Spatial Computing as

Intensional Data Parallelism

Antoine Spicher Olivier Michel Jean-Louis Giavitto http://mgs.spatial-computing.org

ibi

IBISC
 Computer Science, Integrative Biology & Complex Systems
 CNRS - University of Evry - Genopole

- Motivations : data-parallelism and spatial computing
- Intensionnal Spatial Operations
- Dataflow
- Examples
- Compilation
- Conclusions

Data Parallelism

• Parallelism and Spatial Computing:

if two computations occur simultaneously, they must take place at different location

- \Rightarrow taking space into account
- Parallelism as an operational vs a semantic property
- Three ways to express parallelism :
- - parallelism is expressed through the data: data parallelism
- - parallelism is expressed through the control: control parallelism
- - parallelism is expressed through a mix of data and control: pipe-line
- An alternative classification:

	0 INSTRUCTION COUNTER Declarative languages	1 INSTRUCTION COUNTER Sequential languages	<i>n</i> INSTRUCTIONS COUNTER Concurrent languages		
SCALAR	SISAL, ID, LAU, Actors	Fortran, Pascal, C	Adda, Occam		
COLLECTION	Gamma, 81/2, MGS, PROTO	APL *Lisp, HPF, CMFortran	CMFortran + multi-threadings		

The global (spatial, intensional) vs. the local (PE) view

(intensional point of view on spatially distributed objects and processes) Global view

Intentional operations

• Alpha extension

Intentional operations

- Alpha extension
- Beta reduction

Intentional operations

- Alpha extension
- Beta reduction

Declarative definition

• A 8,5 program is a set of definitions:

```
A = B + C
C = (max \setminus B) * (+ \setminus B)
B[4] = + \setminus (!1)
```

Definitions can be recursive

X = 0 # (1 + x:[3])

where

- constant are polymorphic
- # is the concatenation
- :[] is the cut operation

- Infer the geometry
- Check that the solution is *a priori* maximal
- Compute the solution by (a smart) fixed point iteration

Inferring the geometry

 $C = 1 \# (2 \#^2 C:[2])$

Declarative control : stream

	0	1	2	3	4	5	6	7	8	
1	1									•••
1+2	3									•••
Clock 2	true		true		true		true		true	
assuming A	1		2	3		4	5	6		
assuming B		1		2			1		1	•••
C = A + B		2	3	5		6	6	7	7	•••
\$ C			2	3		5	6	6	7	
А	1	2	3	4	5	6	7	8	9	
В	false	false	false	$e \mid true$	false	true	true	false	true	
A when B				4		6	7		9	

Ø(the empty stream) Hint : what is the initial value of the stream ?

The wlumf : a reactive animat

```
System wlumf = {
    glycemia@0 = 6;
    glycemia = if eating
                then 12
                else max(0, $glycemia -1)when Clock
    eating@0 = false;
    eating = $hungry && environment.food;
    hungry@0 = false;
                                 10
    hungry = (glycemia < 6);
                                  5
                                         10
                                                20
                                                       30
                                                              40
                                                                     50
System Environment = {
    food = ((t \cdot 2) = 0);
    t@0 = 0;
                                  -5
    t = $t+1 when Clock(-2);
}
```


Fabric = stream of collection = collection of stream (for static geometry)

Heat diffusion in a thin rod

U@0 = ...

U = α (begin # inside):[n] + (1-2 α)inside + α (inside # end):[-n] inside = \$U when Clock begin = 0

end = 0

Example of a growing collection

Conclusions

- a C compiler to a sequential architecture
- Parallel mapping and scheduling on:
 - CM
 - MPI (paragon, network of workstation)
- efficient compilation if static
- Spatial computing: YES but
 - Simple model of underlying space (but can be extended)
 - Synchronous time: atomic, event-driven, synchronization costs
 - Crystalline computation
 - Intensional approach = working with spatial object as a whole
 - NO support for amorphous computing:
 - Locality can be enforced through a tailored set of operations
 - no robustness
 - Dynamic space are difficult to handle