

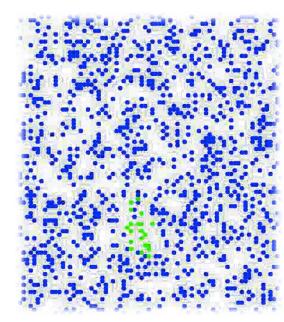
Arbitrary Nesting in Spatial Computation (in MGS)

Antoine Spicher^a Olivier Michel^a Jean-Louis Giavitto^b

^a LACL – Université de Paris Est

^{*b*} UMR STMS 9912

IRCAM – CNRS – UPMC & INRIA MuSync



http://mgs.spatial-computing.org

- 1. A brief introduction to MGS
- 2. Nested Spaces
- 3. Matching Nested Structures
- 4. Inductive Data Structure
- 5. Multiscale Systems
- 6. Stratified Computational Models

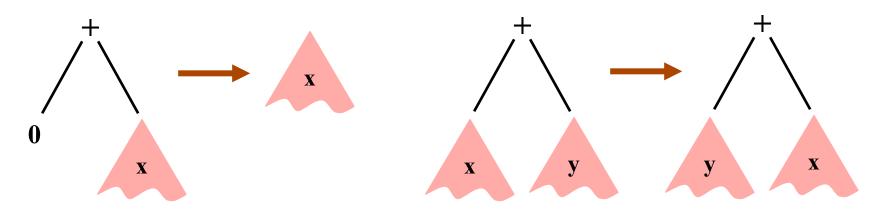
The MGS Spatial Approach

- Use spatial relationships (topology) to unify the various structures of an *abstract* collection of elements
 - space as as a resource (multiple CPU)
 - space as a constraint
 - space as an input/output
- Neighborhood relationships:
 - the structure of the collection
 - the structure of the subcollection
 - the computation dependencies
- Computation by rewriting
 - Pattern matching (selecting a subcollection)
 - Substitution (topological surgery)

- (data location)

(gradient field)

- Rewriting system
 - Used to formalize equationnal reasoning
 - A generative device (grammar)
 - Replace a sub-part of an entity by an other
 - Set of rewriting rules $\alpha \rightarrow \beta$
 - α : pattern specifying a sub-part
 - β : expression evaluating a new sub-part
- Example: arithmetic expressions simplification



MGS

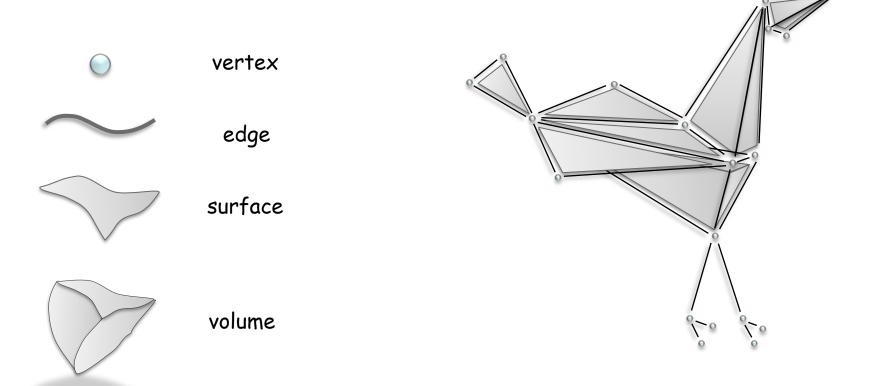
- 1. In a *collection* of elements
- 2. Replace a subcollection X

monoidal

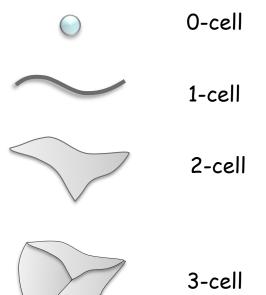
3. With a collection Y computed from X and its *neighbors*

	Collection	Neighborhood	Algebra
ſ	• Tree	 father/son 	free term
J	• Sequence (list)	 left, right 	 associative term
٦	 Multiset (bag) 	• all	 associative + commutative
l	• Set	• all	 asso. + comm. + idempotent
	• Grid	• NEWS	 a specific algebra (action of a group on itself)

- Topological collections
 - Structure
 - A collection of topological cells
 - An *incidence relationship*

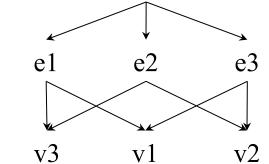


- Topological collections
 - Structure
 - A collection of topological cells
 - An incidence relationship
 - Data: association of a value with each cell/

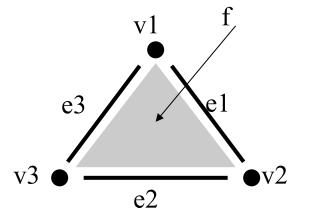


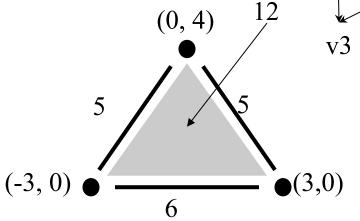
Incidence relationship and lattice of incidence:

- boundary(f) = {v1, v2, v3, e1, e2, e3}
- faces(f) = {e1, e2, e3}
- cofaces(v1) = {e1, e3}



f





Topological chain

- coordinates with vertices
- lengths with edges
- area with f

$$\binom{0}{4} \cdot v_1 + \binom{3}{0} \cdot v_2 + \binom{-3}{0} \cdot v_3 + 5 \cdot e_1 + 6 \cdot e_2 + 5 \cdot e_3 + 12 \cdot f$$

- Transformations
 - Functions defined by case on collections
 Each case (pattern) matches a sub-collection
 - Defining a rewriting relationship: topological rewriting

```
trans T = \{

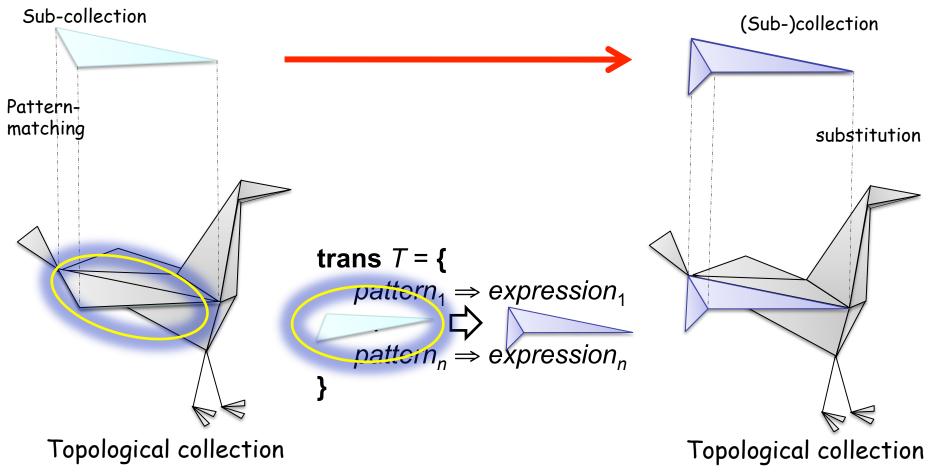
pattern_1 \Rightarrow expression_1

...

pattern_n \Rightarrow expression_n

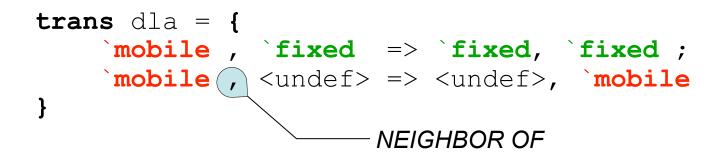
}
```

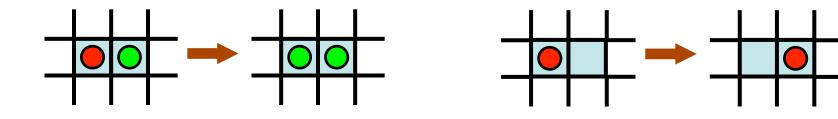

• Transformations



Example: Diffusion Limited Aggregation (DLA)

- Diffusion: some particles are randomly diffusing; others are fixed
- Aggregation: if a mobile particle meets a fixed one, it stays fixed



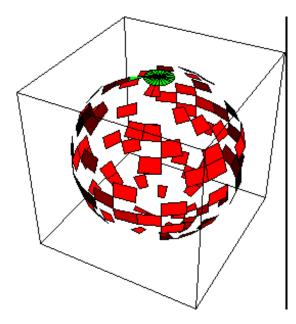


Example: Diffusion Limited Aggregation (DLA)

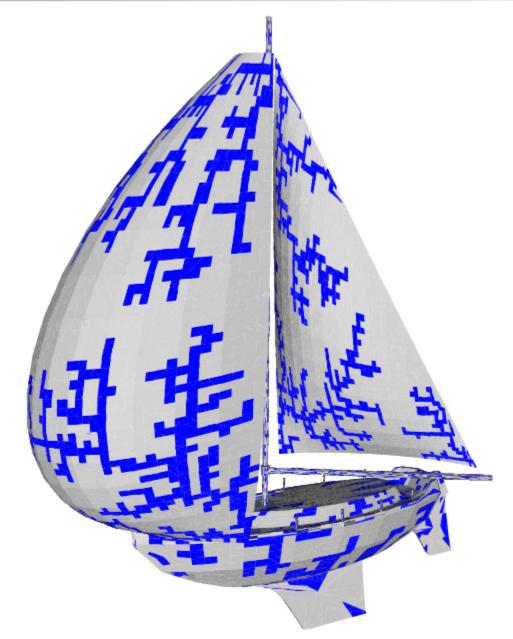
- Diffusion: some particles are randomly diffusing; others are fixed
- Aggregation: if a mobile particle meets a fixed one, it stays fixed

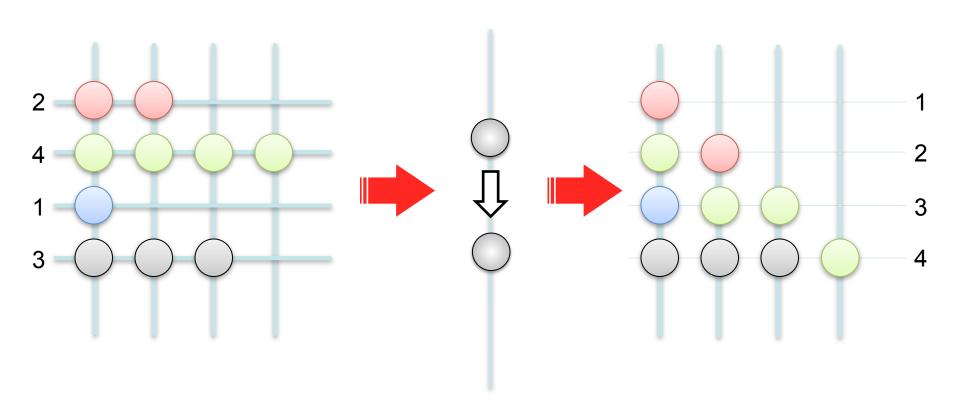
```
trans dla = {
  `mobile , `fixed => `fixed, `fixed ;
  `mobile , <undef> => <undef>, `mobile
}
```

this transformation is an abstract process that can be applied to any kind of space



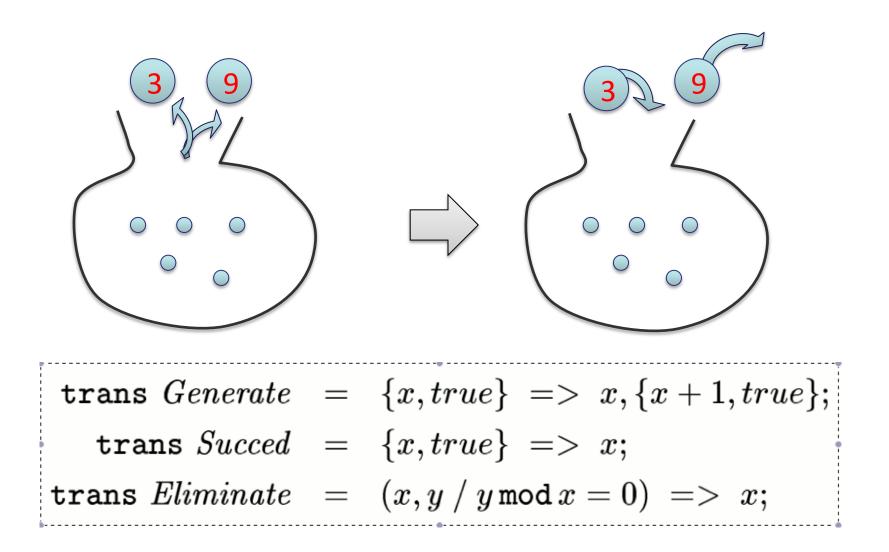
Polytypisme



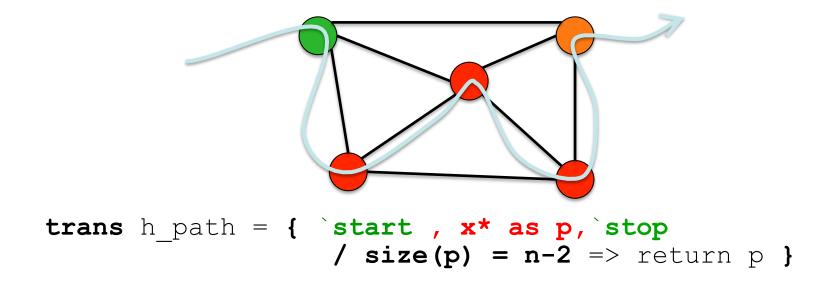


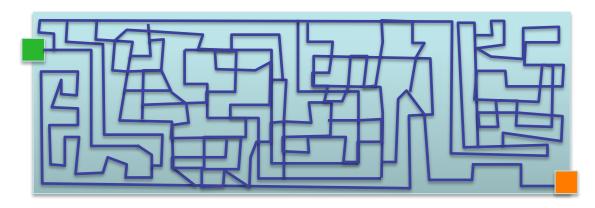
Gbf NEWS = < North, South, East, West; North+South=0, East+West=0>
trans dla = {
 `bead |south> `empty => `empty, `bead ;
}

Eratosthene's Sieve



 $Eliminate[\texttt{fixrule}] \Big(Succed \big(Generate[N](\{2, true\}, \texttt{set}: ()) \big) \Big)$





trans maze = { `input, c* as p, `output => return p }

Nesting Spaces

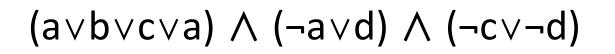
- **Nested Spaces**
- Topological collections are first-order value
- Collection valued collections

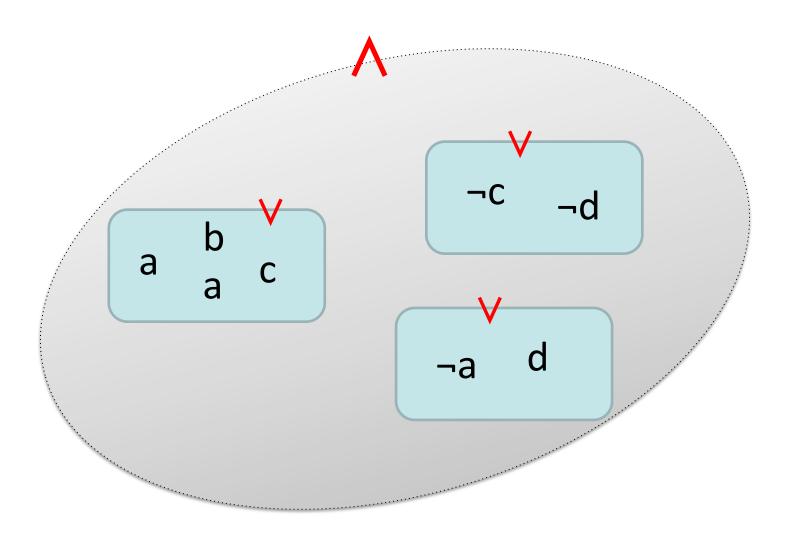
- Applications:
 - Hierarchical structures
 - Refinement and multiscale systems
 - Stratified « spatial » computation models

- x / Arbitrary Predicate
- [pat | x] [pat | x]pat Х

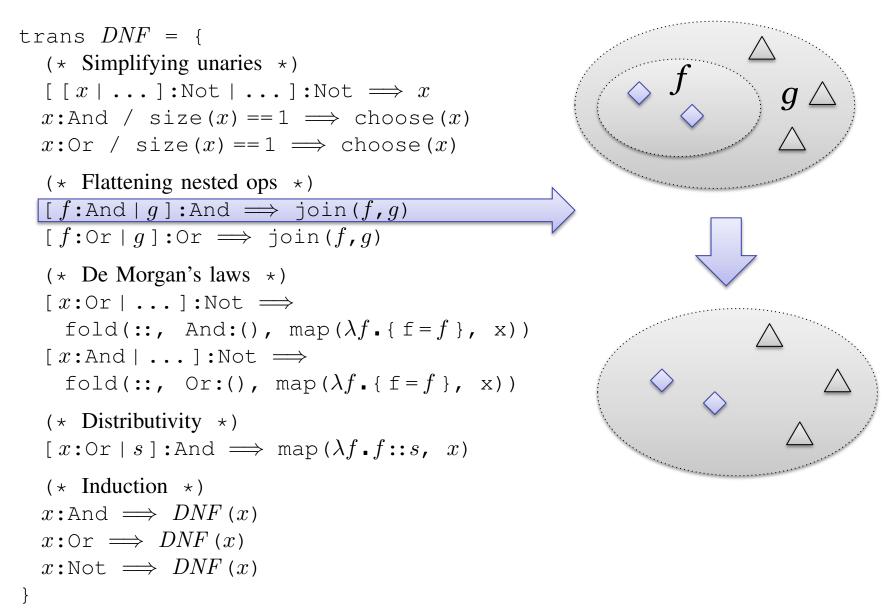
Example I: Disjunctive Normal Form

- Operators \land and \lor are
 - associative
 - commutative
 - idempotent
- (S, Λ) and (S, \vee) are A-, C-, I-monoids
- Elements of A-, C-, I-monoids are sets
- A logical formula is a nesting of sets
- A set is a topological collection and a nesting of sets is a nested topological collection

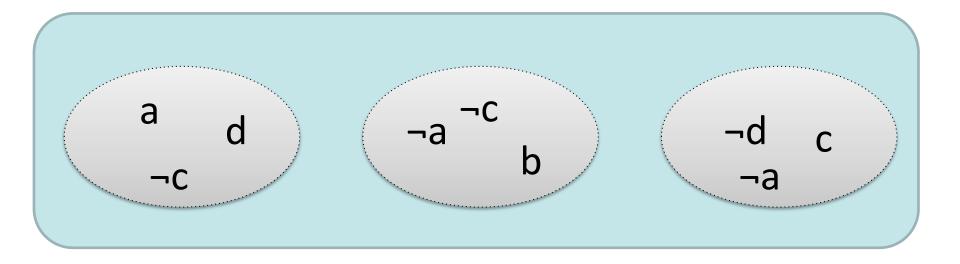




Normalisation in Disjunctive Normal Form

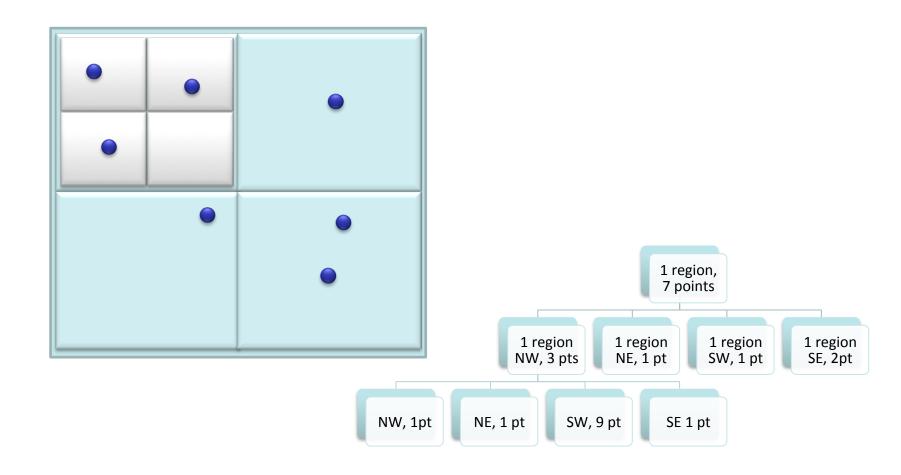


$$(a \lor b \lor c \lor a) \land (\neg a \lor d) \land (\neg c \lor \neg d) \\= (a \land \neg c \land d) \lor (\neg a \land b \land \neg c) \lor (\neg a \land c \land \neg d)$$



Example II: A Simple Recursive Space Subdivision Scheme

Quadtree

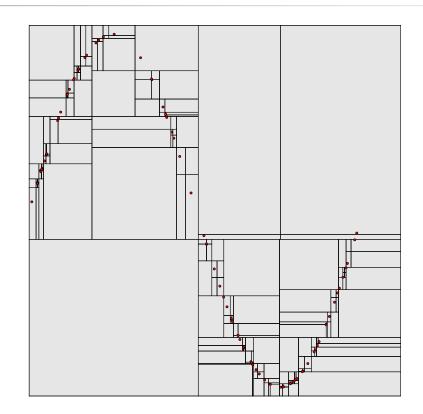


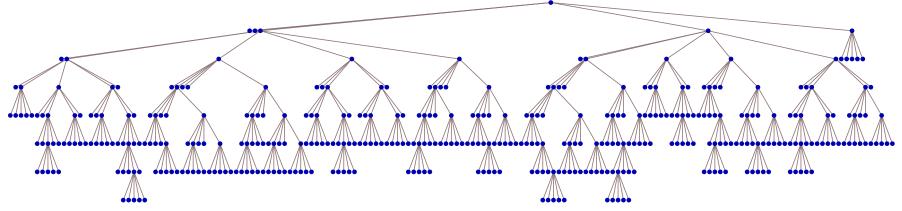
Quadtree

type QuadTree = Grid[QuadTree] | Cloud and gbf Grid = <n,e; 2e=0, 2n=0 > and collection Cloud = set[Point2D] and record Point2D = { x:real, y:real }

trans MakeQuadTree = $c:Cloud / size(c) > 2 \Longrightarrow$ MakeQuadTree(SplitCloud(c))

```
fun SplitCloud (c:Cloud) =
    let g = barycenter(c) in
    let c_0, c_1 = split(\lambda p \cdot p \cdot x < g \cdot x, c) in
    let c_{00}, c_{01} = split(\lambda p \cdot p \cdot y < g \cdot y, c_0) in
    let c_{10}, c_{11} = split(\lambda p \cdot p \cdot y < g \cdot y, c_1) in
    Grid: (c_{00}@0, c_{01}@e, c_{10}@n, c_{11}@(n+e))
```



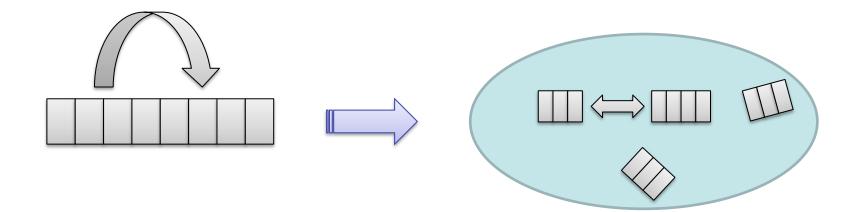
Example III: Fraglets

• From *chemical computing* to *membrane computing*



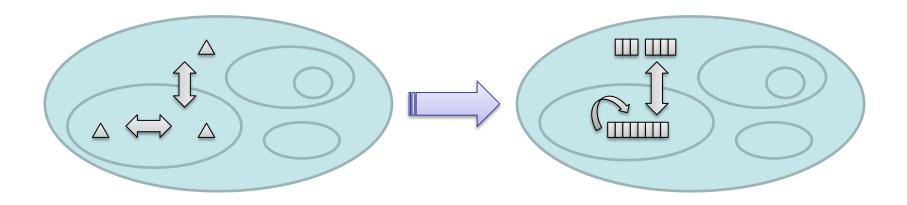
« Stratified Models of Computation »

- From *chemical computing* to *membrane computing*
- From *string rewriting* to *splicing systems*



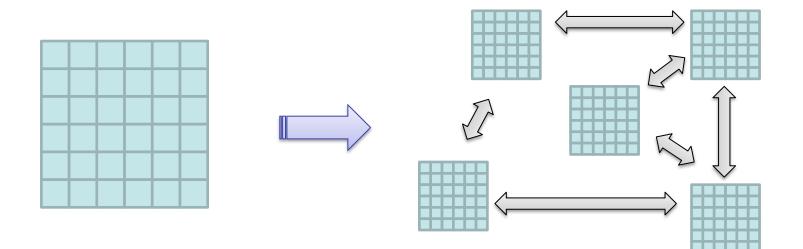
« Stratified Models of Computation »

- From *chemical computing* to *membrane computing*
- From string rewriting to splicing systems
- From *membrane computing* to *string P systems*

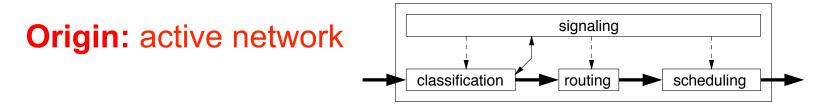


« Stratified Models of Computation »

- From *chemical computing* to *membrane computing*
- From *string rewriting* to *splicing systems*
- From *membrane computing* to *string P systems*
- From *cellular automata* to *complex automata*



Fraglets (Christian Tschudin & Lidia Yamamoto)

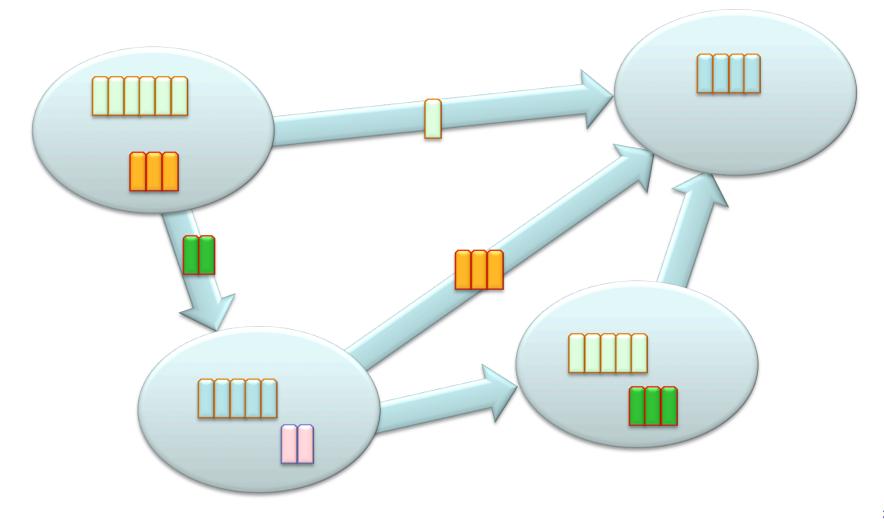


- Fraglet = computation fragment = code = data = packet
- Header tag matching, analogous to packet header processing
- "Assembly language" of chemical computing: micro-instructions, human-unreadable programs, "write-only" code!

Goals:

- Automated protocol synthesis and evolution
- Unified code and data representation (active+passive networking)
- Efficient packet processing engine: simple instructions with constant (short!) processing time

• Graph of (multisets of (sequences of symbols))



Ор	Input Output		
nul	[nul tail] []		
	destroy a fraglet		
	$[`null@0] tail]:Fraglet \implies Fraglet:()$		
dup	[dup t a tail] [t a a tail]		
	duplicate a single symbol		
	['dup@0, t, $a \mid tail$]:Fraglet $\implies t::a::a::tail$		
exch	[exch t a b tail] [t b a tail]		
	swap two tags		
	[`exch@0, t , a , $b \mid tail$]:Fraglet $\implies t::b::a::tail$		
split	[split s1 * s2] [s1] [s2]		
break a fraglet into two at the first occurrence of *			
	[`split@O, $(x/x != `time) \star$ as s_1 , `time s_2]:Fraglet $\implies s_1$, s_2		
pop	[pop h a tail] [h tail]		
	pop the "head" element of the list "a, <i>tail</i> "		
	[`pop@0, h , $a \mid tail$]:Fraglet $\implies h::tail$		
empty	[empty yes no tail] [yes] or [no tail]		
	test for empty <i>tail</i>		
	[`empty@0, y, $n \mid tail$]:Fraglet \implies if size(tail) == 0 then y::Fraglet:() else $n::tail$		
sum	$[sum t n_1 n_2 tail] \qquad [t (n_1 + n_2) tail]$		
	arithmetic addition		
	[`sum@O, t , n_1 , $n_2 \mid tail$]:Fraglet $\implies t:: (n_1+n_2)::tail$		
match	[match a tail1], [a tail2] [tail1 tail2]		
	two fraglets react, their tails are concatenated		
	[`match@0, $a t_1$]:Fraglet, [b @0 t_2]:Fraglet \implies join(t_1, t_2)		
matchP [matchP a tail1],[a tail2] [tail1 tail2]			
	<i>idem</i> as match but the rule persists		
	[`matchp@0, $a \mid t_1$]:Fraglet as f , [b @0 t_2]:Fraglet $\implies f$, join(t_1 , t_2)		

MGS

Conclusions

- Versatile spaces are useful
- They can even represent « physical space » 😳
- But distributed matching can be difficult (Cf. new work on HOCL)
- However:
 - Nesting is a form of compartmentalization
 - Arbitrary matching can be localized inside a domain
 - Interaction between domain can be restricted

- Grid(Tree) ≈ Tree(Grid) ?
- Usually: no Grid(Empty) ≠ Empty(Grid)
- But yes if uniformity list(pair) = pair(list) if lists of same length
- If uniformity, nesting as a topological interpretation: *fiber space*

base space

fiber

Thanks

Antoine Spicher

Olivier Michel

http://mgs.spatial-computing.org

Paul Bourgine

Annick Lesne

Editors

PhD and other students

Louis Bigo

- J. Cohen, P. Barbier de Reuille,
- E. Delsinne, V. Larue, F. Letierce, B. Calvez,
- F. Thonerieux, D. Boussié and the others...

Past and presents Collaborations

- A. Lesne (IHES, stochastic simulation)
- P. Prusinkiewicz (UoC, declarative modeling)
- P. Barbier de Reuille (meristeme model)
- C. Godin (CIRAD, biological modeling)
- H. Berry (INRIA, stochastic simulation)
- G. Malcolm (Liverpool, rewriting)
- J.-P. Banâtre (IRISA, programming)
- P. Fradet (Inria Alpes, programming)
- F. Delaplace (IBISC, synthetic biology)
- P. Dittrich (Jena, chemical organization)
- F. Gruau (LRI, language and hardware)
- P. Liehnard (Poitier, CAD, Gmap and quasi-manifold)

ircam

Pompidou

MGS

📰 Centre

Meiner Dublizky-Jennifer Southgate Hendrik Fußl-Eckwri

Understanding the Dynamics of **Biological Systems**