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ABSTRACT 

The performance of an existing goods distribution system is evaluated by means of 
a modem system-theoretic tool called Qanalysis. It is assumed that the system has 
been developed without an initial master plan, so that potential difficulties or 
breakdowns may occur. The case of a water distribution network which has been 
expanded stagewise in a southwestern U.S. city is used to illustrate the approach. The 
system consists of interconnected sources (reservoirs or “vertices”) supplying a set of 
sinks (users or “simplices”) through a capacitated network. @nalysis, a technique 
which stems from algebraic topology, may be visualized as dealing with multidimen- 
sional graph theory, and yields indices that are used to measure performance. 
Specifically, the following indices are used: the q-vector, indicating the connectivity 
level between sources; the eccentricity, measuring whether or not elements are well 
integrated in the system (represented as a complex); the pattern, introducing dy- 
namics into the analysis; the obstruction vector, identifying potential bottlenecks; and 
the complexity, measuring the length of various distribution paths and, indirectly, the 
stability. The analysis, first done from the viewpoint of source adequacy, is repeated 
by considering the conjugate complex, in which sources and sinks are interchanged: 
this introduces the users’ viewpoint into the performance analysis. A numerical 
example shows how the above concepts provide a simple way to compare designs, 
identify problem areas, and improve operation characteristics of a distribution system. 

1. INTRODUCTION 

The purpose of this paper is to demonstrate how certain concepts of 
modem system theory can be used to study the performance of a distribution 
system, using the distribution of water as an example. The main tool in- 
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traduced here is Qanalysis, which is used to characterize system structure, 
including the level of linkage between system elements. The Qanalysis 
technique is based on a branch of topology (polyhedral dynamics) dealing 
with multidimensional graphs, in contrast with usual models of distribution 
systems, based on two-dimensional network flow representations. 

As an example of use of Q-analysis, consider a water distribution network 
which has resulted from growth without a water master plan. Such is the case 
for the network in the city of Tucson (Arizona, U.S.A.), which has resulted 
from a very small original system, to which sources and users have been 
added as the city grew and new areas were annexed or small water companies 
were bought out by the municipal water company. Such is also the case for 
New York City [4] and many other towns. At some point in time, the problem 
arises of determining the structural characteristics of the distribution system, 
namely, the weak points, the locations where redundancy or looping exists, 
and those where it does not. Another example where the structure of a water 
distribution network needs to be analyzed is the case where preventive 
measures against drought are sought. In this case it is essential to know which 
reservoirs or origins, links, or arcs are “controlling” the system. In the present 
investigation, it is shown how Qanalysis can easily answer such questions. 

2. STUDY OF DISTRIBUTION-SYSTEM STRUCTURE BY Q-ANALYSIS 

2.1. Incidence Matrix and Structure of Complex 
The concept of Qanalysis, related to polyhedral dynamics [l, 2, 61, is 

based on a binary relationship between two sets A and B, called respectively 
the simplex set and the vertex set. For example, A may be a set of 
origins-here, water sources (A(l), A(2), . . . , A( n))-and B, a set of destina- 
tions-sinks or users (B(l), . . . , B(n)). Let A be the set of linkages between 
the elements of A and the set of B. An incidence matrix A = [x(j, k)] can thus 
be defined as follows: 

x(j, k) = 1 if (A(~),B(~))EA, 
0 otherwise. 

This relationship defines a complex K denoted KA( B, X). Interchanging 
the vertex and simplex sets yields the conjugate complex Ks( A, A- ‘). 

In a distribution system, the matrix describing the relationship between 
origins A and destinations B is initially composed of nonnegative numbers 
X( j, k) such as flows and capacities. A binary matrix is then obtained by using 
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a threshold X* to define element X(i, j) of the matrix as: 

x(j,k)= 
i 

0 if x(j,k)<X*, 

1 if X(j,k)zX*. 

The correspondence between @nalysis and the geometry of polyhedra is 
illustrated by forming a polyhedron with vertices B and simplices A. Vertices 
are extreme points of a convex set, while simplices may be points, edges, or 
n-dimensional faces. 

The complex K only shows the global relationship between the sets A and 
B. For a more detailed investigation of the relationship between simplices 
forming the complex, the notion of g-connectivity is introduced [l]. 

DEFINITION. Two simplices o(a) and a(b) are said to be g-connected in 
the complex K if and only if there exists a finite sequence of simplices 
(a(a(i)); i = 1,2,...,p} in K such that 

(1) a(a) is a face of u(a(l)), 
(2) a( e(p)) is a face of u(b), 
(3) a(~$ i)) and a( a( i + 1)) share a face of dimension p(i), where the 

dimension of a face is its number of vertices minus one, 
(4) 9 = min(a, P(I), P(2), . . . ,P(P - 11, b). 

For example, if two simplices have m vertices in common, the two 
simplices are said to form a single component at the (m - 1)dimensional 
level. 

2.2. Algorithm for Q-analysis 
If u(a) and u(b) are q-connected, then they are also (9 - s)-connected, 

s=l , . . . ,9. Atkin [l] demonstrates that q-connectivity is an equivalence 
relationship on K and gives an algorithm to perform Q-analysis: 

(1) Form A AT (an m x m matrix), where A = the incidence matrix. 
(2) Evaluate A AT - Q, where Q is an m X m matrix with all entries equal 

to 1. 
(3) Retain only the upper triangular part (including the main diagonal) of 

the symmetric matrix AAT - Q: this is the “shared-face” matrix, so called 
because it indicates the dimension of the faces shared by the different 
simplices. 

(4) By reading from the main diagonal (up and to the left or to the right 
and down), the structure vector Q(i) is obtained. 
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2.3 Eccentricity 
The relationship between a given simplex u and its complex K is now 

examined from two viewpoints [2]: 

(a) to how many distinct elements of the complex is u related? 
(b) how well is u integrated into K? 

These two viewpoints are needed because, even though a particular 
simplex may have a high dimensionality (related to many vertices), it may not 
be related to the other simplices in K. An index synthesizing these two 
viewpoints is the so-called eccentricity of (I, denoted ccc(u) and defined as 
follows [l] : 

where 

9 = the dimension of the simplex 
9* = the largest q-value for which u appears in a component with another 

distinct simplex. 

Upon inspection it can be seen that 9 - 9* tells how many vertices the 
simplex u does not share with any other simplex in the complex. But, for 
example, 9 - 9* + 7 - 5 and 9 - 9* + 6 - 4 yield the same result, so that it is 
appropriate to introduce a normalization factor 9* + 1 >, 0, yielding (7 - 5)/ 
(5 + 1) = 4 and (6 - 4)/(4 + 1) = 8. The former simplex is thus better in- 
tegrated into K than the latter. Note that ccc(u) = co means that u is totally 
disconnected from the complex. 

2.4. Exampk 
Consider a water distribution network between 12 origins (4 wells, 5 

reservoirs, 3 types of treated water) and 14 destinations (3 agricultural users, 3 
industrial ones, 1 municipal one, 2 domestic ones, and the same 5 reservoirs). 
The incidence matrix corresponding to this network is shown in Table 1. In 
that table, let the origins or sources be the simplices, and the destination, the 
vertices. The table was obtained by slicing the origindestination matrix 
indicating capacities of links in part of a Northern California water distribu- 
tion system. 

Performing up to step (3) of the Qanalysis algorithm described in Section 
2.2, the shared-face matrix of Table 2 is obtained. Step (4) of the same 
algorithm yields the summary results shown in Table 3, in which it may be 
observed that the highest qconnectivity between different sources is 6: 
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(RESl), (RESS), (WEX3), and (RESI) are all 7connected to themselves. 
Another example of interpretation of Table 3 is: 

(RES4) is 6-connected to (WEL2) via 

(AGl, AG3, IND2, MUNI, DOM2, RESl, RES5). 

Physically, it means that reservoir 4 and well 2 supply, at least in part, 7 users 
out of 14. The structure vector Q = (47, QS, . . . , Ql) indicates the number of 
q-connected components at each level; thus, 47 = 4 means that there are 4 
components connected at the 7th level. At levels 4, 2, 1, and 0, all the 
elements are in the same complex; at level 9 = 2, all sources are in a common 
complex meaning that 3 out of 14 users receive water from all 12 sources. 

To find out how the individual simplices-or subsystems-are integrated 
into the complex, Equation (3) defining eccentricity is used, yielding the 
vector 

(0.33,0.0,0.33,0.40,0.60,0.40,0.33,0.143,0.167,0.0,0.40,0.40). 

Thus the complex does not appear to be very homogeneous. In particular, 
ecc(RES1) = 0.60 means that reservoir 1 is not well integrated with the other 
sources. In this example, the Qanalysis reveals that some elements of the 
distribution system should be linked more tightly to the other elements to 
increase the resilience of the network. 

Regarding the choice of a threshold function, great care must be taken that 
relevant data are not discarded when computing the (0,l) incidence matrix. 
An illustration of this point is provided in [5]. 

Up to this point, one could have obtained all the results presented by 
inspection of the incidence matrix- albeit such an inspection certainly will 
become cumbersome and error-prone for a larger matrix. Furthermore, Q 
analysis should be repeated at various slicing levels and with different 
configurations; hence the practicality of automating the analysis. Finally, the 
next concept can hardly be studied by inspection for any sizable distribution 
system. 

2.5. Patterns 
The operation of a water-resources system is dynamic, whereas the ele- 

ments of Q-analysis presented so far deal only with static features. The 
concept of pattern has been introduced in Atkin and Casti [2] to model 
certain dynamic aspects of system structure. 

Let II(i) be an integer-valued mapping defined on the subset of i-dimen- 
sional simplices, and the direct sum of subgroups be defined as follows. 
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Given a group II containing the subgroups II(O), II(l), . . . , II( K), let the 
only element common to all subgroups be zero, and every element of II be 
the sum of one element of each subgroup II(O), II(l), . . . , II(K). Then II is 
called the direct sum of the subgroups and is written 

II = II(o)erI(l)@ *. . am(K). 

This quantity II defines a pattern. 
In the previous example, the sets II(i) could be the mappings from the 

i-dimensional sources to the flow from those sources. Thus: 

H(3) 
1 

mapping WELl --, flow from WELl 

mapping II + flow from II 

The dynamics is introduced by means of a pattern change 6II which, in our 
case, simply changes the amounts flowing from various sources. Thus, the 
original pattern II is composed of mappings defined on the following sources: 

l-I(O) = II( 1) = l-l(2) = 0, 

II(3): WELLII, 

II4=II(5)=0, 

II(s): WEL2, WEL4, RESB, RESS, III, IIICP, 

II(7): WEL3, RESl, RESS, RES4. 

The new pattern II + 8lI may be 

II(O) = II(l) = l-I(2) = 0, 

Il(3): wELl,II, 

ll(4)=0, 

II(S) = RES2, RES4, 

II(6) = WEL2, WEL4, RESS, IIICP, 

lI(7) = WEL3, RESl, RES3, III, 
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which can be interpreted physically by noticing that RES2 and RES4 have 
become 5-connected instead of 6, and 111,7connected instead of 6. 

2.6 Obstruction Vector and Complexity 
The obstruction vector is a measure of resistance to change of pattern (or 

obstruction to change) at level 4. Let W be a vector of whose components are 
all l’s; the obstruction vector is defined as Q= Q - W, in which Q is the 
vector of components Q(i) found from the Q-analysis. The obstruction vector 
may be used to identify the flexibility of a water distribution system in case of 
emergency (floods, droughts, or other natural hazards). 

The concept of complexity describes the density of interconnections 
between simplices and is defined in [3] as having three properties: 

(1) A system consisting of a single simplex has a complexity equal to 1. 
(2) A subsystem (subcomplex) has complexity no greater than that of the 

entire complex. 
(3) The combination of two complexes results in a level of complexity no 

greater than the sum of the complexities of the components. 

If N is the dimension of the complex K, Q( i ), then a measure of complexity 
satisfying the three properties just listed is 

f (i + l)Q(i> 
W) = 2 ;;+ 1)(N+2) * (4) 

The structure vector of sources in this distribution problem is 

Q(S,U)=(; 8 6 0 10 0 8,. 

Thus, using Equation (4), one finds \k(S, u) = 3.33, which is a high value, 
susceptible of causing system instability [3]. 

The conjugate complex of the example is now analyzed to shed some light 
on the interrelationship between users. For example, in case of drought, how 
could one user deliver water to another one, and how complicated would the 
transshipment scheme have to be? 

The shared-face matrix of the conjugate complex is given in Table 4, and 
the summary of results in Table 5. The eccentricity is 

0.0,0.17,0.50,0.0,0.14,0.25,0.40, 

0.17,0.50,0.0,0.17,0.0,0.0,0.25, 

which would tend to show that the destination complex is better integrated 
than the source one. 

Finally, the obstruction vector is 
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(; 4 5 5 0 0 0 i), 

leading to a complexity of \k = 2.30, which may be interpreted physically as 
follows: the user-source system is less complex than the source-user system; 
hence it is less prone to instability. 

In summary, an example of a distribution system with 12 origins and 14 
destinations has been presented, and the structure of this system has been 
scrutinized by means of Q-analysis. A set of indices has been defined from the 
Qanalysis, namely: 

(1) the structure vector Q(i), indicating the connectivity level between 
sources, 

(2) the eccentricity, measuring the level of integration of a given element 
into the distribution system or complex, 

(3) the pattern, accounting for possible changes of links in the network, 
(4) the obstruction vector, identifying critical links or bottlenecks, 
(5) the complexity, yielding, indirectly at least, a measure of the system 

stability. 

By means of these indices, the Q-analysis technique enables one to examine 
both the supply and the user viewpoint, to identify sources or destinations 
that are not well integrated into the network, and hence to pinpoint elements 
of the system that may require attention. 

Partial support for the research leading to this paper is from a National 
Science Foundation grant #8110778, “Modern Stability and Numerical Con- 
cepts in Water Resource Management.” 
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