r
: informatiques 7 mathématiques

U~MmcC

Arbitrary Nesting in Spatial Computation

(in MGS)

Antoine Spicher”
Olivier Michel

Jean-Louis Giavitto?
2 LACL — Université de Paris Est

"UMR STMS 9912

IRCAM — CNRS — UPMC & INRIA MuSync

a

Ircam

é Centre

ClCl @ Pompidou

B e T O L
FRR AN
5 1 ﬁa’ﬂiqg 1"'-.1 ".:.‘
Tk AT
R R O
RLITH A i ot f; .--.'.1,'
5, Hea N L B

. e e Jerap Al md
':t-'-"é e lls :

http://mgs.spatial-computing.org

o Uk WwWwhE

A brief introduction to MGS
Nested Spaces

Matching Nested Structures
Inductive Data Structure
Multiscale Systems

Stratified Computational Models

The MGS Spatial Approach @

e Use spatial relationships (topology) to unify the various
structures of an abstract collection of elements

— space as as a resource (multiple CPU)
— space as a constraint (data location)
— space as an input/output (gradient field)

e Neighborhood relationships:

— the structure of the collection
— the structure of the subcollection
— the computation dependencies

e Computation by rewriting
— Pattern matching (selecting a subcollection)
— Substitution (topological surgery)

Rewriting systems (and abstract transition systems) ®

e Rewriting system
— Used to formalize equationnal reasoning
— A generative device (grammar)
— Replace a sub-part of an entity by an other
— Set of rewriting rules o 2 f
e o pattern specifying a sub-part
e [3: expression evaluating a new sub-part

e Example: arithmetic expressions simplification

N—=h N/

X X y y X

A general rewriting mechanism @

1. In a collection of elements
2. Replace a subcollection X

3. With a collection Y computed from X and its neighbors

Collection Neighborhood Algebra
_ (. Tree » father/son * free term
7§ d° Sequence (list) e |eft, right * associative term
S * Multiset (bag) e all e associative + commutative
s _* Set all * asso.+comm. + idempotent
 Grid e NEWS e aspecific algebra

(action of a group on itself)

MGS Proposition @

e Topological collections

— Structure
e A collection of topological cells
e An incidence relationship

) vertex

/\/

edge

<::::;;;:;7 surface
<i£}fi?7 volume

‘MGS Proposition @

e Topological collections

— Structure
e A collection of topological cells
e An incidence relationship

— Data: association of a value with each cell

O O-cell O A |
TN 1-cell Q\\/Q\

v 2_cell
/Q
@ 3-cell Q\? \9\\

Abstract (Simplicial) Complex and (Simplicial) Chains @

Incidence relationship and lattice of incidence:
- boundary(f) = {v1, v2, v3, el, e2, e3}
- faces(f) = {el, e2, e3} f

- cofaces(vl) = {el, e3})<
0,4) 12 [;] vy @
/)< Topological chain
- coordinates with vertices
(-3,0) @ e(3.0) - lengths with edges
- area with f
0 3 —

i+ v, + 0 Vv, +5.e +6.e,+5e, +12.f

MGS Proposition @

e Transformations

— Functions defined by case on collections
Each case (pattern) matches a sub-collection

— Defining a rewriting relationship: topological rewriting

trans 7 ={
pattern, = expression,

pattern, = expression,,

}

MGS Proposition @

e Transformations

Sub-collection (Sub-)collection
PaTTern* |
ma’rchmg | . subSh’ru‘ruon

trans T = { M

;uauern1 = expression, D

~ pattcin, => expression,

Topological collection Topological collection
10

M&S

‘Example: Diffusion Limited Aggregation (DLA)
e Diffusion: some particles are randomly diffusing; others are fixed
e Aggregation: if a mobile particle meets a fixed one, it stays fixed

trans dla = {
‘mobile , fixed => "fixed, fixed ;

\mobile@ﬂln!deb => <undef>, "“mobile
}
NEIGHBOR OF

11

M&S

Example: Diffusion Limited Aggregation (DLA)
e Diffusion: some particles are randomly diffusing; others are fixed
e Aggregation: if a mobile particle meets a fixed one, it stays fixed

trans dla = {
‘'mobile , fixed => "fixed, fixed ;
‘mobile , <undef> => <undef>, “mobile

this transformation is an abstract process that can be applied to any kind of space

12

Polytypisme

Bead Sort

A~ WO N -

Bead Sort

Gbf NEWS

< North, South, East, West;
North+South=0, East+West=0>

trans dla = {
"bead |south> "empty => "empty, bead ;

Eratosthene’s Sieve B

M&S

trans Generate = {z, true} => z,{r+1 t'rue}
~ trans Succed = {z,true} => z;
itrans Eliminate = (x, y /ymodz =0) => x;

Eliminate|fixrule] (Succed (Generate[N|({2, true}, set : ())))

16

Hamiltonian path

M&S

trans h path = { start , x* as p, stop
/ size(p) = n-2 => return p }

trans maze = { input, c¢* as p, output => return p }

17

Nesting Spaces

Nested Spaces

e Topological collections are first-order value
e Collection valued collections

I A

T YLD
* Applications: ‘//"."’” \15!'
* Hierarchical structures " "

* Refinement and multiscale systems
e Stratified « spatial » computation models

19

Matching in Nested Collections

e x [Arbitrary Predicate

* [pat | x] [pat | x]

@ O 9

===

20

Example I:
Disjunctive Normal Form

Logical Formulas as Nested Sets

e Operators /A and V are
— associative
— commutative
— idempotent

e (S,A)and (S, V) are A-, C-, I-monoids
e Elements of A-, C-, -monoids are sets
e Alogical formulais a nesting of sets

e Asetis atopological collection and a nesting
of sets is a nested topological collection

22

Logical Formulas as Nested Sets

(avbvcva) A (-avd) A (-cv-d)

23

Normalisation in Disjunctive Normal Form
trans DNF = { A
(« Simplifying unaries x) g =
[[z] ...]:Not | ...]:Not = «x <> f gA
r:And / size(x) ==1 —> choose (1) $
x:0r / size(x) ==1 = choose (z) /\

(= Flattening nested ops *)

[f:And | g] :And = Jjoin (f, g) >
[f:0r | g]:0r = Join(f,g)

(« De Morgan’s laws) :

[2:0r | ...] :Not =

fold(::, And:(), mapAf.{f=f}, x)) A
[z:And | ...] :Not —

fold(::, Or:(), mapAf.{f=f}, x)) R /\
(= Distributivity =) <> A

[2:0r | s]:And = map (Af.f::s,)

(x Induction x)

r:And — DNF (x)
r:0r — DNF (x)
zr:Not =— DNF (x)

}

24

Logical Formulas as Nested Sets

(avbvcva) A (-avd) A (-cv-d)
= (an-cAd)V (-anba-c)V (-arnca-d)

25

Example Il:
A Simple Recursive Space Subdivision Scheme

Quadtree

NW, 1pt

NE, 1 pt

MGSs

1 region,
.7 points

1 region 1 region 1 region 1 region
- NW,3pts = NE, 1pt = SW,1pt = SE 2pt

SW, 9 pt SE 1 pt

27

Quadtree B

M&S

type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = <n, e; 2e=0, 2n=0>

and collection Cloud = set[Polint2D]

and record Point2D = { x:real, y:real }

trans MakeQuadTree =
c:Cloud / size(c) >2 —
MakeQuadTree (SplitCloud (c))

fun SplitCloud (c:Cloud) =
let g = barycenter(c¢) 1n
let ¢y, c1 = split (Ap.p.x<g.x, c) 1in
let cpo, co1 = split (Ap.p.y<g.y, ¢y) 1in
let c¢i19, c11 = split (Ap.p.y<g.y, c1) in
Grid: (cgp@0, cg1@e, c10@n, c11@ (n+e))

28

29

Example lll:
Fraglets

« Stratified Models of Computation »

e From chemical computing to membrane computing

A=A L (/A @ﬁa

31

« Stratified Models of Computation »

e From chemical computing to membrane computing
e From string rewriting to splicing systems

‘A

— D W
Z

32

« Stratified Models of Computation » ®

M&S

e From chemical computing to membrane computing
e From string rewriting to splicing systems

e From membrane computing to string P systems

A [(1D

A @ﬁa W]:> EEDEIIJJ

33

« Stratified Models of Computation »

MGSs

From chemical computing to membrane computing
From string rewriting to splicing systems
From membrane computing to string P systems

From cellular automata to complex automata

> & s |

34

Fraglets (Christian Tschudin &Lidia Yamamoto) ®

M&S

signaling \

Origin: active network |
classifiéation sched'uling F—»

* Fraglet = computation fragment = code = data = packet
 Header tag matching, analogous to packet header processing

* “Assembly language” of chemical computing: micro-instructions,
human-unreadable programs, “write-only” code!

Goals:
 Automated protocol synthesis and evolution
* Unified code and data representation (active+passive networking)

e Efficient packet processing engine: simple instructions with
constant (short!) processing time

35

Fraglets Spatial Structure

e Graph of (multisets of (sequences of symbols))

36

‘Fraglets Translation

M&S

Op Input Output
nul [nul tail] []
destroy a fraglet
[‘'nullQO | tail] :Fraglet —> Fraglet:()
dup [dup t a taill] [t a a taill
duplicate a single symbol
[“dupQO, t, a|tail]:Fraglet — t::a::a::tail
exch [exch t a b taill] [t b a tail]
swap two tags
[YexchQO, t, a, b| tail]:Fraglet =— t::b::a::tail
split [split sl *x s2] [s1l] [s2]
break a fraglet into two at the first occurrence of *
[‘split@O0, (x/x'=‘time)* as si1, ‘time | s3] :Fraglet = s1, S2
pop [pop h a taill] [h tail]
pop the “head” element of the list “a, tail”
[‘popRO, h, a| tail]:Fraglet = h::tail
empty [empty yes no tail] [yes] or [no taill]
test for empty tail
[‘emptyQ@0, y, n|tail]:Fraglet =—> 1if size (tail) ==0 then y:: Fraglet:() else n::tail
sum [sum t n1 ne taill [t (n1+ne2) taill
arithmetic addition
[“sum@O, ¢, ni, n2 | tail] :Fraglet = t:: (ni1+n2) ::tail
match [match a taill], [a tail2] [taill tail2]
two fraglets react, their tails are concatenated
[‘matchQO0, a | t1]:Fraglet, [bQRO |t2]:Fraglet — join (t1,t2)
matchP [matchP a taill]l, [a tail2] [taill tail?2]
idem as match but the rule persists
[‘matchp@0, a | t1]:Fraglet as f, [bQ0 |ty]:Fraglet —> f, join (t1,t2)

37

M&S

Conclusions

Abstract versus Physical Spaces...

e \ersatile spaces are useful
e They can even represent « physical space » ©

e But distributed matching can be difficult
(Cf. new work on HOCL)

e However:
— Nesting is a form of compartmentalization

— Arbitrary matching can be localized inside a
domain

— Interaction between domain can be restricted

39

Nesting Spaces versus Fiber Space

e Grid(Tree) = Tree(Grid) ?

e Usually: no
Grid(Empty) # Empty(Grid)

e But yes if uniformity
list(pair) = pair(list) if lists of same length

e If uniformity, nesting as a topological
interpretation: fiber space

base space /

Ircam

BERSTe @
Thanks M lCl Cl @ = cegzrl:pidou "

e Antoine Spicher http:// tial "
. . . Jimgs.spatiali-computing.or
e Olivier Michel P g P P g.0rg
e PhD and other students

Louis Bigo

J. Cohen, P. Barbier de Reuille, et

E. Delsinne, V. Larue, F. Letierce, B. Calvez,

F. Thonerieux, D. Boussié and the others... AL

e Past and presents Collaborations
e A. Lesne (IHES, stochastic simulation)
e P. Prusinkiewicz (UoC, declarative modeling) e ol

Understanding
the Dynamics of

Paul Bourgine

e P. Barbier de Reuille (meristeme model) :
e C. Godin (CIRAD, biological modeling) G e
e H. Berry (INRIA, stochastic simulation)

Biological Systems

e G. Malcolm (Liverpool, rewriting) Morphogenesis

e J.-P. Banatre (IRISA, programming)

Origins of Patterns and Shapes

e P. Fradet (Inria Alpes, programming)
e F. Delaplace (IBISC, synthetic biology)
e P. Dittrich (Jena, chemical organization)

|
2 ‘a Springer /.\\
ks =

e F. Gruau (LRI, language and hardware)

e P. Liehnard (Poitier, CAD, Gmap and quasi-manifold) Kindie Edition, “\: »

