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Abstract
We present the domain specific programming language MGS
and its approach to the specification of dynamical systems
with a dynamical structure or (DS)2. MGS stands for “encore
un Modèle Général de Simulation”, that is, “yet another gen-
eral model of simulation”. Its declarative approach is based
on the notions of chains and cochains well studied in alge-
braic topology. A careful discussion of the design goals lead
us to relax some of the constraints on these mathematical
structures to represent in a uniform way various data struc-
tures and transformations. In particular, our computational
notion of transformation relies on a rewriting mechanism en-
compassing the usual notions of set, string and term rewrit-
ing. These notions are illustrated on two examples involving
the implicit computation of a time varying neighborhood: the
simulation of the trajectories of flocking birds and the growth
of an epithelial tissue. The second example illustrates also the
compositionality achieved by the declarative framework. The
MGS concepts have been further validated on several large
scale simulations of complex biological systems.

1. INTRODUCTION
(DS)2. The use of dynamical systems is pervasive in simu-
lation. At any point in time, a dynamical system is charac-
terized by a set of state variables. The evolution of the state
over time is specified through a transition function or rela-
tion which determines the next state of the system (over some
time increment) as a function of its previous state and, possi-
bly, the values of external variables (input to the system). We
suppose that the system evolves in discrete time and that the
set of variables is finite because models initially formulated
in terms of continuous time and/or continuous set of variables
(e.g., partial differential equations) are usually discretized for
their simulation on a computer.

This description outlines the change of state in time but
does not stress that the set of state variables can also change

in time. Systems exhibiting a change in the set of state vari-
ables have a dynamical structure. Note that if the set of state
variables evolves in time, so does the transition function. We
qualify such systems as (DS)2: dynamical systems with a dy-
namical structure [11].

Computer Science has developed (or appropriated) many
languages and tools to help model and simulate dynamical
systems. However, the dynamic character of the structure
raises a difficult problem: how to define a transition function
when its set of arguments (the state variables) is not com-
pletely known at the specification time? The answer to this
problem lies in the notions of interaction and locality.

Spatial Organization of the Interactions. Very often, a
system can be decomposed into subsystems and the advance-
ment of the state of the whole system results from the ad-
vancement of the state of its parts [12]. The change of state of
a part can be intrinsic (e.g., because of the passing of time) or
extrinsic, that is, caused by some interaction with some other
parts of the system.

For physical systems, subsystems are spatially localized
and when a locality property1 holds, only subsystems that are
neighbors in space can interact directly. So the interactions
between parts are structured by the spatial relationships of
the parts.

For abstract systems, in many cases the transition function
of each subsystem only depends on the state variables of a
small set of parts (and not on the state variables of the whole
system). In addition, if a subsystem s interacts with a subset
S= {s1, . . . ,sn} of parts, it also interacts with any subset S′ in-
cluded in S. This closure property induces an abstract spatial
structure on the set of parts: the set of parts can be organized
as an abstract simplicial complex [15].

So, the idea is to describe the global dynamics by sum-
ming up the local evolutions triggered by local interactions.
And two subsystems s and s′ do not interact because they are
identified per se but because they are neighbors. Such a fea-

1The locality property states that matter/energy/information transmis-
sions are done at a finite speed. This property is not always relevant, even
for physical systems, for instance because processes may occurs at two sepa-
rate time scales: changes at the fast time scale may appear instantaneous with
respect to the slow one.
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ture enables the potential interaction of subsystems that do
not yet exist at the beginning of the simulation and that do
not know each other at their creation time.

The Chain Approach. It is then tempting to provide a
topology (i.e., neighborhood relationships) to the set of sub-
systems and to identify the state of a dynamical system with
a function that assigns a local state to each subsystem. The
topology restricts the possible transition functions of a sub-
system s: the current state of s only depends on the previ-
ous state of s and of its neighbors. Furthermore, the transition
function not only specifies the evolution of local states but
also the coupled evolution of the topology itself.

Such a structure is well known in algebraic topology: the
state can be represented by a topological chain that associates
some label with each topological cell of a cellular complex.
An (abstract) cellular complex is a formal construction that
builds a space in a combinatorial way through more simple
objects called topological cells. Each cell represents a sim-
ple part of the whole space. The whole structure, correspond-
ing to the partition into topological cells, is then considered
through the incidence relationships, relating a cell and the
cells in its boundary. A topological chain is a function from a
cellular complex to a set of labels equipped with some addi-
tional algebraic structure [20].

Over the last forty years, there have been notable efforts to
develop comprehensive formulations of physics and geome-
try based on topological chains [5, 30, 23, 8, 19]. We review
some of them in the last section. However, the emphasis has
been mainly put on uniform and homogeneous interactions
that can be specified by discrete analogues of the differential
operators. Such approach cannot be applied to the modeling
of agent systems where the interactions between agents are
heterogeneous and asynchronous. Moreover they cannot rep-
resent all the possible evolutions of the structure and these
evolutions are often handled separately, in an imperative set-
tings.

In this paper, we show how the transition function specify-
ing the coupled evolution of state and topology can be defined
in a declarative style, using topological collection rewriting.
Topological collections implement various notions of topo-
logical chains and topological rewriting encompasses both
homogeneous and heterogeneous interactions. The declara-
tive style leads to a specification of the systems close to the
mathematical formalism: the description is small and expres-
sive, theoretically well founded and close to the concepts used
by the modelers. Furthermore, the declarative style is more
tractable when one faces the problem of formally deriving
some properties of the simulated model [21].

Organization of the paper. The notions presented in this
paper are implemented in an experimental domain specific

programming language, MGS, designed to investigate the
topological approach.

The next section introduces topological collections. This
construction unifies all aggregate data structures in MGS. The
notion of topological rewriting is then presented in section 3.

These notions are illustrated through two applications ex-
hibiting a dynamic structure: the flock of birds (the neighbor-
hood of each bird evolves in time as a consequence of the
flock movement and the trajectory of each bird depends on
this neighborhood) and the growing of an epithelial sheet of
biological cells (the number of cells and their spatial organi-
zation evolve in time). These two examples rely on an unusual
kind of topological collection where the neighborhood is im-
plicitly and dynamically computed instead of being explicitly
specified.

The paper ends with a conclusion and a discussion about
future works.

2. TOPOLOGICAL COLLECTIONS
Topological collections have been introduced in [13] to de-

scribe arbitrary complex spatial structures that appear in bio-
logical systems [14] and other dynamical systems with a time
varying structure [16, 17].

Incidence Structures. An abstract combinatorial complex
(ACC) K = (C,≺,dim) is a set C of abstract elements, called
topological cells, provided with a partial order ≺, called the
boundary relation, and with a dimension function dim : C→
N such that for each c and c′ in C, c≺ c′⇒ dim(c)< dim(c′).
We write c ∈ K when a cell c is a cell of C.

A cell of dimension 0 corresponds to a point, a 1-
dimensional cell corresponds to a line (an edge), a cell of
dimension 2 is a surface (e.g. a polygon), etc. A cell of di-
mension p is called a p-cell. For example, a graph is an ACC
built only with 0- and 1-cells. An other example is pictured in
Fig. 1. Such structures are studied in algebraic topology [20].
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Figure 1. On the left, the Hasse diagram of the boundary
relationship of the ACC given in the middle: it is composed
of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and
of a single 2-cells ( f ). The three edges are the faces of f ,
and therefore f is a common coface of e1, e2 and e3. On the
right, a topological collection associates data with the cells:
positions with vertexes, lengths with edges and area with f .



In the context of this paper, we write ∂Kc for the sub-ACC
made of the cells of K lower than c for the relation ≺: ∂Kc =
(C′,≺ ∩ C′×C′,dim) where C′ = {c′ |c′ ≺ c}. This ACC is
called the boundary of c. The faces of a p-cell c are the (p−
1)-cells c′ of ∂Kc and we write c > c′ or c′ < c; c′ is called a
coface of c. Two cells c and c′ are q-neighbors either if they
share a common border of dimension q or if they are in the
boundary of a q-cell (of higher dimension).

Topological Collections. The next step is to attach a value
to each cell of a complex. Algebraic topology takes this value
in a commutative group since it gives a natural group struc-
ture to the set of chains [20]. We relax this assumption for
topological collection: a topological collection C is a func-
tion that associates a value from an arbitrary set V with cells
in an ACC, see Fig. 1. Thus the notation C(c) refers to the
value of C on cell c.

Values associated with cells in the cell complex can be used
to capture geometric properties (i.e., V = {−1,0,1} can be
used to select a sub-complex made of oriented cells) or to
represent the arbitrary state of a subsystem (a mass, a con-
centration of chemicals, or a force acting on certain cells).

We write |C| for the set of cells for which C is defined.
The collection C can be written as a formal sum ∑c∈|C| vc · c
where vc

df
= C(c). With this notation, the underlying ACC is

left implicit but can usually be recovered from the context.
By convention, when we write a collection C as a sum

C = v1 · c1 + · · ·+ vp · cp

we insist that all ci are distinct. This notation is directly used
in MGS to build new topological collections on arbitrary ACC
of any dimension. Notice that this addition is associative and
commutative: the order of operations used to build a topolog-
ical collection is irrelevant.

In MGS, topological collections correspond to aggregate
data types. These data types differ by the specification of
their underlying cellular complex. In the current implemen-
tation of the MGS language, usual data structures (records,
sets, sequences, trees, arrays, etc.) are represented by spe-
cial kinds of one-dimensional topological collection, namely
vertex-labeled graphs: elements of the data structure are at-
tached to the vertexes and the edges represent the relative ac-
cessibility from one element to another in the data structure.
MGS also handles more sophisticated spatial structures corre-
sponding to arbitrary ACC of any dimension.

Examples. We detail the topology underlying some usual
data structures to show how they can be seamlessly embedded
in the topological collection framework.

The topology of sets is the complete graph: each element in
the set labels a 0-cell (the cell labeled by a value v is simply v
itself) which is in the neighborhood of all the other cells. With

this neighborhood structure, topological rewriting (presented
in the next section) of sets corresponds to the usual notion of
set rewriting.

Records (C struct) are another example of collection topol-
ogy: a dictionary associating values with names. The underly-
ing topology is the fully unconnected graph: the fields of the
record form the vertexes of the graph and there is no edge. A
record r can be declared using a dedicated syntax
{ Area = 10; Speed = [0.0;1.0;0.33]; }

and the usual dot notation r.a to access the value of the field a
can be used as an alternative to the application r(a). The curly
bracket notation is a shorthand for the additive expression:
10 ·Area + [0.0;1.0;0.33] ·Speed

where Area and Speed are the symbols representing the name
of the fields. Whereas the addition of collections is restricted
in general to arguments that do not share common cells, addi-
tion of records sharing some fields is allowed: the expression
r1 + r2 computes a new record r having the fields of both r1
and r2: r(a) has the value of r2(a) if the field a is present in r2,
otherwise it has the value of r1(a). In this way, the addition
of records has the usual semantic of the asymmetric merge of
records [26] used in object-oriented programming to model
inheritance and object updates.

The value of the field Speed is a list of three elements. Lists
are also topological collections (this illustrates the possibility
to nest arbitrary topological collections in MGS). The dedi-
cated syntax, using square bracket, hide the underlying topol-
ogy of linear oriented graph. Orientation of the cells is taken
into account so that in [1;2;3] the neighbor of the cell la-
beled by 1 is the cell c labeled by 2 but the only neighbor of c
is the cell labeled by 3. With this topology, topological rewrit-
ing of lists is similar to the usual notion of string rewriting.

3. TOPOLOGICAL REWRITING
The next move is to define a suitable notion of topological

collection transformation. As mentioned in the introduction,
the transformation of a topological collection must be able to
express changes in the labels as well as changes in the under-
lying spatial structure.

Chains and their Shortcomings. It exists in homology
theory a notion of chain transformation called cochains. A
cochain is a group homomorphism from the group of chains
to a target group G. Since a cochain d is a group homomor-
phism, d is completely defined by the values taken on the
labeled cell vi · ci:

d(v1 · c1 + · · ·+ vn · cn) = d(v1 · c1)+ · · ·+d(vn · cn) .

If d is real-valued cochain on real-valued chains, then d(vi ·ci)
can be further rewritten in vi.di where di is the value of d on
the unit chain 1.ci. Therefore d can be defined as a formal



sum: d = ∑gi.ci where gi
df
= d(ci). Thus every real-valued

chains can be also viewed as a real-valued cochain. Cochains
provide an elegant algebra where discrete analogues of the
classical differential operators (boundary, coboundary, Hodge
star. . . ) can be defined [7, 19].

We want to lift this approach in MGS. However the notion
of cochains presents three drawbacks: (1) topological collec-
tions do not have always a group structure; (2) they are not
always real-valued; and (3) some natural transformations are
not homomorphisms. An example of the last point is given by
the merge of two cells into a new one iff they are labeled by
the same value in the chain. Let M be this transformation, then
M(v ·c1+v ·c2) = v ·c′ 6= M(v ·c1)+M(v ·c2) = v ·c1+v ·c2 .
Nevertheless, a suitable notion of transformation must in-
clude the notion of cochain and must respect, in some way,
the additive structure of chains.

Topological Rewriting. To meet the previous require-
ments, we have proposed to define transformation of topolog-
ical collection by rewriting rules. Topological rewriting can
be defined following an approach similar to that taken in [24]:
using the additive representation of topological collections,
topological rewriting can be simply defined as an adapted ver-
sion of conditional first-order associative-commutative term
rewriting, see [28] for the details.

The mechanics of rewriting systems are familiar to any-
one who has done arithmetic simplifications: an arithmetic
expression can be simplified by repeatedly replacing parts
of the expression (subexpressions) with other subexpressions.
For example, 7

3 ·
3
11 ·

11
5 ⇒

7
11 ·

11
5 ⇒

7
5 . The rule that is applied

here is: x
y ·

y
z ⇒

x
z , where x, y and z are pattern variables rep-

resenting arbitrary non-null numbers. A transformation gen-
eralizes this process to topological collections.

A transformation T is a function specified by a set of
rewriting rules {p1 ⇒ e1, . . . , pn ⇒ en} where each pi is a
pattern and each ei is an expression. An application of such
a rule matches a sub-collection with one pk that is then sub-
stituted by the result of expression ek. In rewriting rules, pat-
terns match sub-expressions, that is, partial sums of the whole
sum representing the topological collection which the rule is
applied on. It is in this sense that the additive structure of
topological collections is preserved (but a transformation is
not necessarily an homomorphism).

The formal definition of topological rewriting is less inter-
esting than the syntax of the pattern language used to specify
the left hand side (lhs) of a rewriting rule: as a matter of fact,
the lhs of a rule must match a sub-collection, that is a subset of
C and a sub-relation of the incidence relation ≺ of the com-
plex K. This information can be difficult to specify without
the help of a dedicated language. We present here a fragment
of the MGS path pattern language.

Pattern Variables. A pattern variable x matches a cell and
its label. The identifier x can be used elsewhere in the rule to

refer to the label of the matched cell; the cell itself can be re-
ferred through the special identifier ˆx. This convention avoids
the introduction of two identifiers to match a cell and its asso-
ciated value. Using the additive notation for topological col-
lections, and without the previous convention, this pattern is
translated to x ·ˆx where the variable x ranges over the labels,
and where the variable ˆx ranges over the cells.

Patterns are linear: two distinct pattern variables always
refer to two distinct cells.

Conditional rules. A guard can be used to specify a con-
dition that must be satisfied by the matching. For instance,
expression x/x > 5 matches a cell ˆx labeled by an integer x
greater than 5.

Pattern Composition. The associative operator “,” is used to
specify a path, i.e., a sequence of elements. A comma implies
also some constraints on the incidence relationships linking
the two arguments: in the additive notation, the pattern v,w
translates to the conditional pattern

v ·ˆv+w ·ˆw / ∃ˆu : (ˆv≺ ˆu ∧ ˆw≺ ˆu) ∨ (ˆu≺ ˆv ∧ ˆu≺ ˆw)

In other words, the cells matched by v and w must be neigh-
bors (they share a common cell u in their boundary or they
are both elements of the boundary of some cell u).

Notice that the pattern composition operator preserves a
notion of locality: only cells that are neighbors are selected.

Strategies. Rule applications are controlled through a rule
application strategy. Several strategies are available in MGS
like the maximal parallel application used in L-systems or
P systems, and the Gillespie stochastic simulation algorithm
used in the simulation of chemical reactions [27]. These
strategies control the advancement of time in the simulation
(synchronous, asynchronous, stochastic, etc.). They are often
non-deterministic, i.e., applied on a collection C, only one of
the possible outcomes (randomly chosen) is returned by the
transformation.

4. APPLICATIONS
Topological collections and topological rewriting are di-

rectly supported in the MGS domain specific programing lan-
guage. We present two examples to illustrate the MGS ap-
proach in the simulation of (DS)2. In the first example, a sim-
ulation of flocking birds, there is no creation nor destruction
of birds, but the neighborhood structure changes in time with
the move of the birds. This example introduces the notion of
Delaunay collections where the neighborhood structure is not
built explicitly by the programmer but is computed implicitly
by the run-time using the labels of 0-cells in the collection.
The second examples relies also on Delaunay collection for
the simulation of the growth of an epithelial tissue driven by
a diffusion-reaction process and taking into account a simple



trans behavior[speed] = {

separation = ... / ... => ... ;

cohesion = ... / ... => ... ;

alignment =
a => let phi = neighborsfold(\x,acc.(acc+x.theta),0,a)

and nb = neighborsfold(\x,acc.(acc+1),0,a) in
let dir = phi / nb in

{ x = a.x + speed*cos(dir) + random(ε),
y = a.y + speed*sin(dir) + random(ε),
theta = dir } · ˆa;

}

Figure 2. Left: Behavior of a bird expressed as a transformation with three rules. Right: Trajectory of a flock of 50 birds. First
plot: the initial state where each bird has a randomly chosen direction. Middle plot: the configuration after 300 iterations. Last
plot: after 900 iterations of the transition function behavior.

model of the mechanics of the tissue. This second example
includes the creation of 0-cells.

4.1. The Flocking of Birds
In this example, we simulate the gathering and the dis-

placement of a flock of birds. This simulation is the direct
implementation of a model of flocking birds proposed by U.
Wilensky and by the development of steering behaviors of
boids (generic simulated flocking creatures) invented by C.
Reynolds [25].

Whereas there is no leader (each bird obeys to the same
set of rules), all the birds seem to follow the same direction.
This global motion can be modeled using three local rules for
a bird: (1) not to collide with neighbors, (2) to join the group
when it is too far and (3) finally to head for the same global
direction as its neighbors. They will be detailed later. We first
begin by the description of a bird.

Representation of Birds and of the Flock. A bird is rep-
resented by two quantities: its position and its direction in
space. To simplify the example, we consider a two dimen-
sional model, knowing that the three dimensional represen-
tation is a trivial generalization. We use a record composed
of three fields: two for the position (the coordinates x and y),
and one for the motion direction (the angle theta from the
x-axis). We suppose that all birds move with the same speed
that is increased if the bird is too far from the group. Let de-
fine the record type Bird:

record Bird = { x, y, theta }

A natural neighborhood between birds can be generated using
a Delaunay triangulation. This neighborhood induces the def-
inition of a new type of collection used to represent the flock
of birds. It is generated from a set of birds (the vertexes) and
a function extracting the bird position information. The edges
between these vertexes are not explicitly given by the pro-
grammer but computed and maintained transparently by the
run-time using a Delaunay triangulation [1] of the positions.

Thus, the new type of collection Flock based on a Delau-
nay graph whose elements are values of type Bird is specified
as follows:
delaunay Flock(b:Bird) = [b.x;b.y]

Birds Behavior. The basic flocking model consists of three
simple steering local behaviors which describe how an indi-
vidual bird maneuvers based on the positions and velocities
of its nearby flockmates:

1. Separation: when a bird is too close to one of its neigh-
bors, it changes its direction.

2. Cohesion: when a bird is too far from one of its neigh-
bors, it tries to get closer by increasing its speed.

3. Alignment: otherwise, it chooses a direction which is the
average of the direction of its neighbors.

The transformation given at the left of Fig. 2 implements the
behavior of the birds. A rule specifies the evolution of one
bird. Only the rule alignment is presented here. The others
have a similar form with an additional guards holding for the
separation condition or for the cohesion condition. In the rule
alignment, the average direction dir is computed by sum-
ming first the directions of the neighbor birds and their num-
bers.

These sums are specified using the higher-order function
neighborsfold. The expression neighborsfold( f , init,c) it-
erates a binary reduction function f over the labels of
the neighbors of c to build up a return value. The argu-
ment init is used to initialize the accumulator. The notation
\x1,...,xk.expr is the MGS notation for an anonymous func-
tion (lambda abstraction) with arguments x1, . . . , xk and body
expr. Then, the record a is updated: the bird position and di-
rection are computed according to the average direction dir.
Note that some noise is introduced to make the simulation
less deterministic. Finally, this new value is associated with
the cell matched by the left hand side, achieving an update of
the (local) state of the bird.

The transformation applies the rules with a maximal par-
allel strategy and rule applications are prioritized following



their declaration order. In other words, for each bird in paral-
lel, MGS tries to apply the rule separation and if the guard
does not hold, the rule cohesion is applied and if its guard
does not hold, the rule alignment is applied. Right of Fig. 2
illustrates three iteration steps of this process.

4.2. The Growth of an Epithelial Tissue
In this example, we abstract individual biological cells2 in

a tissue by disks localized in a 2D Euclidean space. Cells push
away each other and consequently change their positions in
space and their immediate neighborhood. Thus, this neigh-
borhood is required to be dynamically computed according
to the position of the disks in the plane.

The state of a biological cell is encoded by a record which
includes the required informations. The following type decla-
rations

record MechaCell = { px, py, vx, vy, ax, ay }
record BioCell = { a, b, da, db }
record Cell = MechaCell + BioCell

specify three record types: MechaCell representing the 2D po-
sition, velocity and acceleration of a cell; BioCell represent-
ing the biological state of a cell with two diffusing chemicals
(a and b) and their first respective derivatives; Cell contains
the fields of both MechaCell and BioCell.

The spatial organization of the whole epithelial tissue is
represented by a 2D Delaunay topological collection:

delaunay Tissue(c:Cell) = [c.px;c.py]

Such an use of the Delaunay neighborhood has already been
successfully done in systems biology for the modeling of cells
population [18, 2].

The specification of the system dynamics is based on
three coupled models: a biomechanical model, a biochemical
model and a cellular model.

A Biomechanical Model. The global behavior of the tis-
sue is modeled by a spring-mass system based on elastic and
viscous forces. The movement of a cell c is given by the New-
ton’s equation of dynamics:

m.ac = Felastic+Fviscous = ∑
c′,c

k(Lcc′−L0)
pc′ −pc

Lcc′
−µ.vc (1)

where pc, vc and ac are respectively the position, the velocity
and the acceleration of c, and c′ represents a neighbor cell of c
at a distance of Lcc′ . The spring term depends on the constant
k and the rest length L0, and µ is a friction coefficient.

Eq. (1) is integrated for each cell by a Euler scheme imple-
mented in the following transformation:

2The reader must pay attention not to confuse biological and topological
cells.

trans Mechanics = {

c => let Fvisc = { fx = -mu*c.vx, ... } in
let F = neighborsfold(Felastic(c),Fvisc,c)
in (c+{ ax = F.fx / m,

vx = c.vx + dt*c.ax,
px = c.px + dt*c.vx, ... }) · ˆc

}

The neighborsfold expression computes the summation of
Eq. (1); function Felastic(c,c′,f) computes the elastic force
between c and c′ and sums it to an accumulator f . As a curry-
fied function, the first argument is specified while the others
are provided by the neighborsfold operator.

The Biochemical Model. The biochemical model de-
scribes the diffusion-reaction of two morphogens modeled
as a simplified version [35] of the Turing’s diffusion-reaction
model [34]. The evolution of the two chemicals is also imple-
mented with only one transformation DiffusionReaction,
using also a neighborsfold to compute the Laplacian of the
concentrations.

The Cellular Model. An additional transformation defines
the division of a cell when the concentration of b increases
above a given threshold split:
trans Division = {

c / (c.b > split) =>
(c + { a = 1

3*c.a, b = 2
3*c.b,

px = c.px + random(ε),
py = c.py + random(ε) }) · newcell(0) +

(c + { a = 2
3*c.a, b = 1

3*c.b,
px = c.px + random(ε),
py = c.py + random(ε) }) · newcell(0)

}

The coefficients used to compute the asymmetric repartition
of chemical concentrations in the daughter cells are arbitrary.
The two daughter cells occupy almost the same position (dis-
turbed a little by the term random(ε)); the elastic forces will
quickly push them away from each other. The two new cells
states are associated with new topological 0-cells created by
the primitive newcell (the additive notation is used). No fur-
ther specification of the neighborhood (e.g., some additional
1-cell between the vertexes) is needed since it will be com-
puted automatically by the Delaunay triangulation.

Integration of the Three Models. In MGS, transformation
are ordinary functions and can be arbitrarily composed. This
is the key to the coupling of the 3 models. The iteration of a
function can be specified by the MGS option iter. It allows to
deal with different time scales: assuming for example that the
mechanical process is faster than the chemical process, the
whole model is captured by the following evolution function:
fun evolve(tissue) =

Division(
DiffusionReaction[dt=∆1](

Mechanics[dt=∆2, iter=N](tissue)))



Figure 3. Four steps in the growth of a tissue of cells. The color of a cell is correlated with the concentration of the morphogen
that triggers the cell division (black cell will divide). Here the simulation is done in 3D.

where the argument dt corresponds to the time step
parameters used in transformations Mechanics and
DiffusionReaction. Here transformation Mechanics is
iterated N times (such that ∆1 = N ∆2) before the applica-
tion of one diffusion-reaction step. Finally, transformation
Division checks for some possible cellular divisions.

The complete MGS code, including the building of a global
initial state and the output of the state at each time steps, is
less than 150 lines. Four snapshots of the system evolution
are given in Fig. 3.

5. CONTRIBUTIONS, RELATED WORKS
AND PERSPECTIVES

In the introduction we have exposed the rational behind
the design of the MGS experimental programming language.
MGS is used as a vehicle to study the implementation of ba-
sic notions in algebraic topology and their variations suitable
for the modeling and the simulation of (DS)2. Morphogenesis
was a driving application domain and MGS has been used in
the modeling of several developmental processes in systems
biology [2, 29]. MGS constructions are formal because they
are based on the tools of algebraic topology embedded in a
declarative framework, practical because we have shown that
they generalize well known data and control structures, and
ubiquitous: MGS transformations are able to express discrete
analogues of differential operators [17] but they have been
also successfully used in the programing of various algorith-
mic tasks.

The two application examples in this paper rely on Delau-
nay topological collections. The 1-cells in this kind of collec-
tion are computed rather that explicitly enumerated. Delau-
nay collections are smoothly embedded in MGS showing that
the notion of topological collection accepts a wide range of
variations.

The use of chains and cochains to structure the modeling
and the simulation of a physical systems can be traced back at
least to Branin [5] who applied these notions to network anal-
ysis and circuit design. Later, Tonti [30, 31] and co-authors

developed comprehensive discrete formulations of physical
laws from first principles [22, 32]. Several studies have sub-
sequently developed this approach in the field of physical
modeling and CAD, notably by Shapiro using the Chain pro-
gramming language [23] and various follow-up [6, 10, 8, 9].
(Co-)chains have also been used in numerical computation as
a tools to structure and generalize the notion of mesh [3].

One major goal of these studies is to unravel a proper set
of definitions and differential operators that make it possi-
ble to operate the machinery of multivariate calculus on a fi-
nite discrete space. The motivation is to find an equivalent
calculus that operates intrinsically in discrete space, without
the reference to the discretization of an underlying continu-
ous process. This line of research is particularly developed in
the field of geometric modeling, with several recent achieve-
ments [7, 19].

These works do not focus on the modeling of dynamical
structures in the way it is developed in this paper. The cor-
responding technical apparatus focuses on uniform computa-
tions and also on the metric structure while MGS relies on the
combinatorial structure. For example, we emphasize a use of
ACC which does not require n-cells to be homeomorphic to
n balls [33]. The combinatorial approach is less constrained
and then potentially more amenable to algorithmic compu-
tations. Algorithmic computations can be done in the above
mentioned approaches but without a dedicated support from
the corresponding tools. For instance, one can specify im-
perative mesh subdivision algorithms (using nest of iterators)
while MGS enables a declarative specification through a very
concise set of rules [28]. In addition, specifying transforma-
tions through rewriting rules is strictly more expressive than
cochains.

The framework presented in this paper, may be enriched
and extended in several directions. First, the declarative ap-
proach enjoys a very concise and expressive programming
style. However, the generation of efficient code from the
declarative specification is an open question. Currently, the
MGS framework is only available as an interpreter (see the



web page at http://mgs.spatial-computing.org to access
to the sources and various applications). Second, we want to
develop further applications in synthetic and integrative spa-
tial systems biology, as well as in some more unconventional
fields, like musical analysis [4]. Another direction of future
research consists of the automatic inference of system prop-
erties by adapting invariant extraction and model checking
techniques that have been developed for other kind of rewrit-
ing systems.
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