this document.

Dynamical systems (DS) are an abstract framework used to model phenomena that occur
in space and time.

The system is characterized by “observables”, called the variables of the system, which
are linked by some relations. The value of the variables evolves with the time. A variable
can take a scalar value (like a real) or be of a more complex type like the the variation of
a simpler value on a spatial domain (for instance, the temperature on each point of a room
or the velocity of a fluid in a pipe). This last kind of variable is called a field.
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The set of the values of the variables that describe the system constitutes its state. The
state of a system is its observation at a given instant. The sequence of state changes is called
the trajectory of the system.

Intuitively, a dynamical system is a formal way to describe how a point (the state of the
system) moves in the phase space (the space of all possible states of the system). It gives
a rule telling us where the point should go next from its current location (the evolution
function).

There exists several formalisms used to describe a DS: ordinary differential equations
(ODE), partial differential equations (PDE), iterated equations (finite set of coupled differ-
ence equations), cellular automata, etc. In the table III.2, the discrete or continuous nature
of the time, the space and the value, is used to classify some DS specification formalisms.

Table III.2: Some formalisms used to specify a DS following the discrete or continuous
nature of space, time and value.

C: continuous,
D: discrete.

PDE ODE Iterated
Equations

Cellular
Automata

Space C D D D
Time C C D D
State C C C D

The study of these kinds of models can be found in all scientific domains and make often
use of digital simulations. As a matter of fact, it is sometimes too difficult, too expensive or
simply impossible to make real experiments (e.g. in nuclear industry). The applications of
DS simulation often require a lot of computing power and constitute the largest part of the
use of super and parallel computers.

The US “Grand Challenge” initiative to develop the hardware and software architectures
needed to reach the tera-ops, outlines that numerical experiments, now mandatory in all
scientific domains, is possible only if all the computing resources are easily available [NSF91,
HPC96, ORA98].

From this point of view, the expressiveness of a simulation language is at least as im-
portant as its efficiency. Nowadays the data structure and the algorithm used are indeed
more and more sophisticated. The lack of expressive power becomes then an obstacle to the
development of new simulation programs. With the increase of power of standard hardware
and the development of the software tools needed to exploit heterogeneous network of work-
station, the new challenge is not only in the increase of the brutal computing power but also
in the programming of the model.

If we use an imperative language like Fortran77 to develop a DS simulation, most of
the time dedicated to programming will be spent in the burden of

• representation of the objects of the simulation,

• memory management,

• management of the logical time,

• management of the scheduling of the activities of the objects of the simulation,

• . . .

A high-level DS simulation language must then offer well fitted dedicated concepts and
resources to relieve the programmer from making many low-level implementation decisions
and to concentrate the complexity of the algorithms in dedicated data and control structures.
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Certainly ,this implies some loss of run-time performance but in return for programming
convenience. How much loss we can tolerate and what we do get in exchange must be care-
fully evaluated. Note however, that a priori, the two goals of expressiveness and efficiency
are not opposite:

• It is stressed in [NSF91] that the increasing of simulation power is due in equal part
to the increase of hardware performance and software sophistication. For that reason,
a language enabling the expression of more complex algorithms increases also the
simulation efficiency.

Low-level languages like Fortran77 restrict the development of new software as pointed
out in [FKB96, Zim92, GG96, Can91, MGS94c]. The new solvers and the new scientific
libraries rely on more modern languages like C++ [BLQ92, KB94, ASS95, HMS+94,
PQ93, PQ94, LQ92].

• A high-level language is independent of a specific target architecture and favor then
the development of more portable programs.

• A high-level language can be efficiently compiled (Cf. chap. V).

If the data or control structures of a language are close to the application needs,
but are inefficient, it is a high probability that the corresponding concepts are poorly
implemented in any language because of their inherent inefficiency.

The 81/2 language for DS simulations

These considerations have driven the 81/2 project1. The goal is to design a high-level parallel
language for the simulation of DS [Gia91c, Gia91a, Gia92b, GS94, MG98b].

We have naturally chosen a declarative style close to the mathematical formalism used in
DS specifications [Gia91b, MGS94c, MG98b]. We have designed in this declarative frame-
work a new data structure: the fabric2. A fabric represents the trajectory of a dynamical
system. It is a temporal sequence (a stream) of collections (a collection is a set of data
simultaneously accessible and managed as a whole).

The studies on the design of 81/2 have been materialized by the development of an
experimental environment: interpreter, compiler, visualization system, workbench to test
the data distribution strategy, etc. [MGS94c, MG94b, MDV94, MG94a, DVM96].

The PTAH project has also influenced the beginning of 81/2 by the emphases put on a
static execution model.

Static execution models correspond to the class of programs the parameters of the run-
time can be inferred at compile-time (e.g., size of the data, data distribution, scheduling).
Programs of this type can be efficiently compiled (by minimizing the run-time support
needed, by optimizing the resource management, etc.).

We have then developed new analysis and compilation techniques to detect and ex-
ploit the static character of a declarative program [Gia92a, GSM92, Mah92, MGS93, DV94,
MGS94b, MGS94a, MG94a, DV96a, GDVM97, DVM96, DV96a, DV96c, DV97].

The relationship between declarative programming and the implicit and static approaches
of the parallelism have been more especially investigated in [Gia91c, GS93, MDVS96, MG98a].

1Five “DEA” (master thesis) and three “thses” (PhD) have been done in the framework of this project.
2 This data structure has been initially called web because the interleaving between the weft and the

warp in threads woven gives an accurate image of the interplay of streams and collections in the recursive
definition of a fabric. However, the ambiguity raised by the development of the Internet has motivated the
change of name. Both names can be found in our papers.
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Taking into account Dynamical Structures

The 81/2 project evolved since 1994 to take into account programs with dynamic structures.
This kind of programs constitutes a new frontier in DS applications. The goal was to
generalize the notions of stream and collection of 81/2 to accommodate these new structures
[GMS95, MG95, Mic96b, Mic96e, Mic96c, Mic96d, Seg97, MG98a, GDVS98b, GDVS98a,
DV98]. Dynamical structures can be found for example in models of biological growth
processes, in adaptive methods for the resolution of PDE, in the exploration of trees, etc.

Using Space and Time Representation for Programming

The researches in parallel languages lead directly to the study of temporal and spatial
relations: one must describe and control the schedule of computations, deal with the spatial
localization of the data, etc. These spatio-temporal structures are linked to the program
evaluation.

However, spatio-temporal structures can also be the subject of the program itself: this
is the case in the simulation of a DS. The programmer has then to describe or compute in
its program an object that has a spatial and/or temporal nature.

More generally, the objects involved by a program can be observed from the point of
view of space and time. A data structure, like a tree or an array, becomes then a space
where the computation moves. This point of view is adopted in the study of the GBF or
the amalgams [GMS95, MG95, Sou96, Mic96c, Mic96d, MG98a].

This perspective gives the premises of a new research project called TopoAi. In this
project we will generalize the approach of the GBF and the amalgams and apply it to other
domains than the simulation of DS.

Our idea is that the evaluation of a program corresponds to actions performed along
a path in a more or less abstract space. Making this space explicit for the programmer,
offering new control structures to build dynamically these paths, specifying the paths taken
during the evaluation . . . will offer a geometric programming paradigm .

Some applications in the fields of Cognitive Sciences and Artificial Intelligence becomes
now the driving problems. In this long term goal, we have made a first step using the concept
of abstract simplicial complex developed in algebraic topology, in an analogy solving problem
and in diagrammatic reasoning [Val97, VG98, VGS98].
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Chapter IV

A 81/2 Quick Tour

This chapter intent is to give a general view of the 81/2 project through the experimental
platform we have developed1. We give a quick overview of the 81/2 language and more specif-
ically of the concepts of collection, stream and fabric. A fabric is a multi-dimensional object
that represents the successive values of a structured set of variables. Some 81/2 programs
are given to show the relevance of the fabric data structure for simulation applications.

Examples of 81/2 programs, involving the dynamic creation and destruction of fabrics,
are also given. Such programs are necessary for simulations of growing systems.

The implementation of a compiler restricted to the static part of the language is then
described. We focus on the process of fabric equations compilation towards a virtual sequen-
tial machine (including vector or SIMD architecture). We also sketch the clock calculus, the
scheduling inference and the distribution of the computations on the processing elements of
a parallel computer.

The following chapters in this part focus on a specific point that is only evoked here.
The next chapter, chapter V, develops the concept of stream, its relation to parallel

programming, and exposes the compilation of 81/2 streams.
Chapter VI extends the concept of collection in 81/2 towards a more general data struc-

ture that unifies in the same framework, arrays, trees and data field: the GBF.
The parallel evaluation of 81/2 programs and the data parallel evaluation of data fields

are exposed in chapter VII.
The concept of GBF formalizes a uniform data structure. To handle non uniform data

structure, to modularize declarative programs and to compute programs as a result of other
programs, we have developed the notion of amalgams in chapter VIII.

IV.1 The Declarative Data Parallel Language 81/2

81/2 has a single data structure called a fabric2. A fabric is the combination of the concepts
of stream and collection. This section describes these three notions.

IV.1.1 The Collection in 81/2

A collection is a data structure that represents a set of elements as a whole [BS90]. Several
kinds of aggregation structures exist in programming languages: set in SETL [SDDS86] or
in [Jay92], list in LISP, tuple in SQL, pvar in *LISP [Thi86] or even finite discrete space
in Cellular Automata [?]. Data-parallelism is naturally expressed in terms of collections

1This chapter is a compilation of [GS93, GS94, MG94b, Mic96a, Mic96b, Mic96e].
2We recall here that this data structure has been initially called web. Both names can be found in our

papers. See footnote page 12.
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[HS86, SB91]. From the point of view of the parallel implementation, the elements of a
collection are distributed over the processing elements (PEs).

Here, we consider collections that are ordered sets of elements. An element of a collection,
also called a point in 81/2, is accessed through an index. The expression T.n where T is a
collection and n an integer, is a collection with one point; the value of this point is the value
of the nth point of T (point numbering begins with 0). If necessary, we implicitly coerce
a collection with one point into a scalar and vice-versa through a type inference system
described in [Gia92a]. More generally, the system is able to coerce a scalar into an array
containing only the value of the scalar.

Geometric operators change the geometry of a collection, i.e. its structure. The geometry
of a collection of scalars is reduced to its cardinal (the number of its points). A collection
can also be nested : the value of a point is a collection. Collection nesting allows multiple
levels of parallelism and exists for example in ParalationLisp [Sab88] and NESL [Ble93].
The geometry of the collection is the hierarchical structure of point values.

The first geometric operation consists in packing some fabrics together:

T = {a, b}

In the previous definition, a and b are collections resulting in a nested collection T . Elements
of a collection may also be named and the result is then a system. Assuming

car = {velocity = 5, consumption = 10}

the points of this collection can be reached uniformly through the dot construct using their
label, e.g. car.velocity, or their index: car.0.

The composition operator # concatenates the values and merges the systems:

A = {a, b}; B = {c, d};
A#B =⇒ {a, b, c, d}
ferrari = car#{color = red} =⇒ {velocity = 5, consumption = 10, color = red}

The last geometric operator we will present here is the selection: it allows the selection
of some point values to build another collection. For example:

Source = {a, b, c, d, e}
target = {1, 3, {0, 4}}

Source(target) =⇒ {b, d, {a, e}}
The notation Source(target) has to be understood in the following way: a collection can
be viewed as a function from [0..n] to some co-domain. Therefore, the dot operation corre-
sponds to function application. If the co-domain is the set of natural numbers, collections
can be composed and the following property holds: Source(target).i = Source(target.i),
mimicking the function composition definition. From the parallel implementation point of
view, selection corresponds to a gather operation and is implemented using communication
primitives on a distributed memory architecture.

Four kinds of function applications can be defined:

Operator Signature Syntax

application (collectionp −→ X)× collectionp −→ X f(c1, . . . , cp)
extension (scalarp −→ scalar)× collectionp −→ collection f^(c1, . . . , cp)
reduction (scalar2 −→ scalar)× collection −→ scalar f\c
scan (scalar2 −→ scalar)× collection −→ collection f\\c
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X means both scalar or collection; p is the arity of the functional parameter f.
The first operator is the standard function application.
The second type of function applications produces a collection whose elements are the

“pointwise” applications of the function to the elements of the arguments. Then, using a
scalar addition, we obtain an addition between collections. Extension is implicit for the
basic operators (+, ∗, . . . ) but is explicit for user-defined functions to avoid ambiguities
between application and extension (consider the application of the reverse function to a
nested collection).

The third type of function applications is the reduction. Reduction of a collection using
the binary scalar addition, results in the summation of all the elements of the collection.
Any associative binary operation can be used, e.g. a reduction with the min function gives
the minimal element of a collection. The scan application mode is similar to the reduction
but returns the collection of all partial results. For instance: +\\{1, 1, 1} =⇒ {1, 2, 3}.
See [Ble89] for a programming style based on scan. Reductions and scans can be performed in
O(log2(n)) steps on SIMD architecture, where n is the number of elements in the collection,
if there is enough PEs.

IV.1.2 The Stream in 81/2

The concept of Stream in 81/2

LUCID [WA76] is one of the first programming languages defining equations between infinite
sequences of values. Although 81/2 streams are also defined through equations between
infinite sequences of values, 81/2 streams are very different from those of LUCID.

A metaphor to explain 81/2 streams is the sequence of values of a register. If you observe
a register of a computer during a program run, you can record the successive store operations
on this register, together with their dates. The (timed) sequence of stores is a 81/2 stream.
At the beginning, the content of the register is uninitialized (a kind of undefined value).
Then it receives an initial value. This value can be read and used to compute other values
stored elsewhere, as long as the register is not the destination of another store operation.

The time used to label the changes of values of a register is not the computer physical
time, it is the logical time linked to the semantics of the program. The situation is exactly
the same between the logical time of a discrete-events simulation and the physical time of
the computer that runs the simulation. Therefore, the time to which we refer is a countable
set of “events” meaningful for the program.

81/2 is a declarative language which operates by making descriptive statements about
data and relationships between data, rather than by describing how to produce them.

For instance, the definition C = A+B means the value in register C is always equal to
the sum of the values in register A and B. We assume that the changes of the values are
propagated instantaneously. When A (or B) changes, so do C at the same logical instant.
Note that C is uninitialized as long as A or B are uninitialized.

Table IV.1 gives some examples of 81/2 streams.
The first line gives the instants of the logical clock which counts the events in the program.

The instants of this clock are called a tick (a tick is a column in the table). The date of the
“store” operations of a particular stream are called the tock of this stream (because a large
clock is supposed to make “tick-tock”): they represent the set of events meaningful for that
stream (a tock is a non-empty cell in the table).

At a tick t, the value of a stream is: the last value stored at tock t′ ≤ t if t′ exists, or the
uninitialized value otherwise. For example, the value of $C at tick 0 is undefined whilst its
value at tick 4 is 3.
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Table IV.1: Examples of constant streams.

0 1 2 3 4 5 6 7 8 . . .
1 1 . . .

1+2 3 . . .
Clock 2 true true true true true . . .

assuming A 1 2 3 4 5 6 . . .
assuming B 1 2 1 1 . . .
C = A+B 2 3 5 6 6 7 7 . . .

$ C 2 3 5 6 6 7 . . .

Stream Operations

A scalar constant stream is a stream with only one “store” operation, at the beginning of
time, to compute the constant value of the stream. A constant n really denotes a scalar
constant stream.

Constructs like Clock n denote another kind of constant streams: they are predefined
sequences of true values with an infinite number of tocks. The set of tocks depends of the
parameter n.

Scalar operations are extended to denote element wise application of the operation on
the values of the streams.

The delay operator, $, shifts the entire stream to give access, at the current time, to the
previous stream’s value. This operator is the only operator that does not act in a point-wise
fashion. The tocks of the delayed stream are the tocks of the arguments at the exception of
the first one.

The last kind of stream operators are the sampling operators. The most general one is the
“trigger”, which is very close to the T -gate in data-flow languages [Den74a]. It corresponds
to the temporal version of the conditional. The values of T when B are those of T sampled
at the tocks where B takes a true value (see table IV.2). A tick t is a tock of A when B if
A and B are both defined and t is a tock of B and the current value of B is true.

Table IV.2: Example of a sampling expression.

A 1 2 3 4 5 6 7 8 9
B false false false true false true true false true

A when B 4 6 7 9

81/2 streams present several advantages:

• 81/2 streams are manipulated as a whole, using filters, transducers. . . [AB83].

• Like other declarative streams, this approach represents imperative iterations in a
“mathematically respectable way” [WA85] and to quote [Wat91]: “(...) series expres-
sions are to loops as structured control constructs are to gotos”.

• The tocks of a stream really represent the logical instants where some computation
must occur to maintain the relationships stated in the program.

• The 81/2 stream algebra verifies the causality assumption: the value of a stream at
any tick t may only depend upon values computed for previous tick t′ ≤ t. This is
definitively not the case for LUCID (LUCID includes the inverse of $, an “uncausal”
operator).
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• The 81/2 stream algebra verifies the finite memory assumption: there exists a finite
bound such that the number of past values that are necessary to produce the current
values remains smaller than the bound.

The last two assumptions have been investigated in two real-time programming languages
derived from LUCID: LUSTRE [CPHP87] and SIGNAL [GBBG86]. Such streams enable
a static execution model: the successive values making a stream are the successive values
of a single memory location and we do not have to rely on a garbage collector to free the
unreachable past values (as in Haskell [HF92] lazy lists for example). In addition, we do
not have to compute the value of a stream at each tick, but only at the tocks. However, the
concept of time supported by 81/2 is different of the strongly synchronous time supported
by LUSTRE and SIGNAL (Cf. the introduction in chapter V).

IV.1.3 Combining Streams and Collections into Fabrics

A fabric is a stream of collections or a collection of streams. In fact, we distinguish between
two kinds of fabrics: static and dynamic. A static fabric is a collection of streams where
every element has the same clock (the clock of a stream is the set of its tocks). In an
equivalent manner, a static fabric is a stream of collections where every collection has the
same geometry. Fabrics that are not static are called dynamic. The compiler is able to
detect the kind of the fabric and compiles only the static ones. Programs involving dynamic
fabrics are interpreted.

Collection operations and stream operations are easily extended to operate on static
fabrics considering that the fabric is a collection (of streams) or a stream (of collections).

81/2 is a declarative language: a program is a system representing a set of fabric defini-
tions. A fabric definition takes a form similar to:

T = A+B (IV.1)

Equation (IV.1) is a 81/2 expression that defines the fabric T from the fabric A and B (A
and B are the parameters of T ). This expression can be read as a definition (the naming of
the expression A+B by the identifier T ) as well as a relationship, satisfied at each moment
and for each collection element of T , A and B. Figure IV.1 gives a three-dimensional
representation of the concept of fabric.
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Figure IV.1: A fabric specified by a 81/2 equation is an object in the 〈time, space, value〉
reference axis. A stream is a value varying in time. A collection is a value varying in space.
The variation of space in time determines the dynamical structure (Cf. section IV.2.2).
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Running a 81/2 program consists in solving fabric equations. Solving a fabric equation
means “enumerating the values constituting the fabric”. This set of values is structured
by the stream and collection aspects of the fabric: let a fabric be a stream of collections;
in accordance to the time interpretation of stream, the values constituting the fabric are
enumerated in the stream’s ascending order. So, running a 81/2 program means enumerating,
in sequential order, the values of the collections making the stream. The enumeration of the
collection values is not subject to some predefined order and may be done in parallel.

IV.1.4 Recursive Definitions

A definition is recursive when the identifier on the left hand side appears also directly or
indirectly on the right hand side. Two kinds of recursive definitions are possible.

Temporal Recursion

Temporal recursion allows the definition of the current value of a fabric using its past values.
For example, the definition

T@0 = 1
T = $T + 1 when Clock 1

specifies a counter which starts at 1 and counts at the speed of the tocks of Clock 1. The @0
is a temporal guard that quantifies the first equation and means “for the first tock only”.
In fact, T counts the tocks of Clock 1.

The order of equations in the previous program does not matter: the unquantified equa-
tion applies only when no quantified equation applies. The language for expressing guards
is restricted to @n with the meaning “for the nth tock only”.

Spatial Recursion

Spatial recursion is used to define the current value of a point using current values of other
points of the same fabric. For example,

iota = 0#(1 + iota : [2]) (IV.2)

is a fabric with 3 elements such that iota.i is equal to i. The operator : [n] truncates a
collection to n elements so we can infer from the definition that iota has 3 elements (0 is
implicitly coerced into a one-point collection). Let {iota1, iota2, iota3} be the value of the
collection iota. The definition states that:

{iota1, iota2, iota3} = {0}#({1, 1}+ {iota1, iota2})
which can be rewritten as:





iota1 = 0
iota2 = 1 + iota1

iota3 = 1 + iota2

which proves our previous assertion.

We have developed the notions that are necessary to check if a recursive collection de-
finition has a defined solution. The solution can always be defined as the least solution of
some fixpoint equation. However, an equation like

x = {x}
does not define a well formed array (the number of dimensions is not finite). We insist that
all elements of the array solution must be defined. In other words, we are looking only for
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maximal solutions in the array lattice. An equation that admits a maximal solution as the
least fixpoint solution is called admissible.

Checking the admissibility of a recursive collection definition is a problem similar to the
determination of function stricticity in static analysis. Another close problem is the detection
of deadlocks in functional data flow [Wad81, LM87] or the productivity of recursive definitions
of lazy lists [Sij89]. As usual in static analysis, we are looking for sufficient criteria.

Our analysis is made in two passes. The first one is the geometrical type inference (see
[Gia92a]). Then we check that the equation defining the array has some properties enabling
the computation of the array elements by a nest of loops. This is done by labeling the edges
of the dependencies graph3 of the program by an annotation describing the propagation
of the computation between elements. Then, we check that the annotation on a loop of
the dependencies graph allows the propagation by increasing or by decreasing indexes (Cf.
figure IV.9 and section IV.3.3).

Figure IV.2 illustrates the computations solving the equation (IV.2). Computations are
done by one loop enumerating the index of the iota elements in the increasing order.

iota:[4]

0 1 2 3 4
iota =

0 # (iota:[4] + 1)

take

addition

concatenation

1

2

3

0

1

2

3

4

iota:[4]+1

Figure IV.2: Sequential computation of iota.

Here is an example that needs the production of a decreasing loop:

r = ((r : [−4])− 1) # 4 (IV.3)

A negative argument in the “: []” operator takes the last n elements in the collection. An
attentive reader may check that equations (IV.3) and (IV.2) define the same vector.

More generally, all primitive recursive functions can be translated in a recursive definition
of a collection in various ways. For instance

F = 0 # (F : [9]) + {0, 1}# (F : [8])
G = {0, 1} # (G : [−9] : [8] +G : [8])
H = if iota == 0 then 1 else (if iota == 1 then 1 else (0 #H : [9]) + (0 #H : [8]))

are three recursive definitions of the same vector of size 10 where the ith elements has value
Fibonacci(i). More examples are given in [GS94].

The interesting thing is that the cost of the computation of an admissible definition is
linear with the number of elements of the vector (which is not the case for the computation

3The dependencies graph here records the dependencies between collection and not between collection
elements.
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by a function). However, this is more subtle than just the detection of a terminal recursion
and its unfolding in a loop. The following example:

{
x = 0 # (1 + x : [5] + y : [5])
y = 2 + (3 # (x : [5] + y : [5]))

correctly handled by the compiler, shows that it is necessary to interleave the computation
of x and y.

IV.2 Examples of 81/2 Programs

All the examples in this section have been processed by the 81/2 environment [Gia91b, Leg91,
MDV94, Mic95a] and the illustrations have been produced by the 81/2–gnuplot interface
[WKC+90].

IV.2.1 Examples of Fabrics with a Static Structure

Numerical Resolution of a Parabolic Partial Differential Equation

We want to simulate the diffusion of heat in a thin uniform rod. Both extremities of the rod
are held at 0◦C. The solution of the parabolic equation:

∂U

∂t
=
∂2U

∂x2
(IV.4)

gives the temperature U(x, t) at a distance x from one end of the rod after time t. An
explicit method of solution uses finite-difference approximation of equation (IV.4) on a mesh
(Xi = ih, Tj = jk) which discretizes the space of variables [Smi66].
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Figure IV.3: Diffusion of heat in a thin uniform rod. The picture on the right is the result
of the 81/2 program run visualized by the 81/2–gnuplot interface.
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One finite-difference approximation to equation (IV.4) is:

Ui,t+1 − Ui,t

k
=

Ui+1,t − 2Ui,t + Ui−1,t

h2

which can be rewritten as

Ui,j+1 = rUi−1,j + (1− 2r)Ui,j + rUi+1,j (IV.5)

where r = k/h2. It gives a formula for the unknown temperature Ui,j+1 at the (i, j + 1)th

mesh point in term of known temperatures along the jth time-row. Hence we can calculate
the unknown pivotal values of U along the first time-row T = k, in terms of known boundary
and initial values along T = 0, then the unknown pivotal values along the second time-row
in terms of the first calculated values, and so on (see figure IV.3 on the left).

The corresponding 81/2 program is very easy to derive and describes simply the initial
values, boundary conditions and the specification of the relation (IV.5). The stream aspect
of a fabric corresponds to the time axis while the collection aspect represents the rod dis-
cretization. The second argument of the when operator is Clock which represents the time
discretization (Cf. figure IV.3). The expression ′n generates a vector of n elements where
the ith element has value i.

start = some initial temperature distribution;
LeftBorder = 0;
RightBorder = 0;

U@0 = start;
U = LeftBorder#inside#RightBorder;

float inside = 0.4 ∗ pU(left) + 0.2 ∗ pU(middle) + 0.4 ∗ pU(right);
pU = $U when Clock;
left = ′6;
right = left+ 2;

middle = left+ 1;

The Simulation of a Reactive System

Here is an example of an hybrid dynamical system, a “wlumf ”, which is a “creature” whose
behavior (eating) is triggered by the level of some internal state (see [Mae91] for such model
in ethological simulation).

More precisely, a wlumf is hungry when its glycaemia is under 3. It can eat when there is
some food in its environment. Its metabolism is such that when it eats, the glycaemia goes
up to 10 and then decreases to zero at a rate of one unit per time step. All these variables
are scalar. Essentially, the wlumf is made of counters and flip-flop triggered and reseted at
different rates.

boolean FoodInNeighbourhood = Random;

System wlumf =
{

Hungry@0 = false;
Hungry = (Glycaemia < 3);

Glycaemia@0 = 6;
Glycaemia = if Eating then 10 else max (0, $Glycaemia − 1) when Clock fi;

Eating = $Hungry && FoodInNeighbourhood ;
}

The result of an execution is given in figure IV.4.
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Figure IV.4: Behaviour of an hybrid dynamical system.

start = 0.05 ∗ ′20
separe[5] = 0

k@0 = 1.2
k = $k + 0.1whenClock

map = start#separe#
k ∗ (map ∗ (1−map)) : [125]

Web output

Figure IV.5: The first three iterations of the logistic function f(x) = kx(x− 1).

Web output Web output

Figure IV.6: Diffusion/Reaction in a Torus.
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A Complex Spatial Recursion

This examples use both spatial and temporal recursion schemes to compute a representation
of n iterates of the logistic function f(x) = kx(x − 1). Three parameters are varying: n, x
and k. We decide to map the x parameters varying from 0 to 1 by 0.05 steps to the collection
dimension of a fabric. The k parameter is mapped in time and increases by 0.1 at each clock
tock. The result is a surface. The iterates of f are computed by a spatial recursion: we
concatenate the second iteration after the first in the collection dimension. To distinguish
between the two surfaces, we insert between them a separation (called separe) of 5 null
elements. The truncation of the collection to 125 elements gives 125/(20+5) = 5 iterations.
The figure IV.5 on the right draws the iteration 1, 2 and 3 by appropriate truncations of
map.

An Example of Iterated Equations: Turing’s Model of Morphogenesis

A. Turing proposed a model of chemical reaction coupled with a diffusion processus in cells
to explain patterns formation. The system of differential equations [BL74] is:

dxr/dt = 1/16(16− xryr) + (xr+1 − 2xr + xr−1)
dyr/dt = 1/16(16− yr − β) + (yr+1 − 2yr + yr−1)

where x and y are two chemical reactives that diffuse on a discrete torus of cells indexed by
r. This model mixes a continuous phenomena (the chemical reaction in time) and a discrete
diffusion process.

In 81/2 we retrieve exactly the same equations dx and dy. The other equations correspond
to the computation of intermediate values like xdiff . . . to the computation of an initial
value beta or the access to the neighborhood through a gather operation. Note that the
corresponding C program is more than 60 lines long.

iota = ′60
right = if (iota == 0) then 59 else (iota − 1) fi
left = if (iota == 59) then 0 else (iota + 1) fi

rsp = 1.0/16.0
diff1 = 0.25
diff2 = 0.0625

x@0 = 4.0
x = $x+ $dx when Clock

y@0 = 4.0
y = max(0.0, $y + $dy) when Clock

beta = 12.0 + rand(0.05 ∗ 2.0)− 0.05

xdiff = x(right) + x(left)− 2.0 ∗ x
ydiff = y(right) + y(left)− 2.0 ∗ y
dx = rsp ∗ (16.0− x ∗ y) + xdiff ∗ diff1
dy = rsp ∗ (x ∗ y − y − beta) + ydiff ∗ diff2

In figure IV.6 we have presented the results after 100 time steps (starting with a random
distribution of the reactive) and after 1000 time steps when the solution has reached its
equilibrium.
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IV.2.2 Examples of Fabrics with a Dynamic Structure

Fabrics with static structure cannot describe phenomena that grow in space (like plants). To
describe those structures, we need dynamically structured fabrics. The rest of this section
gives some examples of this kind of fabrics. Note that we do not need to introduce new
operators, the current definitions of fabrics already enable the construction of dynamically
shaped fabrics.

Pascal’s Triangle

The numbers in Pascal’s triangle give the binomial coefficients. The value of the point
(line, col) in the triangle is the sum of the values of the point (line − 1, col) and the point
(line − 1, col − 1). We decide to map the rows in time, thus the fabric representation of
Pascal’s triangle is a stream of growing collections. This fabric is dynamic because the
number of elements in the collection varies in time.

We can identify that the row l (l > 0) is the sum of row (l− 1) concatenated with 0 and
0 concatenated with row (l − 1). The 81/2 program is straightforward:

t = ($t# 0) + (0 #$t) when Clock;
t@0 = 1;

The 5 first values of Pascal’s triangle are:

Tock : 0 : {1} : int[1]
Tock : 1 : {1, 1} : int[2]
Tock : 2 : {1, 2, 1} : int[3]
Tock : 3 : {1, 3, 3, 1} : int[4]
Tock : 4 : {1, 4, 6, 4, 1} : int[5]

Eratosthenes’s Sieve

We present a modified version of the famous Eratosthenes’s sieve to compute prime numbers.
It consists of a generator producing increasing integers and a list of known primes numbers
(starting with the single element 2). Each time we generate a new number, we try to divide
it by all currently known prime numbers. A number that is not divided by a prime number
is a prime number itself and is added to the list of prime numbers.

Generator is a fabric that produces a new integer at each tock. Extend is the number
generated with the same size as the fabric of already known prime numbers. Modulo is the
fabric where each element is the modulo of the produced number and the prime number in
the same column. Zero is the fabric containing boolean values that are true every time that
the number generated is divided by a prime number. Finally, reduced is a reduction with
an or operation, that is, the result is true if one of the prime numbers divides the generated
number. The x : |y| operator shrinks the fabric x to the rank specified by y. The rank of
a collection is a vector where the ith element represents the number of elements of x in the
ith dimension.

generator@0 = 2;
generator = $generator + 1 when Clock;

extend = generator : |$crible|;
modulo = extend % $crible;

zero = (modulo == (0 : |modulo|));
reduced = or\zero;
crible = $crible # generator when (not reduced);

crible@0 = generator;
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The 5 first steps of the execution give for crible:

Tock : 0 : {2} : int[1]
Tock : 1 : {2, 3} : int[2]
Tock : 2 : {2, 3} : int[2]
Tock : 3 : {2, 3, 5} : int[3]
Tock : 4 : {2, 3, 5} : int[3]

Coding D0L Systems

An L system is a parallel rewriting system (every production rule that might be used at each
derivation state are used simultaneously) developed by A. Lindenmayer in 1968 [Lin68]. It
has since become a formalism used in a wide range of applications from the description of
cellular interactions [Lin68] to a model of parallel computation [PH92].

The parallel derivation process used in the L systems is useful to describe processes
evolving simultaneously in time and space (growth processes, descriptions and codings of
plants and plants development, etc.). To describe a wide range of phenomena, L systems of
many different types have been designed. We will restrict ourselves to the simplest form of
L systems: D0L systems.

Formally, a D0L system is a triple G = (Σ, h, ω) where Σ is an alphabet, h is a finite
substitution on Σ (into the set of subsets of Σ∗) and ω, referred to as the axiom, is an
element of Σ+.

The D letter stands for deterministic, which means there exists at most a single pro-
duction rule for each element of Σ. Therefore the derivation sequence is unique while in
non deterministic L systems (since there can be more than one production rule applied at
each derivation state), there exists more than one derivation sequence. The numerical ar-
gument of the L system gives the number of interactions in the rewriting process; therefore
a 0L system is a context free L system (whereas an nL system is context sensitive with n
interactions).

An example of L system: the development of a one-dimensional organism. We
consider the development states of a one-dimensional organism (a filamentous organism). It
will be described through the definition of a 0L system. Each derivation step will represent
a state of development of the organism. The production rules allow each cell to remain in
the same state, to change its state, to divide into several cells or to disappear.

Consider an organism where each cell can be in one of two states a and b. The a state
consists of dividing itself whereas the b state is a waiting state of one division step.

The production rules and the 5 first derivation steps are:

ω : br t0 : br
p1 : ar → al br t1 : ar

p2 : al → bl ar t2 : al br
p3 : br → ar t3 : bl ar ar

p4 : bl → al t4 : al al br al br

The cell polarity, which is a part of the cell state, is given with the l and r suffix. A derivation
tree of the process is detailed in the figure IV.7 (partly taken from [LJ92]). The polarity
changing rules of this example are very close to those found in the blue-green bacterium
Anabaena catenula [MW72, KL87]. Nevertheless, the timing of the cell division is not the
same.

27



The implementation of the production rules in 81/2 is straightforward. Through a direct
translation of the rules, we have the following 81/2 program:

w = ar;
ar = $al #$br when Clock; ar@0 = {′ar

′};
al = $bl #$ar when Clock; al@0 = {′al

′};
br = $ar when Clock; br@0 = {′br ′};
bl = $al when Clock; bl@0 = {′bl′};

The five first steps of the execution are:

Tock : 0 : {br} : char[1]
Tock : 1 : {ar} : char[1]
Tock : 2 : {al, br} : char[2]
Tock : 3 : {bl, ar, ar} : char[3]
Tock : 4 : {al, al, br, al, br} : char[5]

More generally, it is possible to describe the whole class of D0L systems in 81/2 (even
the non propagating D0L systems), see [Mic96e].
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Figure IV.7: The first derivations of the Anabaena catenula (the cell polarity is indicated
with an upper arrow).

Symbolic Values in 81/2

We have seen, in the previous examples, the possibilities brought up by the dynamically
shaped fabrics. These new possibilities have been made possible by the removal of the static
constraint on the fabrics.

Furthermore, in 81/2, equations defining fabrics have to involve only defined identifiers.
Equations like T = a + 1; or U = {a = b + c, b = 2}; are rejected because they involve
identifiers with unknown values (a in the first example and c in the second); these variables
are usually referred to as free variables (the same would happen with more complex equations
as long as identifiers appearing in the right hand-side of a definition do not appear in a left
hand-side of another definition in an enclosing scope).

In chapter VIII, we describe a framework called amalgams where we can compute with
open systems (systems that have free variables). Here we just see that releasing the con-
straint of allowing only closed equations, could lead us to define equations with values of
symbolic type. This extension, and its relevance to “classical” symbolic processing, is pre-
sented informally in an example.

We only have seen numerical systems so far, that is, collections with numerical values
(possibly accessible through a label). We consider now that a free variable has a symbolic
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value: namely itself. A symbolic expression is an expression involving free identifiers or
symbolic sub-expressions. Such a symbolic expression is a first citizen value although it
is not numerical (the value is a term of the 81/2 language). An expression E involving a
symbolic value evaluates to a symbolic value except when the expression E provides the
missing definitions.

For example, assuming that S has no definition at top-level, equation X = S+1; defines
a fabric X with a symbolic value. Nevertheless, equation E = {S = 33;X}; evaluates to
{33, 34} (a numeric value) because E provides the missing definition of S to X. Note that
the evaluation process always tries to evaluate all numerical values completely.

Factoring Computations: Building Once and Evaluating Several Times a Power
Series. A wide range of series in mathematics require the computation of a sequence
of symbolic expressions (e.g. a Taylor series) and then to instantiate the sequence with
numerical values to get the desired result. We exemplify this through the computation of
the exponential series: ex = 1 + x + x2/2! + x3/3! + . . . The 81/2 program computing the
symbolic sequence is:

n@0 = 0.0; n = $n+ 1.0 when Clock;
fact@0 = 1.0; fact = n ∗ $fact when Clock;
term@0 = 1.0; term = ($term ∗ x) when Clock;
exp@0 = 1.0; exp = ($exp+ term/fact) when Clock;

The symbolic value exp corresponding to the series is computed only once. Note that we
have computed a stream of 81/2 terms. The first four values of this formal series are:

Tock:0 : { 1 } : float[1]
Tock:1 : { 1 } + (({ 1 } * x) / { 1 })
Tock:2 : ({ 1 } + (({ 1 } * x) / { 1 })) + ((({ 1 } * x) * x) / { 2 })
Tock:3 : (({ 1 } + (({ 1 } * x) / { 1 })) +

((({ 1 } * x) * x) / { 2 })) + (((({ 1 } * x) * x) * x) / { 6 })
This stream of terms can be “completed” through an “instantiation-like” mechanism in
a local scope. The resulting value accessed through the dot operator. For instance, the
expression v = {x = 1.0, r = exp} is evaluated in:

Tock:0 : { 1 } : float[1]
Tock:1 : { 1, 1 } : float[2]
Tock:2 : { 1, 2 } : float[2]
Tock:3 : { 1, 2.5 } : float[2]
Tock:4 : { 1, 2.66667 } : float[2]
Tock:5 : { 1, 2.70833 } : float[2]
Tock:6 : { 1, 2.71667 } : float[2]

etc. This method factorizes the computation of the call-tree and can be used to a wide range
of sequence of the same type.
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Figure IV.8: Synopsis of the 81/2 compiler.
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IV.3 Implementation of the 81/2 Compiler

The compiler described hereafter is restricted to programs defining fabrics with a static
structure. A high-level block diagram of the compiler is shown in figure IV.8. The output
can either be sequential straight C code or code for a virtual SIMD machine (similar to
CVL [BCH+93]).

IV.3.1 The structure of the Compiler

We describe briefly the various phases of the compiler written in a dialect of ML [Ler93]:

Parsing: parses the input file and creates the program graph representation used in the
remaining modules of the compiler. This is a conventional two-pass parser implemented
using ML version of lex and yacc.

Binding: the compiler enforces static scoping of all variables. This phase is also responsible
of inline expansion of functions, removal of unused definitions and the detection of
undefined variables.

Geometry inference: the geometry of a fabric is inferred at compile time by the “ge-
ometric type system” (see [Gia92a]). Programs involving dynamic fabrics are de-
tected by the geometry inference and rejected. For example, the following program:
“T@0 = 0; T = ($T #$T ) when Clock” defines a fabric T with a number of elements
growing exponentially in time:

T =⇒ 〈{0}; {0, 0}; {0, 0, 0, 0}; . . .〉

every collection in the stream has twice as much elements as the previous one. This
kind of program implies dynamic memory allocation and dynamic load balancing and
is rejected by the compiler (but such programs can be interpreted).

Scheduling inference: to solve 81/2 equations between fabrics, we have to extract the
sequencing of the computations of the various right hand-sides, from the data flow
graph. Once the scheduling of the instructions is done, the compiler computes the
memory storage required by a program execution.

Code generation: the compiler generates stand-alone sequential C code running on work-
stations or code to be executed by the SIMD virtual machine. However, all the compiler
phases assume a full MIMD execution model and we have prototyped the MIMD code
generation (Cf. section VII.2). The sequential C code is stackless and does not use
malloc or any other dynamic runtime features.

IV.3.2 The Clock Calculus

The clock calculus (see also chapter V) of a fabric is needed to decide whether the compu-
tation of a collection has to take place at some tick or not (a static fabric is viewed as a
stream of collections for the implementation). The clock of a fabric X is a boolean stream
holding the value true at tick t if t is a tock of X. Let x be the value of X at a tick t, and
clock(x) the value of the clock associated to X at the same tick. Every definition

X = f(Y )

in the initial program, is translated into the assignment:

x := if clock(X) then f(y) (IV.6)
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This statement is synthesized by induction on the structure of the definition of X. For
example:

clock(A+B) = clock(A) ∧ clock(B)
clock(A when B) = b ∧ clock(B)

This transformation produces an explicit form from the original fabric definition. Roughly,
the compiler will generate for every expression of the program, a task performing the assign-
ment shown in equation (IV.6). It is still necessary to compute the dependencies between
the tasks to determine their relative order of activation.

IV.3.3 The Scheduling Inference

The data-flow graph associated to a 81/2 program is directly extracted from the program
in explicit form. Unfortunately, this graph cannot be directly used to generate the tasks
scheduling. In the case of scalar data flow program the data-flow graph is the same as the
dependencies graph. This is no longer true with collections. For example, in the following
program:

A = B

every point of A (i.e. every element of the collection in the fabric A) depends on the
corresponding point of B. On the other hand, the following program that sums up all
elements of B:

A = +\B

produces a fabric A of only one point, depending on all the points of B. Nevertheless, both
programs give the same data flow graph where the nodes A and B are connected.

The data flow graph can be viewed as an approximation of the real dependencies graph
between fabric elements. This approximation is too rough; for example, on this basis, we
cannot compile spatial recursive programs. The work of the compiler is to annotate the
data-flow graph to get a finer approximation of the dependencies graph. The true graph of
the dependencies cannot be explicitly build because it has as many nodes as points in the
fabric of the program (for example, in numerical computation, matrix of size 1000 × 1000
are usual and would give dependencies graphs of over 106 nodes).

We call task sequencing graph the approximation of the dependencies graph annotated
in the following way (figure IV.9):

• An expression e depends on the fabric X if X appears syntactically in e. However, we
remove the dependencies of variables appearing in the scope of a delay: these depen-
dencies correspond to a past value and the compiler is scheduling the computation of
the present iteration only.

• The (instantaneous) dependency between an expression and a variable is labeled P if
the value of point i of e depends only on the value of point i of X (point-to-point
dependency).

• The dependency is labeled T if a point i from e depends on the value of all points of
X (total dependency).

• The dependency is labeled + if the value of point i depends on the values of point j
of X with j < i.

In the sequencing graph, cycles with an edge of type T or no edge of type + are dead cycles.
The fabrics defined in these cycles have always undefined values. The remaining cycles (with
edges + and no edge T) correspond to spatial recursive expressions requiring a sequential
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implementation. An expression not appearing in a cycle is a data-parallel expression. It
can be computed as soon as its ancestors have been computed. Here, we are dealing with
recursive definitions of collections but see [Wad81] for a similar approach which handles
recursive streams and [Sij89] for recursive lists.

Dependency graph corresponding to the annotations
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Figure IV.9: Representation of the three possible annotations used to build the sequencing

graph. Two examples are given. i is a vector such that the jth element of i has value j. A
and B correspond to empty streams which can be interpreted as a fatal deadlocks.

In fact, the complete processing of the sequencing graph is a bit more complicated. We
made the assumption that the calculus of the instantaneous value of $X does not depend on
the instantaneous value of X, but the clock of $X depends on the clock of X (it is the same
one, but the first tock). So, the sequencing graph might have instantaneous cycles between
the boolean expressions representing clock expressions. The computation of this value is
based on a finite fixed point computation in the lattice of clocks. One of the benefits of
this approach, besides being fully static, is that it allows us to detect expressions that will
remain constant (we can therefore optimize the generated code), or that will never produce
any computation and generates tasks in dead-lock (that might be a programming error).

The sequencing graph of the tasks being an approximation of the true dependencies
graph, we might detect as incorrect some programs with an effective value. With some
refinements of the method, it is possible to handle additional programs. Anyway, the se-
quencing graph method effectively schedules any collections defined as the first n values of
a primitive recursive function, which represents a large class of arrays.

In fact, this corresponds to the use of a prefix-ordered domain on vectors, instead of a
more general Scott domain. The use of a Scott order on vectors (which identifies de facto
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vectors with functions from [0, n] to some domain) allows more general recursive definitions.
This is at the expense of efficiency. For example, in the following 81/2 program computing
the n first Fibonnaci numbers:

fib[n] = if iota == 0
then 1
else if iota == 2

then 1
else (1#fib : [n− 1]) + ({1, 1}#fib : [n− 2])

the time-complexity of the evaluation process remains linear with n because we know that
we can compute the element value in a strict ascending order (in comparison, the time-
complexity of the functional evaluation of fib is exponential, but can be simulated in poly-
nomial time by memoization).

In the current compiler, the sequencing graph method is used to determine if the evalu-
ation of the vector element can be done in parallel, in a strict ascending order, or in a strict
descending order.

IV.3.4 The Data Flow Distribution and Scheduling

After the scheduling inference, the compiler is able to distribute the tasks onto the PEs of a
target architecture and to choose on every PE a scheduling compatible with the sequencing
graph. To solve this problem, we limit ourselves to cyclic scheduling. In our case, such a
scheduling is the repetition by the PEs of some code named pattern. The pattern corresponds
to the computation of the values of a fabric for one tick. The last operation of the compiler
is to generate such a pattern from the scheduling constraints.

To generate a pattern, the compiler associates a rectangular area in a Gantt chart (a
time× space) to every task. The width of the rectangle corresponds to the execution time
of the task and its height to the number of the PE ideally required for a fully parallel
execution of the task (Cf. figure IV.10). For example, if the task corresponds to the data-
parallel addition of two arrays of 100 elements, the height of the associated rectangle will
be 100.

With this representation, the problem of the optimal distribution and the minimal
scheduling of the tasks is to find a distribution of the rectangles that will minimize the
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makespan and that is bound in height by the number of PEs in the architecture. Some
very efficient heuristics exist for this problem known under the name “bin-packing” in two
dimensions (which is NP-complete in the general case [GGJ78]).

We have tested a greedy strategy [MGS94a, Mah95] consisting in placing as soon as
possible the largest ready task on the critical path. A task becomes ready at the time when
all the tasks from which it depends are done, time plus the communication time needed to
transfer the data between PEs. If more than one task is available at the same time, an
additional criterion is given to choose which one has to be taken first (for example, a task
being on the critical path).

If the width of the chosen task is bigger than the number of available PEs, we “split”
the task into two pieces. The first one is scheduled and the other one is put back in the
pool of available tasks (to be scheduled and distributed later). We only admit the horizontal
splitting (i.e. along the PEs direction, Cf. figure IV.10). In fact, that is possible because
a data-parallel task requiring n PEs corresponds to n independent scalar tasks. Vertical
splitting corresponds to pre-emptive scheduling.

IV.4 Conclusions

A stream is a direct representation of the trajectory of a dynamical system (i.e. the se-
quence of the successive states of the system), a collection corresponds to the value of a
multidimensional state or to the discretization of a continuous parameter. In addition, the
declarative form of the language fits well with the functional description of a dynamical
system. Thus, we advocate the use of 81/2 for the parallel simulation of dynamical systems
(e.g. deterministic discrete events systems [MGS94c]).

81/2 does not support all styles of parallel programming, but we argue that it combines
advantages of the implicit control parallelism with the data parallelism for a large class of
applications (Cf. also chapter VII).

The current compiler is written in C and in a ML dialect. It generates a code for a
virtual SIMD machine implemented on a UNIX workstation or a stand-alone sequential C
code. However, all the compiler phases assume a full MIMD execution model and we have
prototyped the MIMD code generation. Evaluation of fabrics with dynamic structure is
done through a sequential interpreter.

It is interesting to evaluate the quality of the sequential C code to estimate the over-
head induced by the high-level form of the language. This comparison is done in the next
chapter, where we describe more carefully the compilation method used for recursive stream
definitions.

As a matter of fact, our concept of collection relies on nested vectors. Nested vectors differ
in many ways from the multi-dimensional arrays generally used in space-time simulations.
For example, assuming a row-column representation of a 2-dimensional array by a 2-nested
vector, it is not possible to define an evaluation process propagating along the diagonal.
This is because the prefix or suffix ordering of vector-domains. More generally, the problem
is to define the neighborhood of a collection element and to enable arbitrary moves from
neighbor to neighbor. A possible answer relies on the extension of collections to a richer
structure based on groups, see chapter VI.

The handling of incomplete programs, and the combination of program fragments in a
high order data flow calculus, is studied in chapter VIII with the extension of the concept
of system.
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Chapter V

Declarative Streams and their
Compilation

The representation of a dynamical system trajectory in 81/2 leads to the notion of stream.
As a first approximation, a stream corresponds to an infinite list of values produced by a
process. This infinite list records the successive state of the system. The computation of
infinite lists of values by a set of processes linked by their inputs and outputs is called data
flow.

Nevertheless, the trajectory of a dynamical system is an object richer than an infinite
list of values. It is necessary to take into account the synchronization relations between the
different recordings of the variables of the system.

So, unlike the computations done in the standard data flow computation model, the
computations that we consider on the streams are synchronous. Consequently, we are able
to model a certain notion of duration.

Such streams have been introduced for instance in the Lustre and Signal languages
to deal with real-time constraints, but the 81/2 streams adopt a different model of time to
allow arbitrary stream combinations.

In this chapter, we remind how the data flow computation model can be used to solve
recursive equations of infinite lists of values. This scheme is used to transform a declarative
program into an imperative one, explicitly listing the values of the solution.

A stream can be implemented by two infinite lists of values: the clock and the obser-
vations on the state of the process. Nevertheless, the relation between the two lists is not
natural. To ensure a property of consistency, 81/2 streams are implemented using three lists.

Starting from the denotational semantics describing how those three lists are associated
to a 81/2 expression, we formally derive an imperative code that sequentially enumerates the
elements of those three lists. On some typical applications, benchmarks performed with the
generated and optimized code, are comparable with those obtained from an handwritten C
program.

V.1 The Notion of Data Flow and its Formalization

The concept of data flow is an old notion, which goes back to at least [Con63]. This
article sketches the structuring of a program in computation modules, autonomous and
independent, communicating by sending data (discrete items) among half-duplex links.

Such a computation model presents, besides its simplicity, two main interests:

1. it is easily formalizable,

2. it is a parallel computation model.
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These two points have motivated a lot of theoretical and practical works giving us a frame-
work for the development of 81/2. From the formalization of the data flow computation, we
get a method to compute the solution of a system of recursive equations. From the parallel
computation model, we inherit of the implicit exploitation of the parallelism.

The Pipelined Data Flow Computation Model

Many kind of data flow computation models have been developed. We focus here on a
network where every process is an autonomous calculator working asynchronously, with
respect to the other processes. A process is a black box consuming data on its input links
and producing data on its output links. A link is a FIFO with an unbound capacity. The
links are the only interactions between the processes.

We call this computation model “pipelined data flow”1. It has been widely studied;
references [KM66, TE68, Ada68, Kah74, AG77, Arn81] are among the first works. In this
model, an observer is able to record the sequence of data moving among an edge: this
sequence is called an history.

The Functional Data Flow and the Kahn Principle

The functional data flow (or “pure data flow”) model is a pipelined model where the pro-
cesses satisfy a functional relationship between the history of the inputs and the history of
the outputs2. G. Kahn was the first to study a functional data flow model and to remark
that it can be presented as a set of equations:

• a variable is associated to each edge;

• an equation x = f(y, z, ...) is associated to each process, where x is the label of the
output edge, y, z, ... the labels of the input edges and f the function on the histories
associated to each process..

What is now known under the name “Kahn Principle” says that the history associated to
each edge is solution of the previous set of equations [Kah74]. The formal proof that the
execution of the network of processes effectively solves the associated system of equations
was done in [Wie80, Fau82a].

The works presented in [AG77, Arn81] are less general proofs than those presented
in [Fau82a] of the Kahn principle. The difficulty to establish the equivalence between the
operational description (in terms of data moves in the network) and the denotational (in
the Kahn way) deeply depends on the properties assumed for the processes execution. For
example [KM66], which is one of the first attempt to formalize the pipelined model, is based
upon processes always applying the same function on the input to get the data on the output
(processes with no memory implementing a strict function). In that case, the Kahn principle
is easy to demonstrate, but we cannot write a program implementing a filter, for example.

This is a very important principle, because it shows how a parallel computation model
allows us to solve some systems of equations. Conversely, a set of equations on histories is
a parallel program.

1An example of a data flow model that is not pipelined, is given by the “tagged token” models. In these
models, every data on a edge is tagged. The order of arrival of the data as inputs of a process, or the order
of treatment of the data is no longer important. The model specifies the way that the tokens are matched
based on their tag. This computation model is studied for instance in [Kos78] and is the one adopted by
many hardware architectures like [GW77, GKW85].

2An example of a data flow pipelined program that is not functional is a program with a merge operator.
The merge has two inputs and one output. Its behavior is the following: if a data occurs on only one of the
two inputs, it is transmitted on the output edge. If two data simultaneously occur on the inputs, only one
of the two data is randomly chosen to be sent to the output. The behavior of this node cannot be modeled
by a function of the history of its inputs.
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Equational Programming

To consider that a set of equations is a program has a lot of advantages:

• The resulting programming style is a declarative style: the programmer only specifies
the properties of the objects that he wants to build, rather than the way to effectively
build them.

• A program becomes an object on which it is possible to reason, using the classical
mathematical methods. For example, we are able to replace every variable by its
definition (this is the referential transparency property).

• The parallelism that is exhibited in the resolution of the system of equations is implicit,
that is, it does not appear at the programmer level.

The evaluation of an equational program consists in the resolution of the equations consti-
tuting the program. Consequently, we have to be able to detect if there is no solution, and
if there are more than one, whether to produce them all, or to characterize the produced
solution.

The Kahn principle gives us a tool to solve some equations on the histories. The produced
solution is the least fixpoint of the function associated to the equation system. It also allows
us to reason denotationally on the operational properties of a program (this remark lies at
the heart of the design of the 81/2 compiler, see section V.4).

Consequently, equational programming based on data flow has known a great deal of
work. We may cite (this list is far from being exhaustive):

• [Den74b] as a first proposition in relation with hardware architectures;

• followed by Lucid [WA76], Val, SISAL [MKA+85] and Id Nouveau [NPA86] in the
domain of “all purpose” programming languages;

• Lustre [CPHP87] and Signal [GBBG86] in the field of real-time programming;

• Palasm [SG84] in the field of PLD programming;

• Daisy [Joh83] and Stream [Klo87] in the field of VLSI design;

• Unity [CM89] for the specification of parallel programs;

• PEI [VP92] and 81/2 for the (data-) parallel programming;

• Crystal [Che86] and Alpha [Mau89] for systolic programming

• etc.

V.2 The Notion of Stream in 81/2

First, remark that a process in a data flow computation, or an entire network of processes,
constitutes an example of a dynamical system with discrete time.

Unfortunately, the notion of history is not expressive enough and the functional model
is too permissive to capture the notion of trajectory that we want to model. Two examples
follow.
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A Process Sensitive to Duration

Consider the process P sending a value 1 on its output when an input value is there, and
sending the value 0 else. The number of 0 sent depends of the speed of the inputs and of
the speed of the computation process. The system is yet deterministic.

This process cannot be correctly modeled by the notion of history. The duration between
two successive inputs is not taken into account in the history of the inputs which is recording
only the succession of the events. The same succession of events will produce different results
if the times of arrival are different.

An Example of an History that has no Temporal Interpretation

A process in a data flow computation has only to implement a function between the history
of its inputs and outputs. Therefore, we can imagine the following process with one input
and one output: if the history on the input is finite, then the history on the output is the
sequence in the reverse order of the input items. If the input history is not finite, then there
is no output.

Such a process is perfectly admissible in a functional data flow model3. Nevertheless,
it does not correspond to a dynamical system. Indeed, the sequence of inputs does not
represent a temporal sequence: the process must have an infinite memory, to record the
sequence of inputs, and it must have an “oracle” to know that no more data will arrive on
the input. This behavior is incompatible with the idea of a system whose state is described
by a finite set of informations and whose current value only depends from the past values.

Modeling the Synchronization between the Trajectories

The idea, to model the P process, while keeping all the foundation brought up by the
Kahn Principle, is to complete every history by some special data, representing the flow of
time. We follow the terminology introduced in [Fau82b] by calling these data a hiaton (from
“hiatus” in the sense of: solution of continuity, space between two things, or in a thing). A
hiaton is inserted between two data on an edge to mark an event that happened elsewhere in
the system. The purpose is to synchronize every history describing the evolution of a process
in the system, rather than to really model the duration. For example, the two histories

1, 2, 3, 4, ... and 10, 20, 30, 40, ...

don’t tell us anything on how we can compare their evolution in time, whereas the syn-
chronous sequences

〈1, ?, 2, ?, 3, ?, 4, ...〉 and 〈10, 20, 30, 40, ...〉
where ? represents a hiaton, tell us the relative time stamps of the items production (the
history corresponding to the second sequence has been produces twice faster than the first).

In this representation, we adopt the convention that the nth value is produced simul-
taneously for each sequence. We are in a synchronous model of time where a global clock
is able to date every event. This is a logical time stamp: it is an index in a sequence, and
nothing is said on the real duration that happens between two elements of this sequence.

The introduction of hiatons can be seen as a technical trick to take into account the
relative duration and the synchronization between processes by “normalizing” their histories.
It is a logical relation which does not necessary explicitly appear at the programmer’s level.
They have been used, for example in [Cam83] in the field of operating systems and in [Bou81,
BGSS92] to give a denotational semantics to real-time processes.

3A variant of this process which inverses the list of the inputs each time it encounters a mark can be
directly implemented in Lucid for example. This process can also be implemented in Haskel, by using
ordinary lists for the finite histories, and lazy lists for infinite histories. The important point to understand
is that the Lucid sequences and Haskel’s lists (lazy or not) are not lists of values in time.
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We will call stream a sequence having hiatons and describing the list of inputs or outputs
of a process and taking into account events generated by other processes. It is convenient
to derive from this list s a list of booleans, called the clock of the process. The clock of the
process has the value false if the element corresponding to s is a hiaton and true else.

The only operations that will be here considered on the streams, are operations that
only require previous values to compute the current values. We will also require that these
operations may be implemented by a memory bound process. So, a stream is an adequate
model of the idea of trajectory of a dynamical system.

This is a richer notion than the notion of history, but remark that a stream may be
implemented by two histories: the history of the values and the history corresponding to
the clock of the stream.

The Lustre [CPHP87] and Signal [GBBG86] languages are examples of equational
languages where operations are on streams. Even if the formalization of a Lustre or Signal
stream requires the notion of clock, this notion lies at the heart of the system and is not
directly handled at the programmer level: a direct notion of temporal sequence with duration
is seen.

The 81/2 Stream

An event in a discrete dynamical system corresponds to the change of the value of one of the
variables of the system. a 81/2 stream corresponds to the recording of the variables values
at every event. We are in a logic of state description (for every event, we know the state
of every variable) rather than in a logic of signal description (for a given event, we only
know the state of the variables associated to that event). The value of a variable “remains
observable” until its next change.

This approach is quite different from the one followed by languages like Lustre or Signal
where a value is only observable (and ready for some computations) at a given date. This
latter model fits well with the expression of real-time constraints like “at twelve, do this
action” or “this process produces the following result when this other process produces a
result”. Nevertheless, this approach leads to a complex manipulation of arbitrary streams.
For example,

c = a+ b (V.1)

defines the stream c from the streams a and b where the + operator corresponds to a process
adding its inputs at every instant. This expression is valid in Lustre or in Signal only if
the clocks of a and b are both the same (that is, if a and b produce a value to the + process
at the same instant).

Our point of view is the following: the equation (V.1) is an equation that must be
verified at every instant between streams a, b and c. Consequently, the value of c has to be
recomputed every time that the value of a or b is recomputed.

To the best of our knowledge, there is no other data flow model that admits the same
model.

V.3 A Denotational Semantics for 81/2 Streams

With this notion of stream, we have developed an original denotational semantics [Gia91b,
GDVM97]. This semantics is original in two aspects:

• first, it formalizes 81/2 streams, allowing arbitrary combinations of streams;

• then, it ensures that some properties of consistency between the clock and the history
of the values of the stream hold.
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Stream semantics

Only few related works on a denotational semantics on synchronous processes defined by
equation exists. We may cite for example [Ber86, Pla88, BGSS92, Jen95].

In the approach followed by [Ber86], the computation of the values is separated from
the clock calculus. Clocks are seen like constraints that are satisfied and not related to the
dynamic semantics that specifies the values.

The works of [BGSS92] are in a very general framework and give a non-deterministic
description of processes (roughly, all sequences that are compatible with the behavior of
a process are admitted, and not only those having a minimal set of hiatons are kept; it
is therefore possible to describe more general processes, but also introduces indeterminism
which we would avoid here).

The formalization of the clocks in the works followed by [Jen95] extends the works
of [Ber86, Pla88] and is done in terms of abstract interpretation.

It is necessary to outline the direction followed by P. Caspi and M. Pouzet [Cas92] where
the computations on streams corresponds to the restricted class of computation on infinite
lists satisfying some additional properties enabling an implementation by “deforestation”.
In this approach, the introduction of recursive functions on streams is possible [CP96] (we
don’t know how to do this in 81/2, but the admissible clock combinations being different,
the use of this approach to our problem is hard to evaluate). The clock calculus presented
in [CP96] is very different from the other approaches since no fixpoint is used.

Numerous operational semantics for streams have been developed, for example in terms
of state transitions, by expressing what the hiatons become after crossing an operator. These
semantics are close to the description of the computations done by every process. To be
able to reason on the global behavior of a program, we have focused our semantical work
on a denotational style, specifically for the optimizations. We still have to use the Kahn
principle to get a “reasonable” implementation (that is, that does not directly manipulates
infinite streams).

Additional properties of 81/2 streams

To detail the consistency properties of the denotational semantics of the 81/2 streams, we
first have to introduce some notations.

If a is a stream, then v(a) denotes the sequence of values of a. The clock of a stream a
is denoted cl(a).

Sequences of values are denoted between 〈 and 〉, the “...” indicate that the sequence is
not finished. The expression s(n) denotes the nth element of the sequence s.

We call the tick of a stream a rank in the sequence (an integer). A tock t of a is when
cl(a) is true, that is cl(a)(t) = true. We will write that t ∈ cl(a) if cl(a)(t) = true and
t 6∈ cl(a) else.

81/2’s streams must verify some properties:

t 6= 0 ∧ t 6∈ cl(a) ⇒ val(a)(t− 1) = val(a)(t) (V.2)

equation (V.2) says that a stream a has its value that is changing together with its clock
(but its value may change to take the same value again, this is why there is no equivalence
but only implication).

The second property that the formalization of a 81/2 stream must ensure is:

t ∈ cl(a) ⇒ val(a)(t) 6= ? (V.3)

? is a special value defining an “undefined” value (for example, corresponding to a hiaton).
Property (V.3) tells that if t is a tock of stream a, then we can observe a defined value at
instant t for a.
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This is a desirable and natural property: the clock of a stream may be used to optimize
the computation of its value for example. Nevertheless, this property is not satisfied4 in
the denotational semantics developed by Plaice [Pla88] or Jensen [Jen95]. Actually, this
property cannot be verified in a semantics thats is only based upon the sequence of values
and the clock of a stream. The reason is that if we force property (V.3) then the “doing
nothing” stream with clock 〈false, false, ...〉 becomes a solution (cf. [GDVM97]).

To avoid that the solutions collapse, we have introduced a new sequence dom(a) to know
if the value of a stream is defined. By introducing this sequence, we try to distinguish the
two following predicates:

“having a defined value at tick t” and “possibly changing its value at tick t”.
Since the value of a stream might be observed as soon as it took its first value, the dom(a)
sequence starts by a prefix (possibly empty) of booleans all false and is (possibly) followed
by booleans all true. For example, the domain of the stream c defined by c = a + b is:
dom(c) = dom(a) ∧ dom(b) who takes the true value as soon as a and b are defined5. A
sequence dom(a) with only false boolean values corresponds to a starving process.

81/2’s denotational semantics is described in [Gia91b] and in [GDVM97]. Many impor-
tant properties for the evaluation and compilation of 81/2 expressions are ensured by the
semantics:

∀t, dom(t− 1) ⇒ dom(t)
∀t, cl(t) ⇒ dom(t)
∀t, dom(t− 1) ∧ val(t− 1) 6= val(t) ⇒ cl(t)

They enable to simplify and to optimize the control of the generated program (or the inter-
preter) by specifying when a value or a clock has to be recomputed.

V.4 The Compilation of Declarative Streams

In this section, compiling a 81/2 program consists in producing an imperative C code. This
code will enumerate the values of the streams specified by a system of equations.

The key idea is to implement the stream by the succession of values in a single memory
location. We say that the location is associated to the instantaneous value of the stream.
Consequently, we will compile a set of equations of the form x = e in an imperative program:

for(tick = 0; tick < maxTick; tick++)
{

...;
if (xdom = edom) { if (xcl = ecl) { xval = eval; }}
...;

}
The variables xdom, xcl and xval are associated to the values dom(x)(tick), cl(x)(tick) and
val(x)(tick).

This implementation scheme differs from the scheme adopted by the Lucid language
and also by the scheme adopted for the compilation of the Haskell [HF92] language, which
allows the manipulation of lazy lists. Indeed, in these cases, more than one value of the
same sequence might be present in the memory at the same time, which requires a garbage
collector. No tool of that kind is necessary in 81/2.

The principle of the transformation of a program P is:
4The most simple example is given by the $s example (which corresponds to a stream s delayed by a

tock) which has the same clock of s but with an undefined value for the first tock in cl(s).
5The value of cl(c)(t) when dom(c)(t) = false does not matter. So, cl(c) = cl(a)∨ cl(b) because the value

of c change as soon as a or b is changing.
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1. We first start by transforming the system of equations P on streams in a system of
equations S on the three sequences dom, cl and val which represents a stream.

2. We then transform the system of equations S on sequences to a series (S′t)t of systems.
The system S′t summarizes the equations that hold between the values at the tick t of
the sequence defined by S.

The series (S′t)t is such that the system S′t depends on the values that are solution of
S′t−1. The transformation of S into (S′t)t is possible because we can prove that every
operator on the infinite lists that occurs in the semantics functions, have the property
that they can be computed by an automaton that takes the elements of the series as
input in a “left to right” order and produces, at the same rhythm of the inputs, the
corresponding outputs.

3. The problem we are now facing is to produce a code that solves the system S′t (by
knowing the solutions of S′t−1). We decompose S′t in sub-systems corresponding to
the strongly connected components of the equations dependencies graph [Tar72]. This
decomposition is performed at compile time, the dependencies being approximated to
be known statically. To solve S′t we just have to know how to solve a system corre-
sponding to a root (that is a strongly connected component with no predecessor), to
propagate the solutions obtained from the root to the other sub-systems (which elim-
inates the predecessors) and to iterate. This is a very effective technique to compute
a fixpoint [O’K87].

4. The problem is now reduced to solve a complete system of equations on values with
strongly connected dependencies (complete means here that all used variables are
also defined, it is a consequence to be a root). In the dependency graph of this
system, we distinguish between two kind of nodes: the val-nodes corresponding to the
computation of the value of a stream and the hor-nodes corresponding to a boolean
value associated to the computation of the definition domain or the clock of a stream.

Let us first consider the cycles including at least an hor-node. The val-nodes of such
a cycle corresponds to boolean values because such a cycle corresponds to a boolean
expression build from ∧, ∨ and if then else operators. All these operators (even
the conditional operator) are considered to be strict. Consequently, it is useless to
iterate to find the smallest fixpoint because the stricticity ensures that all the nodes
belonging to a cycle correspond after iteration to ⊥.

Consider now the cycles including only val-nodes. We can show that the existence of
a cycle between val-nodes induces the existence of a cycle including only hor-nodes
because for every expression e, the computation of dom(e) and of cl(e) requires the
same arguments that the computation of val(e). Therefore, the clock of each of the
streams associated to a val-node has always for value false. It is therefore not necessary
to compute a new value for that stream.

We get the compilation process directly from the denotational semantics. Nevertheless, the
program that we finally get does not corresponds to the brutal computation of a fixpoint
on streams (which are infinite objects). We manage to transform the computation of the
solution in the computation of the instantaneous values of the streams solutions in the
stream ascending order. This is no surprise since we restricted 81/2’s operators in a way
that the computed streams have a strict semantics of a temporal trajectory6.

6Let us remain once again that this is not the case with data flow languages like Lucid (even if it is a
functional data flow language). Actually, the Kahn principle does not imply that the elements of the stream
are computed in the right order. Additional properties are required on the processes, see [Wie80].
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Implementation and Optimization of the Generated Code

The code generation scheme has been implemented and tested. Details will be found
in [Gia91b, GS93, DV94, DV96c, DVM96, DV96a, GDVM97, DV97, DV98]. The code
generation can be optimized in many ways. These are high-level optimizations: they do not
interfere with low-level optimizations dependent of the target architecture (see [DV98] for a
complete description of the considered optimizations).

Optimization of the Control Expressions Sharing. The predicates corresponding to
the definition domains and to the clocks of the expressions of a 81/2 program are
implemented, during the compilation process, using decision trees [Bry86]. These
structures are shared: the nodes are put in common in a way that each node of the
resulting forest represents a unique boolean function. This sharing is reflected in the
generated code to minimize the impact of the cost of the control structures on the
execution time.

Optimization of the Delay Copies. The copy of the value of the streams referenced by
a delay operator $ can be very expensive when arrays of large sizes are manipulated.
Nevertheless, the copy of the value of a stream x can be totally avoided if some
conditions are verified on the relative localization of the occurrences of x and of $x in
the generated code (a similar optimization is detailed in [HRR91]).

Optimization of Concatenation and Loop Fusion. These optimizations do not only
concern the streams, but also the sequential computations on arrays that are stream
instantaneous values.

The optimization of array concatenation consists in the sharing of the values rather
than in their copy.

Loop fusion merges in the same loop body, computations involved by different arrays.
This it is possible if the corresponding clocks are equals. With the increase of the
body of the loop, some variables are “localized” and the target C compiler has more
opportunity for its own optimizations (for instance, the access to a temporary vector
can be transformed into an access to a scalar register, see [DV98]).

Results of the comparison between the execution time of the 81/2 program compiled in C
with the approach detailed, against a hand-written equivalent program is given in table V.1.
The program solves numerically a partial differential equation by an explicit method on a 1D
domain. Other tests and their analysis have been performed and can be found in [DV98]).
The tests are validating the approach followed in every phase of the compilation process.
More specifically, they show that the expressivity of the language (declarative style) is not
too expensive with respect to its efficiency, when adequate optimization techniques are used.

Comparison with the Generation Scheme of the other Synchronous Languages

The ability to combine two arbitrary streams to define a third one is a very important
characteristic of the 81/2 language, which distinguishes it from other synchronous language.
Even if the model of time looks very similar to the one exhibited in Lustre and in Signal,
81/2’s model of time is different. 81/2’s model of time corresponds to a logic of state: the
clock of a stream indicates that the state of that stream is changing, that is when a new
value for this stream is produced. On the contrary, the model of time exhibited in Lustre
and in Signal corresponds to a logic of signal: the clock of a stream indicates when a value
is accessible. So, we cannot write in Lustre the following expression: A + B, unless that
both streams share the same clock.

With the use of the current operator, it is possible to observe the value of a stream based
on a global clock. Nevertheless, this does not solve the following problem: the expression
current(A) + current(B) does not have the same clock as A + B. Actually, the correct
Lustre expression is:
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Table V.1: Comparison of the code generated by the 81/2 compiler against an equivalent
program directly handwritten in C on a test program solving numerically a heat diffusion
equation. This is one of the hardest tests because the equivalent C program is very straight-
forward and exhibits a very regular control flow leading to a very optimized compilation.
Each number in this table represents the ratio between the execution time of the 81/2 com-
piled program in C and the equivalent program directly written in C. Both C programs have
been compiled by the GNU compiler with the -O optimizations. The measures of the elapsed
time have been performed on an HP 9000/705 architecture with HP-UX 9.01 as operating
system. The high-level optimizations on the generated code are performed before the com-
pilation phase of the C code and are described in [DV96a, GDVM97]. The ratio does not
depend on the number of iterations, that is, on the number of elements computed in the
stream. This clearly indicates the strict temporal nature of the evaluation scheme (the gen-
erated code corresponds to an iteration loop). The overhead induced by the data flow style
of the 81/2 programs decreases with the size of the arrays. This proves that it only depends
on the definition scheme and not on the defined objects.

Number of iterations →
100 500 1000 5000 10000

Size of the rod ↓
10 3.77 3.44 3.63 3.59 3.59
100 1.30 1.28 1.25 1.25 1.25
1000 1.11 1.08 1.08 1.08 1.08
10000 1.01 1.01 1.01 1.01 1.01

(current(A) + current(B)) when (clock(A) ∨ clock(B))

where clock is another “magic” operator associating to its argument a sequence of boolean
values, whose clock is the same as the one of current and whose value is true or false,
whether the element is, or is not, a member of the clock of its argument7.

Nevertheless, this translation scheme, which consists in observing a stream on a more
accurate time base and then to constraint it by a temporal filter cannot be generalized. This
approach does not work any more in case of a recursive definition. Actually, the computation
of the correct clock expression to filter a current expression is a complex problem that is
solved by 81/2’s compiler.

However, using the current operators, we could compile8 a 81/2 program into an equiv-
alent Lustre program that would itself be compiled into an automaton. Every state of that
automaton corresponds to the computation of the instantaneous value of a set of stream
expressions. By using an automaton, we can generate a sequential code with a control part
of minimal cost by only evaluating, for a given state, only the temporal guards whose value
may determine the choice of the next state and the output data [HRR91].

We may fear that, as far as a 81/2 program is concerned, the number of state of the
generated automaton could explode. Indeed, since it is possible to combine an arbitrary
number of different streams with different clocks in 81/2, a 81/2 program defining n streams
would lead to the generation of an automaton with O(2n) different states.

7This is only an approximative translation, since it does not verify the property V.3. For example, if A is
not defined, but B is, A + B is not defined. This is not the case in the previous example, where the Lustre

expression has a clock (B’s one) but no value. Consequently, we are able to distinguish the two expressions,
for example by counting the tocks. The expression of the exact translation is more complex.

8It is only possible to compile a scalar 81/2 program into a Lustre program. Indeed, even if we do not
say anything about this problem in this chapter, 81/2’s streams have arrays as values, and not scalars. This
requires special treatments. For example, the 81/2 compiler detects necessary conditions to ensure that every
element of an array have the same clock. Arrays have been introduced into synchronous languages [RH91],
but their treatment is based upon the transformation of a p elements array into p independent variables.
This translation is not efficient for arrays of more than ten elements

46



This is the reason why we have chosen to generate a program where the value of each
temporal guard is computed at every tick. This approach is equivalent to computing O(n)
guards at every tick for a 81/2 program defining n streams. It avoids the (exponential)
explosion of the size of the code, but at the cost of an overhead (linear with the number of
streams) at execution time. The work exposed in the second part of [DV98] and published
in [DV94, DV96c, DVM96, DV96a, DV97] checks that the overhead is acceptable.

V.5 Extension of 81/2 Streams

The underlying data flow model of 81/2 raises the question of the introduction of non func-
tional data flow operators in 81/2, like for example the merge operator.

This non-deterministic operator raises many problems. However, it can be interpreted
in temporal terms as the introduction of an instant between two instants. We insert a new
tick between two existing ticks when two values are simultaneously present on the inputs.
Following this approach, we go to a rational time rather than a integer time. We are able
to go back to the regular integer time if no recursive definition implies any merge operator.
But the recursive definitions implying a merge operator generate accumulation points of the
set of instants.

So, we have to develop a new concept of rational time (but not everywhere dense). Our
idea is to interpret these accumulation points as the computation of a fixpoint. If we suppose
that the computed function is a function of arguments of real values and continuous in the
sense of the classical analysis, a possible implementation consists in stopping the iteration as
soon as the variation of the value is smaller than a given error known in advance. With this
construction, we are able to model some continuous sub-phenomena at a smaller scale of time:
this is an original approach for the simulation of hybrids systems [GNRR92]. Nevertheless,
it is not clear at all if this construction remains possible when more than one cycle or non
elementary cycles are encountered.

This work, initiated during a master’s project [Ngu94] has not been followed since, be-
cause of lack of human resources. Nevertheless, we hope to be able to follow this direction
of research.
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Chapter VI

Data Field on a Group

This chapter is devoted to the development of a new framework to study intensional data
structures.

We begin with some general considerations on the notion of data structure. These
preliminary considerations lead us in a natural manner to develop the notion of Group
Based Field, or GBF.

The definition puts the emphasis on the logical neighborhood of the data structure
elements. In this first study, we focus on regular neighborhood structures. The recursive
definitions of a GBF are studied in section VI.4. In section VI.5 we provide some elements
for an implementation and in section VI.6 we give some computability results.

GBF have been developed to extend the notion of data parallel collection in 81/2. The
parallel evaluation of a special case of GBF, data fields over Zn, has been studied and
implemented, see the following chapter.

Because there is a strong link between GBF, data fields, collection, systolic programming
and discrete geometry, we end this chapter by a review of some works in these areas.

Warning. This chapter is rather long with respect to the other chapters because we have
decided to summarize here some results that are gathered among several working papers
and technical reports.

VI.1 Data Structure as Spaces: Introduction and Mo-
tivations

The fundamental concept of data-structure is ubiquitous in computer science as well as in all
branches of mathematics. Its characterization is then not easy. Some approaches emphasize
on the construction of more sophisticated data-structures from basic ones (e.g. domain
theory); other approaches focus on the operations allowed on data structures (e.g. algebraic
specification).

We rely upon the following intuitive meaning of a data structure: a data structure s is
an organization or an arrangement o performed on a data set D. It is customary to consider
the pair s = (o,D) and to say that s is a structure o of D (for instance a list of int, an array
of float, etc.).

A traditional approach consists in working with these pairs in the framework of axiomatic
set theory. For example, the set G of simple directed graphs (directed graphs without
multiple edges) can be defined by:

s = (o,D) ∈ G ⇔ o ⊆ D ×D

This approach consider equally the structure o and the setD and does not stress the structure
o as a set of places or positions, independently of their occupation by elements of D.
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This last point of view is taken into account by the less traditional approach of species
of structures [BLL97]. Motivated by the development of enumeration techniques for labeled
structures, the emphasis is put on the transport of structures along bijections. Informally,
if σ : D → E is a bijection, t = σ(s) is a data structure made from s by replacing simulta-
neously each element d ∈ D appearing in o by the corresponding element σ(d) of E in the
expression of o. We say that the data structure t has been obtained by transporting the
structure o along the bijection σ; s and t are said isomorphic.

The theory of species relies on a functorial approach1 to consider a data structure inde-
pendently of the nature of the elements of the underlying set D. Two isomorphic structures
can be considered as identical if the nature of the elements of their underlying sets is ignored.

Considering a data structure independently of its underlying set is interesting for others
purposes than combinatorial enumeration.

For instance, in [Jay95], B. Jay develops a concept of shape polymorphism. In his point
of view, a data structure is also a pair (shape, set of data). As above, the shape describes
the organization of the data structure and the set of data describes the content of the data
structure. However, his main concern is the development of shape-polymorphic functions
and their typing. Examples of shape polymorphic functions are the generalized map or the
generalized scan, that can be computed without changing the data structure organization.
More generally, the shape of the result of a shape-polymorphic function application depends
only on the shape of the argument, not of its content.

Moving in a Data Structure

In this chapter, we will also develop a general framework that considers a data structure
independently of the values it carries. However, our own motivation is not in the enumeration
of the instances of a D-labeled structure, and only marginally in shape polymorphism. Here,
we want to abstract the data and computation movements that occur in a data structure.

The point of view is geometric rather than combinatorial: a data structure can be seen
as a space, the set of places or positions between which the programmers, the computation
and the values, move.

The notion of move relies on some notion of neighborhood : moving from one point to
a neighbor point. Although speaking of neighborhood in a data structure is not usual, the
relative accessibility from one element to another is a key point usually considered in a data
structure. For example:

• In a simply linked list, the elements are accessed linearly (the second after the first,
the third after the second, etc.).

• In a circular buffer, or in a double-linked list, computation goes from one element to
the following or to the previous one.

• From a node in a tree, we can access the sons.

• The neighbors of a vertex V in a graph are visited after V when traveling through the
graph.

• In a record, the various field are locally related and this localization can be named by
an identifier.

1A species is a functor F : B → E from the category B of finite sets and bijections to the category E
of finites sets and functions. F produces for each finite set D a set F [D] of structures of type F on D
and produces for each bijection σ : D → E a function F [σ] : F [D] → F [E] which follows the functorial
properties. For example, for simple directed graphs, G[D] = {(o, D), o ⊆ D × D} and for σ : D → E, we
have G[σ] : G[D] → G[E] with G[σ](o, D) = (σo = {(σx, σy), (x, y) ∈ o}, E).
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• Neighborhood relationships between array elements are left implicit in the array data-
structure. Implementing neighborhood on arrays relies on an index algebra: index
computations are used to code the access to a neighbor.

For example (i − 1, j) is the index used to access the “north neighbor” of point (i, j)
(we assume that the “north” direction is mapped to the first element of the index
tuple). The standard example of index algebra is integer tuples with linear mappings
λx.x ± 1 along each dimension (called “Von Neumann” or “Moore” neighborhoods).
More than 99% of array references are affine functions of array indexes in scientific
programs [GG95].

This list of examples can be continued to convince ourselves that a notion of logical neigh-
borhood is fundamental in the definition of a data structure.

The concept of logical neighborhood in a data structure is not only an abstraction per-
ceived by the programmer and vanishing at the execution, but it does have a meaning for
the computation. The computation indeed complies with the logical neighborhood structure
of the elements. For example, the recursive definition of the map function on lists propagates
an action to be performed from the head to the tail. More generally, recursive computa-
tions on data structure respect so often the logical neighborhood, that standard high-order
functions can be automatically defined from the data structure organization (think about
catamorphisms and others polytipiques functions on inductive types [FS96, NO94]).

A reformulation of this remark is that the computation on a data structure satisfies a
locality assumption: the computation associated to an element in the data structure (like
the computation of the attribute of a node in a tree) depends only on the computations of
the neighbors. This proposition can be reversed to state that if a computations is necessary
to proceed to another computation, then these two computations must be neighbors is some
space2. This space of computations can be abstract but is often made concrete by a data
structure. Note that this geometric point of view on the computations is not new: for
instance, the study of the neighborhood in a set of computations underlies the denotational
semantic approach [Vic88].

How to Formalize the Elementary Displacements in a Data Structure?

Our goal is to make the neighborhood definition explicit by specifying several spatial el-
ementary moves (we will call them indifferently shifts, displacements, ...) to define the
neighborhood for each element.

Such a structure of displacements will be called a shape. A shape is part of the type of a
data structure type, like [100] is part of the C vector type int [100]. However, the shape
embeds much more information than just a size.

What we want is to give a uniform description of the shapes appearing in various data
structures focusing on the geometrical nature of a shape. The purpose is to enable the
explicit representation and the reasoning on the data movements and to develop a geometry
of computation patterns. The expected benefits are twofold:

• From the programmer’s point of view, describing various shapes in a uniform manner
enhances the language expressiveness and proposes a new programming style.

• From the implementor’s point of view, a uniform handling of the shapes enables to
reasons on dependencies and data movements independently of the data structure.

In the following we restrict ourselves to regular data structures. A data structure is called
regular if every element of the data structure has the same neighborhood structure (like for
example a “right neighbor” and a “left neighbor”). The consequence of this assumption is
examined below.

2A similar point of view can be seen in the work of [Fre95] in the study of the intensional aspects of
function definitions.
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To stress the analogy made between a data structure and a (discrete) space, we call
points the elements of a data structure. Let “a”, “b”, “c”,. . . the directions taken on a point
to go to the point’s neighbors and let P<a> be the “a” neighbor of a point P . One can
think about a as the displacement from a point towards one of its neighbors (see Fig. VI.1).
Displacement operations can be composed: using a multiplicative notation, we write P<a.b>
for (P<a>)<b>. Displacement composition is associative. We note e the null displacement,
i.e. P <e>= P . Furthermore we will define a unique inverse displacement a−1 for each
displacement a such that P<a.a−1>= P<a−1.a>= P .

In other words, the displacements constitute a group for the displacement composition,
and the application of the displacements to points is the action of the group over the data
structure elements3.

Rationales of Using a Group Structure to Model the Displacements

The reader that follows our analogy between space and data structure, may be surprised by
the choice of a group structure to formalize the displacements. For instance, why choosing
a group structure instead of a monöıd? Another example, is the approach taken in [FM97],
that rephrased in our perspective, uses a regular language to model the displacements4. The
group structure seems to have two drawbacks:

1. A group structure implies inverse displacements. But in a simply linked list, if we
know how to go from the head to the tail, we cannot go back from the tail to the head
(else, the structure will be a doubly linked list).

2. The group structure implies regular displacement: each displacement must apply on
every point (e.g. on every element of the data structure). This does not seem to be
the case for trees for example, where a distinction is usually made between interior
nodes (from which a displacement is possible) and leafs (which are dead ends).

The first remark relies implicitly on the idea that all the possible displacements are coded in
some way in the data structure itself (e.g. by pointers). This is not the case: when reversing
a simply linked list, the inverse displacement is represented in a stack which dynamically
records from where the computation comes. This makes possible to access the previous cons
cell although there is only a forward pointer. In a vector, accessing the element next to
element indexed by i is done by computing its index i+ 1. The inverse of function λi.i+ 1
can be computed given access to the previous element (and at the same cost).

The second remark outlines that the parts of a (recursive) data structure are generally not
of the same kind and considering regular displacements is a rough approximation. However,
consider more closely the case of a binary tree data type T defined by:

T = A ∪B × T × T (VI.1)

The interior nodes are valuated by elements of type B and the leaf by elements of type
A. Intuitively, the corresponding displacements are gl = “go to the left son” and gr = “go
to the right son” corresponding to the two occurrences of T on the right hand side of the
equation (VI.1). These two displacements cannot be applied to the leaf nodes. Now, note
that in an updatable data structure, a leaf may be substituted to a sub-tree. So, from the
shape point of view, which focuses on the geometry of the structure and not on the type of
the elements, the organization of the elements is similar to a regular binary tree

T = C × T × T (VI.2)

3We use only elementary group theory notions that can be found in any standard textbook.
4The displacements studied in [FM97] are the moves coming from following pointers in C data structures.
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where C = A ∪ B. In a point valuated by A, applying a displacement gl or gr is an error.
Errors are exceptional cases that derogate from the regular case. Checking at run time if the
value is of type A or B to avoid an error is not different from checking if the node is of type
A or B×T ×T (in languages like ML, this check is done through the dispatch mechanism of
pattern matching the arguments of a function).

What we have lost between equation (VI.1) and equation (VI.2) is the relationship be-
tween the A type and the inapplicability of the displacement. But we have gained a regular
description of the displacement structure (see a more complex example in Fig. VI.2).

Figure VI.2: This picture illustrates the embedding of a non uniform tree in a (larger)
regular tree. The initial type is defined by S = T ∪A×U ×U ×U ; T = B and U = C×S.
The type A, B and C are the type of the element carried on by the tree structure; the tree
structure itself is described by the recursive calls between S, T and U . Elements of type A
are represented by hexagons, elements of type B are represented by flat rectangles (they
are terminal nodes) and elements of type C are pictured by squares. This irregular tree is
embedded in a regular 3-tree (these nodes are pictured by circles, an empty circle is just
unused in the embedding).

To summarize the previous discussion, the idea is to embed an irregular structure into
a regular one and to avoid some moves. In other words, the group structure does not
overconstraint the elementary displacements that can be expressed. In addition, the group
structure is sufficiently general and provides an adequate framework to unify data-structures
like arrays and trees (Cf. sections VI.2.1 and VI.2.2).

The Representation of the Points

The first important decision we have made is to consider regular displacements. We have
now to decide on what kind of sets operates the group of displacements.

Our idea is that the value of an element, or point, P may depend only on the the value of
the points reachable from P . That is to say, the value of a point depends only on the value
of the points of its orbit5. If there is several distinct orbits, then the computation involved
in these sub-data structures are always completely independent, and therefore, it is rather
artificial to merge all these sub data structures into a bigger one.

This leads to consider a set of points on which the group of displacements acts transitively,
which means that there is a possible path between any two points.

The simplest choice is to consider the group itself as this set of points and let

P<a> = P.a

as the group action on itself.
5The orbit of the point P ∈ E under the action of the elements of the group G is the set {P<g>, g ∈ G}.

The action of G on E is said to be transitive if all elements of E have the same orbit.
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Collection, Data Field and Group Based Field

We have now all the necessary notions to define a data structure: informally, a data structure
D associates a value of some type V to the element of a group G. The group G represents
both the places of the data structure and the displacements allowed between these places6.

In consequence, a data structure s is a function: s ∈ SG = G→ V and a data structure
type SG is the set of functions from a given G to some set V. Because the set G is a group,
we call our model of data structures: GBF for Group Based Field.

The formalization of a data structure as a function is not new; it constitutes for instance,
the basement of the theory of data fields. Cf. to section VI.7.4 below for a rapid presentation
of this notion.

Intensional and Extensional Definitions. In computer science, it is usual to think
about a function as a rule to be performed in order to obtain a result starting from an
argument. This is the intensional notion of functions studied for instance by the λ calculus.
However, the current standard definition of a function in mathematics is a set of pairs
relating the argument and the result. This representation is termed as extensional and is
closer to the concept of a data structure. For example, an array tabulates the relationship
between the set of indices and the array elements. So, we insist here that the view of data
structures as functions is only logical and appears only at the level of the data structure
definition. It does not assume anything on the data structure implementation.

Collections. Data field expressions are function combinations like f+g ◦h where f, g and
h are data fields: such expressions are intensional because they do not refer to the elements
of the data fields (see the introduction chapter in [AFJW95] for a presentation of intensional
expressions and their advantages).

Managing data structures as a whole, without referring explicitly to their content, has
also been investigated under the name of collection as a basis of the data parallelism. The
link between data parallelism and data field has been explicitly made by B. Lisper [Lis93].
However, w.r.t. the data parallelism, the studies of data fields have mainly been restricted to
function on Zn (which appears to be the special case of the abelian free groups, see below).

Organization of the Chapter

The rest of this chapter is devoted to a first study of the consequences of considering a
data structure under the geometric point of view of a group operating on itself. It can be
conceived as a study in data field theory, where we have equipped the domain of the function
with a group structure.

Shapes are defined in section VI.2. GBF and their operations are introduced in sec-
tion VI.3.

In section VI.4 we consider the recursive definition of GBF. A clear distinction is made
between GBF and functions, so we do not accept any recursive definition scheme and we
consider only recursions that propagate the computations along a natural displacement.

The implementation problems of recursive GBF are considered in section VI.5. The basis
for an optimized implementation dedicated to abelian GBF are provided (the underlying
virtual machine is described in the next chapter).

The tabulation of the GBF values require the computation or the approximation of the
definition domain. Some theoretical results are provided for this problem in section VI.6.

Finally, section VI.7 reviews some related works on data fields, collections and the rep-
resentation of discrete spaces in computer science.

6The accurate formalization requires a little bit more than just a group because we want to characterize
some group elements as the elementary moves.
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Figure VI.3: Graphical representation of the relationships between Cayley graphs and group
theory. A vertex is a group element. An edge labeled a is a generator a of the group. A word
(a product of generators) is a path. Path composition corresponds to word multiplication.
A closed path (a cycle) is a word equal to e (the identity of the multiplication). An equation
v = w can be rewritten v.w−1 = e and then corresponds to a cycle in the graph. There
are two kinds of cycles in the graph: the cycles that are present in all Cayley graphs and
corresponding to group laws (intuitively: a backtracking path like b.a.a−1.b−1) and closed
paths specific to the own group equations (e.g.: a.b−1.a−1.b). The graph connexity (there
is always a path going from P to Q) is equivalent to say that there is always a solution x to
equation P.x = Q.

VI.2 The Definition of a Shape

Let the groupG represents the set of all possible moves within a data structure. Furthermore,
we characterize a subset S ⊂ G of elementary displacements.

Let Shape(G,S) denotes the directed graph having G as its set of vertices and G × S
as its set of (directed) edges. For each edge (g, s) ∈ G × S, the starting vertex is g and
the target vertex is g.s. The direction or the label of edge (g, s) is s. Each element of the
subgroup generated by S corresponds at the same time to a path (a succession of elementary
displacements) and to a point: the point reached starting from the identity point e of G and
following this path:

e<P> = P<e> = P

(from here we use P.s instead of P<s> for the s neighbor of P ). In other words, Shape(G,S)
is a graph where:

1. each vertex represents a group element,

2. an edge labeled s is between the nodes P and Q if P.s = Q, and

3. the labels of the edges are in S.

This graph is called a Cayley graph. The following dictionary, illustrated in figure VI.3,
gives the translation between graph theory and group related concepts:

Cayley graphs Groups
vertex ↔ group element

labeled edge ↔ generator
path composition ↔ word multiplication

closed path (cycle) ↔ word equating to e
connexity ↔ solvability of P.x = Q
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We can state some properties that link the global structure of Shape(G,S) and the
relations between G and S. Let us say that S is a basis of G if an element of G is a product
of elements of S. Let S−1 = {s−1, s ∈ S}. We say that S generates G if S ∪ S−1 is a basis
of G. (This terminology is not standard.) Then,

– For Shape(G,S) to be connected, it is necessary and sufficient that S generates G.
The connected components of Shape(G,S) are the cosets g.H where H is the subgroup
generated by S (a coset g.H is the set {g.h : h ∈ H}).

– For Shape(G,S) to contain a loop (a directed cycle of length 1), it is necessary and
sufficient that e belongs to S.

– A circuit is a directed cycle. Shape(G,S) has no circuit of length ≤ 2, if and only if
S ∩ S−1 = ∅.

In the following, we restrict ourselves to the case where the subset S generates G. Usually
the name Cayley graph for Shape(G,S) is used if S is a basis of G. If S is not a basis of G,
Shape(G,S) is a subgraph of the Cayley graph of G.

Note: it exists regular connected graphs, i.e., graphs where each vertex has the same num-
ber of adjacent nodes, which are not the Cayley graphs of a group [Whi73].

Specification of a Shape by a Presentation

What we want is to specify Shape(G,S), that is, the group G and the generator set S, in
an abstract manner.

We use a finite presentation to specify the group. A finite presentation gives a finite set
of group generators and a finite set of equations constraining the equality of two words. An
equation takes the following form: v = w where v and w are products of generators and
their inverses.

The presentation of a group is given between enclosing 〈| and |〉:
〈| g1, . . . , gd ; w1 = w′1, . . . , wp = w′p |〉

where gi are the generators of the presentation and wj = w′j are the equations. A free group
is a group without equation.

We associate to a presentation G = 〈|S ; . . . |〉 the shape Shape(G,S). So the genera-
tors in the presentation are the distinguished group elements representing the elementary
displacements from a point towards its neighbors in a shape.

In the following, a presentation denotes the corresponding shape or the underlying group
following the context.

Remarks. The presentation of a group is not unique: various presentations may define
the same group. For example

〈|x, y ; x = y2 |〉 and 〈| y ; |〉
defines the same abstract group because element x is just an alias for a word made only
with y.

However, if we use the generator list in the presentation to specify S the two presentations
actually correspond to two different Shape(G,S). Note that two presentations having the
same generators set and differing by their equation set may refer to the same abstract group:

〈|x, y ; x2 = y3 |〉 and 〈|x, y ; x4 = y6, x6 = y9 |〉
defines the same abstract group because on one hand, the equations set of the second pre-
sentation can be deduced from the equation set of the first presentation (take the power two
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and three of both hand side of the equation). On the other hand, in the second presentation
we have x6 = x4.x2 = y6.x2, but we have also x6 = y9. So, y6.x2 = y9 and then x2 = y3.
That is, we can deduce the equations set of the first presentation from the equations set of
the second.

VI.2.1 Examples of Abelian Shapes

Abelian groups are groups with a commutative law (that is, the product of two generators
commutes). Abelian groups are of special interest and we specifically use the 〈 〉 brackets
for the presentation of abelian groups, skipping the commutation equations as they are
implicitly declared.

For example,

G2 = 〈| North, East , West , South ;
South = North−1, West = East−1,

North.East = East .North, North.West = West .North, North.South = South.North,
East .West = West .East , East .South = South.East , West .South = South.West |〉

is the specification of an abelian group with four generators, equivalent to

G2 = 〈North, East , West , South ; South = North−1, West = East−1〉

Because the last two equations, South and West are aliases for the inverses of North and East
and only two generators are necessary to enumerate the group element. The corresponding
abstract group can be presented without equation by

G2 ′ = 〈North, East 〉

and therefore, is a free group. These shapes correspond to an infinite NEWS grid. The
difference between G2 and G2 ′ is that in the shape G2 , two adjacent nodes are linked by an
edge and its opposite (the grid is “bidirectional”), while in the shape G2 ’, there is only one
edge between two neighbors.

Here is another example that shows that the effect of adding an equation to a presentation
is to identify some points. We start from the free abelian group with one generator:

〈 a 〉

that describes a discrete line. If we add the equation aN = e, the presentation becomes:

〈a ; aN = e〉

which specifies a cyclic group of order N . The shape can be pictured by the discretization
of a circle where N is the number of points of the discretization. Along the circle, we can
always move to the same direction a and after N moves a, we are back to the starting
position. The points {ak.N , k ∈ N} are all identified with the point e. See figure VI.4.

Other examples are given in Figure VI.5.

Since arrays (like PASCAL arrays) are essentially finite grids, our definition of group-
based fields naturally embeds the usual concept of array as the special case of a bounded
region over a free abelian shape. For example, multidimensional LUCID fields, systolic
arrays, Lisper’s data-fields [LC94b] and even lazy lists, fit into this framework. Further-
more, this allows the reuse of most of the achievements in the implementations of arrays
(e.g. [Fea91, Tor93]) to implement (bounded regions over) infinite abelian fields, and with
some additional work, to adapt them to the handling of finite abelian fields.
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Figure VI.4: A cyclic group 〈a ; aN = e〉. Adding an equation identifies some points in the
shape.

a

a

b b

a
b

a2

e a

a3

b

b2

b3

b4

b5

b6

b7

b8

a

〈a, b; a2 = b2〉
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〈a, b, c; c3 = e〉

Figure VI.5: Four abelian group presentations and their associated graph Shape(G, S).
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VI.2.2 Non Abelian Shapes

Abelian groups are an important but special case of groups. We give here two significant
examples of a non abelian shapes.

The first example is simply a free group. The free non abelian shape:

F2 = 〈|x, y |〉
is pictured in Fig. VI.6. We see that the corresponding shape can be pictured as a tree
(i.e. a connected non-empty graph without circuit). Actually, there is a more general result
stating that if Shape(G,S) is a tree, then G is a free group generated by S.

This enables the embedding of some class of trees in our framework. Let Shape(G,S)
where G is a free group and S is a minimal set of generators, i.e. no proper subset of
S generates G. Then Shape(G,S) is a tree. Observe that this tree has no node without
predecessor. This situation is unusual in computer science where (infinite) trees have a root
and “grow” by the leaves, but this graph embeds any finite binary tree by rooting them at
some point. Figure VI.6.b gives an illustration of the points accessed starting from a point
w in F2 : it is a binary tree with root w. We cannot link to a generator the meaning of the
father accessor (for node w.x, the father accessor is x−1, while it is y−1 for the node w.y).

F2 = 〈|x, y|〉

x

y

e
w.x-1

w

w.x2

x

x y

w

x y x y

x y

x y x y

y

w.x

w.x.y

w.y

w.y.x
w.y2

Figure VI.6: A free non abelian group with two generators. Bold lines correspond to the
points that can be reached starting from a point w and following the elementary displace-
ments x and y.

Our second example is a triangular neighborhood T : the vertices of T are at the center
of equilateral triangles, and the neighbors of a vertex are the nodes located at the center of
the triangles which are adjacent side by side:

T = 〈| a, b, c ; a2 = b2 = c2 = e, (a.b.c)2 = e |〉
Such a lattice occurs for example in flow dynamics because its symmetry matches well the
symmetry of fluid laws. Figure VI.7 gives a picture of T and shows two other possible
presentations for a triangular partition of the plane. It is easy to see that, for instance,
a.b 6= b.a so this group is not abelian.
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〈| a, b, c;
   a.a = b.b = c.c = e, 

   (b.c)3 = e,	

   (c.a)3 = e, 

   (a.b)3 = e |〉

a b c

b a
c

c ab

b a

ab c

〈|a, b, c;
  a.a = b.b = c.c = e, 

  a.b.c.a.b.c = e |〉
c b

a

a

c b

c b

a

〈| a, b, c;
 	 a.a = b.b = c.c = e, 

	 b.a.b = c.a.c |〉

aa a

c

b

aa a

c
bb

c

b

c
b

c

b
c

b b

Figure VI.7: Three examples of a 3-neighborhood shape. These shapes are non abelian.

VI.3 Group Based Fields (GBF)

A group based field (or GBF, or field in short) is a data-field whose index set is an arbitrary
set in a shape. If g : F → V, we write g[F ] to specify that g is a GBF on shape F and g(x)
denotes the value of g at point x ∈ F .

Because a shape F is simply a graph, a GBF is a function over the vertices of this graph.
The supplementary structure of the graph is used to specify automatically some operations
that are available on a GBF over F .

Operations defined on fields are intensional. We present three kinds of GBF expressions:
extensions of scalar functions, geometric operations and reductions.

These operations are given as a first account to show how a rich algebra of shape pa-
rameterized operations can be introduced on GBF. These operations have a data parallel
interpretation because they lead to manage GBF as a whole.

VI.3.1 Extension

Extension of a scalar function is just the point-wise application of the function to the value
of a field at each point. We do not consider here nested fields (e.g., GBF valuated GBF),
therefore the extension of a function can be implicit without ambiguity (for an example
of possible ambiguity in the case of nested fields, consider the application of the function
reverse over a nested list and its implicit extension [SB91]).

So, if F has shape G, f(F ) denotes the field of shape G which has value f(F (w)) for
each point w ∈ G. Similarly, n-ary scalar functions are extended over fields with the same
shape.
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VI.3.2 Geometric operations

A geometric operation on a collection consists in rearranging the collection values or in
selecting some part of the collection to build a new one.

Translation. The first geometric operation is the translation of the field values along the
displacement specified by a generator: F.a where a ∈ S. The shape of F.a is the shape of
F . The value of F.a at point w is (F.a)(w) = F (w.a). When the field F is non-abelian, it
is necessary to define another operation a.F specified as: (a.F )(w) = F (a.w).

Obviously, this definition extends to the case where a 6∈ S: if u = a1. . . . .an, ai ∈ S, then
(F.u)(w) = F (w.u) = ((. . . (F.a1). . . . ).an)(w).

Direct Product. Several group constructions enable the construction of a group from
previous ones. We just mention the direct product of two groups that gives rise to the direct
product of two fields: F1[G1]×hF2[G2]. Its shape is the direct product G1×G2 = {(u1, u2) :
u1 ∈ G1, u2 ∈ G2} equipped with multiplication (u1, u2).(v1, v2) = (u1.v1, u2.v2). The value
of the direct product F1×hF2 at point (u, v) is h(F1(u), F2(v)). This operation corresponds
to the outer product on vector space.

Restriction and Asymmetric Union. We say that a shape F = Shape(G,S) is infinite
if G is not a finite set. Only the values of a field on a finite set are practically computable.
This raise the problem of specifying the parts of a field where the field values have to be
computed.

Our approach is similar to the one of B. Lisper for data fields on Zn: we introduce an
operation of restriction that specifies the domain of a field.

The restriction g|p of a field g by a boolean valuated field p, specifies a field undefined for
the point x where p(x) is false. For the point x where p(x) is true, the restriction coincides
with g.

We define also the restriction of a field g to a coset C: g|C where C = u.H. The result
is a GBF of shape H such that (g|C)(x) = g(u−1.x). The GBF g|C is a GBF included in G.

It is convenient to introduce simultaneously to the restriction, an operator for asymmetric
union: (f#g)(x) = f(x) if f has a defined value at point x and g(x) elsewhere.

Remark. In [DV98], we do not admit any predicated p but we restrict to expressions
corresponding to some simple domains with good properties: the points of such a domain
can be enumerated, and predicate expressions are closed for domain intersection.

Translation, restriction and asymmetric union of such domains are the basis of the im-
plementation of data fields on Zn studied in [GDVS98b, GDVS98a, DV98] (Cf. the following
chapter).

VI.3.3 Reductions

Reduction of a n-dimensional array in APL is parameterized by the axis of the operation
[Ive87] (e.g. a matrix can be reduced by row or by column). The projection of the array
shape along the axis is another shape, of dimension n-1, and this shape is the shape of the
reduction.

We generalize this situation in the following way (consider Fig. VI.8).

Normal Subgroup and Quotient Group. Let H be a subgroup of G, specified by its
set of generators S′; we write H = S′ : G. H will be the axis of the reduction.

For u, v ∈ G, we define the relation u ≡H v if there exists x ∈ H such that u.x = v. Let
the quotient of G by H, denoted by G/H, be the equivalence classes of ≡H . An element w
of G/H is the set u.H where u is any element in w.
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H = 〈 East 〉:G2

G2/H

h East

North

H = 〈 North.East 〉:G2

East

North

G2/H

h

East

North

H = 〈 East.East 〉:G2G2/H

h

Ea
st

North

h

Figure VI.8: Three examples of reduction over the G2 shape.

We need to ensure that G/H is a group. This is always possible, through a standard
construction, if we assume that H is a normal subgroup of G, that is, for each x ∈ G, x.H =
H.x (for an abelian group, any subgroup is normal). Then, a possible presentation of G/H
is the presentation of G augmented by the set of equations {g = e, g ∈ S′}.

The Reduction. The expression h\H F denotes the reduction of a field F [G] following
the axis H and using a combining function h.

It is assumed that H is a normal subgroup of G and that h is a commutative and
associative binary function. The shape of h\H F is G/H. The value of h\H F on a point
w ∈ G/H is the reduction of {F (v) : v ∈ w} by h (this set has no canonical order, this is
why we impose the commutativity of h).

See figure VI.8 for some examples of reductions over the G2 shape. Only the first example
can be expressed in APL. An interesting point is that H is not restricted to be generated by
only one generator; as an example, +\G F where G is the shape of F computes the global
sum of all elements in G (G is always normal in itself).

Remark. Note that there is a problem with the handling of reductions over an infinite
domain. The idea is that undefined values are not taken into account. So h\H (g|p) is
defined even if G is infinite, if the set {x, p(x) = true} is finite.

Scan operations [Ble89] seem more problematic to generalize in the same way. For
instance, what would be a scan with an axis H with more than one generator?

Yet, we can see a scan operation as a computation propagating along the data structure
neighborhood and returning a result with the same shape. The recursive definition of a GBF,
introduced in the next section, is then a possible generalization of scan-like operations.
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VI.4 Recursive Definition of a GBF

The concept of GBF, as described in the previous sections, offers a rich set of operations.
GBF can be embedded, as a new type value, in an existing language, much like pvar
have been embedded in *Lisp, for instance. In this case, shape definitions are just type
specifications.

However, we will sketch the use of GBF in a more stringent way, by considering the
declarative definition of GBF. We restrict to recursive definitions of GBF preserving the
neighborhood relationships. This kind of GBF specification induces computation flowing
from a point to the neighbor points, in a way reminiscent from the systolic computation
paradigm.

Let g[F ] a GBF such that F = Shape(G, {s1, . . . , sn}). If g complies with the elementary
neighborhood specified by F , then the value of g on a point x depends only on the value of
g at points x.si. That is

∀x ∈ G, g(x) = h(g(x.s1), . . . , g(x.sn)) (VI.3)

where h is a scalar function that establishes the functional relationship between the value
of a point and the values of its neighbors.

Equation (VI.3) holds for all x ∈ G so we make that implicit and write

g[F ] = h(g.s1, . . . , g.sn) (VI.4)

(generators are s1, . . . , sn appearing in the equation are not always sufficient to infer the
shape of g, for instance in g = 0; this is why we explicitly indicate [F ]). This equation
is a functional equation between GBF and not between values. The GBF g is said to be
recursively defined or simply a “recursive GBF”.

Definitions Quantification

Obviously equation (VI.4) is a kind of recursive definition and we need some “base case” to
stop the recursion. So, we introduce quantified definitions:

g@C = 0 (VI.5)
g[F ] = 1 + g.d (VI.6)

define a GBF g on shape F . The equation (VI.5) fixes the value of g(x) on a point x ∈ C.
In our example, the value of g on C is 0. For point x 6∈ C, the equation (VI.6) is used and
g(x) = (1 + g.d)(x).

We say that equation (VI.5) is quantified and that equation (VI.6) is the default equation.
It is the set of these two equations that makes the definition of g.

Using quantified definitions do not enhance the expressive power of recursive GBF. In-
deed, equations (VI.5+VI.6) are equivalent to

g[F ] = (0 |C) # (1 + g.d)

Coset Quantified Definition

The problem is to specify the kinds of domain we admit for the expression of C. Ideally,
we would make a partition of the shapes and define the field giving an equation for each
element of the partition. It implies that each element of the partition can be viewed as a
shape itself. We may use subgroups of the initial group to split the initial domain, but this
is somewhat too restrictive, thus we will use cosets.

A coset g.H = {g.h, h ∈ H} is the “translation” by g of the subgroupH. In a non-abelian
group, we distinguish the right coset g.H and the left coset H.g. To specify a coset we give
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the word g and the subgroup H. The notation {g1, g2, . . . , gp} : G defines a subgroup of G
generated by {g1, g2, . . . , gp} (the gi are words of G). There is no specific equation linking
the generators of the subgroup but they are subject to the equations of the enclosing group,
if applicable.

Well formed shape partitions The intersection of two cosets is empty or a coset. For
that reason, in a coset quantified definition like





g@C1 = . . .

. . .

g@Cn = . . .

g[G] = . . .

(VI.7)

there are ambiguities in the definition of g if Ci ∩ Cj 6= ∅ for i 6= j.
To avoid these ambiguities, we suppose that if Ci ∩Cj 6= ∅ for i 6= j, then there exists k

such that Ci ∩ Cj = Ck. That is, the set {Ci} is closed for the intersection.
Then, the value of g on a point x ∈ Ci is defined by the equation corresponding to the

smallest Ck containing x.

Remarks

• Note that the set of points where the default definition applies is not a coset but the
complement of a union of cosets.

• The ambiguities involved by multiple cosets quantification is similar to the ambiguities
involved by the definition of a function through overlapping patterns. For instance, in
the following ML-like function definition

let f = function (true, ) -> 0 | ( , ) -> 1

the value of f(true, true) is either 0 or 1. An additional rule giving the precedence
to the first pattern that matches in the pattern list, is used to fix the ambiguity. The
rule of cosets inclusion is used in the case of GBF, but a rule based on the definition
order can be used if checking the inclusion of cosets has to be avoided.

• The form (VI.4) extends obviously to handle arbitrary translation. This does not
contradict the neighborhood compliance because the introduction of intermediate fields
recovers the locality. For example,

g = 1 + g.d3

can be rewritten as



g′ = g.d

g′′ = g′.d

g = 1 + g′′.d

A Denotational Semantics for Recursive GBF

As a matter of fact, a GBF is a function. Then, the semantics of a system of recursive
equations defining a set of GBF is the same as the semantics of a system of recursive
equations defining functions in the framework of denotational semantics [vL90].

Let F be the Scott domain of functions over a group F . The recursive expression
g[F ] = ϕ(g) defines a continuous operator ϕ on F , because ϕ is a composition of contin-
uous operators like: translation, restriction, asymmetric union and extension of continuous
functions. Therefore, a solution of g[F ] = ϕ(g) is a fixpoint of ϕ. The least fixed point of
ϕ can be computed by fixpoint iteration from λx. ⊥ and is the limit of ϕn(λx. ⊥) when n
goes to infinity.

65



Computability

An immediate question is to know if the fixpoint iteration converges on a point in a finite
number of steps. For general functions this amount to solve the halting problem but here
we are restricted to group based fields. However, the expressive power of group based fields
is enough to confront to the same problem: suppose a field defined by:

g[F ] = h(g.a, g.b, . . . )

the points accessed for the computation of the value of w are: w.a, w.b, . . . . As a matter of
fact, if the computation of a field value on a point w depends on itself, the fixpoint iteration
cannot converge; so we face the problem of deciding if w.a = w, w.b = w, etc. In other
words, we have to decide if two words in a finite presentation represent the same group
element. This problem is known as the word problem for groups and is not decidable (but
it is decidable for finitely presented abelian groups, free groups and some other interesting
families).

An Example

A possible program for a field on a one-dimensional line, where the value of a point increases
by one between two neighbors, is:

G1 = 〈left〉 (VI.8)
A = left2.(〈〉 : G1 ) (VI.9)

iota@A = 0 (VI.10)
iota[G1 ] = 1 + iota.left (VI.11)

Equation (VI.8) defines a one-dimensional, one-directional line. Equation (VI.9) defines the
coset A = {left2} because the subgroup 〈〉 : G1 is reduced to {e} by convention. Equation
(VI.10) specifies that the field iota has the value 0 for each point of coset A and equation
(VI.11) is valid for the remaining points.

To define a field iota with the value 0 fixed at the point e, we set “iota@〈〉 = 0” instead
of (VI.10). We write 〈〉 for e.(〈〉 : G1 ) because a subgroup H is also the coset e.H and
because here, after iota@, 〈〉 denotes necessarily a subgroup of G1 .

The previous equations for iota define a function over G1 that can be specified in a
ML-like style as:

letrec iota(leftn) = if n == 2 then 0 else 1 + iota(leftn+1) fi

This function has a defined value for the points {leftn, n ≤ 2} and the value ⊥ for the other
points, see figure VI.9. Note that the use of a displacement a instead of a−1 is mainly a
convention.

e

left

⊥ 0 1 2 3 4 5⊥

leftn²2
left2

Figure VI.9: The field iota.

The following definition

sum@〈〉 = g

sum[G1 ] = g + sum.left
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computes the sum of the elements of g starting from e, that is, for n ≥ 0

sum(left−n) =
n∑

i=0

g(left−i)

If g represents a vector, sum represents the scan-+ of this vector. This is why we present
the recursive definition of GBF as the generalization of the scan operations.

VI.5 Implementing the Resolution of a Recursive GBF

VI.5.1 A General Algorithm

For the sake of simplicity, we suppose that field definitions take the following form:




g@C1 = c1

. . .

g@Cn = cn

g[G] = h(g.r1, g.r2, . . . , g.rp)

where Ci are cosets, ci are constants and h is some extension of a scalar function. The set
Rg = {r1, . . . , rp} is called the dependency set of g.

We assume the existence of a mechanism for ordering the cosets and to establish if a
given word w ∈ G belongs to some coset. We also suppose that we have a mechanism to
decide if two words are equal. For example, these mechanisms exist for free groups and for
abelian groups. There is no general algorithm to decide word equality in any non-abelian
groups. So our proposal is that non abelian shapes are part of a library and come equipped
with the requested mechanisms. A future work is then to develop useful families of (non
abelian) shapes.

With these restrictions, a first strategy to tabulate the field values is the use of memoized
functions. A field g[G] is stored as a dictionary with entries w ∈ G associated to values g(w).
If the value g(w) of w is required, we first check if w is in the dictionary (this is possible
because we have a mechanism to check word equality). If not, we have to decide which
definition applies, that is, if w belongs to some Ci or not. In the first case, we finish
returning ci and storing (w, ci) in the dictionary. In the second case, we have to compute
the value of g at points w.r1, . . . , w.rp, (that is recursion) and then the results are combined
by h.

Optimization when a Word Normal Form Exists

We can do better if each word w can be reduced to a normal form w. A normal form can
be computed for abelian groups (the Smith Normal Form) or for free groups. In this case,
the dictionary can be optimized into an hash-table with key w for w.

VI.5.2 Implementation of Recursive Abelian GBF

In the case of an abelian group G, we can even improve the implementation using the
fundamental isomorphism between G and a product of Z-modules, confer [Coh93, Ili89].
As a matter of fact, a function over a Z-module is simply implemented as a vector. The
difficulty here is to handle the case of Zn which corresponds to an unbounded array. The
computation and implementation of data fields over Zn is studied in the next chapter and
in [GDVS98b, GDVS98a, DV98].

We give below the underlying theory which enables the transformation of an abelian
GBF into a “classical” data field definition over Zn. These results are based on the compu-
tation of the Smith Normal Form. The corresponding algorithms have been implemented in
Mathematica [Sou96].
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Computation of Recursive Abelian GBF

Let G be an abelian group presented by 〈g1, . . . , gn ; w1 = w′1, . . . , wm = w′m〉. Each word
g±1

i1
. . . . .g±1

ip
can be rewritten in gα1

1 . . . . .gαn
n using the commutation equations and the

equation gx.gy = gx+y. Conversely, to each vector (α1, . . . , αn) of Zn, we can associate an
element of G specified by gα1

1 . . . . .gαn
n .

So, we consider the functions ψ et ϕ that map a word of G to a vector of Zn and a vector
of Zn to an element of G:

ψ : {g1, . . . , gn}∗ → Zn

g±1
i1
. . . . .g±1

ip
7→ (α1, . . . , αn)

ϕ : (Zn,+) → (G, .)
(α1, . . . , αn) 7→ gα1

1 . . . . .gαn
n

All the equations wi = w′i defined in the presentation of G can be rewritten e = w−1
i .w′i and

then can be summarized by a list of words u1, . . . , um. Thanks to ψ, we associate to each
ui a vector of Zn and we define the matrix of rules UG by:

UG = [ψ(u1), . . . , ψ(um)]

where ψ(ui) is the ith column of UG. The matrix UG is a n×m matrix which represents a
linear application from Zm to Zn in the canonical basis.

Each element of the image ImUG of UG is a linear combination of the ui and then,
represents the identity element e.

The function ϕ is a morphism between groups, that is: ϕ(x+ y) = ϕ(x).ϕ(y). This mor-
phism is not necessarily an isomorphism because of the word equations on G (two different
words can represent the same element).

In fact, the kernel Kerϕ of ϕ and the image ImUG of UG are equal: ImUG = Kerϕ. The
consequences are that:

• Checking the equality of two elements of G represented by the words x and x′ is
equivalent to check if x−1.x′ = e, that is: ψ(x−1.x′) ∈ ϕ−1(e) = ImUG

.

• To check if an element y of G belongs to the coset x.H, we first remark that x is a
member of the class x.H in G/H and that y is a member of y.H. Two classes in G/H
are distinct or are the same. In consequence, y ∈ x.H if and only if y =G/H x.

That is to say, checking if a word belongs to a coset is equivalent to check for equality
in the quotient group7.

In conclusion, to implement the algorithm given in section VI.5.1, all we need is to check
if an element belongs to ImUG

(or to ImU(G/H)). This is not so easy in general but can be
obvious if we can obtain a very simple form of ImUG

by an adequate change of basis in Zn.
This is the purpose of the computation of the Smith Normal Form that diagonalizes UG.

This diagonalization is always possible thanks to a fundamental theorem on the structure
of abelian groups. We will state this theorem here, because it gives also insights on the shapes
described by abelians groups.

The Fundamental Theorem of Abelian Groups

Z-module. A Z-module is an abelian group denoted by (Z/nZ,+) where n ∈ N. Formally,
this group is the quotient of Z by the subgroup nZ of the multiples of n. Intuitively, this
quotient group has n elements and each is a set of Z. These sets are a partition of Z.
These sets are named by one of their members: the element k ∈ Z/nZ denotes the set
{. . . , k − n, k, k + n, k + 2n, . . . }. The addition law is compatible with the addition on Z:
p+ q = p+ q.

7We know how to derive the presentation of the quotient group G/H from the presentation of G and the
generators of H. The resulting G/H is abelian and so we know how to check equality in G/H.
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The module Z/0Z is isomorphic to Z and said to be a free module.
The other modules Z/nZ, n 6= 0 can be graphically represented by a circle of n points.

They are called torsion modules.
The previous Z-modules are of dimension 1 (they are generated by only one generator).

Z-modules of dimension greater than one are cartesian products of 1-dimension Z-modules.

The Fundamental Theorem of Abelian Groups. The fundamental theorem of abelian
groups says that each abelian group G is isomorphic to:

G ' Zn × Z/n1Z × Z/n2Z × . . . × Z/nqZ

where ni divides ni+1 (see any standard text on groups; for a computer oriented handling
Cf. [Coh93]). This theorem shows that the study of abelian shapes splits naturally into, on
one hand the study of free Z-modules of finite rank (i.e. Zn), and on the other hand the
study of finite Z-modules. In other words, abelian shapes correspond to a combination of
n-dimensional grids and n-dimensional torus.

The basic tool to explicit the isomorphism between the finite presentation of an abelian
group and Z-modules is the computation of the Smith Normal Form (Cf. [Smi66]).

Diagonalizing UG with the Smith Normal Form

We return now to the problem of diagonalizing the matrix of rules of an abelian group.
Given a matrix U , we look for L and K, two matrices with coefficients in Z and whose

inverse have also coefficients in Z, such that:

L.U.K = D

with D diagonal matrix. D looks like



d1

. . .
...

dn


 or




d1

. . .
dn

. . .




The diagonal terms are positives and satisfy:

di 6= 0 ⇒ di+1 / di ∈ Z
di = 0 ⇒ dj≥i = 0

With this condition, the matrix D is unique. Its existence is ensured by the fundamental
theorem of abelian group for matrix U = UG and the product of Z-modules isomorphic to
G is Z/d1Z× · · · × Z/dnZ.

The matrix L,D and K can be computed by the Smith’s algorithm [Smi66]. The refer-
ence [KB79, CC82, Ili89, HHR93] gives a lot of considerations about the complexity of the
algorithm and its optimizations.

The matrix L is invertible and can be interpreted as the matrix of a change of basis. In
the new basis, the image of U is generated by the columns of D:

L. ImU = (d1 Z, . . . , dq Z)

Therefore, checking for x = e is equivalent to check:

L.ψ(x) ∈ (d1 Z, . . . , dq Z)

which is easy.
We have developed in Mathematica a prototype that, starting from the finite presentation

of an abelian group, computes the isomorphic product of Z-modules, checks the equality of
two words, checks that a word belongs to a coset, etc.
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G = 〈a, b ; a8 = e, b8 = e〉
H1 = 〈a b〉 : G
H2 = 〈a2 b2〉 : G
H3 = 〈b〉 : G
H4 = 〈〉 : G

C1 = a2.H1
C2 = a b−1.H2
C3 = a3.H3
C4 = a2.H4

F@C1 = 1
F@C2 = 2
F@C3 = 3
F@C4 = 4

F = F.a−1 + F.b−1
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Figure VI.10: The picture on the right is a Mathematica graphics draws by the package
we have developed to compute abelian recursive GBF. This package is based on the Smith
Normal Form to compute the word equality test needed in algorithm given in section VI.5.1.
The picture draws the elements of G by a cell. The shape G is isomorphic to Z/8Z×Z/8Z.
A value is written in a cell w if the value of w has already been computed. The cosets C1

to C4 are figured by the cells with value from 1 to 4 5they are intersection between these
cosets). The cell labeled 34 corresponds to the word a4b5. The cells in gray have been
computed during the recursive computation of the value of a4b5.
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VI.6 Computation and Approximation of the Domain
of a Recursive GBF

The algorithm presented in section VI.5.1 corresponds to a demand-driven evaluation strat-
egy. For example, to evaluate iota(e), we have to compute iota(left) which triggers the
computation of iota(left2) which returns 0:

iota(e) = (1 + iota.left)(e)
= 1 + iota.(left)
= 1 + (1 + iota.left)(left)
= 1 + (1 + iota(left2))
= 1 + (1 + 0)
= 2

So, there is a dependency between the computation of iota(e) and iota(left) that can be
pictured by a dependency between e and left.

More generally, for a definition g[G] = h(g.r1, . . . ) we can associate to each point w ∈ G
a set Pw of directed paths corresponding to the points visited to compute g(w). An element
p of Pw is a word of the subgroup generated by Rg = {r1, . . . } (the converse is not true).
These notions are illustrated in figure VI.11.

The evaluation of g(w) fails if some p ∈ Pw has an infinite length. Two cases can arise:

• p is cyclic;

• p has an infinite number of distinct vertices.

Bounding the number of vertices in a computation path is similar to the “stack over-
flow” limit. Static analysis can be used to characterize the domains of G with finite paths
(Cf. [LC94b] for a study in this line). Sufficient conditions can also be checked at compile-
time to detect cyclic paths (e.g. a raw criterion can be Rg ∩ R−1

g = ∅) and/or it can be
detected at run-time using an occur-check mechanism.

The development of a data driven evaluation strategies, or the development of some
optimizations in the computation of a GBF, require the computation or the characterization
of the definition domain of a recursive GBF. The definition domain of a GBF is the set of
points w such that ∀p ∈ Pw, p is finite (the set Pw is finite if each of its element is finite,
because on any point w there is only a finite number of neighbors that can be used to
continue a path). In figure VI.12 we show some examples of GBF domains.

In the rest of this section, we give some results about this problem.

VI.6.1 Computability

The decidability of the word problem is not a sufficient condition to decide if a GBF g has
a defined value on point x (Cf. section VI.4).

For instance, in Zn where the word problem is decidable (Cf. section VI.5.2), the problem
of deciding if a GBF g defined by an equation of form (VI.4) has a defined value on a point
x is still undecidable8.

Note that for finite groups this problem is decidable because it is sufficient to explicitly
compute the dependency graph between the group elements. This graph is finite and it is
sufficient to check for the absence of cycle.

8Informally, the example of iota, Cf. Fig. VI.9, shows that some kind of primitive recursion is imple-
mentable in the GBF formalism. The equations g[〈right〉] = if p then c else g.right shows that some kind
of minimization is also possible. Thus, intuitively, arithmetic functions can be coded in the GBF formalism.
Note that for minimization, we use a conditional which is the extension of a non strict function.
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H = <a,b,c; a.c = b>

F@<c>:H = …

F@<a>:H = …

F =  F.a-2  +  F.b-1  +  F.c-1
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Figure VI.11: This schema figures a GBF based on an hexagonal shape H = 〈a, b, c; b = a.c〉.
The field F is defined by a recursive expression. The cosets 〈a〉 : H and 〈c〉 : H are the base
case of the recursion. The dependency set is RF = {a−2, b−1, c−1}.
The integer that appears in a cell corresponds to the maximal length of a dependency path
starting from the cell and reaching a coset. This integer can be thought as the early instant
where the cell value can be produced (in a free schedule). The arrows picture the inverse
of a dependency: this translation can be used to compute new points value starting from
known points. In this example, only one value can be produced at each time. The cells that
have a value different from ⊥ are in bold: they correspond to the definition domain of F .
The infinite path that starts from one cell shows the beginning of an infinite dependency
path: this path “jump” over the cosets and goes to infinity, that is, the starting cell does
not have a defined value.
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(a): g = 1 + max(g.y, g.y-1)

x

y

(b): g = 1 + max(g.x-1, g.y-1)

(c): g = 1 + max(g.x-5, g.y-3, g.x-3.y-3) (d): g = 1 + max(g.y-2, g.y-4)

(f): g = 1 + max(g.x3.y3, g.x5.y3)(e): g = 1 + max(g.x-3)

Figure VI.12: Six examples of GBF domains in Z2.
The elements of the shape 〈x, y〉 are figured by a square cell. We have presented only a part
of the shape, where the left bottom square corresponds to e. The cells in gray belong to
the definition domain of the GBF g. The default equation is figured but not the quantified
equations. The cells of base cosets are in dark gray and without label. It is easy to recover
their equations. For example, let X = 〈x〉 and Y = 〈y〉. Then, the cosets C1 and C2 involved
in (a) are y.X and y7.X The cosets involved in (c) are X and Y . Etc. The label in the
other cells are the time at which the cell value can be computed. This is also the maximal
length of the dependency paths starting from the cell. And this is also the value computed
by the given GBF definition, if we assume that the cells of the base cosets are valuated by
0.
The definition domain corresponds to the cells reachable from the base cosets by the following
rule: a cell P is reachable if the dependencies starting from P lean against a reachable cell
or a base coset cell.
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VI.6.2 Approximation of the Definition Domain of a strict GBF

We call strict GBF a recursive GBF g specified without using restriction, asymmetric union
and with the help of only strict functions h in equation (VI.4).

The computability of a strict GBF does not become a trivial problem.
We give here some results on the approximation of the definition domain of a strict GBF

g defined by




g@C1 = c1

...

g@Cp = cp

g[G] = h(g.r1, . . . , g.rq)

(VI.12)

where h is a strict function. Let:

Rg = {r1, . . . , rq} and D0 =
⋃

j

Cj

In the sequel, we reserve the index j to enumerate the cosets Cj and the index i to enumerate
the shifts ri.

We know that the solution g of equation (VI.12) is the least fixpoint of ϕ defined by:

ϕ(f) = λx. if x ∈ Ci then ci else h(f.r1, . . . , f.rq)

Def (g) denotes the definition domain of g. As a matter of fact, ϕ(f)(x) is defined if x ∈ D0.
Because h is strict, if x 6∈ D0 then x ∈ Def (g) ⇒ x.ri ∈ Def (g). That is, the definition
domain Def (g) is the least solution (for the inclusion order) of equation

D = D0 ∪
⋂

i

(D/D0).ri (VI.13)

where D/D0 = {x such that x ∈ D ∧ x 6∈ D0}.

The Lower Approximation Dn

The solution g is the limit of the sequence gn = ϕn(λx.⊥). If x ∈ Def (gn), then we have
two possibilities: x ∈ D0 or x.ri ∈ Def (gn−1) because h is a strict function. In the last case,
it means that x ∈ Def (gn−1).r−1

i .
Suppose that the domain of gn−1 is a set D. We can propagate the value to D.r−1

i and
because the strictness of h we need to satisfy all the dependencies ri. Thus, we may compute
new values on the set

⋂
iD.r

−1
i .

We then obtain the definition domain of g as the limit D∞ of the sequence:

D0 =
⋃

j

Cj (VI.14)

Dn+1 = Dn ∪
⋂

i

Dn.r
−1
i (VI.15)

Starting from the definition of Dn we have immediately:

D0 ⊆ D1 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = Def (g) (VI.16)

Therefore, the sequence Dn gives a lower approximation of Def (g).
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The Greater Approximation En

Geometrical Interpretation. To obtain a greater approximation of Def (g), we first
interpret geometrically the property to belong to the definition domain of g.

To each point w ∈ G we associate a set Pw of directed path9 corresponding to the
points visited for the computation of g(w). An element p of Pw is a word of the monod Rg

generated by Rg:

Rg = { rαi1
i1

. ... . r
αik
ik

, with ril
∈ Rg and αil

∈ N }
The computation of g(w) fails if it exists a p ∈ Pw with an infinite length. We have already
noted that there are two classes of infinite path: cyclic paths and the others.

Computing a Greater Approximation E0. If g(w) is defined, then all the paths p ∈ Pw

starting from w must end on a coset Cj . Amongst all these paths, there are some paths
made only with ri shifts. Let:

Ri = { r−n
i , n ∈ N } (VI.17)

E0 = D0 ∪
⋂

i

D0.Ri

The set Ri is the monod generated by r−1
i (warning: we take the inverse of the dependency).

The set E0 is made of the points w ∈ G that either belong to D0 or are such that there exists
a path made only from ri starting from w and reaching D0. This last property is simply
expressed as: ∀i, ∃ni, w.r

−ni
i ∈ D0. This property is true for all w ∈ Def (g) and then:

Def (g) ⊆ E0 .

Refining the Approximation E0. The greater approximation E0 is a little rude. We
can refine them on the basis of the following remark.

If w ∈ Def (g), then we have either w ∈ D0 or w.ri ∈ Def (g). We can deduce that:

Def (g) ⊆ E1 = D0 ∪ (E0 ∩
⋂

i

E0.ri)

Obviously E1 ⊆ E0. Moreover, this construction starting from E0 can be iterated, which
introduces the sequence

E0 = D0 ∪
⋂

i

D0.Ri (VI.18)

En+1 = D0 ∪ (En ∩
⋂

i

En.ri) (VI.19)

We always have Def (g) ⊆ En+1 ⊆ En.
Let E∞ be the limit of En. For each w ∈ E∞, we have either w ∈ D0 or w.ri ∈ E∞.

Therefore, E∞ is a solution of the equation (VI.13). It should be checked that it is the
least solution which we admit (intuitively, the element of G are equivalence classes of finite
words of generators and then, if x ∈ E∞ it can be checked by induction on the number of
occurrences of ri in x that x ∈ Def (g)).

The sequence of En converges very rapidly to E∞ for a lot of examples (except one, all
examples in figure VI.12 converge in two steps). However, the example (d) in figure VI.12
gives one example where we have En+1 6= En for any n.

9Note that a directed path is a word rather than a group element. A word can be seen as a group element,
but embeds much more information. For example, the word x.x−1 corresponds to a path starting from e
and going backwards after a move along x. As a group element, x.x−1 is equal to e which may correspond
to an empty path. The group element denoted by a word “integrates” the path and forget the exact walk.
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Results in Domain Approximation

We can summarize the previous results by the formula:

D0 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = Def (g) = E∞ ⊆ ... ⊆ En ⊆ ... ⊆ E0 (VI.20)

These results hold for any strict GBF (abelian or non abelian).

Computing the Domain Approximations

Equations (VI.14, VI.15, VI.17, VI.18, VI.19) enable the explicit construction of Dn and En

if it is known how to compute intersection, union and product of comonod. We call comonod
a set x.M = {x.m,m ∈M} where M is a monod.

Indeed, a coset is a special kind of comonod. Note that the intersection of a comonod is
either empty or a comonod. If the product D.M of a comonod D by a monod M is also a
monod (which is the case for abelian shape or if the ri commutes with all group elements),
then all arguments of the intersections and unions in the previous equations are comonods.
We may then express Dn and En for a given n has a finite union of comonods.

We have used the omega calculator, a software package [KMP+96] that enables the
computation of various operations on convex polyhedra to make linear algebra in Zn and
represent comonods. Linear algebra is not enough to compute Dn and En because we
have to compute the Ri. Fortunately, the omega calculator is able to determine in some
cases the transitive closure of a relation [KPRS94] which enables the computation of Ri

as the transitive closure of [x, x.ri] (we use here the syntax of the omega calculator).
Unfortunately the system is not very stable and the computation sometimes fails. We plan
to develop a dedicated library under Mathematica to compute these approximations.

Here is in example, based on the definition illustrated in figure VI.11. Please refer to
[KMP+96] for the omega calculator concepts and syntax. We first define the cosets in Z2

C1 := { [n, 0] };
C2 := { [0, n] };

then three relations that correspond to the dependencies:

r1 := { [x, y] -> [x, y+1] };
r2 := { [x, y] -> [x+2, y] };
r3 := { [x, y] -> [x+1, y+1] };

and we need also the inverse of the dependencies:

ar1 := { [x, y] -> [x, y-1] };
ar2 := { [x, y] -> [x-2, y] };
ar3 := { [x, y] -> [x-1, y-1] };

We may now defines the Di:

D0 := C1 union C2;

H1 := r1(D0) intersection r2(D0) intersection r3(D0);
D1 := D0 union H1;

H2 := r1(D1) intersection r2(D1) intersection r3(D1);
D2 := D1 union H2;

H3 := r1(D2) intersection r2(D2) intersection r3(D2);
D3 := D2 union H3;

We can ask omega to compute a representation of D3
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{[x,0]} union
{[0,y]} union
{[4,1]} union
{[6,1]} union
{[2,1]}

which is what it is expected. For the approximation Ei we need to represent the monods Ri

which is done through a transitive closure:

R1 := r1*;
R2 := r2*;
R3 := r3*;

The definition of E0 raise the computation of

E0 := R1(D0) intersection R2(D0) intersection R3(D0);

(we have ommited the union with D0 to avoid too complicated term in the result). The
evaluation of this definition returns

{[x,y]: Exists ( alpha : 0 = x+2alpha && 1 <= y && 2 <= x)} union
{[x,0]} union
{[0,y]}

This approximation is too large, we may refine it by computing E1:

E1:= r1(ar1(E0) intersection E0) intersection
r2(ar2(E0) intersection E0) intersection
r3(ar3(E0) intersection E0);

The evaluation of E1 gives:

{[x,1]: Exists ( alpha : 0 = x+2alpha && 4 <= x)} union {[2,1]}
which is also E∞ minus D0.

Extensions and a Conjecture

We may extend the result (VI.20) to non abelian forms simply by carefully taking care of
the right or left applications of a shift ri.

We may also extend the previous results to the case of a system of recursive strict GBF
g, g′, g′′, ... by using Dn,D′n,D′′n, ... and En,E′n,E′′n, ... instead of only Dn and En.

For all the examples we have worked out on Zn, we have verified that the definition
domain of a GBF g is a finite union of comonods. We conjecture that this is always true.

It is clear that the definition domain of g is an union of comonods because Dn is con-
structed as an union of comonods (from Dn to Dn+1 a comonod is added). The point is to
check that this union is finite.

The recursive definition of a GBF g[G] can be generalized without difficulty by consid-
ering more general base case domains. That is, we may replace the coset Ci by arbitrary set
Si in equation (VI.7). Relations (VI.20) remain true.
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VI.7 Related Works

In this last part, we review some works that have been done around the concept of collection
and data field, and some developments made in the area of computational representations
of discrete space.

VI.7.1 Introduction: the Concept of Collection

A collection is a set of data that have some structure and managed as a whole. The term
“collection” appears with this meaning in [Mor79] and in [Sab88, BS90, SB91].

Managing a data structure as a whole means that the operation available on the data
type does not refer explicitly to the data elements. For instance, an array in C is not a
collection because the only operation allowed on an array is to access to one of its element.
In the opposite, arrays in APL are collections because we can write expressions like A + B
where A and B are arrays.

It is also customary to say that the operations that handle the data as a whole are
intensional expressions, see [OA95, AFJW95]. The intensional style is important because
it makes possible to formalize the data computations as an algebra. However, the algebraic
approach is not so easy because the involved algebra are often intricate: “We spent a great
deal of efforts trying to find a simple algebra of arrays (...) with little success” [WA85].

For the programmer, handling a data structure as a whole presents several advantages

• Global operations on the data structures may hide parallel evaluations: this is the key
of the abstract expression of the data parallelism (cf. [Lis93] and the chapter VII).

• Managing a data structure without referring to the data elements leads to the concise
expression of the computation.

• The automatic analysis of the programs are simplified because the compiler is not
required to “reconstruct” the semantic meaning of the computations from the low-
level operations description.

• The expression of the algorithms is more abstract and the algebraic style favor an
abstract reasoning unifying the various computation patterns appearing in different
programs (see the development of the skeleton approach).

Several collection structures have been used in programming languages:

– sets in SETL [SDDS86];

– bags (set with repetition) in Gamma [BCM88];

– cons-lists in Lisp, cat-lists in [Mis94, kor97], infinite lists in Haskell [H+96];

– dictionaries or xector in CM Lisp [SH86];

– streams in [Den74b] and in Id Nouveau [NPA86], SISAL [MKA+85];

– relations in SQL;

– flat arrays in APL, MOA [HM91], HPH [Ric93];

– convex polyhedra in Alpha [Mau89], Crystal [CiCL91], PEI [VP92];

– nested vectors in NESL [Ble93];

– nested arrays in [Mor79] and in J [Ive91];

– arbitrary domain in Zn in Lisper’s data fields [Lis93];

– arbitrary domain in Z? in Indexical Lucid [AFJW95];

– groups in 81/2 [GMS95];

– etc.
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Collection, Array and the Discretization of Space

The concept of collection is especially interesting for the simulation of dynamical systems
because it enables the representation of a discrete space. For instance, collections are often
used in these algorithms to represent the variation of some quantity over a bounded spatial
or temporal domain. For example, a vector can be used to record the temperature at
the discretization points of a uniform rod in the simulation of heat diffusion. Collections
managed as a whole are indeed very well fitted to such computations because the same
physical laws apply homogeneously to each point in space or in time, leading to uniform
operations.

In the previous example, the array structure is most effective than other collection struc-
tures because it matches naturally the grid structure of the rod×time discretization. The
use of arrays to implement space discretization is preeminent. However, it presents several
shortcomings:

– Natural operations upon a space, like taking the value of the neighbor elements, must
be implemented in terms of index manipulations.

– Arrays have static bounds: traditional arrays are shaped like n-dimensional boxes,
defined by a lower and an upper bound in each dimension, but grids may have more
complex shapes. Simulation of growing processes (like plant growing) requires dynam-
ically bounded arrays.

– Arrays provide a natural representation in the simple case of multidimensional grids.
For example, to implement a circular buffer, or to discretize a circle, additional man-
agement must be included in the index manipulation (e.g. increasing or decreasing
the index modulo the length of the buffer or the size of the discretization).

– The topology of the space implemented as an array is implicit. The ability to support
several space topologies using the same array structure relies mainly on the uniform
access to an array element and in the “encoding” of the topology in terms of index
manipulations.

– Space formalisms (e.g. geometry, linear algebra, tensor calculus, differential algebra)
do not match array formalizations (e.g. product domain in denotational semantics).

– Arrays have a simple and fast implementation on homogeneous random-access memory
architectures. However, high-performance architectures do not have an homogeneous
memory model. On vector architectures, access to sequential elements is faster than
to random elements. The optimal storage layout for an array depends on its access
pattern, and a poor layout can have a dramatic impact on execution speed. Extracting
access patterns from index operations nested in iteration loops requires difficult and
not always successful analysis.

This motivates the development of new collection structures10 or at least to develop a for-
malization of intensional array avoiding the shortcomings of the index.

We give now some bibliographical elements on such studies, with a predilection for for-
malisms that have been used in the domain of parallelism.

VI.7.2 Bird-Merteens Algebra and Data Parallelism

Richard S. Bird et Lambert Meertens have developed an algebraic formalization of the notion
of list [Bir87, Bir89, Bac89]. The operations that are considered are mainly concatenation, α-

1081/2 abandons the concept of a general-purpose array type, and specializes it towards two directions. The
first one is a specialization towards finite difference algorithms and space discretizations by considering more
general grid topologies and grid shapes. The second specialization we consider is towards the simulation of
growing processes by considering partial data-structures, Cf. chapter VIII.
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extension and β-reduction11 and their variants. A lot of properties are given in an equational
form, like for instance (# denotes the concatenation):

(α f) (A#B) = (α f A) # (α f B)

which formally is a distribution property of α-extension over concatenation but can also
be interpreted (orienting the equation from right to left) as a loop fusion (an α-extension
represents an imperative loop).

The formalism is used to characterize the properties of a class of programs using equa-
tional reasoning in a style reminiscent from J. Backus [Bac78] and J. Darlington [Dar81].
The Bird-Meertens formalism is essentially focused on the study of homomorphisms, an
homomorphism h being a function satisfying:

h(x#y) = h(x)⊕ h(y)

where ⊕ is an associative function (this property defines #-homomorphisms). From the
study of homomorphisms, a lot of remarkable identities can be deduced. These properties
are then used in the systematic derivation of programs from their abstract specifications.

A natural parallel interpretation can be linked to the operators of a Bird-Merteens al-
gebra. D. Skillicorn and his group have investigated this approach of the parallelism and
has proposed Bird-Merteens formalism as a basis for parallel programming [Ski93, Ski94a,
Ski94b, GDH96]. From this point of view, Bird-Merteens theories give properties of parallel
programs “for free”. For instance, each injective function on a list can be computed in
parallel by an α-extension followed by a β-reduction.

The equations of a Bird-Merteens algebra are used for the systematic derivation of pro-
grams but also the simplification or the optimization of programs. Indeed, equations can
be oriented following the complexity of their hand side, giving a set of rewrite rules. One
example [Gib94], among others, is the resolution of the maximal segment sum over a list.
Other examples are given in [Gor96a, Gor96b].

The Bird-Merteens approach has been extended on others data types. The extension to
algebraic inductive data type has to be especially noted [Mal90, Bir95, JJ96, Mee96, FS96,
BDM97]. The formalism relies on the category theory to construct from a set of base types
(integer, boolean, . . . ) new types by functor applications (array of. . . , tree of. . . ). The
α-extensions are the function of the base type lifted by the functors. For some types (that
are freely build), a generalization of the reduction can be defined. In this framework, an
homomorphism is a function that preserves the structure of the types.

The generalized results are also used to the systematic construction and the derivation
of parallel programs [HIT97, HTC98].

However, this approach of the data parallelism is appropriate more especially as the
target architecture can be ignored (e.g. if all parallel architectures provide a constant time
α-extension, a logarithmic β-reduction, etc.). This means that a universal model of parallel
computation must focus on basic functions that have the “same cost” [Ski90] on several kind
of architecture. This notion of cost is cumbersome: for instance, the cost of evaluating a
function f does not change when we increase the number of processors of the architecture
(the cost is an intrinsic properties of the function and independent of the size of the archi-
tecture). A large part of the work have then consisted on showing that some operations are
“universal” over the PRAM, SIMD or MIMD architectures.

VI.7.3 The MOA Algebra

The MOA algebra on multidimensional arrays is similar to the Bird-Meertens formalism
[HM91]. The works have been focused on the search of a canonical form of all array expres-
sions, in a dimension-independent manner. From this point of view, MOA is an example of

11α-extension of a scalar function f on a list is the function denoted by map f in ML. The β-reduction by a
binary associative function f is denoted by fold f. The name α-extension and β-reduction come from the
APL community and must not be confused with the relations defined in the λ-calculus.

80



the approach advocated by B. Jay [Jay95, JCE96] to separate the shape and the contents
of a data structure.

A multidimensional array is represented by a pair of lists (f, c): f specifies the structure
of the arrays and c lists the elements of the array. The list f , called a form, is

• a list [0] or,

• a list of integers that does not contain the element 0 or 1.

The length of the list gives the dimension of the array. The element i gives the number
of elements in the ith dimension of the array. The length of list c must be equal to
the product of the elements in f .

For example,

“empty array” ≡ ([ ], [a]),
{
a b c

} ≡ ([3], [a, b, c]),
{
a b c
d e f

}
≡ ([2, 3], [a, b, c, d, e, f ]) .

The dimension independent expression of array operations reduces the multiplication of
algebraic rules and enables the definition of generic operations without requiring dimension-
inductive function definitions.

VI.7.4 Data Fields and their Variations

A data field is a function from an index set to some value set. A data field generalizes
the array data structure because an array of dimension d can be seen as a strict function
from {1 . . . n1} × · · · × {1 . . . nd}. A data field extends the notion of array through partial
functions on Zd and/or by considering more sophisticated index set.

This point of view enables intensional data field expressions through function algebra,
however, the goal is not to really implement data fields as evaluation rules. So, the ap-
proach of data field can be summarized by the slogan “express intensionally and implement
extensionally”.

The notion of data field is an old one in computer science: it already appears in the
development of recurrence equations and goes back at least to [KMW67]. The term “data
field” seems to appear for the first time in [YC92, CiCL91] around the Crystal project
[Che86]. As a matter of fact, the notion of data field is familiar to the systolic programming
community [Qui86], especially in the high-level approaches like in Alpha [GMQS89, Mau89,
QRW95].

Affine Recurrence Equations

We recall here the terminology concerning recurrence equations. Uniform recurrence equa-
tions (URE) have been introduced by Karp, Miller and Winograd [KMW67]. Their model
have been broadened to affine recurrence equations ARE. An ARE takes the following form:

∀z ∈ D, U(z) = f(U(I(z)), V (I ′(z)), ...)

where D is a convex polyhedron of Zn called the domain of the equation; z is a point of
Zn; U, V are variable names indexed by z (the dimension of the index of a given variable is
constant). The functions I, I ′, . . . are affine mappings from Zn to Z. The variable U(I(z))
is an argument and U(z) is a result of the equation. The function f is strict. If all mappings
I are translations then the system is said to be an URE. Note that, in opposition with the
GBF approach, the definition domain of an ARE is explicitly set by the programmer.

This formalism has been largely used in automatic parallelization (see for examples
[Lam74, Fea92a, DKR91] among numerous others references) and in the field of systolic
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architectures [Kun82, Mol82, Qui86, QR89]. Indeed, there is a large corpus of mathematical
results in linear algebra that can help to solvethe problems encountered for instance in the
data flow analysis [Fea91], in the building of a schedule [MQRS90, Fea92a, Fea92b, Tor93]
or for the determination of a data distribution [Fea95, Fea96].

Definition Domain of an ARE

We can review some results in the related field of systolic programming. Karp, Miller and
Winograd [KMW67], have shown the decidability for URE on a bounded domain, without
explicitly constructing the dependency graph.

However, B. Joinnault [Joi87] has shown the indecidability when the domain of the
equations is not bounded. The proof relies on the coding of a Turing machine by an URE.
The functions used in the specification of an URE are strict, that is, we do not have a
conditional; the conditional is simulated by an adequate specification of the domain of the
equations.

This result cannot be adapted to the case of the strict GBF because the specification
of the definition domain of an URE (which plays for the URE the same role as the coset
quantification for GBF) relies on the specification of convex polyhedra in Zn and a convex
polyhedron is not generally a coset in Zn neither a finite union of cosets or the complementary
of a finite union of cosets.

In [SQ93], the indecidability result is extended to the case of parametric bounded domain
(i.e. the domain is described by an union of finite convex polyhedron parameterized by a
parameter p ∈ Zm). For a given value of p, the domain is finite and then the URE definition
is translatable in the GBF formalism (at worst, we can associate a coset to each point of
the bounded domain). But we did not consider the definition of parameterized GBF.

The analysis of the dependency of a recursive GBF definition raises problems similar to
the problems studied in exact or approximate data flow analysis [LC94b]. More specifically
for recursive structure, J.-F. Collard and A. Cohen [Coh96] have used the group structure
to specify and analyze recursive computations on trees.

Data field and Data Parallelism

B. Lisper has explicitly brought together the notions of data fields and of data parallelism
[Lis93] (the tutorial [Lis96] is a good introduction to these problems). This approach is
also close to the notion of xappings in [SH86] around the Connection Machine [Hil85]. This
conciliation is also at the basis of the PEI project [VP92, VP93, VGP97] that put the
emphasis on the geometric properties of the index set and that develops a transformational
approach of the data parallel programming.

Lisper [Lis93, LC94b, Lis96] proposes to consider parallel data as functions from an
index set to some value set. From the parallelism point of view, the data field approach has
the advantage of being abstract, hiding implementation problems like the data distribution.
Moreover, the index set can be more sophisticated than a tuple of integers and then data
parallel arrays are just a special kind of more general data parallel fields.

A difference with the approach of recurrence equations is that a program is seen as a
functional equation to be solved. The operators involved (α-extension, β-reduction, ...) act
on the data field in a purely functional form (the indices do not appear at all, which is not
the case in a language like Alpha).

The arbitrary choice of the index set for a field raises the problem of enumerating its
elements. This is especially true for infinite index sets (the problem is not the formalization
of the data field but its actual implementation). A solution is to compute only data fields
with a bounded definition domain, and therefore, to consider partial functions on eventually
infinite domains. This motivates the introduction of the explicit restriction of a data field:

f | b
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with f a data field and b a boolean data field, denotes a data field equal to f on the index
where b takes the value true and undefined elsewhere. We need then to identify the properties
of this operator (e.g. f |b1|b2 = f |(b1∧b2)). An implementation framework has been proposed
in [HHL97]. We have proposed a similar calculus in [GDVS98b, GDVS98a, DV98] for some
kind of functions f and b (see next chapter).

The characterization of the definition domain of a data field is studied in [LC94a, LC94b,
SQ93, KMW67]. Note that if some restrictions are enforced (restricted class of predicates b,
etc.) then the problem can be sufficiently simplified to be worked out (compare for example
the decidability results given in [KMW67] and the undecidability results given [SQ93]).

VI.7.5 The Representation of a Discrete Space

We have reviewed in section VI.7.1 some of the drawbacks of the array data structure in
the discretization of a space. These shortcomings have motivated the development of the
GBF. GBF use a group structure to formalize the neighborhood structure. Here are some
examples of the use of a group structure in the computer representation of a discrete space.

Computational Discrete Geometry

We have recently discovered that the use of a group structure to describe a space structure
has already been proposed in 1971 in [MP71]. The work is restricted to the study of the
dimension of a space described by an abelian group: “. . . We will show that for such groups
the dimension equals the number of generators . . . Thus there seems to be a correspondence
between Euclidean spaces and free abelian groups.”. We are not aware of any continuation
of this work.

However, there exists an active research field around the formalization of discrete spaces.
The works seem all focused on the Euclidean discrete structures in Zn, avoiding the devel-
opment of a general concept of discrete space and discrete moves. For example, the works
followed in [Rev91, DR95, Jac95] are restricted to the development of a notion of discrete
straight lines and discrete planes. The work of [Hb89] introduces the concept of translative
neighborhood structure formalized as a translation group. However, in this case too, the
group is explicitly restricted to abelian free groups (torsion free). General neighborhood
structures in Zn have been studied from the point of view of their topological properties, cf.
[Ros79, Mal93].

Cellular Automata on Cayley Graphs

The research work of Zsuzsanna Rka are centered on the extension of the cellular automata
(CA) formalism to handle more general cell space. She considers Cayley graphs in [Rók93,
Rók94a, Rók94b, Rók95b, Rók95a] to model both the cell space and the communication links
between the cells (the use of Cayley graphs as intersection networks have been extensively
studied, see e.g. [Hey97]).

Zsuzsanna Rka has developed three research directions: the simulation of bidirectional
CA on Cayley graphs (the neighborhood relation is symmetric) by unidirectional CA (the
inverse of a generator does not appears in the labels of the edges); more generally, the
conditions for the simulation of a CA on a given Cayley graph by another CA on another
Cayley graph; and finally the algorithmic problem of the global synchronization of a set of
cells.

There exists strong links between GBF and cellular automata: in the two cases we
have to study the propagation of computations in a space described by a Cayley graph.
However, our own works focus on the construction of Cayley graphs as the shape of a data
structure and we develop an operator algebra on this new data type. This is not in the line
of Z. Rka which focuses on synchronization problems and establishes complexity results in
the framework of CA. For instance, the recursive definition of a GBF, and the problem of

83



characterizing its definition domain, is out of the CA scope. Conversely, we cannot answer
questions about synchronization between cells because this problem cannot be expressed in
the intensional approach of the GBF.
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Chapter VII

Declarative Data Parallelism
and Data Parallel Computation
of Data Field

In the first part of this chapter1, we advocate a declarative approach to the data paral-
lelism to provide both parallelism expressiveness and efficient execution of data intensive
applications in a clean framework.

In the second part2 we present the results obtained in the automatic data distribution of
static 81/2 programs. Various distribution strategies have been developed and evaluated.
We also report the conclusions of the validations made on the IBM SP2.

In the last part of this chapter3, we sketch a software architecture dedicated to data
parallel computations on fields over Zn. This architecture provides the virtual machine that
computes on collections for the dynamic 81/2 interpreter.

Fields are a natural extension of the parallel array data structure. From the application
point of view, field operations are processed by a field server, leading to a client/server ar-
chitecture. Requests are translated successively in three languages corresponding to a tower
of three virtual machines processing respectively mappings on Zn, sets of arrays and flat
vectors in memory. The server is itself designed as a master/multithreaded-slaves program.

Besides providing a collection virtual machine to the dynamic 81/2 interpreter, the aim
of this software architecture is to mutually incorporate approaches found in distributed com-
puting, in functional programming and in the data parallel paradigm. It provides a testbed
for experiments with language constructs, evaluation mechanisms, on-the-fly optimizations,
load-balancing strategies and data field implementations.

1This part summarizes parts of [Gia91c, Gia91b, GS93, GS94, MGS94a, MGS94c, Mic96a, MDVS96].
The starting point of our analysis is the revival of the SIMD approach of the data parallelism in the 80’s.
Its intended audience is people involved in the compilation of SIMD programs and automatic parallelization
of imperative programs. With the evolution of the parallel architectures, the development of compilation
techniques and the wide spreading of the declarative approach of the data parallelism, this first part may
appear a little bit out of date.

2This part summarizes the works done in [MGS94a, MG94a, Mah95, Mah96].
3This part summarizes parts of [GDVS98b, GDVS98a, GDV98, DV98].
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VII.1 The Declarative Approach of the Data Paralel-
lism

VII.1.1 A proposal for a taxonomy of parallelism expressions

Table VII.1 proposes a classification of the various expressions of parallelism in program-
ming languages. Such a framework is required for the analysis of existing languages and
the development of a new one. We propose to mimic the Flynn classification of parallel
architectures [Fly72] and to compare parallel languages constructs following two criteria:
the way they let the programmer express the control and the way they let him manipulate
the data.
The programmer has three choices to express the flow of computations:

• Implicit control : this is the declarative approach. The compiler (static extraction of
the parallelism) or the runtime environment (dynamic extraction by an interpreter or
a hardware architecture) has to build a computation order compatible with the data
dependencies exhibited in the program.

• Explicit control which refines in:

– Express what has to be done sequentially : this is the classical sequential imperative
execution model, where control structures build only one thread of computation.

– Express what can be done in parallel : this is the concurrent languages approach.
Such languages offer explicit control structures like PAR, ALT, FORK, JOIN, etc.

For the data handling, we will consider two major classes of languages:

• Collection based languages allow the programmer to handle sets of data as a whole.
Such a set is called a collection [SB91]. Examples of languages of that kind are: APL,
SETL, SQL, *Lisp, C*. . .

• Scalar languages allow also the programmer to manipulate a set of data but only
through references to each element. For example, in standard Pascal, the main opera-
tion performed on an array is accessing one of its element.

The data parallel paradigm [HS86] relies on the concept of collection to offer an elegant
and concise way to code many algorithms for data intensive computations.

Historically, the data parallelism has been developed from the possibility of introducing
parallelism in sequential languages (this is the “starization” of languages: from C to C*,
from Lisp to *Lisp. . . ). It relies on sequential control structures (*when. . . ) and parallel
data.

However table VII.1 shows that the concept of collection can be freely mixed with
other expressions of control. As a consequence, collection based languages can be mixed
with concurrent languages (multiple SIMD model or MSIMD) and declarative languages
(Gamma [BCM88] or 81/2 [Gia91c]).

In the following section, we show that semantic and efficiency problems arise when data
parallelism appears in a sequential framework. This lead us to explore the other alternatives
and we will see in the next section that an embedding of data parallelism within a concurrent
framework is very attractive. Therefore, the “data parallelism + data flow” approach is,
from the soundness of the approach point of view, the most interesting solution and may
yield to efficient exploitations.

VII.1.2 The Problems of Data Parallelism in a Sequential Frame-
work

Data parallelism in a sequential framework induces semantics as well as efficiency problems.
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Semantic Problems

Data parallel languages like ∗Lisp or Pomp-C [Par92] introduce data parallelism through
the use of control structures allowing a synchronous control of the parallel activity of the
processors. These control structures can lead to serious semantic difficulties. They arise
from the interaction of 1) the concept of collection and 2) the management of the two kinds
of control flow encountered in a program, the sequencing of the scalar part and the parallel
part of the program.

For example, in the following Pomp-C program:

collection[512, 512] Pixel;

Pixel int picture; picture is a collection of integers.
int a; a is a scalar integer.
...

picture = FALSE; all the points of picture are set to false

where(picture){ so, no processor should be active within
{ the where, but this scalar assignment is

a = 5; performed because it does not depend
on the where.

everywhere{ reactivates locally all the processors.
printf("hello"); since this is a scalar instruction, only one

hello will be printed.
picture = TRUE;} here, all the points of picture are modified.

}

even if all processors are inactive, some instructions can still be executed in the the scope of
a where: for example, the scalar instruction (a=5) or a parallel instruction in the immediate
scope of an everywhere{picture=TRUE}.

More seriously, a processor made iddle by a where cannot skip the triggering of a function
call. Even if all the processors are idle, the ∗Lisp and Pomp-C compilers still generate the
function-call because there might be some everywhere or scalar instructions. Then the
following factorial function (example taken from the Pomp-C manual [Par92]):

collection generic int fact(generic int n)
{ if (n<=1) return 1; else return n*fact(n-1); }

is wrong because the recursive call is always performed: the recursion is not bounded and the
program never ends. If the recursion is stopped when all the processors are idle, semantically
incorrect behavior may occur.

In the following example (from ∗Lisp), problems arise with the creation of the collec-
tion A:

Table VII.1: A classification of languages from the parallel constructs point of view.

Declarative Sequential Concurrent
Languages Languages Languages

0 instruction counter 1 instruction counter n instructions counters

Scalar Sisal, Id, LAU, Fortran, C, Ada,
Languages Actors Pascal Occam

Collection Gamma, *LISP, HPF, CMFortran + multi-
Languages 81/2 CMFortran threads
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(*when (...) in this *when, some processors are supposed to be idle
(*let ((A (!! 1))) a new collection, A, is created, local to

the *let, and initialized to 1 the
elements of A on active processors.

(*all (*sum A)))) because of *all, the sum of all
elements of A is performed.

Actually, the collection A has an extension on all the processors but it has only been partially
initialized in the *let. The sum of all the “active” elements of A will also perform the
addition of the undetermined values located on the idle processors.

The conclusion is that a sequential data parallel language does not always allow the
programmer to manipulate collections in a natural way.

Implementation Problems of Sequential Data Parallel Languages

Data parallel languages are well fitted to intensive numerical computations because they
give an easy way to handle the objects of numerical computations: vectors, matrices, . . . ;
more generally, data parallel languages fit well with massively parallel computations (data
bases, image processing, data mining, numerical simulation, etc.) because of their fine-grain
parallelism.

Recently, a new class of massively parallel architectures has emerged, like the CM5
[Thi91], T3D [Cra] or PTAH [CBG92]. These architectures are able to exploit several sources
of parallelism at the same time while preserving the simplicity and the efficiency of SIMD
architectures. They put aside the synchronization constraints thus acquiring the flexibility
and productivity of the processors characterizing MIMD architectures. These architectures
have hybrid control [Ste90]: SPMD, MSIMD, MIMD with firm synchronization. . .

It is therefore natural to implement data parallel languages on these new systems. More
generally, the development of standard communication libraries (like PVM, MPI . . . ) and
run-time support, make heterogeneous network of workstations (NOW) and cluster of work-
stations (COW) widely available as low-cost parallel machines. This lead to the development
of data parallel programming on MIMD computers (see [HQ91]).

Nevertheless, the sequential data parallel model faces serious drawbacks on MIMD and
hybrid control computers. One serious problem is probably the bad utilization of compu-
tation resources due to the usage of a strictly sequential flow control, as encountered on
strict SIMD implementation models: the very well known drawbacks of the SIMD model
are brought into the MIMD model. For example, while scalar values are computed, the pro-
cessors in charge of parallel computations remain idle; also, nested instructions like where
may exponentially reduce the number of active processors.

However, the main restriction is probably the incapacity to overlap communication cycles
with the execution of independent computations. This restriction, which cannot be canceled
by straight SPMD implementations, leads to severe shortcomings because the communica-
tion network is, in most cases, the less efficient part of the hardware architecture. The
efficiency of a sequential data parallel execution is therefore bounded by the weakest part
of the architecture. This is a direct consequence of the strict sequential framework set by
sequential flow control structures.

VII.1.3 Advantages and Shortcomings of the Data Flow Approach

The conclusions of the previous section lead us to take the data parallel model and its data
structure, the collection, out of the strictly sequential framework. Another framework has
to be designed to embed the parallel data structures. However, to quote [Ste90]: “simplicity
and efficiency of the SIMD approach” must be preserved while acquiring the “processor
utilization and the flexibility of control structure afforded by the MIMD approach”.
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The Data Flow Choice

The mix of the data parallel approach and the concurrent approach leads to languages with
attractive properties:

• they reflect the hardware structure of the architectures with MIMD control;

• they are easy to understand by the programmer because they correspond to the jux-
taposition of the notion of task and the notion of collection;

• they take benefit of the tools and formalisms already developed for the concurrent
systems.

Nevertheless,

• They require the explicit expression of the control parallelism, minimizing the paral-
lelism to be exploited (Cf. section below).

• They also impose an artificial hierarchical design of the applications in two levels:
MIMD coarse-grain tasks manipulating arrays used in SIMD mode.

• Moreover, the natural framework for these execution models is an explicit asynchronous
framework with all the related problems (e.g. indeterminism).

This lead us to consider the data flow approach as the natural framework for the expres-
sion of data parallelism. An important property of the data flow model is that the order
induced by the data dependencies is sufficient to determine the result of a computation.

To ensure this property, various data flow languages use multiple strategies. For exam-
ple, as far as functional languages4 are concerned, a confluence theorem is used. In the
case of languages derived from imperative languages (LAU [CDG+78], Sisal [MKA+85],
Val [McG82], . . . ), a programming constraint has to be added: this is the single assignment
principle which allows the variables of the program to be set only once.

This property makes possible the representation of the programs by a graph, the data
flow graph (DFG in short, see figure VII.1–1), where the nodes correspond to the expressions
and the edges to dependencies between expressions. The evaluation of a DFG is possible
when its inputs receive data. There is no use of instruction counters: an expression can be
evaluated as soon as all its arguments have been computed (see figure VII.1–4).

The Advantages of the Data Flow Execution Model

The first advantage is ergonomic. In a data flow language, the instructions scheduling is
implicit. The programmer only describes the dependencies between data. Therefore, the
programmer does not describe the operations that have to be done in parallel. For example,
it is better to naturally write the program that performs the sum of four values:

sum = a+b+c+d This program is a system of equations where the

a = ... order of the equations does not matter.

b = ...
c = ...
d = ...

and let a tool automatically extract the parallelism, rather than to explicitly write the
parallelization, e.g. in Occam. In the Occam version of this program, the programmer has to
use two instructions, two auxiliary variables and has to describe the proper mapping of the
tasks on the processors:

4Pure functional languages (like FP) are data flow languages: no side-effect, no explicit sequencing,
no concept of memory nor assignment. Actually, most of the functional languages in use (like ML) have
imperative features (mutable structures for example) allowing side-effects.
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Figure VII.1: Data flow representation of the Pascal program d:= b*b - 4*a*c in three
different manners: graphical, declarative and functional.
The subfigure 4 represents a possible scheduling of the activation of each node of the data
flow graph represented in subfigure 1. Each node Ti is associated to a processor. A sequence
of three parameters is present at the input which leads to a pipe-line evaluation. Parallelism
is also provided by the simultaneous activation of the nodes on different processors.
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PAR
PAR

a := ...
b := ...
c := ...
d := ...

t1 := a + b
t2 := c + d

sum := t1 + t2

This example is caricature but shows that the implicit expression of parallelism is more
natural for the programmer (on the reverse, there are some examples, with lots of sequences
involved, that are hard to write in a declarative style).

The second advantage of the data flow model comes from the implicit scheduling in a
program: this leads to an optimal exploitation of the parallelism. A minimal scheduling is
automatically computed leading to a maximal expression of the parallelism. This scheduling
can either be statically inferred (by a compiler that can take into account the peculiarities
of the target architecture), or dynamically (by the execution support: an interpret or a data
flow architecture [PCGS76, GKW85]).

A third advantage of the data flow model is the determinism of the result of a compu-
tation. In an asynchronous language like Occam, the expression of parallelism takes place
through the non-determinism of the execution: actions in PAR can occur in an undefined
order, and for that reason, possibly in parallel. To get the desired deterministic result, the
programmer has to express the sequencing, through the use of semaphores, guards, etc. On
one hand, if too much sequencing is expressed, some parallelism is lost, on the other one,
if too less sequencing is expressed, the program could compute different results, depending
on the execution path. A data flow language does not suffer this problem: the expression of
sequencing is implicit and corresponds to “only what is necessary”, to ensure a deterministic
result.

Another advantage of the data flow approach is the referential transparency: a data
flow program can be seen as a set of mathematical equations where every reference to a
variable can be replaced by its definition. So, it is easier to check and to achieve formal
manipulations on programs. Some optimizations of such programs can be done automatically
[LS83, Wat91]. Finally, considering a program as a set of equations ensure that the program
will compute a result, if this result is formally derivable from the set of initial equations:
this is the declarative completeness property [HOS85].

The Drawbacks of the Data Flow Languages

In a famous article [GPKK84], Gajski & al. criticized the data flow approach in comparison
with the automatic parallelization of sequential programs. If the functional semantic and
the lack of side-effects of the data flow program make easier their analysis by a compiler,
the cost of the single memory assignment is prohibitive. For example, it is necessary to have
a garbage collector ; the manipulation of arrays is also very inefficient: the whole array has
to be copied each time one of its element is changed.

To answer these criticisms, data flow languages designers have introduced new mecha-
nisms to deal with arrays: mutable data structures like I-structures in Id [NPA86], explicitly
parallel expressions like forall and expand in LAU, Val or Sisal. It is possible to perform,
through the use of such structures, simulten multiple accesses to arrays. We see, that a
possible answer to the criticisms of Gajski & al. can be found in the introduction of data
parallel operators to manipulate arrays as a whole.

But the main argument of Gajski & al. against the data flow approach is based upon
the dynamical execution model, that is, on the computation, at run-time, of the scheduling
of the instructions and on the dynamic memory management. Delaying the computation
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phase until the execution of the program should theoretically lead to an optimal evaluation
of the program. For example, it is possible to compute only the required value needed to
get the final result: this is the lazy evaluation strategy. But this management, according to
Gajski & al., lead to a prohibitive cost of the execution support. This is why they prone
the automatic parallelization of conventional sequential languages because a parallelizing
compiler will statically infer the elements required to the execution and therefore minimize
the cost of the execution support.

Nevertheless, the criticism is no more valid: because of efficiency problems due to the
dynamical extraction, the compilation of data flow networks has seen a gain of interest and it
is now possible to develop static execution schemes for the data flow model and in particular
for the iterative data flow model. This is particularly true in the field of signal processing
[PM91], real-time programming [CPHP87, GBBG86], the design of systolic circuits and
algorithms [Che86] and automatic parallelization [Fea91].

The Iterative Data Flow Model: a Static Execution Model for the Data Flow

To compile a data flow program, it is necessary to know statically its graph. Recursive
function-calls are therefore forbidden: they correspond to the (dynamical) creation of a
(sub-)data flow graph. It isn’t possible to get statically the complete graph by unfolding
the functional calls when recursive functions are involved. On the other side, if recursive
functions are forbidden, iteration loops must be allowed. To follow the single assignment
rule, we have to consider that each variable involved represents a sequence of values. As an
analogy with a data flow graph, we can say that a vertex, in a cycle, “sees” values passing
in time.

It is possible to extend the notion of a variable representing a sequence of values to
all the variables of a program and not only to those involved in loops. This is done in
languages like Lucid [WA76, WA85] (we do not speak here of the new Lucid appeared
recently [AFJW95]) where the main data structure is the sequence of values. Then, all the
operators of the language act on such sequences.

We call declarative data flow model a model of language with implicit sequencing, based
upon the notion of sequences of values. From this point onwards, we will refer to sequence
of values as streams: these sequences are potentially infinite, and a temporal interpretation
is bound to the step from an element to the next.

VII.1.4 The Benefits of a Data Parallel + Data Flow Approach

The data flow execution model is an alternative to the sequential SIMD execution model of
the first data parallel languages. This new alternative may lead to efficient implementations
on MIMD parallel computers.

Data parallelism and data flow are orthogonal notions. The development of a declarative
framework supporting both data and control parallelism relies on the construction of an
adequate data structure and its subsequent algebra.

As a matter of fact, stream algebra is well fitted to control-parallelism [DK82] while
collection algebra supports implicit data parallelism [Ski90].

Consequently, this leads to merge streams and collections into a unique data structure.
The 81/2 language is based on fabrics which is such a combination. From the parallelism
point of view, managing streams and collections in a declarative framework exhibits several
advantages:

• There is no explicit construct for parallelism in the language, in accordance with the
“parallelism as an implementation property” point of view (i.e. parallelism is in the
scope of implementation, and is irrelevant at the semantic level).
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• The declarative form of the language makes it easy to perform dependence analysis
between tasks and the subsequent exploitation of control parallelism.

• Collections are a natural support of the data parallelism and collection operations
between fabrics naturally lead to a data parallel implementation.

• Collections introduce a natural support for the distribution of data which is not a
focused issue in pure data flow.

• Introducing collections corrects some of the drawbacks sustained against the stream
oriented data flow model [GPKK84], mainly by adding some specific handling of arrays
with a consistent concept of time.

• Transparential references allow a formal treatment of programs and programs opti-
mization using program transformations are possible (Cf. for example [Wat91, LS83]).

Embedding collections in a synchronous data flow model combines the advantages of
the synchronous and asynchronous parallel styles [Ste90]. Consider for example the actor
model : it proposes a minimal kernel to deal with control parallelism but handling of homo-
geneous set of data, like arrays, is definitively inefficient [GGF91]. From another point of
view, the handling of communications in a sequential data parallel oriented language, like
*LISP, forbids overlapping of communications and computations because there is only one
thread of control. Theses two examples show the advantages of combining data and control
parallelism.

Using implicit data and control- parallelism enables:

• the maximal expression of the parallelism inherent to an application; (this does not
imply the maximal exploitation of parallelism, but enables)

• the use of the effective parallelism which implies cheaper implementation overheads;
(with respect to the target architecture and)

• the hiding of communication costs by overlapping computations of independent activ-
ities.

Furthermore, the expression of time and space relationships is done in an implicit manner.
It is the compiler’s (or interpreter’s) task to “fold” the computations of a program, with
their respective spatio-temporal structure on a given architecture. The programmer does
not care of the target architecture and it does not appear at the programming level: a data
parallel data flow language is a high-level parallel language able to design portable parallel
programs.

The abstract formalism of the language, based upon equations, does not look to us as an
obstacle. Indeed, equation based languages like Prolog or pure SQL have a large diffusion
and this programming style widespread more and more.
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VII.2 Data Distribution Strategies
for Static Data Parallel 81/2 Programs

We assume in the following a distributed memory parallel MIMD architecture. Then, the
compiler of a data parallel language must answer the following question: “on which processor
resides an element of a collection?”. This is the problem of data distribution.

The answer can be given explicitly by the programmer or left completely to the compiler.
The first solution is often used in data parallel languages (like HPF) although this is not
especially linked to the language design. From the answer, depends the mapping and the
scheduling of the computations involved by a program5. Distributing the elements of a
collection over the processors enables the exploitation of the parallelism but increases the
communication costs. The problem is then to balance parallelism and communication to
shorten the execution time.

In 81/2, it is the compiler which is in charge of mapping the computation of a programs,
with their own spatial and temporal structure, into a target hardware architecture. The
programmer is then not aware of the architecture dependencies. This approach enhances
the program portability and reuse, and relieves the programmer of some burden at the price
of compiler sophistication. Because we consider static programs, the answer can be given at
compilation time and does not involve run time support.

In the following we present some results in the automatic synthesis of a data distribution
and scheduling of a 81/2 program. However, the following results can be extended to be
applied to the automatic data distribution in a more classical data parallel language (like
for instance HPF).

Our mapping and scheduling problem is NP, even if we simplify the target architecture
(one simplification we have made is to consider communication costs independently of the
sender and the receiver). For that reason, we have investigated various heuristics. The
performance of a heuristic outcome may be however characterized by a worst performance
lower bound.

A Model of Data Parallel Tasks for the Mapping and Scheduling

The data parallel computation cannot be expressed by an explicit data flow graph: this lead
to associate a node to every element in an array (for instance, a 300× 300 matrix generates
105 nodes). Moreover, a classical data flow representation loses the data parallel structure
of the program. Thus, we consider the extension of the data flow graph representation.

The starting point is the graph H of dependencies between data parallel operators. This
graph visualizes the control parallelism between left hand side expressions in 81/2 equation
as a partial order between data parallel tasks. Note that this graph is an approximation
of the actual dependency graph. This graph is produced by the 81/2 compiler but can be
produced by the analysis of an imperative program (a data parallel task is for example an
intrinsic array procedure in Fortran 90 or corresponds to a FORALL loop in HPF). The
possibility to evaluate simultaneously several data parallel tasks leads to speak of MSIMD
(Multi-SIMD) execution model.

Node types. Our first work was to interpret H from the target architecture point of view.
This lead to the distinction of three kind of nodes. The first type of node is the scalar type
(task involving only scalars, not arrays). The second type is a data parallel task that does
not involve any “internal” communications. They are called α because they correspond
for example to the parallel addition of two vectors. The last type of task is called β and
corresponds to the remaining tasks. A β task always involves some communications for
its computation. An example of β task is a scan operation. A similar distinction between

5The mapping of a computation may come from a simple rule like the “owner computes rule” or from
more sophisticated methods and the scheduling is constrained by the data availability.
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data parallel operations is made in [CGST92] to solve the problem of the automatic data
alignment problem in HPF.

To represent the data parallelism, we annote each node of H by the number of processors
ideally required for the data parallel execution of the task. This is often the number of
elements of the input or output collections of the task. Formally it is possible to split
a data parallel task in the corresponding scalar tasks but this splitting loses an implicit
synchronization constraint.

Edge types. In the admissibility analysis of recursive array definitions, we have intro-
duced three types of dependencies between tasks (Cf. section IV.1.4 and IV.3.3). For the
requirements of the data distribution, these three types are reduced to two types: P or
element-wise and T or total dependencies.

A P dependency can exist only between two tasks with the same (scalar or data parallel)
geometry and the transfer of information is made only between two corresponding elements.
A T dependency represents all others element dependencies schema. These two kinds of
dependencies have a natural interpretation in terms of communication: P enables the ex-
ploitation of locality, that is, a perspicuous data distribution may avoid any communication
in the tasks evaluation. Communications cannot be avoided when a T exists.

DP-DFG. Task types and dependency types do not combine freely. We have given the
exhaustive table of possible combinations [Mah96]. The table enables the random generation
of realistic data parallel data flow graphs (DP-DFG). The generated graphs are used to
test the mapping strategies. The graph generator and the test environment are coupled
and enable the display of DP-DFG and of Gantt chart, Cf. the screen dump VII.2 and
[MGS94b, MGS94a, MG94a, Mah95].

Data Distribution Strategies for DP-DFG

A data parallel task has two dimensions: a temporal dimension (its execution time) and a
spatial dimension (the number of processors ideally required).

The execution environment may also be represented as a two dimensional space, i.e. a
Gantt chart: one (unbounded) axis is the time and the other axis is the processors of the
architectures (they are bound).

With this geometric point of view, the data distribution and scheduling problem be-
comes a two dimensional bin-packing problem [BCR80]: the game is to pack in the Gantt
chart all the rectangles representing the data parallel task, while respecting the dependency
constraints and the communication delays and simultaneously minimizing the height of the
packing.

We have developed several heuristics that take into account the specificities of the DP-
DFG. The starting point is the ETF heuristics [HCAL89] which handles scalar tasks only.

If the width of the chosen task is bigger than the number of available PEs, we “split”
the task in two pieces. The first one is scheduled and the other one is put back in the pool
of available tasks (to be scheduled and distributed later). We only admit the split in the
PE direction (Cf. figure IV.10, note that the conventions time=vertical axis PE=horizontal
axis are inverted from the ones chosen in chapter IV). In fact, this is possible for an α tasks
because such a data parallel task requiring n PEs corresponds to n independent scalar tasks.
Vertical splitting corresponds to pre-emptive scheduling and is not considered here.

The handling of data parallel tasks leads to the definition of the data granularity (a.k.a.
vp-ratio on the Connection Machine). The data granularity specifies the number of elements
of a data parallel array mapped to a processor and is a parameter of our heuristics. The
variations of the data granularity have a great impact onto the performances: a low ratio
(few element on a processor) maximizes the parallelism exploitation but generates a lot of
communications. A bigger data granularity decreases the communications but sequentializes
the computations.
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Figure VII.2: Example of the results of the mapping of a sequencing graph

The difference made between the two types of data parallel tasks leads to the definition
of two distinct data granularities: vp-ratioα and vp-ratioβ . The “optimal” vp-ratioβ is
automatically computed from a simple model of cost. The vp-ratioα is a parameter of the
heuristics. Its variation gives a characteristic convex curve.

Several heuristics have been tested for various vp-ratioα against 99 DP-DFG of 100 tasks
each. The analysis of the results has been done in [MGS94a, Mah95, Mah96].

Validation on the IBM SP2

The previous tests enable to refine the mapping and scheduling strategy with respect to the
makespan (the maximal height in the Gantt chart).

We have then tested the resulting strategy in a real environment with a C+PVM pro-
gram on a IBM SP2 [MDV96]. One goal was to validate the architecture model used in the
heuristics and to verify the prediction of a good vp-ratioα.

A great quantitative difference has been observed between the predicted curve and the
real program. However, the variation of the two curves are the same, making possible to
choose correctly the vp-ratioα from the theoretical curve.

One relevant fact is the strong correlation between the total number of communications
and the execution time: the DP-DFG used are models of I/O bound programs. One possible
reason of the difference between the estimated and the real execution time is then an incorrect
communication cost model. As a matter of fact, the main part of the cost of a communication
is the start-up time. In our cost model, this start-up time are factored in case of a broadcast
from a processor to a set or receivers. This is not the case on the SP2 using the TCP/IP
communication protocol (through PVM).
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First Conclusions of the Study

Notwithstanding these first encouraging results, we have decided to stop the development
in this research direction because of the following reasons:

1. With this execution model, the size of the generated code is very large (programs over
10 Mb may easily happen if the schedule is intricate).

2. The granularity of the exploited parallelism is too fine for the communication latency
available on a standard network of workstations and this implies very large data sizes
to reach an adequate efficiency.

3. The execution model parameters are very specific of an architecture and a program
profile.

4. This execution model cannot be easily extended towards dynamic allocation of data,
which is one of the extensions needed for 81/2.

5. The static approach is not well fitted to the new target architectures. The hardware
environments have deeply changed as well as the needs from 1990 up to now. The
current target architectures we consider are the standard networks of workstations
that implement a “low cost parallel architecture” (cf. next section). This implies
the handling of heterogeneous and irregular architectures, as well as dynamic load
balancing.

Our new goal is to avoid these shortcomings and to provide a portable “data field calcula-
tor” as a back-end to the dynamic 81/2 interpreter. We will also investigate the viability of
the client-server software architecture in the field of data intensive computations and eval-
uate how this architecture enables a graceful integration of concepts and implementation
techniques developed separately in the fields of functional languages and data parallelism.
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VII.3 A Data Parallel Java Client-Server Architecture
for Data Field Computations over Zn

VII.3.1 Introduction

A Distributed Paradigm for Data Parallelism

The data parallelism was largely motivated to satisfy the increasing needs of computing
power in scientific applications. As a consequence, the main target of data parallel languages
has been supercomputers and the privileged linguistic framework was Fortran (cf. HPF
[Ric93]). Several factors urge to reconsider this traditional framework:

• Advances in network protocols and bandwidths have made practical the development
of high performance applications whose processing is distributed over several super-
computers [SC92].

• The widening of parallel programming application domains (e.g. data mining, vir-
tual reality applications, generalization of numerical simulations) urges to use cheaper
computing resources, like NOWs and COWs (networks and clusters of workstations)
[ACPtNT95].

• Developments in parallel compilation and run-time environments have made possible
the integration of data parallelism and control parallelism [HQ91, Ste90, CFK+94], e.g.
to hide the communication latency with the multithreaded execution of independent
computations.

• New algorithms exhibit more and more a dynamic behavior and perform on irregular
data. Consequently, new applications depend more and more on the facilities provided
by a run-time (dynamic management of time and space resources, localization, etc.).

• Challenging applications consist of multiple heterogeneous modules interacting with
each other to solve an overall design problem. New software architectures are required
to support the development of such applications.

All these points require the development of portable, robust, high-performance, dynami-
cally adaptable, architecture neutral applications on multiple platforms in heterogeneous,
distributed networks.

Many of these attributes can be cited as descriptive characteristics of distributed ap-
plications. So, it is not surprising that distributed computing concepts and tools, which
precisely face these kinds of problems, become an attractive framework for supporting data
parallel applications.

In this perspective, we propose FieldBroker, a client server architecture dedicated to
data parallel computations on data fields over Zn. Data field operations in an application
are requests processed by the FieldBroker server.

FieldBroker has been primarily developed to provide an underlying virtual machine to
the 81/2 language [Gia91c, Mic96b] and to compute recursive definitions of abelian group
based fields [GMS95].

However, FieldBroker is basically a parallel data field calculator. One attractive advan-
tage of the data field approach, in addition to its generality and abstraction, is that many
ambiguities and semantical problems of “imperative” data parallelism can be avoided in the
declarative framework of data fields [MDVS96, Lis96].

FieldBroker aims also to investigate the viability of client server computing for data
parallel numerical and scientific applications, and the extent to which this paradigm can
integrate efficiently a functional approach of the data parallel programming model. This
combination naturally leads to an environment for dynamic computation and collaborative
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computing. This environment provides and facilitates interaction and collaboration between
users, processes and resources. It also provides a testbed for experiments with language
constructs, evaluation mechanisms, on-the-fly optimizations, load-balancing strategies and
data field implementations.

The subsequent sections describe FieldBroker. Section VII.3.2 presents the software
architecture of the server. Section VII.3.3 describes the translation of a request through a
tower of three languages corresponding to a succession of three virtual machines. Section
VII.3.4 reviews related works and the final section discusses the rationales of using Java in
this preliminary implementation.

VII.3.2 A Distributed Software Architecture for Scientific Compu-
tation

The software architecture of the data field server is illustrated by Fig. VII.3 right. Three
layers are distinguished. They correspond to three virtual machines:

• The server handles requests on functions over Zn. It is responsible for parallelization
and synchronization between requests from one client and between different clients.

• The master handles operations between sets of arrays. This layer is responsible for
various high-level optimizations on data field expressions. It also decides the load
balancing strategy and synchronizes the computations of the slaves.

• The slaves implement sequential computations over contiguous data in memory (vec-
tors). They are driven by the master requests. Master requests are of two kinds: com-
putations to perform on the slave’s own data or communications (send data to other
slaves; receives are implicit). Computations and communications are multithreaded in
order to hide communication latency.

The communications between two levels of the architecture are specified by a language
describing the data field representation and the data field operations. Three languages
are used, going from the more abstract L0 (client view on a field) to L1 and to the more
concrete L2 (in core memory view on a field). They are described in the next section.
The server-master and the slave programs are implemented in Java. The rationale of this
design decision is to support portability and dynamic extensibility (cf. section VII.3.5). The
expected benefits of this software architecture are the following:

• Accessibility and client independence: requests for the data field computation
are issued by a client through an API. However, because the slave is a Java program,
Java applets can be easily used to communicate with the server. This means that an
interactive access could be provided through a web client at no further cost. In this
case, the server appears as a data field desk calculator.

• Autonomous services: the server lifetime is not linked to the client lifetime. Thus,
implementing persistence, sharing and checkpointing will be much easier with this
architecture than with a monolithic SPMD program.

• Multi-client interactions: this architecture enables applications composition by
pipelining, data sharing, etc.

VII.3.3 A Three Levels Language Tower

A client issues two kinds of requests to the server: data field expressions and commands.
Commands are used by clients to modify the operational behavior of the server, e.g., garbage
collection and data distribution constraints, etc. We focus in this section only on the eval-
uation of data field expressions.
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Figure VII.3: Left: Relationships between field algebras L0,L1 and L2. Right: A
client/server-master/multithreaded-slaves architecture for the data parallel evaluation of data
field requests.

The software architecture described on the right implements the field algebras sketched on
the left. Functions iTi+1 are phases of the evaluation. The functions [[ ]]i are the semantic
functions [Mos90] that map an expression to the denoted element of Zn → Value. They are
defined such that the diagram commutes, that is [[ei]]i = [[iTi+1(ei)]]i+1 is true for i ∈ {0, 1}
and ei ∈ Li. This property ensures the soundness of the evaluation process.

The evaluation of an L0 term begins with its optimization into an equivalent L0 term
and its translation into an L1 term. The same treatment happens for an L1 term which is
translated, after optimization, into a set of L2 terms. Finally, these terms are dispatched
to the slaves to achieve the data parallel final processing. This process is illustrated in Fig.
VII.3.

In the rest of this section, we sketch the L0,L1 and L2 algebras. Technical details, such
as the formal definition of each function appearing in Fig. VII.3 (left), and the diagram
commutations, can be found in [DV98].

L0: functions on Zn

We do not accept any function over Zn as a data field. Intuitively we will preserve the
operational property of the array data structure: the access of an element is done in constant
time. Translated in the data field context, this means that applying a data field to an index
gives a value in constant time. Thus, two kinds of functions are allowed as data fields:
functions over a finite set (because they can be tabulated to achieve the previous property)
and functions given as constant time evaluation rules.

Extensional and symbolic constants. The first kind of functions are the extensional
constants of L0 and the second one, the intensional or symbolic ones. The idea is that exten-
sional constants are implemented as (set of) arrays and that symbolic constants parameterize
some operations on arrays.

We give an example to make it more concrete. The correct evaluation of expression
A + 1 must assign a data field to the (overloaded) constant 1: typically, 1 must denote a
data field with same shape as A and + is interpreted as a binary operator on data fields.
Our approach is to assign to 1 a data field defined over all Zn and to interpret + as a
strict operator. The advantage is that there is no need to overload 1 with several shapes
[Gia92a, JCE96] anymore. Furthermore, there is no need to really build an array full of 1:
the operation ( + cs) where cs is a symbolic constant can be recognized as a specialized
unary operator.
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Functional operators. L0 operators are classified into functional and geometrical ones.
An example of a functional operator is map:

map[op](F1, ..., Fq)

where op is a strict q-ary operator. Formally, we write

[[map[op](F1, ..., Fq)]]0 = λz ∈ Zn. op([[F1]]0(z), ..., [[Fq]]0(z))

where a lambda expression is used to denote an element of Zn → Value. However, we may
omit the brackets [[ ]]i because they can be recovered from the context, and we write more
liberally this semantic equation as:

map[op](F1, ..., Fq)(z) = op(F1(z), ..., Fq(z))

We adopt this simplification in the rest of this paper.

A second example, is the restriction:

restrict(F1, F2)(z) = if F2(z) then F1(z) else ?

which enables the selection of parts of data fields for later operations. The value ? is a
“soft bottom” element meaning “undefined value” (this value is distinguished from ⊥ which
means “unterminating computation”, cf. [Lis96, GS90]).

We give a last example of a functional operator: the merge operator which recombines
two data fields into one:

merge(F1, F2)(z) = if F1(z) 6= ? then F1(z) else F2(z)

merge implements the asymmetric union of data fields. It enables the representation of
irregular data structures.

Geometric operations. A geometric operation g acts only on the index part of a data
field, that is

g[F ] = F ◦ g
where g is a function from Zn to Zm (the angle brackets [] are used here for the application
of a geometric function and must not be confused with the indication of a shape type as in
chapter VI). Examples of such functions allowed in L0 are: transpose, shift and dilate
[DV98].

The optimization O0 of L0 expressions is to convert any sequence of shift, transpose
and dilate into a sequence of no more than five basic geometric operators. This simplifi-
cation is very analog to the one performed in the Infidel Virtual Machine [Sem93]. In our
case, the computation of the canonical form is achieved as the normal form of a rewriting
system [DV96b], allowing the easy integration of additional optimizations as L0 rewriting
rules.

Note that restrict, merge, shift (cf. below) and map are sufficient to implement an
important class of numerical methods like red-black relaxations or explicit schemes for grid
methods.

L1: expliciting iterations and lazy operations

The purpose of L1 is twofold. First, we want explicitly determine an “iteration domain” for
each operator in L0, that is, to deduce the description of a region of Zn where the data field
is defined.

Secondly, we want to avoid to compute some operations by keeping them symbolic.
This last goal is a generalization of the trick used to avoid the computation of a matrix
transposition M t: do not compute the transposition but remember to use M(j, i) in place
of M t(i, j) in the subsequent computations.
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Avoiding shift, restrict and merge. Three kinds of L0 operations are subject to
such a trick: shift, restrict and merge. To avoid the computation of shift operations,
a constant of L1 includes the parameter of the translation. The purpose is similar to the
one that motivates the alignment construct in HPF, but here, the alignment is assigned to
each value (rather than to each variable), to enable a finer control over data movements. To
avoid restrict operations, we adjoin a boolean data field that acts as a guard. And finally,
to avoid merging, we represent the merge of a list of fields by a list. Thus, an L1 constant
is described by:

〈(s1, b1, s′1, f1) ; ... ; (sp, bp, s
′
p, fp)〉

where si, s
′
i are translations, bi are L0 boolean constants and fi are L0 constants. The idea

is that si is the translation associated to the boolean guard bi while s′i is the translation
attached to the value field fi, and the value of a point is the value defined by the first defined
quadruple in the list. So, the meaning of such constants is defined inductively on the list
structure: 〈 〉(z) = ? and ((s, b, s′, f) ; l) (z) = if (b ◦ s)(z) then (f ◦ s′)(z) else l(z), where l is
a list of quadruples and “;” denotes the cons operation.

The translation 0T1 of L0 terms in L1 is not detailed here, but we give some examples.
Assuming that

0T1(Fi) = 〈si, bi, s
′
i, fi〉

then

0T1(merge(F1, F2)) = 〈(s1, b1, s′1, f1) ; (s2, b2, s′2, f2)〉
For a translation t,

0T1(t[F1]) = 〈s1 ◦ t, b1, s′1 ◦ t, f1〉
Finally,

0T1(restrict(F1, F2)) = 〈id , (b1 ◦ s1) ∧ (b2 ◦ s2) ∧ (f2 ◦ s′2), s′1, f1〉
where id denotes the identity function. Note that this last expression is not an L1 constant
but an L1 expression if (b1 ◦ s1)∧ (b2 ◦ s2)∧ (f2 ◦ s′2) cannot be simplified as an L0 constant
(boolean expressions over symbolic constants are simplified in L1 expressions optimization).

Guards annotations and L1 optimizations. Other L1 expressions are made of L0

operators annotated by an explicit iteration domain. This iteration domain is simply an L0

boolean expression b which denotes an approximation of the definition domain. The idea is
that this boolean guard acts as an explicit restrict on each expression. So, the definition
of [[ ]]1 fulfills the following property:

[[eb]]1 v [[eb′ ]]1 if [[b]]0 v [[b′]]0

where v is the Scott order [GS90] on (Zn → Value).

The optimization of L1 expressions is to replace a guard by a more restricted expression
without changing the general meaning. Formally, we will replace eb by eb′ such that [[eb]]1 =
[[eb′ ]]1 but [[b′]]0 v [[b]]0. Here is an example on vectors. The construct R[x, y] is a symbolic
constant that is true inside the (hyper) rectangle specified by two extreme points x and y
and false elsewhere.

Then, the L0 expression

map[+](1, restrict(2, R[0, 10])))
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is a data field over Z that adds point-wise an infinite vector of 1 and a finite vector of 2 of
domain [0, 10]. This is translated into the L1 expression:

maptrue [+](〈id, true, id, 1〉, restricttrue(〈id, true, id, 2〉, 〈id, R[0, 10], id, true〉))

which in turn is optimized as:

mapR[0,10][+](〈id, R[0, 10], id, 1〉, 〈id, R[0, 10], id, 2〉)

Note that after guard propagation, there is no more field with infinite extension in this
example. However, a symbolic constant remains symbolic and is not translated into an
extensional constant.

L2: working on flat vectors

An L2 constant is composed of a vector and a data descriptor. Each vector corresponds to
the flattening of a multidimensional array and the associated data descriptor describes how
the array elements are packed into the vector. Currently, the data descriptor of the vector v
is a couple (s, b) where s and b are respectively called stride and base and are such that if
a is the array associated with v and z a multidimensional index, a[z] = v[s¦z + b] where ¦ is
the scalar product. L2 operations are vector operations corresponding to L1 operations and
curried form of such operations where the provided arguments are symbolic constants (cf.
example in § VII.3.3).

Each L2 constant is owned by a slave and slaves are mainly L2 interpreters distributed
over a network. They are implemented in Java. The distribution strategy is a parameter
of the system. For the moment, we have developed a very simple heuristic that uniformizes
the amount of memory used by the slaves: a new vector is allocated to the slave that uses
a minimal amount of memory. Obviously, more refined approaches have to be studied, e.g.
to minimize execution time and data communications [MGS94a, Mah95].

A slave basically waits for incoming master requests and spawns new threads in order
to evaluate computing requests when the corresponding arguments are available. If some
arguments of a received request are not available, the request and the missing arguments
identifiers are registered in a soft scoreboard. This scoreboard is updated each time a result
is produced or a data is received from other slaves. New threads are started for requests
that are ready for evaluation. The threads of a slave have different priorities upon the
corresponding task, e.g. a communication thread (send or receive) has a higher priority
than a computing thread.

A slave operation is generally implemented by using a single loop over vectors, whatever
the dimension of the original data fields (there is no need of dimension dependent nesting
of loops because of the flatness of the representation).

The control part of a loop is scalar if the (used or computed) elements of the involved
vectors are contiguous. Otherwise, it corresponds to the emulation of a multidimensional
index. In this last case, the scalar vector indexes are computed incrementally by using this
multidimensional index and the data descriptors associated with each vector.

VII.3.4 Related Works

FieldBroker integrates concepts and techniques that have been developed separately. Re-
lationships between the definition of functions and data fields are investigated in [Lis93]. A
proposal for an implementation is described in [HHL97] but focuses mainly on the manage-
ment of the definition domain of data fields. Guard simplification in L1 is a special case of
the extent analysis studied in [LC94b].
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One specific feature of FieldBroker is the use of heterogeneous representations, i.e.
extensional and symbolic constants, to simplify field expressions. Further investigations are
needed to formalize and fully understand this approach. Clearly, the algebraic framework is
the right one to reason about the mixing of multiple representations. These remarks hold
also for the tricks used in L1 to avoid evaluation.

Implementation of regions of Zn in L2 are inspired from the projects [Sem93, KB94] which
develop a language and a library dedicated to non-uniform block structured algorithms.
However, we do not distinguish between several kinds of region specifications, focusing on a
uniform handling.

The flattening of arrays into vectors in L2 is inspired from [Sem93] and the implementa-
tion of vector operation using a single loop was inspired by A++/P++ [PQ94] (itself using
an algorithm described in [Oli94]).

Client server architecture for HPC applications have been proposed recently: [KS97,
GS97]. A lot of research efforts are now dedicated to the use of the emerging WEB technology
in an HPC framework [FT96, CD97, CZF+98].

VII.3.5 Discussion: What Cost of Java?

We have implemented a first prototype of the client-server/master-multithreaded-slaves ar-
chitecture using Java as the implementation language. The advantages associated with the
Java programming language (portability of processes, transparent memory management,
anonymous and dynamic accesses to remote resources, ...) come at some costs: the natural
communication model relies on RMI and not on message passing, the language is interpreted,
and the memory management is dynamic.

It is too early to conclude about the viability of using Java in the context of numerical
and scientific applications, mainly because the purpose of the first implementation is only
to give us some insights into the benefits and drawbacks of the system design and func-
tionalities. Because performance is not of primary concern, we have always prefered the
straightforward implementations over the optimized ones, making unfair any performance
evaluation (currently they are poor). The purpose of this section is then to sketch some
evidences against the a priori disqualification of Java and to propose some of the necessary
optimizations.

RMI versus MPI. The client-server model fits well with the Remote Method Invocation
(RMI) or the Remote Procedure Call (RPC) interface. This process interaction model avoids
many of the pitfalls of asynchronous message passing programming. Furthermore, message
passing requires a number of complex tasks to be explicitly handled by the user (process
identification, message preparation, transmission and reception, ordering, etc.). However
the message passing paradigm is actually a de facto standard in data parallel programming
due to the effectiveness, robustness and implementation portability of communication li-
braries such as PVM or MPI. The problem is then to evaluate whether the use of a RMI
communication model is a viable alternative for scientific applications, or not.

Recent studies [Fat96, KS97] show that “the client server model does not degrade either
programmability or performance for physical applications” [KS97]. The difference between
the two communication modes on a set of simple scientific programs is less that 10 percent.
Moreover, there is a lot of room for performance improvement through the utilisation of
multiprotocol communication like in the Nexus library [FGKT97].

Bytecode interpretation versus compilation. Compared to VCODE, a virtual ma-
chine dedicated to vector operations, Java achieves one sixth to half the performance [HNS97].
That is to say, w.r.t. the facilities provided by an interpreted approach, the performance
degradation induced by the Java virtual machine is not redhibitory. However, this still
compares poorly against compiled code.
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This drawback has led to the development of just-in-time Java compilers [CFM+97] that
are able to translate portions of the Java bytecode into executable machine-dependent code.
The performance obtained by these JIT is much better and could be still improved [Kad97].

In addition, a just-in-time compiler enables a kind of optimization that is generally out
of reach from a request server. We illustrate this on an example involving loop fusion.
Suppose for instance that two successive expression evaluations imply two successive loops
with body e1 and e2. If the two loops have the same iteration domain, and satisfy some
additional constraints on e1 and e2, then a smart compiler is able to factorize the two loops
into only one with body e1; e2. This optimization is out of reach from an interpreter because
the available primitive operations do not include the sequence e1; e2. However, with just-
in-time compiler, it is possible to synthesize on the fly the bytecode corresponding to e1; e2
to achieve loop fusion. This approach is a possible answer to the usual criticisms made
on the server approach (no global optimization over requests) and is a direction for future
researches.

Dynamic versus static memory management. Finally, Java’s dynamic management
is sometimes argued against its use in the context of scientific applications. But this is
unavoidable in the case of irregular, dynamic and data dependent applications. Moreover,
commands can be used by an application to fine-tune the memory management.
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Chapter VIII

Amalgams

We have given in section IV.2.2 examples of incomplete 81/2 programs, that is, programs
where some names do not refer to a definition.

We propose here a calculus, called amalgams that computes with systems, concatenations
and names. This calculus is developped to modularize 81/2 programs (which are systems of
equations) and to extend 81/2 towards incremental programming.

VIII.1 Introduction

The concept of naming is a widespread and heavily used notion in computer science in
general and in programming languages in particular. The concept of name can be found,
among others, in the following areas:

• Imperative languages are built on the notion of state which is a partial function from
names to values.

• Names have recently been introduced in the λ-calculus for the following purposes:

– allowing an out of order binding of the terms in a λ-abstraction [GAK94],
– allowing the access to (possibly redefined) terms at various different abstract

levels [Dam94b, Dam94a, Dam95, Dam98].

• Names are used in dynamic applications where they represent entry-points for the
sharing of information:

– dynamic linking that occurs at run-time with shared libraries [HO91] used in a
program,

– “Applets” of WWW browsers in Java [Sun95] or Caml-Light [Rou96] correspond
to code dynamically loaded through the access of specific parts of a WWW page.

• In [Mil93], Milner emphasizes naming as the key idea of the π-calculus [Mil91], a model
of distributed computing.

• Names are central issues in many data and program structuration mechanisms:

– the object-as-record point of view [Car84] corresponds to a cartesian product
where names are associated to expressions,

– the use of name as the key to the construction of incremental programs is a view
widely shared [HO96, LF93, LF96],

– in the the context of modular construction of programs, the notion of mix-
ins [Bra92], where names are used as deffered references in another mixins, gen-
eralizes inheritance [BC90, FKF98], module composition [AZ96a, DS96] and sep-
arate compilation [Anc97].
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The previous examples show that the concept of name is a central notion in the incre-
mental construction of programs and this view has been subsequently stressed by many
authors [HO96, LF93, LF96, DS96, BC90].

In this work, we will develop a core language used for defining components called systems:
a collection of definitions of some components, where the definition of some of them can be
deferred to another system (eventually in a mutually recursive way). Thus, the typical
operator for composing systems is a binary merge operator “#”. The combination mech-
anism relies on free names (the deferred components) and name capture (the instantiation
method).

We provide a formal foundation for the system notion: more precisely, we define an SOS
semantics of systems and three basic operators: the amalgamation operator “{}” which cre-
ates systems, the merge operator “#” and the selection operator “¦”. A notion of name is de-
fined, called a reference, which can either be bound or free. Two syntactically equal [Ode93]
references refer to the same object. An element of a system is a pair (identifier, expression)
where the definition is any expression involving references and the three operators. Refer-
ences are explicitly annotated such that they may refer to redefined definitions. Finally,
a mechanism of propagation of definitions to bound references is defined, allowing the dy-
namic completion of open terms. This mechanism, together with the operators are called
amalgams.

We give in the next section an intuitive definition of amalgams and how the entities they
define are manipulated.

Afterwards, in section VIII.3 we show the use of amalgams in a declarative language
to allow an object-oriented programming style and to construct incrementally distributed
programs.

We discuss the relationships between amalgams and other formalisms and languages that
do address the same problems in section VIII.4.

We conclude in section VIII.5 with the current status of this work and its integration
into 81/2.

VIII.2 An Intuitive Presentation of the Amalgams

We first describe amalgams through an intuitive presentation to give a flavor of the formal-
ism. The amalgams try to capture the three following features:

1. specify a set of definitions,

2. build a new set of definitions through the merge of two existing sets,

3. evaluate an expression using a set of definitions.

Remark that:

• a definition associates a name with an expression,

• the evaluation of an expression using a set of definitions means, from the amalgam
point of view, that names involved in the expression have to be substituted by their
definition.

We are going to focus on those three phenomena without introducing any additional object
nor computation mechanism. We get the “pure calculus of the amalgams”, which consists
of three operators: the n-ary amalgamation operator “{ . . . }” (point 1), the binary merge
operator “ #” (point 2) and the binary selection operator “ ¦ ” (point 3).

108



VIII.2.1 Definition and Data Flow Representation of a System

There are many ways to look upon amalgams. We emphasize here on a data flow interpre-
tation because of its intuitive graphical representation and its link with chapter V.

Definition of a System

The result of an amalgamation is a system. A system is a set of definitions where a definition
is a pair:

identifier = expression

For example, the expression {a = 1, b = 2 + 3} is a system gathering two definitions. We
also call these definitions equations. We suppose that all left hand-sides (l.h.s.) of a system
are different. The right hand-side (r.h.s.) of a system is any expression. For example, we
may define nested systems:

{a = 1, B = {a = 2, c = 3}}
The deepest system redefines the identifier a. This is not a contradiction with the previous
statement since the two systems are different. We call an identifier appearing in the r.h.s. of
a definition a reference. These references can be bound or free, whether they correspond or
not to a definition.

Free and Bound References

The binding mechanism associates an expression to a reference id. The associated expression
is the r.h.s. of a definition id = e. For example, in the following expression, the reference
b in the r.h.s. of the first equation refers to the second equation and is therefore a bound
reference (we indicate with an arrow which definition is referred to):

{a = b, b = 2} (VIII.1)

The order of the equations is not significant. The expression {b = 2, a = b} defines the same
system. Circular references are allowed:

{x = y, y = x} (VIII.2)

The scope of definitions does not extend outside their system. For example, in the expression:

{a = x, B = {x = 1, y = 2}}
the reference x in the r.h.s. of the first equation cannot be bound to the definition of x in
the enclosed system defined by B. A system defines a notion of scope. The scoping rules
follow the usual rules defined for block structures.

The nesting of systems allows redefinitions. Therefore, the problem of accessing redefi-
nitions arises. A simple rule is to shadow all previously defined expressions with the same
identifier. But allowing access to redefined equations leads to interesting features: for in-
stance, in an object-oriented programming style, allowing the access to redefined methods
gives access to methods of a super-class. Consequently, we choose to allow the access to
redefined equations by introducing an explicit scope escaping operator: idn is a reference
that is looking for the definition of id in the mth enclosing scope, such that m ≥ n. For
example, in the expression:

{a = 1, B = {a = 2, x = a1}}
the reference to a in the r.h.s. of the definition of x refers to the equation a = 1 through the
escaping operator “ 1”.
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A reference that is not bound to a definition is a free reference, as for example for x in the
system {a = x}. An expression involving a free reference is an open expression. Following
the “escaping of scope” operator, it should be useful to be able to “jump over definitions”.
We therefore use the same operator for free references. For example, in the system:

{A = {x = 1, y = x 1}} (VIII.3)

the reference x, in the r.h.s. of the equation defined by y, is not bound to the equation x = 1
because the “ 1” operator specifies a binding one scope away from the current scope where
the reference appears.

Since the reference id0 leads to the same behavior as id, we define by convention that
a reference with no explicit escaping operator corresponds to id0, thus all references are of
the form idn where n ∈ N and id is an identifier.

A Data flow Representation

There is a simple data flow representation of a system as an incomplete graph. This repre-
sentation has the advantage to make a link with the approach taken in chapter V.

Every operator in an expression is a node. Nodes are linked together by edges. A defini-
tion id = op(..., ...) is a node op with output edges named id. The input edges correspond to
identifiers appearing as arguments of the operator. A pending input edge corresponds to a
free reference. Output edges are simply identifiers defined by the system (Cf. Fig. VIII.1).
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Figure VIII.1: System (VIII.1) is pictured at the left as a data flow graph. The graph in
the middle represents system (VIII.2). The graph at the right corresponds to the definition
of A in the system (VIII.3).

There are several ways in which data flow graphs can be composed. System composition
corresponds graphically to connect some output edges with some pending input edges.

In the applicative [Kah74] or functional [Bac78] style, the pending input edges and the
output edges of a graph are linearly ordered and connected on this basis, without considering
their identifiers. One drawback is that the management of links (like forking, forgiving, etc.)
must be explicitly done. The connection itself can be of several kind: parallel composition,
serial composition, feedback, etc., Cf. Fig. VIII.2.

In some calculi for concurrent systems (CCS [Mil80] for example), there is another way of
describing a composition. It is based upon the names of the edges. So, if we want to use the
same kind of system in two different places, we have to rename one of the instances. However,
one advantage of the approach is the explicit identification of the system parameters and
output.

VIII.2.2 System Composition

Our approach in system composition is to retain the explicit composition operator of the
functional style and the naming scheme of the declarative style. The motivation is to capture
some structure induced by the functional combinators (e.g. to formalize the linking process,
the scoping rules, etc.) while relying on the concept of name which is central in many coarse-
grained composition mechanisms (like class inheritance, module composition, link editing,
message passing, remote procedure call, etc.).
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Figure VIII.2: Parallel functional composition (at left) and serial functional composition of
two data flow graph A and B.

Merging Systems

We have seen that an expression may involve free references. The merging of two systems
combines the equations and binds the free references whenever possible. For example, the
following expression:

{a = 1, b = c0}# {c = 2, d = b0} (VIII.4)

will be reduced1 to the expression {a = 1, b = c0, c = 2, d = b0} and then to {a = 1, b =
2, c = 2, d = 2}. The operands of the merge are not necessarily systems but, to be merged
together, both operands have to be systems. As we can see, the merge of two systems
is more complicated than just packing together two sets of expressions. The binding of
free references allow the completion of open expressions with definitions coming from other
expressions.

The data flow representation of the merge operator is very simple (Fig. VIII.3): just
connect the pending input edges of one graph to the output edges of the other graph, and
vice-versa. This process is based on the name of the edges and is symmetric (we insist in
the assumption that expressions leading to the definition of systems with two equations for
the same identifier are rejected).
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Figure VIII.3: To the left: Merging of two systems. The picture illustrates expression
(VIII.4). To the right: The selection A ¦ B. The outputs of the selection are the outputs
of B. The input of the selection are the inputs of B that are not fed by A (eventually
augmented by the inputs of A that are needed for the evaluation of the outputs of A used
by the inputs of B).

1We define a notion of reduction which roughly corresponds to a propagation of definitions to bound
references and to the simplification of operators, whenever possible.
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Extracting a Definition from a System

If a system is a set of definitions, there must be an operator to “extract” the value of some
definition. This operator is called a selection. We will generalize this operator to handle the
evaluation of any expression in the environment defined by the system. For example, the
expression:

{e = a0, r = {a = 1, b = 2} ¦ (e1 + b0)}
reduces the r.h.s. of the selection using the definitions provided first by the l.h.s. and then
by the including systems. The expression will successively reduced to

→ {e = a0, r = {a = 1, b = 2} ¦ (a0 + 2)},
→ {e = a0, r = {a = 1, b = 2} ¦ (1 + 2)}
→ {e = a0, r = 3} .

To allow the reduction of the r.h.s. of a selection, the l.h.s. has to be a system. If it is not the
case, the l.h.s. is reduced, until it becomes a system; then, the r.h.s. can be reduced using
the l.h.s. definitions. As we can see, the system as first operand of a selection plays the role
of an environment providing definitions to the expressions that have to be evaluated. Note
that the l.h.s. of a selection constitutes a scope for the r.h.s.

As a first approximation, the selection operates like an extensible let rec : the r.h.s. ex-
pression is reduced according to the definitions of the l.h.s.. Unlike the let rec construction,
the definitions are denotable, that is: the set of the definitions is computable (in let rec
only the value of the definitions are computed but the set of the definitions is statically
known).

The data flow representation of the selection operator is very simple too (Cf. Fig. VIII.3):
just connect the outputs of the l.h.s. of the operator with the inputs of the r.h.s., and retain
in the result only the outputs of the r.h.s. This is reminiscent of the serial composition.

VIII.2.3 A High-Order Data Flow Calculus

Merge and select can be seen as high-order data flow operators. They are then pictured as
“macro-nodes”. The operational semantics of a data flow graph is based on the circulation
of tokens labeled with a value. Thus, token representing entire data flow graphs are flowing
through the edges linking the macro-nodes (Cf. figure VIII.4).

We want to study the interplay between the dynamics of tokens at the macro-level and
the evaluation “inside” a high-order token. The question is mainly to decide when a token
is produced by a macro-node, assuming we want a deterministic evaluation process. We
have proposed in [Mic96d, MG98a] an evaluation strategy where the tokens are reduced as
much as possible at each node of the macro data flow graph. This ensures a deterministic
evaluation.

Our motivation is not to develop yet another high order calculus but to capture primitive
mechanisms for dynamic composition of code fragments. As a first step, we restrict ourselves
to a core language reduced to the three operators: amalgamation, merge and selection and
we do not consider issues raised by typing.

VIII.3 Two Applications of the Amalgams

The amalgams calculus, restricted to the three operations, is powerful enough to code the
arithmetic functions. The formal semantics is developped in [Mic96c, Mic96d, MG98a] and
can be simplified [MG98a].

Applications of the amalgams to the structuration of 81/2 programs, to the development
of “symbolic” programs and to the simulation of growing process have been presented in
[GS94, Mic95b, Mic96b, Mic96e, Mic96d, MG98a].
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Figure VIII.4: The high order data flow graph represents the expression:
({b = x, a = b} ¦ {u = a, v = z}) # {x = 2, z = x}

and some of the intermediate data flow graph produced during the evaluation process. One
can be consider this program as the composition of three incomplete fragment codes. The
final result is {u = 2, v = 2, x = 2, z = 2}.

Here we illustrate the use of amalgams through two examples. The first one concerns the
integration of the amalgams into the declarative language 81/2, and shows how an object-
oriented programming style can be achieved. The second example sketches how incremental
program construction can be achieved using amalgams.

VIII.3.1 An Object-Oriented Programming Style

The notion of system allows the definition of environments. The composition of systems, by
merging enables the definition of extensible environments. Moreover, open terms and the
ability to complete these terms with definitions, will allow the design of a programming style
similar to the one found in object-oriented languages. It is possible to design and compose
fragments of programs following a class structure and using a mechanism similar to the class
instantiation mechanism found in those languages. We describe, through an example, how
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to “emulate” a programming style close to that of object-oriented languages.
A system represents both the notions of class and class constructor that are used to create

an instance of a class. The arguments required by the constructor are the free variables of
the system. The instantiation of a class corresponds to the merge of the system with the
arguments required by the constructor. Additional definitions may be added to an object,
through the use of the merge operator, and corresponds to the inheritance mechanism.

A closed system (with no free references) corresponds to an object, as in object-oriented
languages. The object model that we are defining is the embedding based model, where
all the information about an object is in the object itself. It is obvious that our model
lacks all the high-level mechanisms of protection and encapsulation proposed by classical
object-oriented languages.

To illustrate this programming style in 81/2, we define, following an object-oriented
programming style, a model of the trajectory of a planet in a circular uniform movement
around a star. The star itself is following a rectilinear uniform movement. First, we define
a class Mobile of moving objects. The Mobile class is represented by a system with two free
references: initial which represents the initial position of the object, and dp which represents
the elementary movements of the object. With these free references, which are vectors of
two elements corresponding to the Ox and Oy axis, the system Mobile defines a position:

Mobile = {position = initial0 fby $Mobile ¦ position+ dp0};
The position field of a Mobile is a stream of values representing the trajectory of the mobile
along time. The $ operator gives access to the previous value in a stream; fby is the analog
for infinite streams of the cons operator on lists.

Once Mobile is defined, we can define a new class of objects: mobile objects with a
uniform speed. The class UniformTranslation awaits an initial position (required by the
Mobile class from which it inherits) and a vector speed to instance itself:

UniformTranslation = Mobile # {dp = speed0}
The system UniformTranslation is a system with all the definitions of the Mobile system
because it is a system extended by the definitions of dp used to compute the elementary
movements with a uniform trajectory (we suppose that speed will be a constant equal to the
difference between two successive values of the stream). The merge operation combines these
two systems and binds the free reference dp of the anonymous system with the definition of
UniformTranslation.

We follow with this example by using Mobile to represent the circular trajectory of a
planet around a star which follows a uniform trajectory. The class Circular awaits a radius,
a center and an angular speed:

Circular = Mobile # {initial = {center0 ¦ 0, angle0 + center0 ¦ 1},
dp = {dx, dy},
ot = $t,
t = ot+ angular speed,

dx = . . . formula involving sin and cos . . .

dy = . . . };

Now, we just have to instantiate the classes to describe the movement of a planet around a
star in a uniform translation:

Star = UniformTranslation # {speed = {1.0, 1.0}, initial = {0.0, 0.0}};
Planet = Circular # {angle = 1.0, center = Star ¦ position}
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VIII.3.2 Dynamic and Distributed Incremental
Construction of Programs

We have recently seen the emergence of a new class of applications: distributed applications
where the parts and the location of the applications are not necessary known at run-time.
An example is given by the notion of applet [Rou96, Sun95], introduced by the WWW browsers.
An applet is a fragment of program which is dynamically loaded, on demand, while retrieving
data referring to this applet. The dynamic loading of fragments of programs enables the
adding of functionalities, the modification of the loader, the enhancement of any feature.

This mechanism has a direct translation in the amalgams. An applet is an open term.
The free references of the applet are completed, at run-time, in their evaluation environment,
with respect to their names. This is implicitly done using the name capture mechanism of
the amalgams (no specification of the free references has to be given).

Let’s take the example of an applet being made of two parts, A and B, each part being
written separately but making reference to each other. The part A uses a certain number of
services, a priori unknown from the site where these two parts are assembled, but which are
in a library LA. However, if the site defines its own implementation of a service, in a library
LS , we would like this specific implementation to be used. Similarly for B. Using amalgams,
the dynamic and incremental construction of a program consists in the expression:

prog = (LA ¦ (LS ¦ A))# (LB ¦ (LS ¦ B))

where A,B,LA and LB are obtained from a distant site, for example by:

A = appletA@ ftp.lami.univ-evry.fr

B = appletB @ ftp.lri.fr

where x@ s is looking for the definition of x on the site s. We say that the construction is
dynamic because it happens at run-time, and incremental because it is made from fragments
of programs already programmed.

VIII.4 Related Works

Amalgams allow the definition of a set of definitions, together with an operation of extension
of the set and an operation of evaluation using this set as an environment, the environment
being a first-class value. It is therefore natural to consider the amalgam systems as first-
class environment and the merge operation as an extension of the environment. Defining
a single and uniform representation (bindings and set of bindings), the amalgams concept
addresses in a very natural way the problem of environments in programming language and
incremental programs construction.

Environments as First-class Values

The notion of binding is essential in the approach taken by the Pebble language [BL84]
to design modules and interfaces. A binding is an association (name, value), the binding
itself being a value. The scope of the bindings is limited by the classical LET, IN and WHERE
operators. An environment is defined as a set of bindings. Sets of bindings may be combined
using the “;” construction such that B1;B2 will define the set of bindings appearing in B1

and B2.
Pebble bindings do not allow the definition of “recursive” sets of binding, like the ex-

pression: {a = 1, b = c0}# {c = a0, d = b0} where each free reference in an environment
will be solved by the definitions of another environment. Furthermore, redefinitions of bind-
ings overlap previous definitions, whereas they are still reachable in the amalgams. Pebble
bindings are similar to the data parameters of [Lam88] but suffer from the same restrictions
(see below).
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Symmetric Lisp [Jag89] is a concurrent language allowing the definition of environments
through the explicit operator ALPHA. It is possible to extend these environments but the
extension can only take place between an open environment (defined using the OPEN-ALPHA
form). After this first step towards the gathering of definitions into environments, Jagan-
nathan defines the two explicit operators reflect and reify to translate a data structure
into an environment and an environment into a data structure.

These operators are reminiscent of the reflexive languages. In these languages, it is
possible to access to the interpreter of a program, using reflect and reify, to modify the
interpreter’s structures of the running program. In this approach, the environments are not
denotable [dRS84, WF88]. They are now first-class values (an environment is denotated
by a closure and reified into a record) but, unlike the approach followed by Pebble and the
amalgams, they are distinguished from other data structures. Operators defined on data
structures cannot operate on environments. Therefore they require two explicit operators
that we keep implicit. Furthermore, redefinitions of bindings in an environment cannot be
accessed.

Formalization of Incremental Computation

Lamping initiated the work on parameterization [Lam88]. A system (in its common defi-
nition) is parameterized when the value of the outputs depends from one ore several of its
inputs. Lamping proposes, in addition to the classical lexical binding, an environment based
binding, using a special form of variables: data parameters. A data parameter is declared
with the explicit operator data: x and the value of x will be given by a supply operation.
The composition of environments is possible through the ◦ operator.

No difference between lexical and dynamic binding is made by the amalgams. Their late
lexical binding strategy allows the binding of lexical references and the dynamic resolution
of free references. Furthermore, redefinitions are accessible in the amalgams whereas the
composition of environments in Lamping’s system overlaps redefinitions.

In [LF93] a new kind of variable is introduced: a quasi-static variable. The special form
qs-lambda is used to define a quasi-static procedure that represents a piece of parameterized
code. The special form resolve1 is used to bind a quasi-static variable of a quasi-static
procedure to a definition. Actually, a quasi-static variable is a pair (name, variable), the
variable being subject to α-conversion whereas the name is not.

Our approach is simpler: a system is implicitly parameterized by its free references. No
distinction is made between two different types of variables, only references are manipulated
and resolution of free references is implicitly done by a capture mechanism.

The λ-calculus is a well known formalism and is heavily used to model features of todays
programming languages. The λC-calculus [LF96] is a tentative step towards the formaliza-
tion of the incremental construction of programs. To reach this goal, the notion of name (a
context) is introduced in the λ-calculus. Nevertheless, this introduction is not trivial: the
interaction between β-substitution and hole filling (the name capture mechanism defined to
substitute a name with an expression) is not straightforward. A solution to the problems
encountered is found in the separation of the domains of β-substitution and hole-filling.
Therefore, contexts and λ-terms do not share the same name-space. Another solution to the
same problem can be found in [HO96] using an explicit typing system.

The approach followed by the amalgams is different. Since we rely on a uniform system
(we only have a single kind of reference, and a single kind of substitution policy), we do not
have to solve the problem of interactions between β-substitution and hole-filling. Besides
technical matters, our resolution of the problem is also different: we rely on an implicit
approach where free references are implicitly abstracted when appearing into the scope of a
definition whereas for the λC-calculus, contexts need to be explicitly abstracted and solved.
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Mixins and modularity

After its first introduction in the LISP community [Kee89, Moo86] to represent an abstract
subclass, the notion of mixin has been widespread in the object-oriented community to
denote a class where some components of different nature (types, exceptions, methods,
slots, ...) are not defined. The definition of such component is deferred and can effectively
be used for instantiation only when combined with some other class which provides the
missing definitions [BC90, LM96, DS96]. This general definition can be seen as independent
of the object-oriented framework and can be formulated in the more general context of
module composition [Bra92, DS96].

The mixin approach put the emphasis on the composition of mixins (rather than on
the instantiation of deferred components). In the field of module construction, the main
operator is the binary merge operator: if M1 and M2 are two mixins, then M1 + M2 is a
mixin where some definitions of M1 are associated with the corresponding declarations in
M2 and conversely. This operator is commutative and is defined whenever no components
are defined on both sides [AZ96a]. Note that this approach enables the recursive definition
of components split over several modules [DS96], which is not possible with regular modules
(like in Standard ML for example). Additional operators (restrict, hide, freeze, rename,
functional composition, ...) are defined to manage name clashes, redefinitions, access to a
component, etc.

A mixin module is very close to a system: deferred components are free references in
the amalgams; the merge operator corresponds to the # operator; functional composition
M1◦M2, where definitions in M1 are used in M2 and not conversely (this is a one-way merge)
is similar to the selection operator. Moreover, the freeze operator (that allows the building
of a module independently of the redefinition of some components) is not required in the
amalgams since binding cannot be redefined: once a reference is bound, it is substituted by
its definition. Operators like hide and restrict that are used to manage name clashes are
not considered in the core definition of the amalgams.

To our knowledge, the approach followed by Ancona and Zucca [AZ96b] is the only one
that defines a formal semantics of mixins independently of the semantics of the embedding
language. Thus, this approach, like ours, concentrates on the pure notion of system compo-
sition, independently of the nature of the system elements. However, the semantic developed
by Ancona and Zucca relies on the concept of function to represent a system with deferred
components (deferred components are argument of the function). Since our approach does
not rely on the concept of function, we believe that our proposition provides a more primitive
formalization of system composition.

VIII.5 Conclusion

We believe that amalgams are an alternative to the notion of function in declarative lan-
guages. Indeed, open terms are allowed, which serve as incomplete pieces of code that can
be completed later in several places. We have shown that the expressive power of amalgams
allowed them to define primitive recursive functions. Our proposition is not to replace the
use of functions by amalgams, but rather to use amalgams to structure and parameterize
coarse pieces of code and to compute new programs from already existing ones. As far as
incremental program construction is concerned, a major advantage of the amalgams over
the classical λ-calculus relies on the intrinsic incremental property of the amalgams: the
free references together with the merge operation naturally allow dynamic extensions of
programs, whereas the λ-calculus needs to be deeply improved to allow the same behavior
(cf. section VIII.4 and the works of [Dam94a, Gar95, HO96, LF96]).

However, amalgams lack a typing system: currently they are an untyped formalism. The
reduction of an expression, using the semantics defined in this paper, might not terminate.
We are currently working on the definition of a type system that would reject expressions
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that do not reduce to a normal form. Nevertheless, designing such a typing system is
not a trivial task. For example, the expression {a = {b = a1, c = 1} ¦ c0} reduces to a
normal form in one step (the system {a = 1}), whereas the reduction of the expression
{a = {b = a1, c = 1} ¦ b0 ¦ c0} does not terminate.

From the semantics a first version of an evaluator has been implemented in the Mathe-
matica [Wol88a] environment and a second one in the ML [Ler93] language2. Using these
semantics rules, amalgams are currently being embedded into the declarative data-parallel
language 81/2 [Mic96a]. Since the notions of stream and collection are orthogonal to the de-
finition of amalgams, they are naturally added as a ground type in the amalgams formalism.
Amalgams are the key to the definition of parameterized expressions allowing programs to
be incrementally constructed at run-time through the free references of the expressions.

The integration of amalgams in 81/2 consists in the definition of an evaluator of streams
of amalgams [Mic96b, Mic96e] enabling the definition of incremental computations, symbolic
computation and an object oriented programming style (see examples in [Mic96d]).

2The current version is available at ftp://www.lri.fr/LRI/articles/michel/private/ML/amalgam.tar.gz.
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Chapter IX

Topological Tools for Knowledge
Representation and
Programming

The work we present here have been initiated in 1994. However, it is only recently that we
have developed it and published notably with the beginning of a new PhD thesis [Val97,
VGS98, VG98, Val98, GV98].

This research direction is born when we have confronted a mathematical gadget in al-
gebraic topology, the simplicial complex, and two motivations originated from the works on
the simulation of dynamical systems: developing a geometrical approach of programming
and developing a non propositional formalism to knowledge representation (these two goals
seems to be independant but note for instance that the multi-agent is an attempt in devel-
opping a knowledge processing systems that relies more or less on dynamical systems; see
[MW90, SM91, BV91] and the following conferences for other works in this direction).

The simplicial complex [Ale82] is a construction that enables to build spaces by adequate
assembling of elementary space; it is a special case of cellular complex. The handling of this
notion in the framework of combinatorial algebraic topology [Hen94] is especially attractive
for computer science because it is implementable on a computer. This notion enables,
among other things, to generalize the notion of graph and discrete path, to formalize a
notion of discrete deformation of path. The builded space can be “typed” through their
characterization by homotopy or homology groups.

We have encountered the concept of simplicial complex in the search of a notion able
to generalize both the GBF and the amalgams. As a matter of fact, the GBF are a too
regular structure that cannot be used to build space including singular points. On the other
hand, the amalgams enable the construction of a graph by “gluing” together open graphs
(cf. figure VIII.4). The underlying idea was then to model the free references that enable
the “gluing” of graphs as the border of some abstract object, because it is through the
border that objects can be assembled and pasted together. The background applications
that motivate such developments are some algorithms in image processing [Vos93] and the
systematic support of finite elements methods. Simplicial complex have indeed already be
proposed to such application by R. Palmers in the Chain language [PS93, Pal94]. However,
we have not heard of any development after the first propositions.

It is then appeared to us that simplicial complex are a first step in a more ambitious
research program: the development of a topological approach of programming. The target
applications are not restricted to applications of a geometrical nature, like the simulation
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of dynamical systems, but include also the development of a non propositional knowledge
representation system.

IX.1 Introduction

Diagrammatic reasoning is a field of research investigating the use of spatial relations for
knowledge processing. This includes knowledge representations, retrieval processing, in-
ference making, etc. Several issues are addressed in these active fields (see [GNC95] for
an excellent introduction), e.g.: visual formalism [Har95], diagrammatic inference [GPP95,
Lin95], diagrammatic approach of logic [Shi91, BE95], qualitative physics [For95], cogni-
tive issues [Gar83, Arn69, GNC95, chap. III], logical formalisation of spatial relationships
[Got94, LP97, Ham97, Ben94].

The last example accounts for the search of a formal theory of diagrammatic represen-
tations. A unique conceptual framework cannot encompass simultaneously all the issues
investigated in the field of diagrammatic reasoning. However, it is possible to develop a
formal framework to describe the basic objects and processes that are specific to it.

The idea developed here is that combinatorial algebraic topology (CAT in short) is an
adequate and unifying framework to specify and analyze diagrammatic representations and
diagrammatic reasoning.

Our arguments can be sketched as follow:

1. Diagrammatic reasoning is the use of spatial relationships (neighborhood, border, di-
mension, path, hole, ...) to represent and structure knowledge. It cannot be restricted
to visual (i.e. low-dimensional) representation of knowledge, nor to the development
of a logical account of spatial relations.

2. Objects and relationships implied by diagrammatic representation have a pre-metric,
discrete and finite nature even if some continua are involved.

3. Combinatorial algebraic topology is a theoretical framework which precisely formalize
finite discrete spatial relationships. This well established mathematical theory provides
a sound basis to specify diagrammatic representations and diagrammatic operations.
Furthermore, the algebraic approach of the theory enables a constructive description
(that is: an algorithm can be derived and the diagrammatic reasoning can be auto-
mated).

To support these affirmations, we discuss them briefly. We present a possible application
of some elementary CAT concepts to diagrammatic knowledge representation, originated in
the works of Atkin on the Q-analysis [Atk74].

Then, instead of rephrasing well-known diagrammatic applications in the CAT frame-
work, we have found more illuminating to present a topological formalization of applications
that are obviously diagrammatic (they involves lattice graph and geometric configuration)
but that have not received until now a specific diagrammatic treatment.

The first application is a categorization problem. The second one concerns the taxonomic
reasoning and the problem of restructuring ontologies (the presentation remains at a general
level). The third application, more widely presented, has raised the development of the
ESQIMO system [VGS98, VG98] for solving analogies in unsupervised IQ-tests.

IX.2 Algebraic Topology for Knowledge Representation

We were guided towards topological tools for several reasons. We are interested in diagram-
matic reasoning as the use of spatial relationships (neighbourhood, border, dimension, path,
hole, ...) to represent and structure knowledge.
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Although geometry studies these relations, we are not interested in the continuous and
metric structure of geometrical objects. The primitive objects and relations involved in
diagrams have a finite and discrete nature. For instance, a graph involves edges represented
as line segments. A line segment has a continuous nature but this is irrelevant for the graph
structure: the precise shape of the edges does not matter, only the connection implied
between two nodes does. The same remark holds for Venn diagram, state-charts, symbolic
maps where it is only the configuration of finite sets of objects that is relevant. When
metric aspects turn out to be important, they are often restricted to represent partial order
relationships: A is bigger that B, C is closer from D than E, path F is shorter than path
G, etc.

Moreover, we cannot restrict diagrams to plane geometry. For example, the realisability
of a Venn diagram representing an arbitrary predicate requires working in a 3 dimensional
space [LP97]. Path equivalence depends of the underlying structure of space (e.g. all closed
paths are equivalent on the plane, but not on a torus). So we have to consider general spatial
structures in many dimensions.

Hence, if we neglect quantitative diagrammatic representations (like bar-chart, geological
survey map, etc.) we can focus on n-dimensional combinatorial algebraic topology. Alge-
braic topology develops the application of algebraic tools to topological problems. Such
an approach is very attractive because we are particularly interested in the development of
“constructive” objects, i.e. objects that can be managed by a program.

IX.2.1 Simplicial Complexes (SC)

Simplicial complexes are topological abstract structures that generalise the notion of graph[Hen94,
HY88]. Indeed, all complexes of dimension less than 2 are graphs. We find it interesting to
consider some spatial properties of graphs and then generalise them to many dimension to
express more information. Simplicial complexes are the abstract objects that realises this
generalisation. The following definition is standard in algebraic topology.

An abstract simplicial complex [Hen94, HY88] is a couple (V,K) where V is a set of
elements called vertices of the complex and K is a set of finite parts of V such that if s ∈ K,
then all the parts s′ ⊆ s belong also to K. The elements of K are called abstract simplexes.
The dimension of a simplex s is equal to Card(s)− 1. The dimension of the complex is the
dimension of its biggest simplex.

(a) 0-simplex (b) 1-simplex, it is also an
edge in a graph.

(c) 2-simplex

Figure IX.1: Geometrical representation of p-simplexes for p varying from 0 to 2.

All p-complexes with p < 2 are graphs. Indeed, graphs are composed of edges and
vertices of dimension 1 as shown on figure IX.1(b). Simplicial complexes are particularly
attractive to generalise semantic networks by keeping the possibility to express hierarchies
like in a relational graph [Hir97].
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We say that two simplexes σ1 and σ2 are q-connected if there is a polygonal chain of
dimension q that connects σ1 with σ2. Any p-simplex is p-connected to itself with a 0-chain.

Let α = (σ0, σ1, ..., σn) be a sequence of simplexes belonging to a complex K. The
sequence α is called a polygonal n-chain of origin σ0 and end σn if for all couples (σi, σi+1),
σi ∩ σi+1 6= ∅. The dimension of α is the smallest dimension of σi ∩ σi+1.

A p-simplex s is noted: s = 〈v0v1...vp〉, where vi ∈ V . The figure IX.1 shows the
geometrical representation of 0, 1 and 2-simplexes.

We propose to use simplicial complexes to represent knowledge.

IX.2.2 Representing Binary Relations with Simplicial Complexes:
Q-analysis

Atkin already proposed to represent binary relations with simplicial complexes: it is the
Q-Analysis [Atk77, Atk81, Joh91a]. Q-Analysis has been used to model traffics [Joh91b],
interactions between agents [Dor86, PLC91, Cas94, chap. 8], position analysis at chess
[Atk76] and social relationships [Atk77, Gou80, Cas94].

Let Λ be the incidence matrix of a binary relation λ ⊂ A × B. Let a ∈ A, and the set
Ba of elements bi ∈ B such that (a, bi) ∈ λ. The set Ba can be directly read from Λ, as the
a-column (see table IX.1).

We represent the elements bi of Ba as vertices and a as a simplex built on these vertices.
The dimension of the simplex Sa representing a depends on the number of vertices in Ba.

The whole matrix Λ can then be represented as a simplicial complex containing all the
simplexes representing each element ai ∈ A, we note it KA(B, λ) (see figure IX.2(a)).

Likewise, we can represent Λ−1 with the dual simplicial complex KB(A, λ−1). In this
case, the elements ai are taken as vertices and the elements bi are represented as simplexes
(see figure IX.2(b)). We say that KA(B, λ) and KB(A, λ−1) are conjugates, they contain
the same information but present it in a different and complementary way.

Table IX.1: Incidence matrix associated with λ. The elements bi ∈ B that are λ-related to
a1 can be directly read from the matrix as the a1-column (first column).

λ a1 a2 a3

b1 1 0 0
b2 0 1 1
b3 1 1 0

We extended Q-Analysis to allow the representation of sets of predicates as a simplicial
complex too [Val97]. We take a set of predicates P = {p1, p2, ..., pn} and represent the
binary relation µ ⊂ A× P such that (ai, pj) ∈ µ if pj(ai) holds.

Take for example the set of integers A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the set of predi-
cates P = {p1, p2, p3, p4} = {parity, oddity, primality,multiple of 3}. The incidence matrix
of µ is then the one given on table IX.3. We can represent the dual complex of µ, each ele-
ment ai ∈ A being a simplex build with vertices pi ∈ P . This dual representation enlighten
the fact that elements 4, 8, 10 have exactly the same representation when taking these few
predicates.

A representation based upon simplicial complexes associates the same simplex to ele-
ments of A that cannot be distinguished. In other words, two elements will be separated
only if there is at least one predicate that allows the differentiation. The same situation
occurs with the dual complex.
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Two simplexes that have a smaller k-simplex in common are said to share a k-face. In
terms of representation, it means that they have k features in common. As Freska emphasised
it, we call here for the use of discriminating features rather than for precise characterisation
in terms of universally applicable reference system [Fre97].

We can say that the identity of an element is represented by the features he shares with
others and also by the ones that are specific to it [HE97].

IX.3 A Categorisation Problem

Holland [HHNT86] gives a simple model of the process of categorisation for the construction
of a homomorphic representation that maps many elements of the world to one element
of the representation. We present now the construction of a simplicial representation by a
categorisation task according to Holland’s model.

Let C be the categorisation function that maps the states of the world onto a smaller
number of categories. The categorisation is made with the detection of the states of the
world through detectors. Let d1, ..., dn be the binary detectors, that can take the value 0 if
they are off or 1 if they are on.

When a state S1 is perceived, the detectors take values 0 or 1. We can represent the
values of the detectors for this state by the vector V1 = (V d1

1 , ..., V dn
1 ) of length n where V d1

1

is the value of d1 and so on. Then V1 represents the state S1.
Consider many successive states S1, ..., Sp and their encoding into binary vectors V1, ..., Vp

of length n. If we write the vectors representing this list of states, we construct the matrix
of table IX.2 of the relationship ν between the detectors and the states.

Starting from this matrix, we build a simplicial representation of the states encoded.
Indeed, we build the matrix by writing the lines Vi corresponding to the encoding of each
state Si, but we can see that each detector has a representation as a column of the matrix.
Thus, each detector, that detects a particular feature, can be represented as a simplex. The
representation of the whole matrix as a complex and its dual representation, will show the
categories extracted through this perception. Indeed, two states undistinguishable by the
detectors will be represented as equivalent.

b3

b1

b2

a1

a3

a2

(a) Simplicial representation of λ taking bi

as vertices and ai as simplexes

b3

b1

b2

a2

a1a3

(b) Dual simplicial representation of λ tak-
ing ai as vertices and bi as simplexes

Figure IX.2: Simplicial representation of the binary relation λ. We have λ(a1) = {b1, b2}.
So we represent a1 as a 1-simplex, b1 and b2 being its two vertices.
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p1 p2 p3 p4

1 0 1 0 0
2 1 0 1 0
3 0 1 1 1
4 1 0 0 0
5 0 1 1 0
6 1 0 0 1
7 0 1 1 0
8 1 0 0 0
9 0 1 0 1
10 1 0 0 0

p3

p4

p1p2

3
9 6,7

4,8,10

25
1

Figure IX.3: Incidence matrix and dual complex associated with µ ⊂
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {p1, p2, p3, p4} where we can see that the integers 4, 8 and
10 are identical with respect to these criteria.

Image RepresentationDetectorsWorld
(incidence matrix)

0

1

1

0

Figure IX.4: The detectors are lighted on whenever the property they encode is present
in a state of the world. The two triangles are here treated as equivalent since no detector
allows their distinction. The state of the detectors (on/off ) is then used to construct a
representation.

Table IX.2: Incidence matrix of the relationship ν between the n detectors of a system and
a succession of p states detected and encoded as vectors Vi.

d1 ... dn

V1 1 ... 1
... ... .. ...
Vp 1 ... 1
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IX.3.1 Analysing the Little Red Riding Hood Tale

We illustrate now this construction model with a concrete example. We try to extract an
ontology from the perception of the successive states that describe the Little Red Riding
Hood tale.

To represent the objects of the The Little Red Riding Hood, we chose for example the
detectors: alive, animal, good, bad, place, small, several, motor, exterior, interior that
encode the main characters, objects and concepts of the story according to table IX.3.1.
These encodings are of course arbitrary, but the important thing here is that we have a finite
number of detectors that can encode the states of the world and that allow the distinction
between different objects of the world.

Note that this analysis is held at a naive level. The story can be told for example in the
11 states of the world presented table IX.4, also called images.

Several strategies are possible to extract the simplexes considered as categories, we im-
plemented two [Val97] in the Mathematica [Wol88b] programming language. The first one
extracts concepts incrementally from the first image to the last one. This means that a base
of categories is extracted from the first image. Then if this base is not sufficient to express
the second image as a linear combination of the simplexes of the base, we add to the base
the simplexes necessary to express it and so on. This is done with a Mathematica function,
that we called Incremente1. We illustrate briefly its functioning with an abstract example
before using it on the images of the tale.

If we take the abstract sequence of images:

l = {{1, 2, 3}, {3, 4}, {5, 6}, {1}, {1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 3}}

Where an image is written between { } and the story itself, composed of images is also
written between { }. When we ask for the incremental base, we get the simplexes:

Incremente{l}

cSimplex[{1, 2, 3}, {3, 4}, {5, 6}, {1}]

The base is expressed with simplexes (cSimplex[] structure). The first elements of the base
is the first image itself, since it is perceived alone with no “history”, and thus no base to
express it. When the second, third and fourth images are perceived, they are also entirely
added to the base since they are necessary to express themselves. But then, these simplexes
are sufficient to express the last three images as intersections and unions of the previous
ones.

The other strategy builds immediately a taxonomy from the 11 images detected as a
whole. This means that we get a minimal basis necessary to express all the categories. This
strategy is implemented with the function SimplexBase. If we take the same succession of
images l, we will not get the same base:

SimplexBase[l]

cSimplex[{1}, {2}, {3}, {4}, {5,6}]

where only the objects 5 and 6 can not be distinguished since they appear together each
time they appear in an image. For all the other objects, there is an image (a state) that
makes possible their distinction by the detectors.

The incremental and instantaneous ontologies extracted from the Little Red Riding Hood
11 images are given in figure IX.5 where we can only see the maximal simplexes represented
in a Hasse diagram2. In this representation, each point is a simplex and the vertices represent

1The function names are in French.
2For an introduction to Hasse diagrams, see [Wol88b], or [Val97]. The extraction of categories from

the Little Red Riding Hood is being re-thinked more rigorously and applied to the analysis of hypertexts
structures. See the web site http://www.lri.fr/̃/HTML/red.html for future developments.
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Table IX.3: Detectors encoding the objects of the world of the Little Red Riding Hood.

Objects Encoding

Red alive, good, small
Humans alive, good
Wolf alive, animal, small
Trees alive, place, several, bad
House place
Basket small
Give motor, exterior
Sleep motor, good
Eat motor,interior, good
Walk motor
Talk motor, exterior

Table IX.4: The Little Red Riding Hood told in 11 scenes or states of world.

Detectors View Scene of the story

1. Red, Mother, talk, house The mother tells Red her mission
2. Red, Mother, give, basket, house The mother gives the basket to Red
3. Red, walk, tress, basket Red walks into the woods
4. Red, Wolf, talk, trees, basket Red meets the wolf
5. Red, walk, trees, basket Red continues her walk
6. Wolf, walk, trees The wolf also goes to Grandma’s
7. Grandma, sleep, house, bed Grandma is in her bed
8. Grandma, Wolf, talk, house, bed The wolf meets Grandma
9. Wolf, eat, house, bed The wolf eats Grandma

10. Red, Wolf, talk, house, basket, bed Red talks with the wolf (disguised as Grandma)
11. Wolf, eat, house, bed, basket The wolf eats Red too
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inclusion relationships. The concepts represented at level n, are ontologically precedent to
the ones represented on the level n + 1 (the atomic simplexes of the inner layers are at
level 0).

IX.4 Inheritance Restructuring

We present now an algorithm for inheritance hierarchy restructuring proposed by [Moo96] in
the field of object oriented programming. The aim of this algorithm is to infer or restructure
the inheritance hierarchy of classes to achieve smaller, consistent data structure and better
code re-use. We chose this example because it is simple to explain and well formalised. The
CAT framework provides a concise and clear language to specify this algorithm and exhibit
its diagrammatic nature.

We will call features any property, behaviour, instance variable or method that can be
used for the description of objects. A class corresponds to the description of a type of
objects sharing a set of features. Using inheritance to specify classes, we express explicitly
the hierarchy relationships between the classes.

Moore [Moo96] proposes an algorithm, called IHI, to infer automatically the inheritance
hierarchy from the flat description of the objects by their features. In the computed hier-
archy, there must be a class corresponding to each concrete object (see. fig IX.6). Further
criteria must be specified to constrain the possible hierarchies:

1. Every feature should appear in only one class (maximal sharing of features between
classes).

2. Minimal number of classes.

3. All inheritance links that are consistent with the objects structure must be present.

4. The number of explicit inheritance links must be minimised

5. The concrete objects should correspond to leaves of the inheritance hierarchy tree.

These criteria all together are sufficient to specify a unique solution as showed by Moore in
[Moo96].

The problem of inferring a hierarchy from a set of concrete objects can now be rephrased
into the CAT framework. We represent the features by vertices, and the classes by different
simplexes built with the vertices corresponding to the features that define the class. The
inheritance relation of classes in the hierarchy is then simply modeled as the inclusion relation
of the simplexes. Finally, the inheritance graph is the minimal complex containing all the
representations of the classes.

The five criteria used by Moore to constrain the class hierarchy are now topological con-
straints that have a simple and intuitive meaning. The corresponding topological constraints
are respectively:

1. Every feature appears in a distinguished simplex.

2. A minimal number of simplexes are distinguished.

3. The third property is automatically achieved within our translation.

4. A class inherits from the maximal classes it contains.

5. Concrete objects are simplex of maximal dimension.

The problem of inferring an inheritance hierarchy is now simply to find simplexes satisfying
the previous properties in the complex made by the concrete objects.
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IX.5 Analogy Solving with the ESQIMO System

We explore now the possibility of a topological representation to support analogy [VGS98,
VG98]. The analogy solving between a source and a target domain is modeled as a topolog-
ical transformation of the representation of the source into the representation of the target
in some underlying abstract space of knowledge representation.

The task is to answer a typical IQ-test by giving an element called D such that it
completes a four-term analogy with three other given elements A,B and C: “find D such
that it is to C what B is to A”. This kind of analogy solving has already been studied by
Evans [Eva68], but in our work the solution has to be build from scratch since no set of
possible solutions is given to choice. We call this kind of problems, non supervised IQ-tests.
This four-term analogy solving is usually decomposed into four steps [Eva68].

• Find the possible relations RAB between A and B.

• Find the possible relations RAC between A and C.

• Apply RAB to C only on a domain determined with RAC .

• Check the symmetry by applying RAC to B.

IX.5.1 Diagrammatic Representation of the problem

Usually, IQ-tests are given in terms of geometrical elements so that they can express many
different properties at the same level and still stay simple. We chose a geometrical universe
similar to the one investigated in [WS90] of twelve basic elements E = {e1, ..., e12}, as shown
on figure IX.7(a). These elements are all the possible combinations of the seven properties
(or predicates): P = {p1, ..., p7} = {round, square, triangle, white, dark, big, small}.

These two sets are the only knowledge used by ESQIMO to solve the tests. We can
represent this knowledge with a simplicial complex K(Ω) or its conjugate K ′(Ω) (see figure
IX.7(b)) by representing the binary relation λ ⊂ A×P such that (ai, pj) ∈ λ if pj(ai) holds.

IX.5.2 Algorithm based on a SC Representation

When a problem is presented, each figure A, B and C is composed of one or more elements
ei ∈ E. Each element ei can be represented as a simplex of K(Ω), the properties pj such
that pj(ei) holds, being its vertices. Thus, a simple figure (composed of only one element)
will be represented as a simplex and a composed figure (more than one element) will be
represented with a set of simplexes. The problem is now to find a relation between the (set
of) simplex(es) representing A and the (set of) simplex(es) representing B and apply it to
the (set of) simplex(es) representing C.

Case of simple figures.

In the case of simple figures, the transformation TAB is seen as a polygonal chain from SA to
SB inK(Ω). An elementary step linking Si to Si+1 in a chain is then viewed as an elementary
transformation TSi,Si+1 . A polygonal chain from SA to SB is then a transformation of A
into B given by: TSl,SB

◦ ... ◦ TSA,S1 .
If there are several chains, then we say that there are several possible relations between

A and B. We can select a best solution giving a higher priority to polygonal chains that are
short and of higher dimension, to choose a transformation that requires less steps and that
preserves more properties.

To apply TAB to SC we have to extend the domain of TAB , and so extend TAB to T ′AB

such that T ′AB(SC) = SD and T ′AB(SA) = SB , T ′ is then a simplicial application [Hen94].
See figure IX.8 for a general view of the process.
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There are different possible strategies to determine the domain of S(C) on which we can
apply TAB , and we implemented 3 of them, presented in [Val98].

Case of composed figures.

For composed figures, the transformations can be of several types: destruction, creation,
metamorphosis, division, junction (like in the changes introduced by Hornsby [HE97]). We
first pair the simplexes of {SA} with those of {SB} and look for transformations between
the simplexes of each pair. The transformation TAB is then the parallel application of the
transformation found for each pair. There are many possible pairings leading to different or
to the same solution [Val98]. The only constraint we need is that all the vertices and faces
of S(B) are paired with vertices from S(A).

IX.5.3 Examples of Analogy Solving with ESQIMO

ESQIMO has been implemented in the CaML [Ler93] programming language. In this example,
we will try to ask ESQIMO to solve the IQ-test on figure IX.9. We will define the figures
A, B and C, and we expect ESQIMO to answer the figure D seen on figure IX.9.

We want to define A as a white small circle, that is: A = {e1}. So we write in the
interface:

#let A=e1;;
A : int t = <abstr>

The same way, we define the figures B and C as being respectively element e4 (a little black
circle), and e2 (a little white square). This can be directly read from the “dictionary” of
figure IX.7(a):

#let B=e4 and C=e2;;
B : int t = <abstr> C : int t = <abstr>

Now we can ask ESQIMO to solve our test3:

#let D=resoud_simple omega A B C;;
- : int t = <abstr>

The structure of the solution is a simplex, to see its internal structure, that is the properties
that composes D, we type:

#elements D;;
- : int list = [2; 4; 6]

The solution proposed by ESQIMO is composed of the properties [2; 4; 6], that is a black
small square, which corresponds to the element e6 expected. Figures IX.10 to IX.12 give
additionnal examples.

Many choices made in ESQIMO’s algorithm can be discussed, or can be seen as other
additional strategies parameterizing the ESQIMO kernel:

• The description of the properties of each figure in terms of predicates can be a problem
for properties such as position. In that case, we could give each possible position a
predicate that could be true or false, or we could only take relative positions into
account.

3ESQIMO functions and interface are described in details and in english in [Val98]
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• The way we associate a transformation to a given polygonal chain is not unique.
In particular, our transformations could be called 0−degree since they preserve the
minimum of topological properties along a chain. The next step consists in pairing
complexes for composed figures.

• The way we determine the domain of SC on which to apply TAB can also lead to
different strategies depending on whether we consider only the intersection between
SA and SC or the whole SC .

• The measure of satisfaction to select a best solution is here to take the shorter and wider
polygonal chain between the two complexes. This does not necessarily correspond
to the more natural transformation between the two complexes, other measures of
satisfaction can be tested.

Note that this model does not depend on the geometrical nature of the figures. Indeed,
we could, for example try ESQIMO on verbal IQ-tests more like in the COPYCAT system
[Hof84].

IX.6 Conclusions

Even if the ESQIMO system can be considered as very simple, we are convinced that a
topological representational structure is well-adapted to support analogy modeling. We find
the results presented here already surprisingly satisfying with respect to the simplicity of
the underlying machinery and this motivates further investigation.

An important point to note is that we have only used elementary CAT notions: simplicial
complexes generalize the concept graph and polygonal chains extent the concept of path.
These two notions have an immediate and intuitive meaning, even in higher dimensions and
are obviously diagrammatic.

Note also that there is a strong link between the concept of simplicial complex, open and
closed sets of a topology and lattice theory. The simplex of a complex are the closed set of a
natural discrete topology of the complex and they are also the element of the inclusion lattice
of the complex. This link between the simplicial complex structure and the lattice structure
explains why it is so easy to translate taxonomic reasoning problem (which involves lattices)
into a topological problem.

Future work must include the use of further CAT constructions (like simplicial applica-
tions, homotopy group, homology classes, etc.) to handle more sophisticated diagrammatic
situations. We will also investigate the use of the topological structure of open and closed
set associated canonically to a complex as a “logic of observations” as suggested in [Vic88].
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[alive][motor] [several][animal] [place] [good] [small] [int] [ext]

[place, motor, alive, good]

[place, motor, alive, good, small, ext]

[small, int]

[place, motor, alive]

[several, bad]

[bad]

[place, motor, several, alive, bad, small]

[place, motor, alive, good, several, bad, small]

Figure IX.5: Two ontologies extracted from the Little Red Riding Hood story. The ontology
extracted instantaneously is represented top-down on the higher part of the figure; the one
extracted incrementally is represented bottom-up on the lower part of the figure.

f1 f2 f3

A:

f1 f2 f4

C:

f1 f5

B:

f3

A:

f4

C:

f5

B:

f2

f1

class

inference

Object ‘A’ has 
features ‘f1’, ‘f2’  and ‘f3’

Figure IX.6: A set of concrete objects is given on the left. A possible hierarchy that
accepts this set of objects is given on the right. The features linked to a class are the
set of features defined for this class merged with the features inherited (recursively) from
the parent classes. A class without name is called an abstract class in the object oriented
programming terminology [Boo91] and corresponds to an internal node of the inheritance
graph (hierarchies with multiple inheritance will be graphs rather than trees [dBY95]).
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e1 e2 e3

e4 e5 e6

e7 e8 e9

e10 e11 e12

(a) Elements of the universe Ω of ESQIMO,
respectively called e1 to e12 starting from
the top left element.

Plein

Carre
Triangle

CreuxRond

(b) A 2D view of the dual complex K′(Ω),
the elements of E are the vertices and
the properties pi ∈ P are simplexes of
K′(Ω). Notice that the 6-simplex repre-
senting the property of blackness is nor-
mally 5-dimensional.

Figure IX.7: Elements managed by ESQIMO and their representation as a simplex in a
simplicial complex.
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C(A)

C(B)

C(C)

B CA

(a) Figures A, B and C are represented
as simplexes

C(A)

C(U)

C(B)

(b) Transformation TAB is a polygonal
chain from SA to SB into C(Ω)

C(A)

C(C)

C(U)

(c) Domain of SC to which we ap-
ply TAB

C(A)

C(C)

C(U)

(d) Construction of SD

Figure IX.8: Four steps of ESQIMO’s algorithm to solve IQ tests.

(a) (b) (c) (d)

Figure IX.9: Figures A, B and C are defined and we expect ESQIMO to answer the figure
D. The transformation that we expect ESQIMO to find could be that the colour white is
replaced by black, and shapes and sizes are left unchanged.
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(a) (b) (c) (d)

Figure IX.10: The first element becomes bigger and the second becomes black.

(a) (b) (c) (d)

Figure IX.11: The first element becomes black and the second becomes white, is duplicated
and one of the duplicates is bigger.

(a) (b) (c) (d)

Figure IX.12: The first element is duplicated and one duplicate is squared. When squared,
the property of “triangleness” is not taken off, this creates then an unstable solution, called
a “monster”.
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Introduction to the publications

In this chapter we translate in English the presentations that appear before each paper in
the “compilation of publications” of the HDR application file.

These short presentations give some hints to localize the contribution in the general
framework of the projects.

X.1 Adage

• J.-L. Giavitto, A. Devarenne, and G. Rosuel.
PRESTO: des objets C++ persistants pour le systme d’information d’ADAGE.
In Journes d’tudes Bases de donnes dductives et Bases de donnes orientes
objets, Paris, Dcembre 1988. AFCET.

This paper introduces a system for the management of persistent objects in C++. It was
used to implement the Adage data-base.

One of the notable feature is the lightness of the implementation which relies only on
the cpp standard macro-processor and the overloading to emulate pointer arithmetics. This
last techniques, called here pseudo-pointer has been then popularized and widespread under
the name of smart-pointer.

The notions involved are now indubitably standard, but at the time this work was done
(1987), the implementation of persistent objects in C++ was new.

• J.-L. Giavitto, A. Devarenne, G. Rosuel, and Holvoet Y.
ADAGE: new trends in CASE environments.
In Proc. of the International Conference on System Development Envi-
ronements & Factories, Berlin, 9-11 May 1989. Pitman.

This paper is a first presentation of the Adage system, a generic CASE tool developed
from the experiments and conclusions of the IDEAS, a software environment for algebraic
specifications developed in the METEOR European ESPRIT project.

One of the novel Adage features was the specification of all the entities and their rela-
tionships handled during the software development in a uniform language called GDL for
Graph Description Language. This framework has been used to describe the development
of algebraic specifications, LOTOS specifications, real-time C programs, etc. It is based on
recursive typed graphs (a node or an edge may be a graph itself and the type of a graph
constraints the type of the nodes and of the edges that can appear).
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• J.-L. Giavitto, A. Devarenne, G. Rosuel, Y. Holvoet, and A. Mauboussin.
Design decisions for the incremental ADAGE framework.
In 12th Int. Conf. on Software Engineering, Nice, March 1990.

This paper pursues the presentation of Adage.
It reviews the problems of genericity, incrementality, neutrality w.r.t. the software de-

velopment methodology and the integration of the various components and tools.

• G. Rosuel, J.-L. Giavitto, and A. Devarenne.
The internals of a large CASE tool in C++.
In Proc. of the 5th Int. Conf. on Technology of object-oriented languages
and systems, TOOLS 5, Santa-Barbara, CA, august 1991. Prentice Hall.

This paper is a synthetic presentation of the implementation of Adage in C++.
The choice of the software development tools was not clear at this time at Alcatel-

Alsthom and the decision was in addition confused by the political context. I have advocated
the use of an object oriented language (against ADA) and more specifically the use of
C++ (against Objective C) for the company subsidiaries. This is why this paper adopts a
militancy form.

X.2 MEGA & PTAH

• J.-L. Bchennec, C. Germain, J.-L. Giavitto, F. Cappello, D. Etiemble, and
J.-P. Sansonnet.
Machines parallles grille de processeurs tridimensionelle.
Revue Scientifique et Technique de la Dfense, 1991.

This article is a presentation of the MEGA hardware architecture. MEGA is a project to
explore giant architectures: up to 106 elementary processors. The main problems of a such
massive architecture are then the physical implementation of the interconnection network
and the message routing which has to be completely decentralized.

Two original solutions have been studied: a tridimensional grid (and this choice is not as
naive as it may appear in terms of bisection performance) and the forced routing (routage
forc). Variations of this routing strategy has been also studied by others under the name
deflection routing.

• C. Germain and J.-L. Giavitto.
A comparaison of two routing strategies for massively parallel computers.
In 5th Int. Symp. on Computer and Information Sciences, Cappadocia,
Turquie, 1990.

The forced routing is an asynchronous algorithm, totally decentralized, that can be
hardwired with very few memory resources. It is a balance between deterministic and
random routing strategies. It was developed by C. Germain in the framework of the MEGA
project and I have worked on the parallel simulations. As a matter of fact, the behavior
of the algorithm is very difficult to characterize analytically and its study must be done
through extensive simulations. These simulations are especially expensive in the case of
realistic MEGA machines (> 104 nodes). I then used the computing power of the Connection
Machine to perform the simulations.
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• F. Delaplace and J.-L. Giavitto.
An efficient routing strategy to support process migration.
In Euromicro 91, Vienne, Autriche, 1991.

After the routing of the messages, we have also studied the problem of process migration
(for instance to load balance the charge). F. Delaplace and I have proposed an algorithm
to economically forward messages sent to a migrating process. The problem of forwarding
message is especially crucial because of the massive architecture of MEGA.

• J.-L. Giavitto, C. Germain, and J. Fowler.
OAL: an implementation of an actor language on a massively parallel
message-passing architecture.
In 2nd European Distributed Memory Computing Conf. (EDMCC2), vol-
ume 492 of LNCS, Mnich, 22-24 April 1991. Springer-Verlag.

Several programming models have been proposed for MEGA. I have developed an actor
model, called OAL (for Orsay Actor Language) following a suggestion of J. Fowler, an
ERASMUS student which has participated to the work.

The main conclusion of this work is that, if actor model are well fitted to the specification
of asynchronous, dynamic and mobile processes, the representation of regular data structure
(like arrays) and the expression of regular computation (like in scientific computation) is
too expensive w.r.t. other approaches like data parallelism.

• F. Cappello, J.-L. Bchennec, and J.-L. Giavitto.
PTAH: Introduction to a new parallel architecture for highly numeric pro-
cessing.
In Conf. on Parallel Architectures and Languages Europe, Paris, LNCS
605. Springer-Verlag, 1992.

• F. Cappello, J.-L. Bchennec, F. Delaplace, C. Germain, J.-L. Giavitto,
V. Neri, and D. Etiemble.
Balanced distributed memory parallel computers.
In Int. Conf. on Parallel Processing, St Charles, Ill., pages 72–76. CRC
Press, 1993.

The PTAH project has been developed, starting from the conclusions of the MEGA
project, to take into account the numerical applications of massive parallelism.

After the dynamic and asynchronous execution models developed for MEGA, the PTAH
project has emphasized a synchronous architecture and static execution model. The main
obsession of the project was to adapt the bandwidth and the latency of the main hardware
resources of the architecture: memory, network and processor. The motivation of such a
radical approach and its consequences are investigated in these two papers.
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X.3 81/2

• J.-L. Giavitto.
A synchronous data-flow language for massively parallel computer.
In D. J. Evans, G. R. Joubert, and H. Liddell, editors, Proc. of Int. Conf.
on Parallel Computing (ParCo’91), pages 391–397, London, 3-6 September
1991. North-Holland.

• O. Michel, J.-L. Giavitto, and J.-P. Sansonnet.
A data-parallel declarative language for the simulation of large dynamical
systems and its compilation.
In SMS-TPE’94: Software for Multiprocessors and Supercomputers, Moscow,
21-23 September, 1994. Office of Naval Research USA & Russian Basic Re-
search Foundation.

These two papers are a general presentation of the 81/2 project.
In the first paper (PARCO’91), the language is presented in relation with MEGA and

in a parallel architecture perspective: kind of parallelism that can be exploited, execution
model, etc.

The second paper (SMS-TPE’94) outlines the target applications of the language: the
simulation of dynamical systems. The paradigmatic example of the project (which are also
paradigmatic examples of the application domain !) are presented: a discrete event simu-
lation (called wlumf, this simulation announced the forthcoming tamagoshi), the numerical
resolution of a partial differential equation and the iteration of a chaotic system.

• J.-L. Giavitto and J.-P. Sansonnet.
81/2 : data-paralllisme et data-flow.
Techniques et Sciences de l’Ingnieur, 12 - Numro 5, 1993.
Numro spcial Langages Paralllisme de Donnes.

• O. Michel and J.-L. Giavitto.
Design and implementation of a declarative data-parallel language.
In post-ICLP’94 workshop W6 on Parallel and Data Parallel Execution
of Logic Programs, S. Margherita Liguria, Italy, 17 June 1994. Uppsala
University, Computing Science Department.

These two papers investigate the adequation of a declarative language to the expression
and the exploitation of parallelism.

A taxonomy of parallelism expressions in programming languages is presented.
The efficient implementation of a declarative language requires the development of new

compilation techniques and smart compilers. A sketch of the 81/2 compiler structure is then
described.

• J.-L. Giavitto.
Typing geometries of homogeneous collection.
In 2nd Int. workshop on array manipulation, (ATABLE), Montral, 1992.

One of the 81/2 compiler phases is the geometry inference which is introduced in this
paper.

The fundamental 81/2 data structure is the fabric (called also web, see footnote in page
12). A fabric is a stream of arrays. The rank of these arrays constitutes the geometry of the
fabric.
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The purpose of this study is to check that the geometry of a fabric does not depend of the
time and also to automatically infer this geometry (the geometry of the fabric are implicit,
like types in ML expressions for instance). A novel and efficient algorithm is proposed. This
algorithm is integrated in the 81/2 compiler.

• J.-L. Giavitto, D. De Vito, and O. Michel.
Semantics and compilation of recursive sequential streams in 81/2.
In H. Glaser and H. Kuchen, editors, Ninth International Symposium on
Programming Languages, Implementations, Logics, and Programs (PLILP’97),
volume 1292 of Lecture Notes in Computer Sciences, pages 207–223, Southamp-
ton, 3-5 September 1997. Springer-Verlag.

This paper gives the denotational semantics of 81/2 streams and shows how an efficient
implementation can be derived.

The semantic equations, which handle infinite streams, are first rewritten to make appear
a left-to-right process. We then consider the equations describing the current computations
which are induced from the previous ones. This decomposition enables the computation of
the solutions of the equations without requiring a fixpoint iteration and without handling
infinite objects.

Semantic properties, inferred from the equations, are used to simplify and optimize the
generated code.

Our compilation method is validated by some test benchmarking the result of a 81/2

compilation with the corresponding hand-coded C program.

• A. Mahiout, J.-L. Giavitto, and J.-P. Sansonnet.
Placement et ordonnancement de graphes dataflow data-parallles.
In 5ime Rencontres Francophones du Paralllisme (Renpar 5), Brest. Univ.
Brest & CNRS, 1993.

• A. Mahiout, J.-L. Giavitto, and J.-P. Sansonnet.
Distribution and scheduling data-parallel dataflow programs on massively
parallel architectures.
In SMS-TPE’94: Software for Multiprocessors and Supercomputers, Moscow,
September, 1994. Office of Naval Research USA & Russian Basic Research
Foundation.

• A. Mahiout, J.-L. Giavitto, and J.-P. Sansonnet.
Modliser les dpendances entre les tches data-parallles pour le placement et
l’ordonnancement automatiques.
In 6ime Rencontres Francophones du Paralllisme (Renpar 6), Lyon, France,
Juin, 1994.

This series of papers is dedicated to the distribution and the scheduling of data parallel
data flow programs. In opposition to HPF, our approach in 81/2 is implicit and it is the task of
the compiler to distribute the data and to infer a subsequent schedule of the computations.

The goal is to develop efficient heuristics that take into account the specificities of the
data parallel program (regular computation, implicit synchronization of the operators, etc.).

We have developed an original representation that enhances data flow graphs with data
parallel annotations. The heuristics have been simulated and tested on the IBM SP2.

141



• J.-L. Giavitto, O. Michel, and J.-P. Sansonnet.
Group based fields.
In R. H. Halstead, I. Takayasu, and C. Queinnec, editors, Proceedings of
the Parallel Symbolic Languages and Systems (PSLS’95), volume 1068 of
LNCS, page 209–215, Beaune (France), 2-4 October 1995. Springer-Verlag.

The idea of GBF (Group Based Fields) is to consider a data structure as a set of data
indexed by some set. Here we consider a group structure on the index set.

This point of view encompasses the array data structure (as a domain in (Zn,+)), the
n-ary trees (as a free group with n generators), a circular buffer of p-elements (as a cyclic
group of order p), etc.

The group structure formalizes in a compact manner the dependency relationships be-
tween the data structure elements and enables the definition of polymorphic intensional
operators.

This paper presents the GBF in the data field perspective. Other developments have
been done and are accessible in this report (cf. chapter VI).

This research direction is currently under works.

• Jean-Louis Giavitto, Dominique De Vito, and Jean-Paul Sansonnet.
Une architecture client-serveur en java pour le calcul de champs de donnes.
In G.-R. Perrin, editor, 10ime Rencontres Francophones du Paralllisme
(Renpar 10), Strasbourg, Juin 1998. Universit de Strasbourg.

• Jean-Louis Giavitto, Dominique De Vito, and Jean-Paul Sansonnet.
A data parallel java client-server architecture for data field computations
over Zn.
In Europar. LNCS, 1998. to be published in september

These two papers are the first in a series dedicated to the presentation of a new software
architecture for the parallel evaluation of data fields on Zn.

This architecture enables multi-client interactions, and the sharing of data between ap-
plications. It is also in the trends towards the meta-computing.

One specific feature of our approach is the interplay between denotational semantics and
implementation, through successive refinements introduced to handle the distribution of the
data and the flat representation of Zn in core memory.

This research direction is currently under works.
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X.4 TopoAi

• Erika Valencia, Jean-Louis Giavitto, and Jean-Paul Sansonnet.
ESQIMO: Modelling Analogy with Topology.
In F. Ritter and R. Young eds, European Conference on Cognitive Mod-
elling (ECCM’98), pp 212–213, Nottingham, 1–4 April 1998. University of
Nottingham.

• Erika Valencia and Jean-Louis Giavitto.
Algebraic Topology for Knowledge Representation in Analogy Solving.
In C. Rauscher edt, European Conference on Artificial Intelligence (ECAI’98),
p. 88–92, Brighton, August 1998. to be published in august

• J.-L. Giavitto, E. Valencia.
Combinatorial Algebraic Topology for Dagrammatic Reasoning.
Technical Report 1165, Laboratoire de Recherche en Informatique, April
1998.

These publications are the beginning of a new research direction, called TopoAi. The
goal is to develop topological tools for programming and for knowledge representation.

The first two articles present the ESQIMO system. This system is dedicated to the
resolution of analogies. The approach is to model the analogy solving as a path to find in
some abstract space described by a simplicial complex.

The last paper is a technical report (largely reprinted in chapter IX) that extends the pre-
vious approach to diagrammatic reasoning. New application examples are a categorization
problem and the diagrammatic representation of a software restructuring algorithm.

This research direction is currently under works.
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[Dum91] S. Dumesnil. Implémentation de réseaux neuronaux sur l’architecture ptah,
Septembre 1991. rapport de DEA Informatique de l’Université de Paris-Sud.
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généricité pour construire des environnements adaptables. In Le génie logiciel et ses
applications, Toulouse, Décembre 1989.
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d’école d’ingénieur. Ce rapport a servi de première partie au rapport final du
contrat MRES 85.B0949 “Etude d’un multi-processeur pour le langage LORE”.

[Gia87] J.-L. Giavitto. Le langage C. Technical report, Alsthom Villeurbanes / Laboratoires
de Marcoussis, Octobre 1987. (support de cours, 60p.).

[Gia88] J.-L. Giavitto. IDEAS: interface users’s guide, IDEAS: GDL user’s guide, IDEAS:
Installation and customisation guide. Technical Report t11/CGE1988, METEOR
ESPRIT Technical reports / CEE, 1988. (30p.).

[Gia91a] J.-L. Giavitto. 8,5: un langage dataflow synchrone pour une machine massivement
parallle. In 3ème Symp. sur les architectures nouvelles de machines, Palaiseau,
1991.

[Gia91b] J.-L. Giavitto. Otto e Mezzo: un modle MSIMD pour la simulation massivement
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AMIN de l’Université de Paris-Sud, Orsay.

[Ler93] X. Leroy. The Caml Ligth system release 0.6. INRIA, September 1993.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable
bindings across multiple lexical scopes. In Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 479–492, Charleston, South Carolina, January 1993.

[LF96] Shinn-Der Lee and Daniel P. Friedman. Enriching the lambda calculus with
contexts: toward a theory of incremental program construction. In International
Conference on Functional Programming. ACM, May 1996.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts
I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lin95] Robert K. Lindsay. Images and inferences. In Diagrammatic Reasoning, chapter 4,
pages 111–135. AAAI Press, 1995.

[Lis93] B. Lisper. On the relation between functional and data-parallel programming
languages. In Proc. of the 6th. Int. Conf. on Functional Languages and Computer
Architectures. ACM, ACM Press, June 1993.

[Lis96] B. Lisper. Data parallelism and functional programming. In Proc. ParaDigme
Spring School on Data Parallelism. Springer-Verlag, March 1996. Les Mnuires,
France.

[LJ92] A. Lindenmayer and H. Jrgensen. Grammars of development: discrete-state models
for growth, differentiation, and gene expression in modular organisms. In
G. Ronzenberg and A. Salomaa, editors, Lindenmayer Systems, Impacts on
Theoretical Computer Science, Computer Graphics and Developmental Biology,
pages 3–21. Springer Verlag, February 1992.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proc. of the IEEE,
75(9), September 1987.

[LM96] Marc Ban Limberghen and Tom Mens. Encapsultation and composition as
orthogonal operators on mixins: A solution to multiple inheritance problems. Object
Oriented Systems, 3(1):1–30, 1996.

[LP97] Oliver Lemon and Ian Pratt. Spatial logic and the complexity of diagrammatic
reasonning. Graphics and Vision, 6(1):89–109, 1997.

[LQ92] M. Lemke and D. Quinlan. P++, a C++ virtual shared grids based programming
environment for architecture-independent development of structured grid
applications. In L. Boug, M. Cosnard, Y. Robert, and D. Trystram, editors, Parallel
Processing : CONPAR 92 - VAPP V, volume 634 of LNCS. Springer-Verlag,
September 1992.

[LS83] C. Leiserson and J. Saxe. Optimizing synchronous systems. Journal of VLSI and
Computers Systems, 1(1):41–67, 1983.

157



[Mae91] Patti Maes. A bottom-up mechanism for behavior selection in an artificial creature.
In Bradford Book, editor, proceedings of the first international conference on
simulation of adaptative behavior. MIT Press, 1991.

[Mah92] A. Mahiout. Placement et ordonnancement de tches sur machines multiprocesseurs,
September 1992. Rapport de stage du DEA AMIN de l’Université de Paris-Sud.

[Mah95] A. Mahiout. Integrating the automatic mapping and scheduling for data-parallel
dataflow applications on MIMD parallel architectures. In Parallel Computing:
Trends and Applications, 19-22 September, Gent, Belgium, 1995. Elsevier. poster
session.

[Mah96] A. Mahiout. Placement et ordonnancement de programmes dataflow paralllisme de
donnes sur les architecture parallles. PhD thesis, Universit de Paris-Sud, centre
d’Orsay, July 1996.

[Mal90] G. Malcolm. Data structure and program transformation. Science of computer
programming, 14:255–279, August 1990.
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