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ABSTRACT 

This paper demonstrates the use of YCQAII, as a multicriterion decision-making 

tool, to choose automation projects for the printed-circuit-board manufacturing busi- 
ness. Q-analysis is used to group alternatives at different levels of satisfaction. A new 
eccentricity index can measure the relationships between alternatives. In addition, 

the conjugate complex, which transposes the alternative-criterion matrix, is analyzed 
to rank the decision criteria and examine the relationships between them. The results 
are compared with the ELECTRE I multicriterion algorithm. These techniques are used 
to show how both quantifiable and nonnumerical criteria (which represent short- and 

long-term objectives), chosen to enhance a company’s strategic position, can be used 
to select optimal alternatives. 

INTRODUCTION 

It is imperative for manufacturing facilities to incorporate state-of-the-art 
processes and equipment in their businesses to stay globally competitive and 
satisfy customer expectations. Many potential improvement projects are 
difficult to justify because of the high installation costs and intangible 
benefits. Ignoring intangib!e benefits, however, has left many domestic 
manufacturers behind their international competitors. 

This paper shows the potential benefits of incorporating multicriterion 
decision-making techniques in justifying automation projects for manufactur- 
ing facilities because alternatives with conflicting quantitative and nonnumer- 
ical measures can be compared. Quantitative measures are the traditional 
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short-term indicators such as return on investment and payback period. The 
nonnumerical concerns are issues such as quality, competitiveness, and 
production flexibility. Decision makers in manufacturing management should 
pay attention to these factors as well as short-term factors. 

One decision-making tool is MCQAII, an analytical technique that can 
incorporate quantitative and nonnumerical factors into a framework that 
helps select the optimum alternative [7]. The technique ranks alternatives 
with respect to a set of criteria by utilizing satisfaction, concordance, and 
discordance indices. 

An example of an MCQAII application in the printed-circuit-board industry 
is used to examine the importance of an individual criterion to the criterion 
set. This is done by grouping criteria, measuring the strength of the interac- 
tions between groups, and measuring the effect criteria have on distinguish- 
ing alternatives from one another. The ranking of alternatives from MCQAII is 
compared with ranking from ELECTRE I. 

DECISION-MAKING CRITERIA 

Manufacturing managers have traditionally relied on short-term measures 
of profitability to justify capital expenditures for automation. Examples of 
short-term measures include internal rate of return, net present worth, and 
payback years. These classical engineering economic parameters do not 
provide measures for long-term strategic planning. Managers must be willing 
to consider other, nonmonetary factors in their decisions [2]. 

The following factors are examples of long-term issues for strategic 
planning of a manufacturing facility when considering automation. These are 
some of the nonnumerical benefits that managers should optimize in future 
planning for the firm: 

1. Market position. 
2. Growth potential. 
3. Customer-service improvements. 
4. Profitability and value added gained by automation. 
5. Cash flow, including startup, installation, fixed, sunk, and maintenance 

costs. 
6. Resource utilization. 
7. Investment risk. 
8. Technical assessment. 
9. Shop productivity. 
10. Reduction of manufacturing lead time. 
11. Increase of material turnover. 
12. Reduction of inventory. 
13. Increase of employee involvement and commitment. 
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For the specific example in this paper, the following criteria for choosing 
investment alternatives and automation projects were selected. ( +) indicates 
that the criterion is to be maximized; ( -) indicates that the criterion is to be 
minimized: 

Cl (+) 
c2 (-) 
C3 (+I 
c4 (+I 
C5 (+) 
C6 (+) 
C7 (-) 
C8 (+) 

Internal rate of return 
Investment risk 
Competitive edge 
Quality improvement 
Flexibility improvement 
Cross applicability 
Learning curve (months) 
Management commitment 

Criteria 2,3,8 are rated on a scale of high, medium, and low. Criteria 4,5,6 
are rated on a scale of very high, high, medium, low, and very low. Criterion 
7 is expressed as the number of months needed to implement the automated 
process. 

The following weights are given to the above criteria as a measure of the 
relative importance of each criterion to choosing the best alternative. (3) 
indicates most important and (1) indicates least important: 

Criteria Weight 

Cl 3 
c2 2 
c3 3 
c4 3 
c5 1 
C6 1 

c7 1 

C8 2 

DECISION ALTERNATIVES 

Twelve project alternatives are compared in a project impact matrix for 
the printed-circuit-board (PCB) industry [l, 5, 81: 

Al Automated PCB photoprocessing automates material handling and pho- 
toprocessing of PCBs with conveyors and robots. 
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A2 Automated PCB plating-bath control monitors chemical concentrations 
and maintains the chemical contents of the process baths. Statistical 
process control is used in this operation with the continuous monitoring 
of process variables. This alternative uses sensors, actuators, and a 
distributed computer network. 

A3 Automated printed-wiring-board optical inspection uses x-rays to inspect 
multilayers, artwork, and photoresist in a nondestructive test. 

A4 Automated PCB identi$cation uses a robot and laser technology to 
inscribe identification codes on the PCBs. This reduces accounting 
errors and cycle time, and increases inventory turnover. 

AS Automated component preparation automates the process of pretinning 
component wires. 

A6 Automated component kitting sorts components into individual kits for 
each PCB. This alternative uses a computer driven sorting and material 
handling system. 

A7 Automated component insertion uses robots to position, bend, and cut 
leads. 

AS Automated masking uses a robot with a vision system to apply a solder 
mask to holes and sensitive components before the wave soldering 
process. 

A9 Automated presolder inspection uses a vision system to verify correct 
placement of components on the PCB. 

A10 Automated point solder uses a robot to hand-solder components too 
sensitive for wave soldering. 

All Automated solder joint inspection checks the solder joints on the PCB. 
This alternative uses an x-ray system. 

Al2 Do nothing -do not implement any automation project. 

MCQAII ANALYSIS 

The first step of MCQAII is to set up the project impact matrix (Table l), 
which ranks the alternatives to the set of criteria [7]. This is done with the 
original scales described in the “Decision-Making Criteria” section. 

The nonnumerical values are given new values in nonlinear value func- 
tions, and the reciprocals of the numbers of implementation months is given, 
so that all the ratings will be maximized (Table 2). 

The project impact matrix is used to compute a preference matrix, or 
project value matrix (Table 3). The new elements are defined by the 
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TABLE 1 

PROJECT IMPACT MATRIX 

1 Cl c2 c3 c4 c5 C6 C7 C8 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

All 

A12 

0.71 M M 

0.73 H H 

0.73 L M 

0.22 M M 

1.34 M M 

0.63 M H 

1.51 M H 

0.67 M M 

0.42 H H 

0.54 M M 

0.45 H H 

0.00 L L 

L H 

M VH 

H M 

L M 

M M 

M VH 

M VH 

M M 

VH H 

M M 

H H 

VL VL 

M 6 M 

H 8 M 

L 6 H 

H 3 M 

H 6 L 

VH 6 M 

VH 6 M 

H 3 M 

H 6 M 

H 6 M 

L 12 H 

M 0 M 

following equation: 

qP(iTj)) = 
P(i,j)-Pmin(j) 

Pmax(j) - Prnin(j) ’ (1) 

where 

i = alternatives 1,. . . ,12, 
j = criteria 1,. . ,8, 

p,,(j) = minimum element of column j, 

p,,(j) = maximum element of column j. 

TABLE 2 

PROJECT IMPACT MATRIX -QUANTIFIED 

1 Cl c2 c3 c4 c5 C6 c7 C8 

Al 0.71 0.40 0.60 0.35 0.96 0.40 0.17 0.68 

A2 0.73 0.30 0.90 0.55 0.99 0.48 0.11 0.80 

A3 0.73 0.95 0.60 0.70 0.80 0.30 0.17 0.95 

A4 0.22 0.60 0.61 0.50 0.80 0.50 0.33 0.55 

A5 1.34 0.60 0.51 0.52 0.80 0.60 0.17 0.20 

A6 0.63 0.60 0.99 0.55 0.95 1.00 0.17 0.60 

A7 1.51 0.70 1.00 0.58 0.99 1.00 0.17 0.80 

A8 0.67 0.50 0.50 0.60 0.70 0.70 0.33 0.60 

A9 0.42 0.90 0.80 1.00 0.90 0.80 0.17 0.83 

A10 0.54 0.40 0.50 0.53 0.75 0.65 0.17 0.70 

All 0.45 0.10 0.95 0.75 0.92 0.30 0.08 0.99 

A12 0.00 1.00 0.05 0.10 0.01 0.09 1.00 0.05 
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TABLE 3 

PREFERENCE MATRIX 

ICl c2 c3 c4 c5 C6 c7 C8 

Al 0.47 0.14 0.58 0.00 0.97 0.14 0.10 0.61 
A2 0.48 0.00 0.89 0.31 1.00 0.26 0.03 0.76 
A3 0.48 0.93 0.58 0.54 0.81 0.00 0.10 0.95 
A4 0.15 0.43 0.59 0.23 0.81 0.29 0.27 0.44 

A5 0.89 0.43 0.48 0.26 0.81 0.43 0.10 0.00 
A6 0.42 0.43 0.99 0.31 0.96 1.00 0.10 0.51 
A7 1.00 0.57 1.00 0.35 1.00 1.00 0.10 0.76 

A8 0.44 0.29 0.47 0.38 0.70 0.57 0.27 0.51 
A9 0.28 0.86 0.79 1.00 0.91 0.71 0.10 0.80 

A10 0.36 0.14 0.47 0.28 0.76 0.50 0.10 0.63 
All 0.30 - 0.29 0.95 0.62 0.93 0.00 0.00 1.00 
Al2 0.00 1.00 0.00 - 0.38 0.00 - 0.30 1.00 -0.19 

The analysis was performed with different sets of slicing parameters, 

a(k) = ak, k=1,2 ,..., K. 

Here K represents the number of satisfaction levels. MCQAII will compute 
the K incidence matrices, one for each level: 

Density (Y k a(k) 

Moderate 0.1 1,...,9 0.1,0.2 ,...) 0.9 
Sparse 0.25 1,2,3 0.25,0.50,0.75 
Dense 0.05 1,. . ,19 0.05,0.10,0.15 )...) 0.90,0.95 

An example of the incidence matrices is given in Table 4 for the sparse 
density set. The rule for creating the matrix is as follows: 

b(i, j) = 
1 if U(p(i,j)) au(k), 

o otherwise. 

Three other indices are computed from the incidence matrices: 

I. PSI(~), project satisfaction index. This represents how well an alter- 
native i satisfies various criteria j at the different slicing levels k: 

PSI(I) = C w( j)b(i, j)afk). 

(2) 

(3) 
(j,k) 
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TABLE4 

Al 
A2 
A3 
A4 
AS 
A6 
A7 
A8 
A9 
A10 
All 
Al2 

Al 
A2 
A3 
A4 
AS 
A6 
A7 
A8 
A9 
A10 
All 
Al2 

Al 
A2 
A3 
A4 
AS 
A6 
A7 
A8 
A9 
A10 
All 
Al2 

Cl c2 c3 c4 c5 C6 C7 C8 

1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 

0 

0 

1 
1 
1 
1 
1 
1 
1 
0 
0 
1 

0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
1 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 

0 
1 
0 
0 
0 
1 
1 
0 
1 
0 
1 
0 

a&)= 0.25 

0 1 
1 1 
1 1 
0 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
0 0 

a‘J2)= 0.50 

0 1 
0 1 
1 1 
0 1 
0 1 
0 1 
0 1 
0 1 
1 1 
0 1 
1 1 
0 0 

aJ3)= 0.75 

0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 0 
1 1 
0 1 
0 1 
0 0 

0 

1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 

0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 

0 

0 

0 

1 
0 
0 
0 
1 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 

1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
0 

0 
1 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
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Normalizing before ranking, 

PsI( i) 
PSIN(i) = -------. 

PSIMAX 

This does not involve comparisons with other alternatives. 

II. pm(i), project comparison index. This represents a relative ranking 

of the alternatives. It concerns the difference between the maximum number 

of satisfied criteria (Q,,,,) and the next highest number of satisfied criteria 

(Q*) satisfied by y th an o er alternative at the same slicing level: 

m(i) = Ca(k)[Q,,(i,k)-Q*(i,k)]. 
k 

(4 

Normalizing, 

III. PDI(i), project discordance index. This represents the discomfort a 

decision maker feels in accepting an alternative which has unsatisfied crite- 

pcI( i) 
PCIN(i) = ~. 

PCIMAX 

ria. PDI is computed from complementary incidence matrices b*(k) for each 

level k: 

bk*(i, j) = 
i 

1 if bk(i,j)=O, 

0 if bk(i,j) =I, 

PDi(i)= C(Y(k)[Q,,(i,k)-Q*(i,k)]. (5) 
K 

A high PDI indicates that there is much discomfort 

alternative with some unsatisfied criteria. Normalizing, 

PDI( i) 
PDIN( i) = - 

PDIMAX 

when choosing an 
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OTHER INDICES 

IV. PRIM, project rating index. PSI and PCI could be in conflict, since PSI 

measures the number of criteria that one alternative satisfies and PCI mea- 

sures the relative number of criteria satisfied by one alternative compared to 
other alternatives at various slicing levels. So these two indices can be 
combined with an L, norm: 

V. ~1312, project rating in&x including discordunce. One may use an L, 
norm and rank the alternatives by ascending values of the norm: 

Using a Boolean rule, alternative 1 is preferred to alternative 2 if 

PSI( 1) z maxrsr(2,C) and PCI( 1) 2 PCI(~) and PDI( 1) =G PDI(~), 

where C is a minimum level of project satisfaction required by the decision 
maker. 

EXAMINING STRENGTHS OF GROUPINGS 

For large problems, we may wish to examine how strongly groups of 
alternatives or criteria are related to each other when making decisions or 
contemplating reducing the size of the problem. Q-analysis shows which 
elements are related to each other in a simplex. The eccentricity ecc(a> can 
be computed to show how strongly the elements in this simplex are con- 
nected. 

The following equation gives the conventional measure of eccentricity [S]: 

ccc(a) = gq, (7) 

where 

4’ = highest q-level at wh’ h It ~c a emative f_r is alone in equivalence class, 
q* =highest q-level at which alternative o shares an equivalence class. 
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At low levels of satisfaction, the eccentricities are often all zero, which 
indicates all the alternatives are integrated. This is not surprising, since low 
levels of satisfaction would not distinguish many alternatives from each other. 
Thus, a new measure of eccentricity is presented to determine which 
alternatives are grouped more strongly in the case where there are no 
isolated alternatives in the high-q-level equivalence classes. Again, from the 
Q-analysis, we can visually see the groupings, but no measure has been put 
on the strength of this grouping. 

A new eccentricity measure for nonisolated equivalence classes is pro- 
posed as follows: 

ecc’( u) = 
cicli /ui 

~qrnax( qma + 1) ’ 
(8) 

where 

qi = every q-level u appears in, 
ai =number of elements in equivalence class at qi, 

q,,, = maximum q-level in analysis. 

The new eccentricity conveys the same information as the Q-analysis for 
a(k) = 0.25. Both eccentricities show that {AB} stands alone, but the conven- 
tional eccentricity implies all other alternatives are equally connected and 
the new eccentricity groups (AB, A6, A7,A9} and {A2, A4,A5,AlO} more 
strongly than the rest, as they should be. (See Table 5.1 

In the equivalence-class data, A7 and A9 appear separately at higher 
q-levels at th e h’ h 1 ig er evels of satisfaction. Thus, the two alternatives seem to 
satisfy the criteria equally well, although the two are not integrated with 
each other. In the case of the lower level of satisfaction, a(k) = 0.25, A8 is 
the highest-ranking alternative. Although this does not seem to be compati- 
ble with having robust results, note that A8 has a consistently moderate 
ranking across all the criteria. All the other alternatives excel in some criteria 
and fall short in others. 

It should be no surprise that the highest-ranking alternatives differ with 
the decision-making policy. A8 is the choice to satisfy all the criteria 
somewhat (policy I). A7 and A9 are the choices for achieving maximum 
satisfaction in a few criteria (policy II). (See Table 6.) 

If an alternative has a high eccentricity, it is not well integrated with the 
others, and stands alone. Usually (depending on the criterion it satisfies), this 
is good, because it may be a deciding factor for the decision maker. However, 
if only one alternative out of many satisfies a particular criterion, perhaps this 
criterion is not useful when it comes to ranking all of the other alternatives. 
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Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 

A10 
All 
A12 

TABLE 5 
Q-ANALYSIS FOR THE ORIGINAL PROBLEM 

t&k) = 0.25 

Equivalence classes 

(A@ 
(A6, A7, A8, A9) 
(A2, A3, A4, A5, A6, A7, A8, A9, AlO) 
(A2,A3,A4, A5,A6, A7, A8,A9,AlO, All) 
(Al,A2,A3,A4,A5,A6,A7,A8,A9,AlO,All) 
{Al,A2,A3,A4,A5,A6,A7,A8,A9,A10,All) 
(Al,A2,A3,A4,A5,A6,A7,A8,A9,A10,All,A12) 
(all) 

AxAT- 

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All Al2 ccc(r) ccc’(@) 

3 3 3 2 2 3 3 3 3 3 3 -1 0 .0062 
5 4 3 4 5 5 5 5 5 4 -1 0 

53455554 4 0 0 

5344543 2 10 
555554 3 0 0 

666654 00 

66654 00 

7 6 5 4 1 1 
654 0; 

5 4 -1 0 
4 -1 0 

1 0 

dk) = 0.50 

9 Q Equivalence classes 

5 2 {A71 tA9) 
4 1 (A3, A7, A9) 
3 1 (A3, A6, A7, A8, A9, Al 1) 
2 1 (Al,A2,A3, A6, A7,A8,A9, AlO, All) 
1 1 (Al,A2,A3,A4, A5,A6, A7, A8, A9, AlO, All, A12) 
0 1 Ml) 

.0403 

.0062 

.0403 

.0403 

.0832 

.0832 

.3332 

.0832 

.0403 

.0205 

.0030 
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TABLE 5 Continued. 
AxAT- 

1 Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All Al2 ccc(a) ccc’(a) 

Al 2 2 2 1 0 2 2 1 2 1 2 -1 0 .0204 

A2 2 2 1 0 2 2 1 2 1 2 -1 0 .0204 

A3 41023141 3 0 0 .1492 

A4 1 0 1 1 0 1 0 1 -1 0 .0056 

A5 1 0 1 0 0 0 0 -1 0 .0056 

A6 3 3 2 3 2 2 -1 0 .1492 

A7 5 2 4 2 2 0 .2 .1492 

A8 2 2 2 1 -1 0 .0056 

A9 5 2 3 0 .2 .1492 

A10 2 1 -1 0 .0204 

All 3 -1 0 .1492 

Al2 1 0 .0056 

c&c) = 0.75 

9 Q Equivalence classes 

4 2 (A71 (A91 

3 2 (A71 IA91 
2 1 (A&A3,A6,A7,A9,All) 

1 1 (A2, A3, A5, A6, A7, A9, All, A121 

0 1 {Al, A2, A3, A4, A5,A6, A7, A9, All, A121 

-1 1 W 

AxAT- 

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All Al2 ecc(o> ecc’(c+) 

Al 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 

A2 2 1 0 0 1 2 -1 2 0 2 -1 0 .0458 

A3 2 0 0 0 l-1 2 0 1 0 0 .0458 

A4 0 0 0 0 -1 0 0 0 -1 0 0 

A5 1 0 1 -1 0 0 0 -1 0 0 

A6 2 2 -1 1 0 l-1 0 .0458 

A7 4 -1 2 0 2 -1 ; .7458 

A8 -1 -1 -1 -1 -1 03 0 

A9 4 0 2 0 ; .7458 

A10 0 o-1 0 0 

All 2 -1 0 .0458 

A12 1 0 0 
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TABLE6 

Policy I ranking Policy II ranking 

A8 
A7 
A9 
A6 
A2 
A3 
A4 
AS 
Al 
A10 
All 
Al2 

A7 
A9 
A3 
A6 
All 
A2 
A5 
Al2 
Al 
A4 
A10 
A8 

We can deem such a criterion to be inflexible, since it is very sensitive to the 
choices of alternatives. 

Another approach to this problem is to examine the set of alternatives. If 
there are not enough alternatives to satisfy a criterion for the decision maker 
to get a robust ranking, these alternatives may be inadequate and others 
should be sought. 

ELECTRE I ANALYSIS 

The ELECTRE I algorithm is performed on the quantified project impact 
matrix. The algorithm is described in [6]. R esults are presented for different 
levels of p and 4. Here p is the minimum level of concordance for which the 
concordance index C(j, k) measures how much alternative j is preferred to 
alternative k. As p approaches 1, decision makers approach unanimity. 4 is 
the maximum tolerance of discordance for which the discordance index 
D(j, k) measures how much dissatisfaction is felt by the decision maker 
when alternative k is chosen over alternative j. As y approaches 1, decision 
makers have a high tolerance for discordance. 

We have 

P 9 Nondominated solutions 

.95 .l (A3, A4, A7,A8, A9, All, A12) 

.9 .2 (A3,A7,A8,Ag,All,A12) 

.8 .3 (A3,A7,Ag,All,A12} 

.7 .4 {A3,A7,A9,All,A12} 

.6 .5 {A3, A7, A9) 
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The rankings are established by analyzing other combinations of p and y 

to see which alternatives drop out of the nondominated sets. The ranking of 

the best three alternatives in descending order is A7, A9, and A3. 

INDEX FOR ANALYZING CRITERIA BY Q-ANALYSIS 

If the measure of a criterion for all the alternatives in a system is the 

same, then this criterion is not useful in distinguishing the alternatives from 

each other. One index, the criterion satisfaction index cs~(i), can be obtained 

from the incidence matrix: 

W(i) = c w(i)b(i,j)a(k), 

(i,k) 

and we reject if 

(8) 

CSI( i) = 0 (no alternatives are satisfied), 

CSI(i) = Ezra (all alternatives satisfied), 
k 

where Z is the total number of alternatives. Acceptable values for this CSI are 

thus around 0.5. 

TABLE 7 

Project impact matrix-quantified (transpose) 

1 Al A2 A3 A4 AS A6 A7 A8 A9 A10 All Al2 

Cl 
c2 

c3 

c4 

c5 

C6 

c7 

C8 

0.71 0.73 0.73 0.22 1.34 0.63 1.51 0.67 0.42 0.54 0.45 0.00 

0.40 0.30 0.95 0.60 0.60 0.60 0.70 0.50 0.90 0.40 0.10 1.00 

0.60 0.90 0.60 0.61 0.51 0.99 1.00 0.50 0.80 0.50 0.95 0.05 

0.35 0.55 0.70 0.50 0.52 0.55 0.58 0.60 1.00 0.53 0.75 0.10 

0.96 0.99 0.80 0.80 0.80 0.95 0.99 0.70 0.90 0.75 0.92 0.01 

0.40 0.48 0.30 0.50 0.60 1.00 1.00 0.70 0.80 0.65 0.30 0.90 

0.17 0.11 0.17 0.33 0.17 0.17 0.17 0.33 0.17 0.17 0.08 1.00 

0.68 0.80 0.95 0.55 0.20 0.60 0.80 0.60 0.83 0.70 0.99 0.50 

Preference matrix 

1 Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All Al2 

Cl 

c2 

c3 

c4 

c5 

C6 

c7 

C8 

0.68 0.70 0.72 0.00 1.00 0.55 1.61 - 1.31 0.30 0.64 0.41 0.00 

0.29 0.22 1.00 0.66 0.37 0.52 0.64 - 0.65 0.88 0.40 0.02 1.00 

0.54 0.90 0.55 0.67 0.29 0.99 1.00 - 0.65 0.76 0.57 0.96 0.05 

0.23 0.50 0.68 0.48 0.30 0.46 0.49 - 1.04 1.00 0.62 0.74 0.10 

1.00 1.00 0.81 1.00 0.54 0.94 0.99 - 1.42 0.88 1.00 0.92 0.01 

0.29 0.42 0.17 0.48 0.37 1.00 1.00 - 1.42 0.76 0.83 0.24 0.90 

0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

0.65 0.78 1.00 0.57 0.03 0.52 0.76 - 1.04 0.80 0.91 1.00 0.50 
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TABLE 8 

a(k) = 0.25 

9 Q 
9 2 
8 3 
7 1 
6 1 
5 1 
4 1 
3 1 
2 1 
1 1 
0 1 

-1 1 

Equivalence classes 

(C3, C5) (C81 
{Cl, C3, C4, C5) (C2) (C8} 
{Cl, C2, C3, C4, C5,C6, C8) 
(Cl, C2, C3, C4, C5, C6, C8) 
{Cl, C2, C3, C4, C5, C6, C8) 
(Cl, C2, C3, C4, C5, C6, C8) 
{Cl, C2, C3, C4, C5, C6, C8) 
(Cl, C2, C3, C4, C5, C6, CS) 
(Cl, C2, C3, C4, C5, C6, C8) 
(Cl, C2, C3, C4, C5, C6, C7, C8) 
kill1 

AxA’- 

Cl C2 C3 C4 C5 C6 C7 C8 ecdcr) ccc’(a) 

Cl 8 6 8 7 8 6 -1 7 0 0.1333 
c2 87677 07 0.125 0.2667 
c3 9897 08 0 0.2333 
c4 8 8 6 -1 7 0 0.1333 
c5 9 7 -1 8 0 0.2333 
C6 8 0 7 0.125 0.2667 
c7 0 0 0 0 
C8 9 0.25 0.4667 

4 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

-1 

dk) = 0.50 

Q Equivalence classes 

2 {C51 (C81 
1 {C3, C5, C8) 
1 (C3, C5, C8) 
2 (Cl) (C3, C5, C8} 
1 (Cl, c2, c3, c4, c5, CS,CS} 
1 {Cl, C2, C3, C4, C5, C6, CS} 
1 (Cl, C2, C3, C4, C5, C6, C8) 
1 (Cl, C2, C3, C4, C5, C6, C8} 
1 (Cl, C2, C3, C4, C5, C6, C7, CS) 
1 (all1 
1 (all) 



122 C. CHIN, L. DUCKSTEIN, AND M. L. WYMORE 

TABLE 8 Continued. 
,4xAT-1 

Cl C2 C3 C4 C5 C6 C7 C8 ccc(u) ccc’(u) 

Cl 6 2 5 2 6 2 -1 5 .1667 
c2 
c3 
c4 
c5 
C6 
c7 
C8 

o--o--o 0 

4242-l 0 
443-o 0 

10 7 - 2 .1111 
8-O 0 

- - 0 
3 .llll 

.1873 

.0540 

.2095 

.0540 

.4095 

.0317 
0 

.4095 

Cl 1 -1 0 -1 0 0 -1 0 1 .0278 
c2 20 0110 1 2 .0833 
c3 4 0 4 2 -1 3 0 .0926 
c4 0 0 0 -1 0 0 0 

c5 8 3 -1 5 .5 .7454 
C6 4 0 2 4 .2778 
c7 0 -1 0 0 
C8 5 0 .1620 

(Y(k) = 0.75 

9 Q Equivalence classes 

8 1 {C5) 
7 1 {C5) 
6 1 IC51 

5 1 w5, C81 

4 2 (C3, C5, CS} (C6) 

3 2 (C3, C5, C8) (C61 
2 3 (C21 (C3, C5, CS} (C6) 
1 4 (Cl} (C2) (C3, C5, CS} {C6) 
0 1 tCl,C2, C3, C4, C5, C6, C7, CS} 

-1 1 (all} 

AxAT- 

Cl C2 C3 C4 C5 C6 C7 C8 ccc(a) ccc’(u) 
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The Q-analysis for the conjugate complex is shown in Table 7. This 
analysis is performed to examine the relationship between the criteria. The 
transpose of the original problem is taken, yielding an 8 X 12 preference 
matrix. 

The MCQAII analysis follows the same procedure and ranks the criteria in 
the following order (1 = least important, 3 = most important): 

Rank Criteria PRIl Original weight 

c5 0 
C8 1.039 
c2 1.182 
C6 1.231 
c3 1.242 
Cl 1.248 
c4 1.562 
c7 1.943 

Here we see that, based on these alternatives, some of the criteria of 
lesser importance may be the most useful in distinguishing the alternatives 
for their ranking. The eccentricities shown in Table 8 are computed to 
measure the integration of a simplex of criteria into the overall complex. 

In the equivalence-class data, C7 (learning curve) looks like the least 
important criterion for discriminating between alternatives. It appears at 
q-level 0, so it is not well integrated with the rest of the criteria used to rank 
the alternatives. 

C5, C8, C3, and C6 appear at high satisfaction levels, so they should 
be carefully considered in further analysis. A proposed ranking of criteria 
in descending order of criterion values and y-analysis grouping is 
C5, C8, C3, C6, Cl, C2, C4, C7. 

RESULTS 

The complete MCQAII output (the short list) is in Appendix A of [4]. In 
Table 9, alternatives are ranked in descending order of ~~11. 

The project rating indices PRIM and ~~12 are computed with p = 1. As p 
increases in value (towards infinity), the ranking selects the shortest distance 
between the vector of indices and the ideal point. With the payoff matrices 
used, however, the ranking is not as clear cut for p = 1 as for p = 2. There 
are several equal values of rating indices due to computational roundoff. 
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TABLE 9 

Moderate ((u = 0.11, p = 1 Sparse (cr = 0.25) Dense ((u = 0.05) 

Rank PRIl PR12 a PRIl PRI2 PI711 PM2 

1 9 9 9 9 9 9 

2 7 7 7 7 7 7 
3 3 3 12 3 3 3 
4 12 11 3 11 11 11 
5 11 6 11 6 6 6 
6 6 2 6 2 2 2 
7 2 8 2 1 8 8 
8 5 1 8 8 1 1 
9 8 10 5 5 10 10 

10 1 5 1 10 5 5 
11 10 12 10 4 12 12 
12 4 4 4 12 4 4 

a Discordance. 

The highest-ranking alternative in all the tests is A9, automated presolder 
inspection, followed by A7, component insertion. The next best group of 
alternatives is A3 and All. A more mediocre group is A6, A2, and A8. The 
alternatives A5, Al, AlO, and A4 are the least preferred. In the MCQAII 

program the option of doing nothing (select no automation project), A12, 
surprisingly ranks very high in some tests and very low in others. The 
Q-analysis, however, always shows that it is integrated at low levels of 
satisfaction. The results are similar for the ELECTRE I analysis. The highest- 
ranking alternatives are A7, A9, A3, All, and A12. Here again, the option of 
selecting no automation project ranks higher than the other alternatives. 

To get a more robust ranking of alternatives, perhaps different projects 
(with the exception of A9, A7, A3, and All) should be considered, since those 
considered do not rate much higher than doing nothing. It would be 
beneficial to propose, if possible, projects which satisfy more of the criteria at 
high levels. 

DISCUSSION 

In a realistic manufacturing setting, it is unlikely that one automation 
project alone would bring dramatic improvements to the facility. Even when 
the project is implemented flawlessly, a bottleneck usually arises in the next 
process, and the automated process is left idle far below capacity to control 
the work in process inventory. Thus, unless an entire system is implemented 
incorporating the most favorable alternatives, investment in a single altema- 
tive may not enhance productivity and competitiveness as much as predicted. 
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In the PCB example the eccentricities of A9, A7, A3, and All show that this 
would be a good group to implement. 

The conjugate-complex analysis is used to rank the criteria for a given set 
of alternatives. Although the set of criteria may be the same when evaluating 
future automation projects, the ranking of the criteria will probably change 
with the choices of alternatives. It is common for new alternatives to satisfy 
new criteria which the old alternatives must be evaluated against. 

CONCLUSIONS 

MCQAII has been used to analyze automation investment projects by a set 
of quantifiable and nonnumeric criteria, with results comparable to the 
ELECTRE I analysis. The decision maker can choose alternatives that optimize 
long-term strategies such as flexibility, quality, and competitiveness even 
though these do not seem like cost effective strategies in the short term. The 
use of a multicriterion decision-making tool is valuable to managers who 
accept that there are other criteria to satisfy which sometimes conflict with 
the traditional short-term ones. 

This tool allows managers to compare alternatives by analyzing how well 
they satisfy an entire set of criteria. Policy decisions determine the numerical 
satisfaction levels for the analysis and policy must determine whether the 
best alternative meets a minimum satisfaction level for as many criteria as 
possible or achieves the highest satisfaction level for a subset of the criteria. 

By generating the conjugate complex, decision makers can analyze the 
ranking of criteria for a particular set of alternatives. The dominating criteria 
and equivalence classes should be examined. Are decisions based on this 
criterion set acceptable and in concordance with strategic objectives? This 
is where decision makers check to see that the alternative choices utilize 
the nonnumerical long-term criteria as well as the quantifiable short-term 
criteria. 

The new measure of eccentricity in the Q-analysis can group the altema- 
tives and give a measure of connectivity. This gives the decision maker more 
information for considering a set of alternatives and criteria to maximize 
satisfaction, as opposed to choosing only the highest-ranked alternative. 
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