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MGS The	  MGS	  Spa,al	  Approach	  

•  Use	  spa?al	  rela?onships	  (topology)	  to	  unify	  the	  various	  
structures	  of	  an	  abstract	  collec?on	  of	  elements	  
–  space	  as	  as	  a	  resource 	   	  (mul?ple	  CPU)	  
–  space	  as	  a	  constraint	   	   	  (data	  loca?on)	  
–  space	  as	  an	  input/output 	  (gradient	  field)	  

•  Neighborhood	  rela?onships:	  
–  the	  structure	  of	  the	  collec?on	  
–  the	  structure	  of	  the	  subcollec?on	  
–  the	  computa?on	  dependencies	  

•  Computa?on	  by	  rewri?ng	  
–  Pa6ern	  matching	  (selec?ng	  a	  subcollec?on)	  
–  Subs?tu?on	  (topological	  surgery)	  

3 



MGS Rewri,ng	  systems	  (and	  abstract	  transi?on	  systems)	  

•  Rewri?ng	  system	  
–  Used	  to	  formalize	  equa?onnal	  reasoning	  
–  A	  genera?ve	  device	  (grammar)	  
–  Replace	  a	  sub-‐part	  of	  an	  en?ty	  by	  an	  other	  
–  Set	  of	  rewri?ng	  rules	  α	  à	  β	  

•  α:	  pa6ern	  specifying	  a	  sub-‐part	  
•  β:	  expression	  evalua?ng	  a	  new	  sub-‐part	  

•  Example:	  arithme?c	  expressions	  simplifica?on	  
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MGS A	  general	  rewri,ng	  mechanism	  

1.  In	  a	  collec*on	  of	  elements	  
2.  Replace	  a	  subcollec*on	  X	  
3.  With	  a	  collec?on	  Y	  computed	  from	  X	  and	  its	  neighbors	  
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Collec,on	  
•  Tree	  
•  Sequence	  (list)	  
•  Mul?set	  (bag)	  
•  Set	  

•  Grid	  

Neighborhood	  
•  father/son	  	  
•  le\,	  right	  
•  all	  
•  all	  

•  NEWS	  

Algebra	  
•  free	  term	  	  
•  associa?ve	  term	  
•  associa?ve	  +	  commuta?ve	  
•  asso.	  +	  comm.	  +	  idempotent	  

•  a	  specific	  algebra	  
(ac?on	  of	  a	  group	  on	  itself)	  



MGS 

•  Topological	  collec?ons	  
–  Structure	  

• A	  collec?on	  of	  topological	  cells	  
• An	  incidence	  rela*onship	  

MGS	  Proposi?on	  

0-cell 

1-cell 

3-cell 

2-cell 

vertex 

edge 

surface 

volume 

6 



MGS 

•  Topological	  collec?ons	  
–  Structure	  

• A	  collec?on	  of	  topological	  cells	  
• An	  incidence	  rela?onship	  

– Data:	  associa,on	  of	  a	  value	  with	  each	  cell	  

MGS	  Proposi?on	  

0-cell 

1-cell 

3-cell 

2-cell 
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MGS Abstract	  (Simplicial)	  Complex	  and	  (Simplicial)	  Chains	  
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Incidence	  rela*onship	  and	  la8ce	  of	  incidence:	  
	  	  -‐	  boundary(f)	  =	  {v1,	  v2,	  v3,	  e1,	  e2,	  e3}	  
	  	  -‐	  faces(f)	  =	  {e1,	  e2,	  e3}	  
	  	  -‐	  cofaces(v1)	  =	  {e1,	  e3}	  

Topological	  chain	  
	  	  -‐	  coordinates	  with	  ver?ces	  
	  	  -‐	  lengths	  with	  edges	  
	  	  -‐	  area	  with	  f	  
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MGS MGS	  Proposi?on	  

•  Transforma?ons	  
–  Func?ons	  defined	  by	  case	  on	  collec?ons	  

Each	  case	  (pa6ern)	  matches	  a	  sub-‐collec?on	  

– Defining	  a	  rewri?ng	  rela?onship:	  topological	  rewri*ng	  

trans T = { 
     pattern1 ⇒ expression1 
     … 
     patternn ⇒ expressionn  
} 
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MGS MGS	  Proposi?on	  

•  Transforma?ons	  

trans T = { 
     pattern1 ⇒ expression1 
     … 
     patternn ⇒ expressionn  
} 

Topological collection Topological collection 

Sub-collection (Sub-)collection 

substitution 
Pattern-
matching 
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MGS 

NEIGHBOR OF  

Example:	  Diffusion	  Limited	  Aggrega?on	  (DLA)	  

•  Diffusion:	  some	  par?cles	  are	  randomly	  diffusing;	  others	  are	  fixed	  
•  Aggrega?on:	  if	  a	  mobile	  par?cle	  meets	  a	  fixed	  one,	  it	  stays	  fixed	  

 trans dla = { 
    `mobile , `fixed  => `fixed, `fixed ; 
    `mobile , <undef> => <undef>, `mobile 
}	  
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MGS Example:	  Diffusion	  Limited	  Aggrega?on	  (DLA)	  

•  Diffusion:	  some	  par?cles	  are	  randomly	  diffusing;	  others	  are	  fixed	  
•  Aggrega?on:	  if	  a	  mobile	  par?cle	  meets	  a	  fixed	  one,	  it	  stays	  fixed	  

 trans dla = { 
    `mobile , `fixed  => `fixed, `fixed ; 
    `mobile , <undef> => <undef>, `mobile 
}	  
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this transformation is an abstract process that can be applied to any kind of space 



MGS Polytypisme	  



MGS Bead	  Sort	  
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MGS 
Bead	  Sort	  
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Gbf NEWS = < North, South, East, West;  
   North+South=0, East+West=0> 

trans dla = { 
    `bead |south> `empty  => `empty, `bead ; 
}	  



MGS 
Eratosthene’s	  Sieve	  
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MGS 
Hamiltonian	  path	  
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trans h_path = { `start , x* as p,`stop  
   / size(p) = n-2 => return p }	  

trans maze = { `input, c* as p,`output => return p }	  



MGS 

Nes,ng	  Spaces	  



MGS Nested	  Spaces	  

•  Topological	  collec?ons	  are	  first-‐order	  value	  
•  Collec?on	  valued	  collec?ons	  

19 

•  Applica?ons:	  
•  Hierarchical	  structures	  
•  Refinement	  and	  mul?scale	  systems	  
•  Stra?fied	  «	  spa?al	  »	  computa?on	  models	  



MGS Matching	  in	  Nested	  Collec,ons	  

• x /	  Arbitrary Predicate 
• [pat | x]	  

20 
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MGS 

Example	  I:	  
Disjunc,ve	  Normal	  Form	  



MGS Logical	  Formulas	  as	  Nested	  Sets	  

•  Operators	  ∧	 and	  ∨	 are	  	  
–  associa?ve	  
–  commuta?ve	  
–  idempotent	  

•  (S,∧)	  and	  (S,∨)	  are	  A-‐,	  C-‐,	  I-‐monoids	  

•  Elements	  of	  A-‐,	  C-‐,	  I-‐monoids	  are	  sets	  

•  A	  logical	  formula	  is	  a	  nes?ng	  of	  sets	  

•  A	  set	  is	  a	  topological	  collec?on	  and	  a	  nes?ng	  
of	  sets	  is	  a	  nested	  topological	  collec?on	  
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MGS Logical	  Formulas	  as	  Nested	  Sets	  

(a∨b∨c∨a)	  ∧	  (¬a∨d)	  ∧	  (¬c∨¬d)	  
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MGS 

f g

Normalisa,on	  in	  Disjunc,ve	  Normal	  Form	  

24 

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.



MGS Logical	  Formulas	  as	  Nested	  Sets	  

(a∨b∨c∨a)	  ∧	  (¬a∨d)	  ∧	  (¬c∨¬d)	  
=	  (a∧¬c∧d)∨(¬a∧b∧¬c)∨(¬a∧c∧¬d)	  
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MGS 

Example	  II:	  
A	  Simple	  Recursive	  Space	  Subdivision	  Scheme	  



MGS Quadtree	  

27 
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MGS Quadtree	  
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{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme
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titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.
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type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =) x

x:And / size(x)==1 =) choose(x)
x:Or / size(x)==1 =) choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =) join(f,g)
[ f:Or| g ]:Or =) join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =)
fold(::, And:(), map(�f ⇧{f= f }, x))

[x:And|...]:Not =)
fold(::, Or:(), map(�f ⇧{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =) map(�f ⇧ f::s, x)

(* Induction *)
x:And =) DNF(x)
x:Or =) DNF(x)
x:Not =) DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
�f ⇧ f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n

points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2⇥2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =)

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(�p ⇧ p.x<g.x, c) in
let c00, c01 = split(�p ⇧ p.y<g.y, c0) in
let c10, c11 = split(�p ⇧ p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T

where the value vi is associated with the cell ci.
The process is illustrated on figure 1. There is no need of

the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree

that create the nested structure from a flat cloud of points.
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{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.
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Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
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Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
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the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
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MGS «	  Stra,fied	  Models	  of	  Computa,on	  »	  

•  From	  chemical	  compu*ng	  to	  membrane	  compu*ng	  
•  From	  string	  rewri*ng	  to	  splicing	  systems	  
•  From	  membrane	  compu*ng	  to	  string	  P	  systems	  
•  From	  cellular	  automata	  to	  complex	  automata	  
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MGS Fraglets	  (Chris?an	  Tschudin	  &Lidia	  Yamamoto)	  
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Origin: active network 

	  

	  
•  Fraglet	  =	  computa?on	  fragment	  =	  code	  =	  data	  =	  packet	  
•  Header	  tag	  matching,	  analogous	  to	  packet	  header	  processing	  	  
•  “Assembly	  language”	  of	  chemical	  compu?ng:	  micro-‐instruc?ons,	  
human-‐unreadable	  programs,	  “write-‐only”	  code!	  	  

Goals:	  
•  Automated	  protocol	  synthesis	  and	  evolu?on	  	  
•  Unified	  code	  and	  data	  representa?on	  (ac?ve+passive	  networking)	  	  
•  Efficient	  packet	  processing	  engine:	  simple	  instruc?ons	  with	  

constant	  (short!)	  processing	  ?me	  	  
	  
	  

Origin of Fraglets: Active Networking (AN)

Networking in the “fast path” of routers

classification routing scheduling

signaling

• Killer argument against AN in every packet: too slow and no
match with reality: fastpath in routers consists of a single lookup

• My goal: gradual AN “spectrum”
– one instruction per packet OK,
– two instructions probably OK too,
– some limit. After this, packet goes into slow path.

Christian Tschudin, UBasel BIONETS Fraglets meeting Brussels, Jan 29, 2007, 2/20



MGS Fraglets	  Spa,al	  Structure	  

•  Graph	  of	  (mul?sets	  of	  (sequences	  of	  symbols))	  
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Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail ]:Fraglet =) Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail ]:Fraglet =) t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail ]:Fraglet =) t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2 ]:Fraglet =) s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail ]:Fraglet =) h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail ]:Fraglet =) if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail ]:Fraglet =) t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1 ]:Fraglet, [ b@0| t2 ]:Fraglet =) join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1 ]:Fraglet as f, [ b@0| t2 ]:Fraglet =) f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [ p| . . . ] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [ pat| . . . ] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.
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MGS Abstract	  versus	  Physical	  Spaces…	  

•  Versa?le	  spaces	  are	  useful	  
•  They	  can	  even	  represent	  «	  physical	  space	  »	  J	  

•  But	  distributed	  matching	  can	  be	  difficult	  
(Cf.	  new	  work	  on	  HOCL)	  

•  However:	  
– Nes?ng	  is	  a	  form	  of	  compartmentaliza?on	  
– Arbitrary	  matching	  can	  be	  localized	  inside	  a	  
domain	  

–  Interac?on	  between	  domain	  can	  be	  restricted	  
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MGS Nes,ng	  Spaces	  versus	  Fiber	  Space	  

•  Grid(Tree)	  ≈	  Tree(Grid)	  ?	  
•  Usually:	  no	  	  
Grid(Empty)	  ≠	  Empty(Grid)	  

•  But	  yes	  if	  uniformity	  
list(pair)	  =	  pair(list)	  if	  lists	  of	  same	  length	  

•  If	  uniformity,	  nes?ng	  as	  a	  topological	  
interpreta?on:	  fiber	  space	  
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• 	  Antoine	  Spicher	  
• 	  Olivier	  Michel	  

• 	  PhD	  and	  other	  students	  
	  	  	  	  	  Louis	  Bigo	  
	  	  	  	  	  J.	  Cohen,	  P.	  Barbier	  de	  Reuille,	  
	  	  	  	  	  E.	  Delsinne,	  V.	  Larue,	  F.	  Le?erce,	  B.	  Calvez,	  	  
	  	  	  	  	  F.	  Thonerieux,	  D.	  Boussié	  	  and	  the	  others...	  
	  

• 	  Past	  and	  presents	  Collabora,ons	  
•  A.	  Lesne	  (IHES,	  stochas?c	  simula?on)	  
•  P.	  Prusinkiewicz	  (UoC,	  declara?ve	  modeling)	  	  	  	  
•  P.	  Barbier	  de	  Reuille	  (meristeme	  model)	  
•  C.	  Godin	  (CIRAD,	  biological	  modeling)	  	  	  	  	  	  	  	  	  	  	  	  	  	  
•  H.	  Berry	  (INRIA,	  stochas?c	  simula?on)	  
•  G.	  Malcolm	  (Liverpool,	  rewri?ng)	  
•  J.-‐P.	  Banâtre	  (IRISA,	  programming)	  
•  P.	  Fradet	  (Inria	  Alpes,	  programming)	  	  	  	  	  	  	  	  	  
•  F.	  Delaplace	  (IBISC,	  synthe?c	  biology)	  
•  P.	  Di6rich	  (Jena,	  chemical	  organiza?on)	  
•  F.	  Gruau	  (LRI,	  language	  and	  hardware) 	  	  	  	  	  	  	  	  	  	  
•  P.	  Liehnard	  (Poi?er,	  CAD,	  Gmap	  and	  quasi-‐manifold)	  	  

Thanks	  
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