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MGS The	
  MGS	
  Spa,al	
  Approach	
  

•  Use	
  spa?al	
  rela?onships	
  (topology)	
  to	
  unify	
  the	
  various	
  
structures	
  of	
  an	
  abstract	
  collec?on	
  of	
  elements	
  
–  space	
  as	
  as	
  a	
  resource 	
   	
  (mul?ple	
  CPU)	
  
–  space	
  as	
  a	
  constraint	
   	
   	
  (data	
  loca?on)	
  
–  space	
  as	
  an	
  input/output 	
  (gradient	
  field)	
  

•  Neighborhood	
  rela?onships:	
  
–  the	
  structure	
  of	
  the	
  collec?on	
  
–  the	
  structure	
  of	
  the	
  subcollec?on	
  
–  the	
  computa?on	
  dependencies	
  

•  Computa?on	
  by	
  rewri?ng	
  
–  Pa6ern	
  matching	
  (selec?ng	
  a	
  subcollec?on)	
  
–  Subs?tu?on	
  (topological	
  surgery)	
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MGS Rewri,ng	
  systems	
  (and	
  abstract	
  transi?on	
  systems)	
  

•  Rewri?ng	
  system	
  
–  Used	
  to	
  formalize	
  equa?onnal	
  reasoning	
  
–  A	
  genera?ve	
  device	
  (grammar)	
  
–  Replace	
  a	
  sub-­‐part	
  of	
  an	
  en?ty	
  by	
  an	
  other	
  
–  Set	
  of	
  rewri?ng	
  rules	
  α	
  à	
  β	
  

•  α:	
  pa6ern	
  specifying	
  a	
  sub-­‐part	
  
•  β:	
  expression	
  evalua?ng	
  a	
  new	
  sub-­‐part	
  

•  Example:	
  arithme?c	
  expressions	
  simplifica?on	
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MGS A	
  general	
  rewri,ng	
  mechanism	
  

1.  In	
  a	
  collec*on	
  of	
  elements	
  
2.  Replace	
  a	
  subcollec*on	
  X	
  
3.  With	
  a	
  collec?on	
  Y	
  computed	
  from	
  X	
  and	
  its	
  neighbors	
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Collec,on	
  
•  Tree	
  
•  Sequence	
  (list)	
  
•  Mul?set	
  (bag)	
  
•  Set	
  

•  Grid	
  

Neighborhood	
  
•  father/son	
  	
  
•  le\,	
  right	
  
•  all	
  
•  all	
  

•  NEWS	
  

Algebra	
  
•  free	
  term	
  	
  
•  associa?ve	
  term	
  
•  associa?ve	
  +	
  commuta?ve	
  
•  asso.	
  +	
  comm.	
  +	
  idempotent	
  

•  a	
  specific	
  algebra	
  
(ac?on	
  of	
  a	
  group	
  on	
  itself)	
  



MGS 

•  Topological	
  collec?ons	
  
–  Structure	
  

• A	
  collec?on	
  of	
  topological	
  cells	
  
• An	
  incidence	
  rela*onship	
  

MGS	
  Proposi?on	
  

0-cell 
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3-cell 
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MGS 

•  Topological	
  collec?ons	
  
–  Structure	
  

• A	
  collec?on	
  of	
  topological	
  cells	
  
• An	
  incidence	
  rela?onship	
  

– Data:	
  associa,on	
  of	
  a	
  value	
  with	
  each	
  cell	
  

MGS	
  Proposi?on	
  

0-cell 

1-cell 

3-cell 

2-cell 
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MGS Abstract	
  (Simplicial)	
  Complex	
  and	
  (Simplicial)	
  Chains	
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Incidence	
  rela*onship	
  and	
  la8ce	
  of	
  incidence:	
  
	
  	
  -­‐	
  boundary(f)	
  =	
  {v1,	
  v2,	
  v3,	
  e1,	
  e2,	
  e3}	
  
	
  	
  -­‐	
  faces(f)	
  =	
  {e1,	
  e2,	
  e3}	
  
	
  	
  -­‐	
  cofaces(v1)	
  =	
  {e1,	
  e3}	
  

Topological	
  chain	
  
	
  	
  -­‐	
  coordinates	
  with	
  ver?ces	
  
	
  	
  -­‐	
  lengths	
  with	
  edges	
  
	
  	
  -­‐	
  area	
  with	
  f	
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MGS MGS	
  Proposi?on	
  

•  Transforma?ons	
  
–  Func?ons	
  defined	
  by	
  case	
  on	
  collec?ons	
  

Each	
  case	
  (pa6ern)	
  matches	
  a	
  sub-­‐collec?on	
  

– Defining	
  a	
  rewri?ng	
  rela?onship:	
  topological	
  rewri*ng	
  

trans T = { 
     pattern1 ⇒ expression1 
     … 
     patternn ⇒ expressionn  
} 
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MGS MGS	
  Proposi?on	
  

•  Transforma?ons	
  

trans T = { 
     pattern1 ⇒ expression1 
     … 
     patternn ⇒ expressionn  
} 

Topological collection Topological collection 

Sub-collection (Sub-)collection 

substitution 
Pattern-
matching 
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MGS 

NEIGHBOR OF  

Example:	
  Diffusion	
  Limited	
  Aggrega?on	
  (DLA)	
  

•  Diffusion:	
  some	
  par?cles	
  are	
  randomly	
  diffusing;	
  others	
  are	
  fixed	
  
•  Aggrega?on:	
  if	
  a	
  mobile	
  par?cle	
  meets	
  a	
  fixed	
  one,	
  it	
  stays	
  fixed	
  

 trans dla = { 
    `mobile , `fixed  => `fixed, `fixed ; 
    `mobile , <undef> => <undef>, `mobile 
}	
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MGS Example:	
  Diffusion	
  Limited	
  Aggrega?on	
  (DLA)	
  

•  Diffusion:	
  some	
  par?cles	
  are	
  randomly	
  diffusing;	
  others	
  are	
  fixed	
  
•  Aggrega?on:	
  if	
  a	
  mobile	
  par?cle	
  meets	
  a	
  fixed	
  one,	
  it	
  stays	
  fixed	
  

 trans dla = { 
    `mobile , `fixed  => `fixed, `fixed ; 
    `mobile , <undef> => <undef>, `mobile 
}	
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this transformation is an abstract process that can be applied to any kind of space 



MGS Polytypisme	
  



MGS Bead	
  Sort	
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MGS 
Bead	
  Sort	
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Gbf NEWS = < North, South, East, West;  
   North+South=0, East+West=0> 

trans dla = { 
    `bead |south> `empty  => `empty, `bead ; 
}	
  



MGS 
Eratosthene’s	
  Sieve	
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MGS 
Hamiltonian	
  path	
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trans h_path = { `start , x* as p,`stop  
   / size(p) = n-2 => return p }	
  

trans maze = { `input, c* as p,`output => return p }	
  



MGS 

Nes,ng	
  Spaces	
  



MGS Nested	
  Spaces	
  

•  Topological	
  collec?ons	
  are	
  first-­‐order	
  value	
  
•  Collec?on	
  valued	
  collec?ons	
  

19 

•  Applica?ons:	
  
•  Hierarchical	
  structures	
  
•  Refinement	
  and	
  mul?scale	
  systems	
  
•  Stra?fied	
  «	
  spa?al	
  »	
  computa?on	
  models	
  



MGS Matching	
  in	
  Nested	
  Collec,ons	
  

• x /	
  Arbitrary Predicate 
• [pat | x]	
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MGS 

Example	
  I:	
  
Disjunc,ve	
  Normal	
  Form	
  



MGS Logical	
  Formulas	
  as	
  Nested	
  Sets	
  

•  Operators	
  ∧	
 and	
  ∨	
 are	
  	
  
–  associa?ve	
  
–  commuta?ve	
  
–  idempotent	
  

•  (S,∧)	
  and	
  (S,∨)	
  are	
  A-­‐,	
  C-­‐,	
  I-­‐monoids	
  

•  Elements	
  of	
  A-­‐,	
  C-­‐,	
  I-­‐monoids	
  are	
  sets	
  

•  A	
  logical	
  formula	
  is	
  a	
  nes?ng	
  of	
  sets	
  

•  A	
  set	
  is	
  a	
  topological	
  collec?on	
  and	
  a	
  nes?ng	
  
of	
  sets	
  is	
  a	
  nested	
  topological	
  collec?on	
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MGS Logical	
  Formulas	
  as	
  Nested	
  Sets	
  

(a∨b∨c∨a)	
  ∧	
  (¬a∨d)	
  ∧	
  (¬c∨¬d)	
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MGS 

f g

Normalisa,on	
  in	
  Disjunc,ve	
  Normal	
  Form	
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{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.



MGS Logical	
  Formulas	
  as	
  Nested	
  Sets	
  

(a∨b∨c∨a)	
  ∧	
  (¬a∨d)	
  ∧	
  (¬c∨¬d)	
  
=	
  (a∧¬c∧d)∨(¬a∧b∧¬c)∨(¬a∧c∧¬d)	
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Example	
  II:	
  
A	
  Simple	
  Recursive	
  Space	
  Subdivision	
  Scheme	
  



MGS Quadtree	
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MGS Quadtree	
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{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
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}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.
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titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.
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•  From	
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  to	
  membrane	
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  to	
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  systems	
  
•  From	
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  compu*ng	
  to	
  string	
  P	
  systems	
  
•  From	
  cellular	
  automata	
  to	
  complex	
  automata	
  

34 



MGS Fraglets	
  (Chris?an	
  Tschudin	
  &Lidia	
  Yamamoto)	
  

35 

Origin: active network 

	
  

	
  
•  Fraglet	
  =	
  computa?on	
  fragment	
  =	
  code	
  =	
  data	
  =	
  packet	
  
•  Header	
  tag	
  matching,	
  analogous	
  to	
  packet	
  header	
  processing	
  	
  
•  “Assembly	
  language”	
  of	
  chemical	
  compu?ng:	
  micro-­‐instruc?ons,	
  
human-­‐unreadable	
  programs,	
  “write-­‐only”	
  code!	
  	
  

Goals:	
  
•  Automated	
  protocol	
  synthesis	
  and	
  evolu?on	
  	
  
•  Unified	
  code	
  and	
  data	
  representa?on	
  (ac?ve+passive	
  networking)	
  	
  
•  Efficient	
  packet	
  processing	
  engine:	
  simple	
  instruc?ons	
  with	
  

constant	
  (short!)	
  processing	
  ?me	
  	
  
	
  
	
  

Origin of Fraglets: Active Networking (AN)

Networking in the “fast path” of routers

classification routing scheduling

signaling

• Killer argument against AN in every packet: too slow and no
match with reality: fastpath in routers consists of a single lookup

• My goal: gradual AN “spectrum”
– one instruction per packet OK,
– two instructions probably OK too,
– some limit. After this, packet goes into slow path.

Christian Tschudin, UBasel BIONETS Fraglets meeting Brussels, Jan 29, 2007, 2/20
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•  Graph	
  of	
  (mul?sets	
  of	
  (sequences	
  of	
  symbols))	
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Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail ]:Fraglet =) Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail ]:Fraglet =) t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail ]:Fraglet =) t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2 ]:Fraglet =) s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail ]:Fraglet =) h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail ]:Fraglet =) if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail ]:Fraglet =) t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1 ]:Fraglet, [ b@0| t2 ]:Fraglet =) join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1 ]:Fraglet as f, [ b@0| t2 ]:Fraglet =) f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [ p| . . . ] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [ pat| . . . ] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.
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MGS Abstract	
  versus	
  Physical	
  Spaces…	
  

•  Versa?le	
  spaces	
  are	
  useful	
  
•  They	
  can	
  even	
  represent	
  «	
  physical	
  space	
  »	
  J	
  

•  But	
  distributed	
  matching	
  can	
  be	
  difficult	
  
(Cf.	
  new	
  work	
  on	
  HOCL)	
  

•  However:	
  
– Nes?ng	
  is	
  a	
  form	
  of	
  compartmentaliza?on	
  
– Arbitrary	
  matching	
  can	
  be	
  localized	
  inside	
  a	
  
domain	
  

–  Interac?on	
  between	
  domain	
  can	
  be	
  restricted	
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MGS Nes,ng	
  Spaces	
  versus	
  Fiber	
  Space	
  

•  Grid(Tree)	
  ≈	
  Tree(Grid)	
  ?	
  
•  Usually:	
  no	
  	
  
Grid(Empty)	
  ≠	
  Empty(Grid)	
  

•  But	
  yes	
  if	
  uniformity	
  
list(pair)	
  =	
  pair(list)	
  if	
  lists	
  of	
  same	
  length	
  

•  If	
  uniformity,	
  nes?ng	
  as	
  a	
  topological	
  
interpreta?on:	
  fiber	
  space	
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  and	
  hardware) 	
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  CAD,	
  Gmap	
  and	
  quasi-­‐manifold)	
  	
  

Thanks	
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