
MGS

Arbitrary	
 Nes,ng	
 in	
 Spa,al	
 Computa,on	

(in	
 MGS)	

1

Antoine	
 Spichera
	

Olivier	
 Michela	

Jean-­‐Louis	
 Giavi?ob

a LACL	
 –	
 Université	
 de	
 Paris	
 Est	

b UMR	
 STMS	
 9912	

IRCAM	
 –	
 CNRS	
 –	
 UPMC	
 &	
 INRIA	
 MuSync	

	

h6p://mgs.spa?al-­‐compu?ng.org	

MGS

1.  A	
 brief	
 introduc?on	
 to	
 MGS	

2.  Nested	
 Spaces	

3.  Matching	
 Nested	
 Structures	

4.  Induc?ve	
 Data	
 Structure	

5.  Mul?scale	
 Systems	

6.  Stra?fied	
 Computa?onal	
 Models	

	

2

MGS The	
 MGS	
 Spa,al	
 Approach	

•  Use	
 spa?al	
 rela?onships	
 (topology)	
 to	
 unify	
 the	
 various	

structures	
 of	
 an	
 abstract	
 collec?on	
 of	
 elements	

–  space	
 as	
 as	
 a	
 resource 	
 	
 (mul?ple	
 CPU)	

–  space	
 as	
 a	
 constraint	
 	
 	
 (data	
 loca?on)	

–  space	
 as	
 an	
 input/output 	
 (gradient	
 field)	

•  Neighborhood	
 rela?onships:	

–  the	
 structure	
 of	
 the	
 collec?on	

–  the	
 structure	
 of	
 the	
 subcollec?on	

–  the	
 computa?on	
 dependencies	

•  Computa?on	
 by	
 rewri?ng	

–  Pa6ern	
 matching	
 (selec?ng	
 a	
 subcollec?on)	

–  Subs?tu?on	
 (topological	
 surgery)	

3

MGS Rewri,ng	
 systems	
 (and	
 abstract	
 transi?on	
 systems)	

•  Rewri?ng	
 system	

–  Used	
 to	
 formalize	
 equa?onnal	
 reasoning	

–  A	
 genera?ve	
 device	
 (grammar)	

–  Replace	
 a	
 sub-­‐part	
 of	
 an	
 en?ty	
 by	
 an	
 other	

–  Set	
 of	
 rewri?ng	
 rules	
 α	
 à	
 β	

•  α:	
 pa6ern	
 specifying	
 a	
 sub-­‐part	

•  β:	
 expression	
 evalua?ng	
 a	
 new	
 sub-­‐part	

•  Example:	
 arithme?c	
 expressions	
 simplifica?on	

4

x

+

0

x

y

+

x x

+

y

MGS A	
 general	
 rewri,ng	
 mechanism	

1.  In	
 a	
 collec*on	
 of	
 elements	

2.  Replace	
 a	
 subcollec*on	
 X	

3.  With	
 a	
 collec?on	
 Y	
 computed	
 from	
 X	
 and	
 its	
 neighbors	

5

m
on

oi
da

l	

Collec,on	

•  Tree	

•  Sequence	
 (list)	

•  Mul?set	
 (bag)	

•  Set	

•  Grid	

Neighborhood	

•  father/son	
 	

•  le\,	
 right	

•  all	

•  all	

•  NEWS	

Algebra	

•  free	
 term	
 	

•  associa?ve	
 term	

•  associa?ve	
 +	
 commuta?ve	

•  asso.	
 +	
 comm.	
 +	
 idempotent	

•  a	
 specific	
 algebra	

(ac?on	
 of	
 a	
 group	
 on	
 itself)	

MGS

•  Topological	
 collec?ons	

–  Structure	

• A	
 collec?on	
 of	
 topological	
 cells	

• An	
 incidence	
 rela*onship	

MGS	
 Proposi?on	

0-cell

1-cell

3-cell

2-cell

vertex

edge

surface

volume

6

MGS

•  Topological	
 collec?ons	

–  Structure	

• A	
 collec?on	
 of	
 topological	
 cells	

• An	
 incidence	
 rela?onship	

– Data:	
 associa,on	
 of	
 a	
 value	
 with	
 each	
 cell	

MGS	
 Proposi?on	

0-cell

1-cell

3-cell

2-cell

7

MGS Abstract	
 (Simplicial)	
 Complex	
 and	
 (Simplicial)	
 Chains	

v1

v2 v3

e1 e3

e2

f

(0, 4)

(3,0) (-3, 0)

5 5

6

12

Incidence	
 rela*onship	
 and	
 la8ce	
 of	
 incidence:	

	
 	
 -­‐	
 boundary(f)	
 =	
 {v1,	
 v2,	
 v3,	
 e1,	
 e2,	
 e3}	

	
 	
 -­‐	
 faces(f)	
 =	
 {e1,	
 e2,	
 e3}	

	
 	
 -­‐	
 cofaces(v1)	
 =	
 {e1,	
 e3}	

Topological	
 chain	

	
 	
 -­‐	
 coordinates	
 with	
 ver?ces	

	
 	
 -­‐	
 lengths	
 with	
 edges	

	
 	
 -­‐	
 area	
 with	
 f	

f

e1 e2 e3

v1 v2 v3

feeevvv .12.5.6.5.
0
3

.
0
3

.
4
0

321321 ++++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

8

MGS MGS	
 Proposi?on	

•  Transforma?ons	

–  Func?ons	
 defined	
 by	
 case	
 on	
 collec?ons	

Each	
 case	
 (pa6ern)	
 matches	
 a	
 sub-­‐collec?on	

– Defining	
 a	
 rewri?ng	
 rela?onship:	
 topological	
 rewri*ng	

trans T = {
 pattern1 ⇒ expression1
 …
 patternn ⇒ expressionn
}

9

MGS MGS	
 Proposi?on	

•  Transforma?ons	

trans T = {
 pattern1 ⇒ expression1
 …
 patternn ⇒ expressionn
}

Topological collection Topological collection

Sub-collection (Sub-)collection

substitution
Pattern-
matching

10

MGS

NEIGHBOR OF

Example:	
 Diffusion	
 Limited	
 Aggrega?on	
 (DLA)	

•  Diffusion:	
 some	
 par?cles	
 are	
 randomly	
 diffusing;	
 others	
 are	
 fixed	

•  Aggrega?on:	
 if	
 a	
 mobile	
 par?cle	
 meets	
 a	
 fixed	
 one,	
 it	
 stays	
 fixed	

 trans dla = {
 `mobile , `fixed => `fixed, `fixed ;
 `mobile , <undef> => <undef>, `mobile
}	

11

MGS Example:	
 Diffusion	
 Limited	
 Aggrega?on	
 (DLA)	

•  Diffusion:	
 some	
 par?cles	
 are	
 randomly	
 diffusing;	
 others	
 are	
 fixed	

•  Aggrega?on:	
 if	
 a	
 mobile	
 par?cle	
 meets	
 a	
 fixed	
 one,	
 it	
 stays	
 fixed	

 trans dla = {
 `mobile , `fixed => `fixed, `fixed ;
 `mobile , <undef> => <undef>, `mobile
}	

12

this transformation is an abstract process that can be applied to any kind of space

MGS Polytypisme	

MGS Bead	
 Sort	

14	

3

1

4

2

3

1

4

2

MGS
Bead	
 Sort	

15	

Gbf NEWS = < North, South, East, West;
 North+South=0, East+West=0>

trans dla = {
 `bead |south> `empty => `empty, `bead ;
}	

MGS
Eratosthene’s	
 Sieve	

	

	

16	

3 9 3 9

MGS
Hamiltonian	
 path	

17

trans h_path = { `start , x* as p,`stop
 / size(p) = n-2 => return p }	

trans maze = { `input, c* as p,`output => return p }	

MGS

Nes,ng	
 Spaces	

MGS Nested	
 Spaces	

•  Topological	
 collec?ons	
 are	
 first-­‐order	
 value	

•  Collec?on	
 valued	
 collec?ons	

19

•  Applica?ons:	

•  Hierarchical	
 structures	

•  Refinement	
 and	
 mul?scale	
 systems	

•  Stra?fied	
 «	
 spa?al	
 »	
 computa?on	
 models	

MGS Matching	
 in	
 Nested	
 Collec,ons	

• x /	
 Arbitrary Predicate
• [pat | x]	

20

pat

x

[pat | x]

MGS

Example	
 I:	

Disjunc,ve	
 Normal	
 Form	

MGS Logical	
 Formulas	
 as	
 Nested	
 Sets	

•  Operators	
 ∧	
 and	
 ∨	
 are	
 	

–  associa?ve	

–  commuta?ve	

–  idempotent	

•  (S,∧)	
 and	
 (S,∨)	
 are	
 A-­‐,	
 C-­‐,	
 I-­‐monoids	

•  Elements	
 of	
 A-­‐,	
 C-­‐,	
 I-­‐monoids	
 are	
 sets	

•  A	
 logical	
 formula	
 is	
 a	
 nes?ng	
 of	
 sets	

•  A	
 set	
 is	
 a	
 topological	
 collec?on	
 and	
 a	
 nes?ng	

of	
 sets	
 is	
 a	
 nested	
 topological	
 collec?on	

22

MGS Logical	
 Formulas	
 as	
 Nested	
 Sets	

(a∨b∨c∨a)	
 ∧	
 (¬a∨d)	
 ∧	
 (¬c∨¬d)	

23

a	
 b	

c	
 a	

¬c	
 ¬d	

¬a	
 d	

∧
∨

∨

∨

MGS

f g

Normalisa,on	
 in	
 Disjunc,ve	
 Normal	
 Form	

24

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS Logical	
 Formulas	
 as	
 Nested	
 Sets	

(a∨b∨c∨a)	
 ∧	
 (¬a∨d)	
 ∧	
 (¬c∨¬d)	

=	
 (a∧¬c∧d)∨(¬a∧b∧¬c)∨(¬a∧c∧¬d)	

	

25

a	

b	
 c	

¬c	

¬d	
 ¬a	
 d	

¬a	

¬c	

MGS

Example	
 II:	

A	
 Simple	
 Recursive	
 Space	
 Subdivision	
 Scheme	

MGS Quadtree	

27

1	
 region,	

7	
 points	

1	
 region	

NW,	
 3	
 pts	

NW,	
 1pt	
 NE,	
 1	
 pt	
 SW,	
 9	
 pt	
 SE	
 1	
 pt	

1	
 region	

NE,	
 1	
 pt	

1	
 region	

SW,	
 1	
 pt	

1	
 region	

SE,	
 2pt	

MGS Quadtree	

28

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS

29

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS

Example	
 III:	

Fraglets	

MGS «	
 Stra,fied	
 Models	
 of	
 Computa,on	
 »	

•  From	
 chemical	
 compu*ng	
 to	
 membrane	
 compu*ng	

31

MGS «	
 Stra,fied	
 Models	
 of	
 Computa,on	
 »	

•  From	
 chemical	
 compu*ng	
 to	
 membrane	
 compu*ng	

•  From	
 string	
 rewri*ng	
 to	
 splicing	
 systems	

32

MGS «	
 Stra,fied	
 Models	
 of	
 Computa,on	
 »	

•  From	
 chemical	
 compu*ng	
 to	
 membrane	
 compu*ng	

•  From	
 string	
 rewri*ng	
 to	
 splicing	
 systems	

•  From	
 membrane	
 compu*ng	
 to	
 string	
 P	
 systems	

33

MGS «	
 Stra,fied	
 Models	
 of	
 Computa,on	
 »	

•  From	
 chemical	
 compu*ng	
 to	
 membrane	
 compu*ng	

•  From	
 string	
 rewri*ng	
 to	
 splicing	
 systems	

•  From	
 membrane	
 compu*ng	
 to	
 string	
 P	
 systems	

•  From	
 cellular	
 automata	
 to	
 complex	
 automata	

34

MGS Fraglets	
 (Chris?an	
 Tschudin	
 &Lidia	
 Yamamoto)	

35

Origin: active network

	

	

•  Fraglet	
 =	
 computa?on	
 fragment	
 =	
 code	
 =	
 data	
 =	
 packet	

•  Header	
 tag	
 matching,	
 analogous	
 to	
 packet	
 header	
 processing	
 	

•  “Assembly	
 language”	
 of	
 chemical	
 compu?ng:	
 micro-­‐instruc?ons,	

human-­‐unreadable	
 programs,	
 “write-­‐only”	
 code!	
 	

Goals:	

•  Automated	
 protocol	
 synthesis	
 and	
 evolu?on	
 	

•  Unified	
 code	
 and	
 data	
 representa?on	
 (ac?ve+passive	
 networking)	
 	

•  Efficient	
 packet	
 processing	
 engine:	
 simple	
 instruc?ons	
 with	

constant	
 (short!)	
 processing	
 ?me	
 	

	

	

Origin of Fraglets: Active Networking (AN)

Networking in the “fast path” of routers

classification routing scheduling

signaling

• Killer argument against AN in every packet: too slow and no
match with reality: fastpath in routers consists of a single lookup

• My goal: gradual AN “spectrum”
– one instruction per packet OK,
– two instructions probably OK too,
– some limit. After this, packet goes into slow path.

Christian Tschudin, UBasel BIONETS Fraglets meeting Brussels, Jan 29, 2007, 2/20

MGS Fraglets	
 Spa,al	
 Structure	

•  Graph	
 of	
 (mul?sets	
 of	
 (sequences	
 of	
 symbols))	

36

MGS Fraglets	
 Transla,on	

37

Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail]:Fraglet =) Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail]:Fraglet =) t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail]:Fraglet =) t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2]:Fraglet =) s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail]:Fraglet =) h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail]:Fraglet =) if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail]:Fraglet =) t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1]:Fraglet, [b@0| t2]:Fraglet =) join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1]:Fraglet as f, [b@0| t2]:Fraglet =) f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [p| . . .] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [pat| . . .] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.

ACKNOWLEDGMENTS

The authors would like to thanks H. Klaudel, F. Pommereau,
F. Delaplace and J. Cohen for many questions, encouragements
and sweet cookies. This research is supported in part by the
ANR projects SynBioTIC.

REFERENCES

[1] J. Banâtre, P. Fradet, and D. Le Métayer, “Gamma and the chemical
reaction model: Fifteen years after,” Multiset processing: mathematical,
computer science, and molecular computing points of view, vol. 2235,
pp. 17–44, 2001.

[2] J. Banâtre, P. Fradet, and Y. Radenac, “Programming self-organizing
systems with the higher-order chemical language,” International Journal
of Unconventional Computing, vol. 3, no. 3, p. 161, 2007.

[3] P. Fradet and D. Le Métayer, “Structured gamma,” Science of Computer
Programming, vol. 31, no. 2-3, pp. 263–289, 1998.

MGS

Conclusions	

MGS Abstract	
 versus	
 Physical	
 Spaces…	

•  Versa?le	
 spaces	
 are	
 useful	

•  They	
 can	
 even	
 represent	
 «	
 physical	
 space	
 »	
 J	

•  But	
 distributed	
 matching	
 can	
 be	
 difficult	

(Cf.	
 new	
 work	
 on	
 HOCL)	

•  However:	

– Nes?ng	
 is	
 a	
 form	
 of	
 compartmentaliza?on	

– Arbitrary	
 matching	
 can	
 be	
 localized	
 inside	
 a	

domain	

–  Interac?on	
 between	
 domain	
 can	
 be	
 restricted	

39

MGS Nes,ng	
 Spaces	
 versus	
 Fiber	
 Space	

•  Grid(Tree)	
 ≈	
 Tree(Grid)	
 ?	

•  Usually:	
 no	
 	

Grid(Empty)	
 ≠	
 Empty(Grid)	

•  But	
 yes	
 if	
 uniformity	

list(pair)	
 =	
 pair(list)	
 if	
 lists	
 of	
 same	
 length	

•  If	
 uniformity,	
 nes?ng	
 as	
 a	
 topological	

interpreta?on:	
 fiber	
 space	

40
base space

fiber

MGS

• 	
 Antoine	
 Spicher	

• 	
 Olivier	
 Michel	

• 	
 PhD	
 and	
 other	
 students	

	
 	
 	
 	
 	
 Louis	
 Bigo	

	
 	
 	
 	
 	
 J.	
 Cohen,	
 P.	
 Barbier	
 de	
 Reuille,	

	
 	
 	
 	
 	
 E.	
 Delsinne,	
 V.	
 Larue,	
 F.	
 Le?erce,	
 B.	
 Calvez,	
 	

	
 	
 	
 	
 	
 F.	
 Thonerieux,	
 D.	
 Boussié	
 	
 and	
 the	
 others...	

	

• 	
 Past	
 and	
 presents	
 Collabora,ons	

•  A.	
 Lesne	
 (IHES,	
 stochas?c	
 simula?on)	

•  P.	
 Prusinkiewicz	
 (UoC,	
 declara?ve	
 modeling)	
 	
 	
 	

•  P.	
 Barbier	
 de	
 Reuille	
 (meristeme	
 model)	

•  C.	
 Godin	
 (CIRAD,	
 biological	
 modeling)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  H.	
 Berry	
 (INRIA,	
 stochas?c	
 simula?on)	

•  G.	
 Malcolm	
 (Liverpool,	
 rewri?ng)	

•  J.-­‐P.	
 Banâtre	
 (IRISA,	
 programming)	

•  P.	
 Fradet	
 (Inria	
 Alpes,	
 programming)	
 	
 	
 	
 	
 	
 	
 	
 	

•  F.	
 Delaplace	
 (IBISC,	
 synthe?c	
 biology)	

•  P.	
 Di6rich	
 (Jena,	
 chemical	
 organiza?on)	

•  F.	
 Gruau	
 (LRI,	
 language	
 and	
 hardware) 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  P.	
 Liehnard	
 (Poi?er,	
 CAD,	
 Gmap	
 and	
 quasi-­‐manifold)	
 	

Thanks	

41

http://mgs.spatial-computing.org

