
MGS

Arbitrary	 Nes,ng	 in	 Spa,al	 Computa,on	
(in	 MGS)	

1

Antoine	 Spichera
	

Olivier	 Michela	
Jean-‐Louis	 Giavi?ob

a LACL	 –	 Université	 de	 Paris	 Est	
b UMR	 STMS	 9912	

IRCAM	 –	 CNRS	 –	 UPMC	 &	 INRIA	 MuSync	
	

h6p://mgs.spa?al-‐compu?ng.org	

MGS

1.  A	 brief	 introduc?on	 to	 MGS	
2.  Nested	 Spaces	
3.  Matching	 Nested	 Structures	
4.  Induc?ve	 Data	 Structure	
5.  Mul?scale	 Systems	
6.  Stra?fied	 Computa?onal	 Models	
	

2

MGS The	 MGS	 Spa,al	 Approach	

•  Use	 spa?al	 rela?onships	 (topology)	 to	 unify	 the	 various	
structures	 of	 an	 abstract	 collec?on	 of	 elements	
–  space	 as	 as	 a	 resource 	 	 (mul?ple	 CPU)	
–  space	 as	 a	 constraint	 	 	 (data	 loca?on)	
–  space	 as	 an	 input/output 	 (gradient	 field)	

•  Neighborhood	 rela?onships:	
–  the	 structure	 of	 the	 collec?on	
–  the	 structure	 of	 the	 subcollec?on	
–  the	 computa?on	 dependencies	

•  Computa?on	 by	 rewri?ng	
–  Pa6ern	 matching	 (selec?ng	 a	 subcollec?on)	
–  Subs?tu?on	 (topological	 surgery)	

3

MGS Rewri,ng	 systems	 (and	 abstract	 transi?on	 systems)	

•  Rewri?ng	 system	
–  Used	 to	 formalize	 equa?onnal	 reasoning	
–  A	 genera?ve	 device	 (grammar)	
–  Replace	 a	 sub-‐part	 of	 an	 en?ty	 by	 an	 other	
–  Set	 of	 rewri?ng	 rules	 α	 à	 β	

•  α:	 pa6ern	 specifying	 a	 sub-‐part	
•  β:	 expression	 evalua?ng	 a	 new	 sub-‐part	

•  Example:	 arithme?c	 expressions	 simplifica?on	

4

x

+

0

x

y

+

x x

+

y

MGS A	 general	 rewri,ng	 mechanism	

1.  In	 a	 collec*on	 of	 elements	
2.  Replace	 a	 subcollec*on	 X	
3.  With	 a	 collec?on	 Y	 computed	 from	 X	 and	 its	 neighbors	

5

m
on

oi
da

l	

Collec,on	
•  Tree	
•  Sequence	 (list)	
•  Mul?set	 (bag)	
•  Set	

•  Grid	

Neighborhood	
•  father/son	 	
•  le\,	 right	
•  all	
•  all	

•  NEWS	

Algebra	
•  free	 term	 	
•  associa?ve	 term	
•  associa?ve	 +	 commuta?ve	
•  asso.	 +	 comm.	 +	 idempotent	

•  a	 specific	 algebra	
(ac?on	 of	 a	 group	 on	 itself)	

MGS

•  Topological	 collec?ons	
–  Structure	

• A	 collec?on	 of	 topological	 cells	
• An	 incidence	 rela*onship	

MGS	 Proposi?on	

0-cell

1-cell

3-cell

2-cell

vertex

edge

surface

volume

6

MGS

•  Topological	 collec?ons	
–  Structure	

• A	 collec?on	 of	 topological	 cells	
• An	 incidence	 rela?onship	

– Data:	 associa,on	 of	 a	 value	 with	 each	 cell	

MGS	 Proposi?on	

0-cell

1-cell

3-cell

2-cell

7

MGS Abstract	 (Simplicial)	 Complex	 and	 (Simplicial)	 Chains	

v1

v2 v3

e1 e3

e2

f

(0, 4)

(3,0) (-3, 0)

5 5

6

12

Incidence	 rela*onship	 and	 la8ce	 of	 incidence:	
	 	 -‐	 boundary(f)	 =	 {v1,	 v2,	 v3,	 e1,	 e2,	 e3}	
	 	 -‐	 faces(f)	 =	 {e1,	 e2,	 e3}	
	 	 -‐	 cofaces(v1)	 =	 {e1,	 e3}	

Topological	 chain	
	 	 -‐	 coordinates	 with	 ver?ces	
	 	 -‐	 lengths	 with	 edges	
	 	 -‐	 area	 with	 f	

f

e1 e2 e3

v1 v2 v3

feeevvv .12.5.6.5.
0
3

.
0
3

.
4
0

321321 ++++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

8

MGS MGS	 Proposi?on	

•  Transforma?ons	
–  Func?ons	 defined	 by	 case	 on	 collec?ons	

Each	 case	 (pa6ern)	 matches	 a	 sub-‐collec?on	

– Defining	 a	 rewri?ng	 rela?onship:	 topological	 rewri*ng	

trans T = {
 pattern1 ⇒ expression1
 …
 patternn ⇒ expressionn
}

9

MGS MGS	 Proposi?on	

•  Transforma?ons	

trans T = {
 pattern1 ⇒ expression1
 …
 patternn ⇒ expressionn
}

Topological collection Topological collection

Sub-collection (Sub-)collection

substitution
Pattern-
matching

10

MGS

NEIGHBOR OF

Example:	 Diffusion	 Limited	 Aggrega?on	 (DLA)	

•  Diffusion:	 some	 par?cles	 are	 randomly	 diffusing;	 others	 are	 fixed	
•  Aggrega?on:	 if	 a	 mobile	 par?cle	 meets	 a	 fixed	 one,	 it	 stays	 fixed	

 trans dla = {
 `mobile , `fixed => `fixed, `fixed ;
 `mobile , <undef> => <undef>, `mobile
}	

11

MGS Example:	 Diffusion	 Limited	 Aggrega?on	 (DLA)	

•  Diffusion:	 some	 par?cles	 are	 randomly	 diffusing;	 others	 are	 fixed	
•  Aggrega?on:	 if	 a	 mobile	 par?cle	 meets	 a	 fixed	 one,	 it	 stays	 fixed	

 trans dla = {
 `mobile , `fixed => `fixed, `fixed ;
 `mobile , <undef> => <undef>, `mobile
}	

12

this transformation is an abstract process that can be applied to any kind of space

MGS Polytypisme	

MGS Bead	 Sort	

14	

3

1

4

2

3

1

4

2

MGS
Bead	 Sort	

15	

Gbf NEWS = < North, South, East, West;
 North+South=0, East+West=0>

trans dla = {
 `bead |south> `empty => `empty, `bead ;
}	

MGS
Eratosthene’s	 Sieve	
	
	

16	

3 9 3 9

MGS
Hamiltonian	 path	

17

trans h_path = { `start , x* as p,`stop
 / size(p) = n-2 => return p }	

trans maze = { `input, c* as p,`output => return p }	

MGS

Nes,ng	 Spaces	

MGS Nested	 Spaces	

•  Topological	 collec?ons	 are	 first-‐order	 value	
•  Collec?on	 valued	 collec?ons	

19

•  Applica?ons:	
•  Hierarchical	 structures	
•  Refinement	 and	 mul?scale	 systems	
•  Stra?fied	 «	 spa?al	 »	 computa?on	 models	

MGS Matching	 in	 Nested	 Collec,ons	

• x /	 Arbitrary Predicate
• [pat | x]	

20

pat

x

[pat | x]

MGS

Example	 I:	
Disjunc,ve	 Normal	 Form	

MGS Logical	 Formulas	 as	 Nested	 Sets	

•  Operators	 ∧	 and	 ∨	 are	 	
–  associa?ve	
–  commuta?ve	
–  idempotent	

•  (S,∧)	 and	 (S,∨)	 are	 A-‐,	 C-‐,	 I-‐monoids	

•  Elements	 of	 A-‐,	 C-‐,	 I-‐monoids	 are	 sets	

•  A	 logical	 formula	 is	 a	 nes?ng	 of	 sets	

•  A	 set	 is	 a	 topological	 collec?on	 and	 a	 nes?ng	
of	 sets	 is	 a	 nested	 topological	 collec?on	

22

MGS Logical	 Formulas	 as	 Nested	 Sets	

(a∨b∨c∨a)	 ∧	 (¬a∨d)	 ∧	 (¬c∨¬d)	

23

a	 b	
c	 a	

¬c	 ¬d	

¬a	 d	

∧
∨

∨

∨

MGS

f g

Normalisa,on	 in	 Disjunc,ve	 Normal	 Form	

24

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS Logical	 Formulas	 as	 Nested	 Sets	

(a∨b∨c∨a)	 ∧	 (¬a∨d)	 ∧	 (¬c∨¬d)	
=	 (a∧¬c∧d)∨(¬a∧b∧¬c)∨(¬a∧c∧¬d)	

	

25

a	
b	 c	

¬c	
¬d	 ¬a	 d	
¬a	

¬c	

MGS

Example	 II:	
A	 Simple	 Recursive	 Space	 Subdivision	 Scheme	

MGS Quadtree	

27

1	 region,	
7	 points	

1	 region	
NW,	 3	 pts	

NW,	 1pt	 NE,	 1	 pt	 SW,	 9	 pt	 SE	 1	 pt	

1	 region	
NE,	 1	 pt	

1	 region	
SW,	 1	 pt	

1	 region	
SE,	 2pt	

MGS Quadtree	

28

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS

29

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[f:And| g]:And =) join(f,g)
[f:Or| g]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

MGS

Example	 III:	
Fraglets	

MGS «	 Stra,fied	 Models	 of	 Computa,on	 »	

•  From	 chemical	 compu*ng	 to	 membrane	 compu*ng	

31

MGS «	 Stra,fied	 Models	 of	 Computa,on	 »	

•  From	 chemical	 compu*ng	 to	 membrane	 compu*ng	
•  From	 string	 rewri*ng	 to	 splicing	 systems	

32

MGS «	 Stra,fied	 Models	 of	 Computa,on	 »	

•  From	 chemical	 compu*ng	 to	 membrane	 compu*ng	
•  From	 string	 rewri*ng	 to	 splicing	 systems	
•  From	 membrane	 compu*ng	 to	 string	 P	 systems	

33

MGS «	 Stra,fied	 Models	 of	 Computa,on	 »	

•  From	 chemical	 compu*ng	 to	 membrane	 compu*ng	
•  From	 string	 rewri*ng	 to	 splicing	 systems	
•  From	 membrane	 compu*ng	 to	 string	 P	 systems	
•  From	 cellular	 automata	 to	 complex	 automata	

34

MGS Fraglets	 (Chris?an	 Tschudin	 &Lidia	 Yamamoto)	

35

Origin: active network

	

	
•  Fraglet	 =	 computa?on	 fragment	 =	 code	 =	 data	 =	 packet	
•  Header	 tag	 matching,	 analogous	 to	 packet	 header	 processing	 	
•  “Assembly	 language”	 of	 chemical	 compu?ng:	 micro-‐instruc?ons,	
human-‐unreadable	 programs,	 “write-‐only”	 code!	 	

Goals:	
•  Automated	 protocol	 synthesis	 and	 evolu?on	 	
•  Unified	 code	 and	 data	 representa?on	 (ac?ve+passive	 networking)	 	
•  Efficient	 packet	 processing	 engine:	 simple	 instruc?ons	 with	

constant	 (short!)	 processing	 ?me	 	
	
	

Origin of Fraglets: Active Networking (AN)

Networking in the “fast path” of routers

classification routing scheduling

signaling

• Killer argument against AN in every packet: too slow and no
match with reality: fastpath in routers consists of a single lookup

• My goal: gradual AN “spectrum”
– one instruction per packet OK,
– two instructions probably OK too,
– some limit. After this, packet goes into slow path.

Christian Tschudin, UBasel BIONETS Fraglets meeting Brussels, Jan 29, 2007, 2/20

MGS Fraglets	 Spa,al	 Structure	

•  Graph	 of	 (mul?sets	 of	 (sequences	 of	 symbols))	

36

MGS Fraglets	 Transla,on	

37

Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail]:Fraglet =) Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail]:Fraglet =) t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail]:Fraglet =) t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2]:Fraglet =) s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail]:Fraglet =) h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail]:Fraglet =) if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail]:Fraglet =) t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1]:Fraglet, [b@0| t2]:Fraglet =) join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1]:Fraglet as f, [b@0| t2]:Fraglet =) f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [p| . . .] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [pat| . . .] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.

ACKNOWLEDGMENTS

The authors would like to thanks H. Klaudel, F. Pommereau,
F. Delaplace and J. Cohen for many questions, encouragements
and sweet cookies. This research is supported in part by the
ANR projects SynBioTIC.

REFERENCES

[1] J. Banâtre, P. Fradet, and D. Le Métayer, “Gamma and the chemical
reaction model: Fifteen years after,” Multiset processing: mathematical,
computer science, and molecular computing points of view, vol. 2235,
pp. 17–44, 2001.

[2] J. Banâtre, P. Fradet, and Y. Radenac, “Programming self-organizing
systems with the higher-order chemical language,” International Journal
of Unconventional Computing, vol. 3, no. 3, p. 161, 2007.

[3] P. Fradet and D. Le Métayer, “Structured gamma,” Science of Computer
Programming, vol. 31, no. 2-3, pp. 263–289, 1998.

MGS

Conclusions	

MGS Abstract	 versus	 Physical	 Spaces…	

•  Versa?le	 spaces	 are	 useful	
•  They	 can	 even	 represent	 «	 physical	 space	 »	 J	

•  But	 distributed	 matching	 can	 be	 difficult	
(Cf.	 new	 work	 on	 HOCL)	

•  However:	
– Nes?ng	 is	 a	 form	 of	 compartmentaliza?on	
– Arbitrary	 matching	 can	 be	 localized	 inside	 a	
domain	

–  Interac?on	 between	 domain	 can	 be	 restricted	

39

MGS Nes,ng	 Spaces	 versus	 Fiber	 Space	

•  Grid(Tree)	 ≈	 Tree(Grid)	 ?	
•  Usually:	 no	 	
Grid(Empty)	 ≠	 Empty(Grid)	

•  But	 yes	 if	 uniformity	
list(pair)	 =	 pair(list)	 if	 lists	 of	 same	 length	

•  If	 uniformity,	 nes?ng	 as	 a	 topological	
interpreta?on:	 fiber	 space	

40
base space

fiber

MGS

• 	 Antoine	 Spicher	
• 	 Olivier	 Michel	

• 	 PhD	 and	 other	 students	
	 	 	 	 	 Louis	 Bigo	
	 	 	 	 	 J.	 Cohen,	 P.	 Barbier	 de	 Reuille,	
	 	 	 	 	 E.	 Delsinne,	 V.	 Larue,	 F.	 Le?erce,	 B.	 Calvez,	 	
	 	 	 	 	 F.	 Thonerieux,	 D.	 Boussié	 	 and	 the	 others...	
	

• 	 Past	 and	 presents	 Collabora,ons	
•  A.	 Lesne	 (IHES,	 stochas?c	 simula?on)	
•  P.	 Prusinkiewicz	 (UoC,	 declara?ve	 modeling)	 	 	 	
•  P.	 Barbier	 de	 Reuille	 (meristeme	 model)	
•  C.	 Godin	 (CIRAD,	 biological	 modeling)	 	 	 	 	 	 	 	 	 	 	 	 	 	
•  H.	 Berry	 (INRIA,	 stochas?c	 simula?on)	
•  G.	 Malcolm	 (Liverpool,	 rewri?ng)	
•  J.-‐P.	 Banâtre	 (IRISA,	 programming)	
•  P.	 Fradet	 (Inria	 Alpes,	 programming)	 	 	 	 	 	 	 	 	
•  F.	 Delaplace	 (IBISC,	 synthe?c	 biology)	
•  P.	 Di6rich	 (Jena,	 chemical	 organiza?on)	
•  F.	 Gruau	 (LRI,	 language	 and	 hardware) 	 	 	 	 	 	 	 	 	 	
•  P.	 Liehnard	 (Poi?er,	 CAD,	 Gmap	 and	 quasi-‐manifold)	 	

Thanks	

41

http://mgs.spatial-computing.org

