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Abstract 

This paper provides an overview of existing and potential applications of a system-theoretic approach called Q-anal- 
ysis, using the examples of design and analysis of expert systems in medical image processing and analysis: namely the 
organization of a histopathologic knowledge base. Q-analysis is also applied to a multicriterion decision-making 
(MCDM) problem using a method called multicriterion Q-analysis (MCQA). A brief discussion of the advantages 
and limitations of Q-analysis is given, with suggestions for further applications. © 1997 Elsevier Science B.V. All 
rights reserved. 
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I. Introduction 

The purpose of this paper is to provide an over- 
view of  existing and potential appl!cations of  a sys- 
tem-theoretic approach, referred to as Q-analysis, 
using the design and analysis of expert systems in 
medical image processing and analysis to illustrate 
the methodology. Specifically, the approach deals 
with the organization of  a histopathologic know- 
ledge base; the specific knowledge base is a compo- 
nent of the histopathological and cytopathological 
diagnostic expert system developed at the Univer- 
sity of  Arizona, which has three subsystems or 
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modules (Bartels et al., 1984). The first module 
guides the dynamic reconfiguration of  processor 
elements in a multiprocessor computer system; 
the second module uses prior knowledge to guide 
the scene or image decomposition and the extrac- 
tion of  diagnostic information; the third module 
uses a rule-based procedure to obtain a classifica- 
tion of the available information for diagnostic as- 
sessment. 

A specific example of Q-analysis of a know- 
ledge base for the third module is given in Duck- 
stein et al. (1988). In that example, expert 
opinion provided, for colonic sections, four diag- 
nostic categories and 19 diagnostic clues; six of 
the clues concern overall tissue architecture, six 
concern characteristics of individual glands, and 
seven concern characteristics of nuclei (Paplanus 
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et al., 1985). The technique of Q-analysis is applied 
to structuring the set of diagnostic clues with res- 
pect to the set of diagnostic categories. The first 
part of this paper describes Q-analysis in the con- 
text of a simplified example in histopathology. In 
the second part, Q-analysis is used in a multicrite- 
rion decision-making method and is applied to an 
example. A brief discussion of the advantages and 
limitations of the Q-analysis technique is also giv- 
en, with suggestions for further applications for in- 
stance in developing expert systems for 
cytopathological and histopathological diagnosis. 

cilitates a macroscopic conceptualization of the 
systems. For this purpose, indices such as connec- 
tivity level, eccentricity and complexity can be de- 
fined and interpreted. The Q-analysis technique 
also provides ordering information: in our exam- 
ple, the members of the clue set can be ordered 
with respect to the members of the set of diagnos- 
tic categories. Q-analysis can be coupled with the 
analysis of dynamic patterns supported by the 
structural framework (called backcloth); this type 
of study (called traffic) is based on a discipline gen- 
erally referred to as polyhedral dynamics (Casti et 
al., 1979; Johnson, 1981). 

2. Description of the Q-analysis technique 

2.1. Histo~ T 

Q-analysis was originally developed by Atkin 
(1974, 1977), as an approach for studying the 
structural characteristics of social systems in which 
two sets of indicators, features, or characteristics 
are related to each other. Subsequently, Q-analysis 
has been applied in such diverse areas as chess (At- 
kin and Witten, 1975), flexible manufacturing sys- 
tems (Robinson and Duckstein, 1986), sports 
events (Gould and Gatrell, 1980), and urban plan- 
ning (Beaumont, 1984). Q-analysis is recognized as 
a useful tool in ecological studies, for example, in 
the evaluation of lake ecosystems (Casti et al., 
1979) and in studying predator-prey relationships 
(Casti, 1979). Q-analysis has also been used in clin- 
ical psychology (Macgill and Springer, 1984), geol- 
ogy (Griffiths, 1983), transportation (Johnson, 
1976), water distribution (Duckstein, 1983) and 
in a number of other contexts (Casti, 1979). 

Q-analysis has proved especially useful in solv- 
ing problems involving complex systems such as 
those generated by medical image processing. 
The technique requires a rigorous definition of da- 
ta sets and their relations and encourages the inv- 
estigation of the consequences of connectivity 
within the system. Q-analysis involves relatively 
simple calculations, once the approximate sets 
are defined and their relationships are assessed, 
no further information about the system is needed. 
The technique of Q-analysis provides an algebraic 
topological framework for data reduction that fa- 

2.2. Data and incidence matrices 

2.2.1. Matrix construction 
In order to apply a Q-analysis approach to the 

study of the relationships between two finite sets, 
information concerning the interactions between 
elements of the sets is given in a data matrix. 
The application of Q-analysis will be demonstrat- 
ed on an illustrative example using a data matrix 
A, shown in Example 1, where the d~'s, 
i = 1 . . . .  ,4, represent diagnostic categories such 
as normal, mild, severe and extreme while the 
ci's, j = 1, . . . ,  5, represent diagnostic clues such 
as clinical observations. The matrix A represents 
values of the diagnostic clues for the diagnostic 
categories. The numbers in A correspond to either 
frequency data or subjective evaluations such as a 
grade between 0 and 20 of cluej for the diagnostic 
category i. The Q-analysis algorithm is given in 
Appendix A. 

Example 1. A data matrix for the values of the five 
clues with respect to four diagnostic categories. 

C 1 C2 C3 C4 C5 

d! 12 13 1 12 20] 

loh A =  d2 7 4 2 15 

d3 1 0 9 0 

d4 7 4 11 13 16J 

Formally, the sets of A are D = {dl, d2, d3, d4}, the 
diagnostic categories and C = {cl,c2, c3,c4, c5}, 
the diagnostic clues. 
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The data matrix, A, can be mapped into an in- 
cidence matrix B through application of a map- 
ping function defined by a so-called slicing or 
threshold parameter 0. In the present example, 
the mapping is defined as 

1 if aij ~ O, 
bij = 0 otherwise, 

where b~/is the element in the ith row and j th col- 
umn of the incidence matrix (zero or one) and a~j is 
its counterpart in the data matrix. Using 0 = 7, the 
resultant incidence matrix B is shown in Example 
2. 

Example 2. Incidence matrix corresponding to a 
slicing of the data matrix of Example 1, with 
0 - -7 .  

c1 c2 c3 c4 c5 

B =  d2 1 0 0 1 

d3 0 1 0 

d4 0 1 1 

The elements of the incidence matrix represent 
a binary relationship, 2, between the sets D and 
C. Thus, the incidence matrix can also be defined 
in terms of b~j, where 

1 if d~ is 2 - related to cj, 
bij = 0 otherwise. 

The element bij = 1 if and only if the ith element 
of the set D interacts with the j th  element of the 
set C. 

2.2.2. Geometrical representation 
The multidimensional features of the system are 

defined by the simplicial complex Ko(C, 2), repre- 
sents the elements of the set D as simplices ap(di) 
and the elements of the set C as vertices. The sim- 
plices of the complex are geometrical figures repre- 
senting the relations found in the incidence matrix. 
For example, a three-dimensional simplex is a tet- 
rahedron, whereas a single-dimensional simplex 
consists of a line segment. The end points of the 
line segment in these figures are the vertices. The 

conjugate complex represents a transposition of 
the simplices and the vertices. 

To illustrate the formation of the complex, a re- 
lation 2 : D × C can be specified such that each di- 
agnostic category is a simplex defined by the clues 
that are the vertices. Diagnostic categories, which 
share a value or attraction characteristic relative 
to the clues, are connected to form the simplicial 
complex KD(C, 2). 

2.2.3. Dimensionality and q-connectivity 
Each simplex ap(di) of Ko(C, 2) is 2-related to 

a number of vertices. In Example 1, diagnostic 
category dl is described by four clues, so that 
the simplex representing category dl, o3(dl) is 2- 
related to four vertices. By convention, p, the di- 
mension of the simplex is indicated by a subscript 
and the simplex is named by the represented set 
element in parentheses (Johnson, 1981). The di- 
mension of the simplex is equal to the number 
of related vertices minus one. Thus a3(dx) in Ex- 
ample 1 is a three-dimensional simplex for diag- 
nostic category di. 

Whereas dimensionality is indicative of the rela- 
tionship between simplices and vertices, q-connec- 
tivity is a measure of the relationship between 
simplices with respect to shared vertices. In this 
sense, it measures the strength of the connection 
between the elements of A and those of D. The fol- 
lowing definition of q-connectivity is taken from 
Atkin (1974). 

The simplices a(p) and a(r) in the simplicial 
complex K, a(p) and a(r) are said to be q-connect- 
ed in K, if and only if there exists a finite sequence 
of simplices {a(~l ) , . . . ,  a(~,) } such that: 
1. a(p) is a face of a(~ 1), 
2. a(e,) is a face of a(r), 
3. a(ai) and a(ai+l) have a common face (share a 

face) of dimension fli, for i = 1 , . . . ,  n, 
4. q = min {p, f l l , f i2 , . . . , f i , , r} .  

The interpretation of this definition is that the 
q-connectivity between a subset of the diagnostic 
category set is measured by the weakest relation 
(smallest number of clues shared) between any 
two consecutive ~ 's  in the chain d l , . . . ,  dn. The si- 
mplicial relation described by q-connection is an 
equivalence relation, that is, a symmetric, reflective 
and transitive relation. This property is very useful 
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in eliminating redundant members of either the set 
of diagnostic clues or the set of diagnostic catego- 
ries since one element can be exactly replaced by 
an equivalent one. 

The concept of q-connection can be illustrated 
by continuing Example 1. Diagnostic categories 
dl and d2 are described by three common clues. 
Therefore, simplices tr3(dl) and ~r2(d2) are two- 
connected. If simplices ¢r3(dl) and a2(d2) are q- 
connected, they are also connected at all lower lev- 
els, that is, they are ( q -  r)-connected, where 
r = 1, . . . ,  q. Both dimensionality and q-connectiv- 
ity, which are unique to Q-analysis, provide infor- 
mation and insight concerning the structure of a 
medical imagery knowledge base. 

2.3. Structure vectors 

For each dimension q of the complex K, we de- 
fine the integer Qq as the number of distinct 
equivalence classes, where each equivalence class 
is composed of q-connected simplices. This vector 
of Qq's is the basis for an example illustrating the 
simplification that may be achieved through elim- 
ination of redundant clues in the same equiva- 
lence class simplices. The first structure vector, 
Q, then describes the structure of simplicial con- 
nectivity, 

Q = (Q(dim K), Q(dim K - l ) , . . . ,  Q0), 

The structure vector Q, which is the immediate 
result of Q-analysis, can be used for gaining addi- 
tional insight into the relationship between diag- 
nostic clues and diagnostic categories. In 
Example 1, the dimension of the complex is 3 
(see Example 2). However, the three-dimensional 
simplices, o3(dl) and o'3(d4 ) share only vertices 
Cl, c4 and c5. Thus, tr3(dl) and o3(d4) are only 
two-connected and the structure vector has two 
equivalence classes at dimension three, with the 
membership of each equivalence class represented 
by a single simplex. 

Carrying out these calculations for each of the 
dimensions three through zero provides the first 
structure vector for Example 1, 

3 2 1 0 Q= 
(2 1 1 1), 

where the dimension is indicated above the dimen- 
sion value. 

A second structure vector, P, can be defined as 

P = (e(dim K),P(dim K-l ) , . . .  ,P0), 

where Pq is the number of simplices in the complex 
K with dimension greater than or equal to q (John- 
son, 1978). The second structure for Example 1 is 

3 2 1 0 
P =  

(2 3 3 4), 

where P indicates the frequency with which the 
simplices (diagnoses) are connected to the vertices 
(clues). The larger the values of P for higher di- 
mension, the greater the connectivity. Conversely, 
vector Q indicates the extent of connectivity 
among the simplices relative to connectivity with 
the set of vertices. 

Atkin (1974) gives an algorithm for performing 
Q-analysis to produce the structure and obstruc- 
tion vectors. A concise description of this algo- 
rithm is provided in Duckstein (1983) and 
Featherlike and Duckstein (1986) and is provided 
in Appendix A. 

2.4. Obstruction vector 

Another vector generated by Q-analysis, the 
obstruction vector Q*, delineates restriction of in- 
formation flow through the complex. Q* can be 
defined by noting that the member simplices (diag- 
nostic categories) within each equivalence class at 
dimension k may interact directly or indirectly at 
the kth level. The number of obstacles to interac- 
tion at dimension k is the number of "gaps" be- 
tween equivalence classes. Therefore, Q* is 
derived by subtracting a vector U, consisting of 
all ones, from the structure vector. Thus, 
Q* = Q - U. The value of Q~, indicates the number 
of structural constraints to simplicial interaction at 
dimension k. Depending on the problem, high or 
low values of the elements of Q* may be prefera- 
ble. For example, it is preferable to have high 
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obstruction between diagnostic categories, so that 
they may be distinguished easily. The structure 
vectors, obstruction vector and equivalence classes 
at each q-level with slicing parameter 0 = 7 for Ex- 
ample 1 are shown in Table 1. 

2.5. Eccentricity 

Whereas the structure vectors and the obstruc- 
tion vector describe global structural properties, 
eccentricity indicates the degree of integration of  
a specific simplex into the whole complex. The 
conventional measure of eccentricity for a simplex 
as defined in Casti et al. (1979) is denoted as ecc. 
Chin et al. (1991) suggest another measure of ec- 
centricity called ecc'. 

ecc(a) q - q* - ( 1 )  
q * + l  

and 

ecc'(a) = 2 ~ i  qi/ffi  
qmax(qmax -k" 1)' (2) 

where ~ is the dimension of  the simplex a, q* the 
highest dimension at which a joins another simplex 
in an equivalence class, qi each q-level where a ap- 
pears, ai the number of  elements in ai's equiva- 
lence class at level q~ and qmax the maximum q- 
level of the complex. The difference (~ - q*) is a 
measure of  the extent to which a shares vertices 
with the simplex most highly connected with it. 
Therefore, ecc depends upon only a single simplex 
other than a while ecc' depends upon all the other 
simplices. Furthermore, ecc takes on values in 
[0, oo] and ecc' in [0, 1]. 

For the simplex a3 (dl) of  Example 1, the di- 
mension is three and the highest dimension at 

which o'3(dl) joins another simplex a3(d4) in an 
equivalence class is two. Thus, from Eqs. (1) and 
(2), 

ecc(a3(dl)) = (3 - 2 ) / 3  ---- 1/3; 

ecc'(a3(dl)) = 2 3 + 5 +  ( 3 - 4 ) = 2 / 3  

and 

ecc(a2(d2)) = (2 - 2)/3 --- 0; 

ecc'(a2(d2)) = 2 ~ + (3 .4)  = 1/6. 

These eccentricities indicate that a2(d2) conforms 
to the overall structure of the complex better than 
a3 (dl) does. If a simplex is isolated, q* = - 1, then 
the ecc is infinite. Here again, a high eccentricity 
value or a low eccentricity value may be prefera- 
ble, depending upon the set considered. A highly 
eccentric diagnostic category is easy to identify; 
in contrast, a highly eccentric clue is useful for id- 
entifying a given diagnostic category but not for 
distinguishing between the other categories. The 
eccentricities of  each diagnostic category with slic- 
ing parameter 0 = 7 for Example 1 are shown in 
Table 2. 

2.6. Complexity 

The results of Q-analysis can also be used to 
describe the complexity of the system structure. 
Numerous definitions of  system complexity can 
be found in the literature; the appropriate defini- 
tion depends on the type of  problem considered. 
Complexity is discussed in this section in the con- 
text of  comparing elements of  the systems consist- 
ing of  sets of  diagnostic clues and diagnostic 
categories. 

Table 1 
The structure vectors, obstruction vector and equivalence class- 
es at each q-level with slicing parameter 0 = 7 for Example 1 

q Q P Q* Equivalence classes 

3 2 2 1 {dl}, {d4} 
2 l 3 0 {dl,dE,d4} 
1 1 3 0 {dt,d2,d4} 
0 1 4 0 {d~,d2,d3,d4} 

Table 2 
Eccentricities of  each diagnostic category with slicing parameter 
0 = 7 for Example 1 

a ecc ecc' 

dl 1/3 2/3 
d2 0 1/6 
d3 0 0 
d4 1/3 2/3 
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Casti (1979) lists five axioms to be satisfied by 
any measure of complexity; the following three ap- 
ply for polyhedral complexity. 
1. A system consisting of one simplex has a com- 

plexity of one. 
2. A subcomplex has a complexity no greater than 

that of the entire complex. 
3. The combination of two complexes to form a 

new complex results in a level of complexity 
not greater than the sum of the complexities 
of the two components. 
The complexity measure ~U(K) suggested by 

Casti (1979) is 

= 

Fdim K ] 
2[  ~ ( k + l ) Q k / ( d i m K + l ) ( d i m K + 2 ) ,  (3) 

where Qk is the kth component of the structure 
vector Q. The measure ~(K) satisfies the stated 
axioms. Explicit in 7J(K) is the recognition that 
both the dimensionality and the number of equiv- 
alence classes are related to the complexity of the 
structure. For Example 1, 

3 2 1 0 
Q =  

( 2 1 1 1 )  
with dim K = 3. Thus, Eq. (3) yields, 

~(K) = 2[(1 + 2 + 3 + 8)/(4)(5)] -- 1.4 

As discussed in Duckstein et al. (1988), this 
complexity criterion does not appear to be of im- 
mediate use in the diagnostic clue/category prob- 
lem. On the other hand, it may prove relevant 
for the purpose of comparing, for example, two 
microprocessor configurations. In fact, a trade- 
off may be possible between some measure of com- 
plexity and the values of the Q- or P-structure vec- 
tor components (Section 2.3), the obstruction 
vector (Section 2.4) or a stability index (Sec- 
tion 2.7). 

2. 7. Stability 

Like complexity, stability has proved to be a 
difficult concept to apply (May, 1974). Svirezhev 

and Logofet (1983) discuss the controversy con- 
cerning the relationship of stability to complexity 
in the context of ecological systems. As pointed 
out in Casti et al. (1979), the Q-analysis technique 
appears to be appropriate for determining struc- 
tural stability, i.e., the effect of perturbations on 
the structure vector Q. 

Attention has been focused on two aspects of 
relative stability: the resistance of a system to dis- 
placement, also referred to as vulnerability, and 
the manner in which a displaced system returns 
to a reference state, that is, resilience (Patten and 
Witkamp, 1967; Holing, 1973; Duckstein et al., 
1987). Q-analysis is particularly appropriate as a 
framework for developing techniques for deter- 
mining the degree of resistance to displacement, 
which may be analyzed as follows. The resistance 
to changes of the structure vector Q depends on 
the resistance of the incidence matrix to changes 
in the data matrix. With a fixed slicing parameter, 
the incidence matrix is modified if a particular ob- 
servation of a datum is increased over the thresh- 
old 0, for example, if it is found that the value 
(or frequency) of a given clue cj for a selected diag- 
nostic category di should be increased. Such a 
change in the incidence matrix may alter Q. The 
structural sensitivity to change can then be defined 
as the ease of displacement of a system structure 
due to perturbation of any of the relations which 
comprise that structure. 

Alterations of the structure vector Q differ in 
their impact upon the system structure. In general, 
the lower the dimension of a modification of Q, 
the larger the number of simplices involved in 
the change and the more profound the effect upon 
system configuration. In the extreme, changes in Q 
at dimension zero may split or coalesce the system. 
Thus, a measure of sensitivity should depend upon 
the structural impact of changes in Q. 

A method of calculating structural sensitivity 
with respect to Q is presented in Featherlike and 
Duckstein (1986), and a unitless measure of sensi- 
tivity is proposed as a basis for comparing struc- 
tures of different sizes or scales. Stability is 
measured as sensitivity, rather than resistance, in 
order to include impact in the measure. 

Given any data, the contribution to structural 
sensitivity can be attributed to any of three factors: 
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(1) weakness of connectivity between the simplices 
and vertices; (2) potential for the evolution of new 
associations; and (3) noise in the system, that is 
random errors resulting in imprecise measure- 
ments of the elements of the data matrix (Example 
1) and, possibly, in modeling errors. 

Weakness of connectivity in the only cause of 
sensitivity when an observation is greater or equal 
to 0. When an observation is smaller than 0 but 
greater than zero, both noise and evolutionary po- 
tential contribute to sensitivity. The greater the ra- 
tio of  the observation to 0, the greater the 
contribution of the noise. If the observation is 
zero, no noise occurs. An indication of the impor- 
tance of  noise in structural sensitivity is derived in 
Featherlike and Duckstein (1986). 

2.8. Relationship between structural measures 

The value of the (/j)th element of the data ma- 
trix indicates the strength of the relationship be- 
tween, say, di and cj. The mean interaction 
strength of a simplex is defined as the average val- 
ue of the interactions of that simplex with the ver- 
tical set. A positive difference between an 
observation in the data matrix and the slicing pa- 
rameter is a direct measure of the strength of the 
interaction between an observation in the data ma- 
trix; the slicing parameter is a direct measure of the 
strength of interaction between the respective sim- 
plex and vertex. The greater the strength of the in- 
teraction, the less sensitive the resultant vector is 
to perturbation in the data. For  any simplex, var- 
ious slicing parameters can be chosen to produce 
different interaction strengths without changing 
the dimensionality of the simplex. 

A negative difference between an observation in 
the data matrix and the slicing parameter is inter- 
preted as a representation of noise level, rather 
than as a measure of  strength of interaction. 
Noise, as defined earlier, is an interference with 
the binary relationship upon which the structure 
of the complex is based. The slicing parameter acts 
as a filter, specifying the level at which an observa- 
tion represents a simplex-vertex (or clue~liagnos- 
tic category) interaction. Data values smaller than 
this threshold are assumed to represent noise in the 

system. An increase in noise decreases the differ- 
ence between the observed data and the threshold, 
consequently increasing the sensitivity of Q. 

Sensitivity is dependent upon dimensionality 
and q-connectivity, characteristics of Q that are 
the constraining parameters of the dynamic pat- 
terns sustained by the relational structure. Such 
patterns describe the dynamic behavior of the sys- 
tem, as discussed in some detail below. 

2.9. Traffic and backcloth 

The indicators discussed thus far reflect struc- 
tural properties that generally change rarely or 
slowly over the lifespan of a system. Thus, these in- 
dicators would be useful primarily for a produc- 
tion-type expert system with an open loop 
property. On the other hand, various dynamic 
entities operate across the framework that these 
measurements describe. Atkin (1974, 1978), intro- 
duced the term "backcloth" and "traffic" to des- 
cribe, respectively, the relatively static and 
relatively dynamic aspects of  a system under study. 

Atkin envisions the backcloth as setting a stage 
for the flow of  traffic, the role the backcloth plays 
in the theater. The backcloth can exist without the 
traffic, but traffic requires the backcloth for sup- 
port. The traffic, which introduces an adaptive fea- 
ture (or closed loop mode of operation) into the 
system, consists of the behavioral characteristics 
of entities operating on the multidimensional 
structure of that system. For  example, the "traffic" 
may be the evolution of a cancer under therapy, 
the backcloth being the data matrix representing 
a typical patient. 

The traffic on the complex K is the behavior as- 
sociated with K that is defined on the simplices of 
the complex, it can be described by a graded set 
function 

/ /  =_ / / 0  @ ff/] @ . . .  @ /~'N, N = dim K, 

referred to as the pattern of the traffic. Each func- 
tion /7k maps the set of  k-dimensional simplices 
into a specified number domain. The pattern H e 
is restricted to the k-dimensional simplices of K. 
The subgroups o f / 7  can be weighted to account 
for peculiarities of the traffic. A change in the 
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pattern H indicates a flow of traffic from one sim- 
plex to another, for example, from one diagnostic 
category to another. Traffic transmission across 
common faces of simplices at dimension k requires 
a (k + 1)-connection between the simplices. The 
number of distinct (k + 1)-connected components 
in K determines the extent of free changes in H k 
and H. 

The obstruction vector is an indicator of the 
gaps that occur in K, causing an obstruction to 
free change in the pattern H. The greater the num- 
ber of equivalence classes of simplices at dimen- 
sion k, the larger the level k in Q* and 
consequently, the more obstacles there are to the 
free flow of traffic. These obstacles, of course, are 
related to the basic geometry of the complex K. 
Other constraints to flow may result from specific 
characteristics of the pattern. 

A change in pattern, AH, from dimension level 
k to k + l  results from a force in K. Thus the 
change, AH, may be attributable to a force direct- 
ed toward (attractive k-force) or away from (repul- 
sive k-force) a specific simplex. 

The potential of Q-analysis to describe the way 
in which traffic and structure interact distinguishes 
this technique from similar techniques such as, for 
example, the single-link method of cluster analysis 
(Macgill, 1984). In particular, the description of 
dynamic patterns may be of considerable impor- 
tance in histopathology, where system configura- 
tion determines the dynamic interplay between 
tissue, glands and cells. 

3. Multicriterion decision making using Q-analysis 

3.1. Q-analysis  

Multicriterion Q-analysis (MCQA) has been 
used as a multicriterion decision-making (MCDM) 
method by Pfaff and Duckstein (1981), Hiessl et al. 
0985) and Chin et al. (1991) to evaluate and select 
the "best" alternative or project. A data matrix A 
and a vector w are assumed to be given. Element 
aiy in the matrix A rates alternative i for criterion 
j. In a medical environment, alternatives could be 
different types of treatment such as major surgery, 
drugs, radiation, diet change, nontreatment, etc. 

The vector w contains the criterion weights where 
a greater weight means a more important criterion. 
These weights could be the probabilities of recov- 
ery based on diagnostic clues. 

MCQA I uses a project satisfaction index (PSI) 
and a project comparison index (PCI) while 
MCQA II also includes a project discordance in- 
dex (PDI). PSI is a value or utility based index 
while PCI and PDI are so-called outranking types 
of indices. The PSI of an alternative is independent 
from the other alternatives while the PCI and PDI 
of an alternative are dependent on the criterion 
values for the other alternatives. Most MCDM 
problems have a weight on each criterion which 
are also used in the MCQA methods. 

MCQA can accept nonnumerical scales for the 
criteria but it is better computationally to quantify 
all the ratings. Therefore, before starting MCQA, 
the values for each criterion should be quantified 
and normalized (usually linearly but not necessar- 
ily so) with the most desirable value for each crite- 
rion being one and the least desirable being zero. 
For example, the following numbers are assigned 
to the standard school grading system: (I), A-ex- 
cellent; (0.75), B-good; (0.5), C-satisfactory; 
(0.25), D-poor; and (0), F-fail. For linearly nor- 
malizing aij into P/j corresponding to alternative i 
and criterion j, when a higher value is more desir- 
able (i.e. profit, power, speed), define: 

aij - mink akj 
Pij = maxt a+j - mink akj' 

alternatively, when a lower value is more desirable 
(i.e. cost, distance, waiting time) then use 

max+ a G - aij 
Pij = max~ a ~ j -  mink akj" 

The preference matrix P rates each row of alter- 
natives di with each column of criteria cj with these 
quantified and normalized values. If 
max~ at j  = mink akj for criterion c j ,  then that cri- 
terion is deleted from the analysis since it has no 
role in ranking the alternatives. 

Example 3. Ten portable microprocessors with the 
same major features (processor type, CD-ROM, 
color video screen, input/export ports, etc.) are 
evaluated using eight criteria. The criteria are price 
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(dollars), weight (grams), machine speed (hertz), 
video resolution (pixels), hard disk memory (by- 
tes), dynamic memory (bytes), battery life (sec- 
onds) and battery recharging time (seconds). Let 
w = (4,3,4,2,2,3,2, 1) with wj being the weight 
on criterion cj. The so-called preference matrix is 
given in Table 3. 

Now Q-analysis is applied to the preference ma- 
trix P where the alternatives are the simplices and 
criteria, the vertices. Several slicing parameters are 
used in this Q-analysis. In Example 3, ten slicing 
parameters are used in uniform intervals of one- 
tenth. The element of incidence matrix B at slicing 
level k which corresponds to slicing parameter l k  
is formed as follows: 

1 ifp~j>/0 k , 

bi5 = 0 otherwise. 

One of the ten W's (k=5)  corresponding to 
Table 3 is shown in Table 4. 

The PSI for alternative di shows how well di sat- 
isfies the criteria and is defined as 

PSIi = Z Ok wj hi1. 
j,k 

After computing the PSI for all the alternatives, 
PSI/is then normalized, 

P S I i  
PSINi - 

maxt PSb 

PSI's and PSIN's for Example 3 are listed in 
Table 9. 

PCI ranks the alternatives by comparing q-con- 
nectivity. S k in Eq. (4) is used to find the number of 
common satisfied criteria between the alternatives 
and then the equivalence classes and q-connectivity 
can easily be found among the alternatives by 
using the definitions found in Section 2.2.3. Also, 
the structure vectors and obstruction vector de- 
fined in Sections 2.3 and 2.4 can be found. The re- 
sultant S k, the structure vectors, obstruction vector 

Table 3 
The preference matrix P for the ten alternatives and the eight criteria in Example 3 

Cl C2 C3 e4 C5 C6 C7 C8 

dl 0.80 0 0.12 0 0.44 0 0.17 0 
d2 0.27 0 0.71 1 0.32 0 0.17 0.33 
d3 1 1 0.53 1 1 0 0 0 
d4 0.13 0 0.94 0 0.24 1 0.17 0.40 
d5 0.80 0 0.35 0 0 1 0 0 
d6 0.53 1 0 1 1 1 0.33 0 
d7 0.07 0 0.53 1 0.32 1 0.33 0.42 
ds 1 0 0.76 0 0,12 1 0 0.43 
d9 0.33 0 0 0 0,44 0 1 0.33 
dl0 0 0 0.76 0 0,24 1 1 1 

Table 4 
Incidence matrix B 5 for Example 3 when 05 = 0.50 

CI C2 C3 C4 C5 C6 C7 C8 

dl 1 0 0 0 0 0 0 0 
d2 0 0 1 1 0 0 0 0 

1 1 1 1 1 0 0 0 
d4 0 0 1 0 0 1 0 0 
d5 1 0 0 0 0 I 0 0 
d6 1 1 0 1 1 1 0 0 
dv 0 0 1 1 0 1 0 0 
d8 1 0 1 0 0 1 0 0 
d9 0 0 0 0 0 0 1 0 
dlo 0 0 1 0 0 1 1 1 
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Table 5 
The S 5 matrix 
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when 05 = 0.50 for Example 3 

dl & d3 d4 6/5 d6 6/7 6/8 d9 dlo 

dl 0 -1  0 - 1  0 0 -1  0 -1  -1  
d2 -1  1 1 0 - 1  0 1 0 -1  0 
d3 0 1 4 0 0 3 1 1 -1  0 
d4 -1  0 0 1 0 0 l 1 -1  1 
d5 0 -1  0 0 1 1 0 1 -1  0 
6/6 0 0 3 0 1 4 1 1 -1  0 
d7 -1  1 1 1 0 1 2 1 -1  1 
d8 0 0 1 1 1 1 1 2 -1 1 
d9 -1  - I  - 1  -1  -1  -1  -1  -1  0 0 
dm -1  0 0 1 0 0 1 1 0 3 

and equivalence classes for the simplices when 
using Table 4 are shown in Tables 5 and 6. 

S* = B*(Bk) T - eTe, 

where e = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). (4) 

The PCI for alternative d~ is defined as 

PCIi = ~ Ok[qik--qi*k], 
k 

where 

qik = S~ and qi*k = max s~., 
j~'#i 

is the dimension of  simplex di and q* is the high- 
est dimension at which simplex di joins another 
simplex in an equivalence class. 

After computing the PCI for all the alterna- 
tives, PCIi is then normalized, 

PCIi 
PCINi - 

maxt PCIe 

Table 6 
First and second structure vectors and the obstruction vector of 
the simplices from the equivalence classes at slicing level 
05 = 0.5 for Example 3 

q Q P Q* Equivalence classes 

4 2 2 l {d3}, {d6} 
3 2 3 1 {d3,d6},{dlo} 
2 1 5 0 {d3,d6},{d7},{ds},{d,o} 
1 1 8 0 {d2,d3,d4,ds,d6,dv,ds,dm} 
0 1 10 0 All 

The PCI's and PCIN's for Example 3 are listed 
in Table 9. 

The eccentricities after Eqs. (1) and (2) are giv- 
en as 

Aqik  
ecc ik  = 

sij + 1 maxjb.¢i , 

and 

, 2 ~ [qirk/aiek] 
eccik = [ maxj qjtk] [ maxj qjgk + 1]' 

where 

{ if j belongs to an equivalence class 

qjrk = at q - level f at slicing level k, 

0 otherwise 

and aitk is the number of  elements in the equiva- 
lence class containing di at q-level ( for slicing level 
k. Table 7 shows the eccentricities corresponding 
to Table 5. 

Table 7 
Eccentricities of the alternatives at slicing level 05 = 0.5 

ecc ecc' 

dl 0 0 
d2 0 0.01 
,/3 0.25 0.66 
d4 0 0.01 
ds 0 0.01 
d6 0.25 0.66 
d7 0.50 0.21 
d8 0.50 0.21 
d9 0 0 
dm 1.00 0.51 
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when 0 5 = 0.50 for Example 3 
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dl d2 d3 d4 ds d6 d7 d8 d9 dlo 

d, 6 4 2 4 5 2 3 4 5 2 
d2 4 5 2 4 3 1 4 3 4 2 
d3 2 2 2 1 1 1 1 1 1 -1 
& 4 4 1 5 4 1 4 4 4 3 
d5 5 3 1 4 5 2 3 4 4 2 
d6 2 1 1 1 2 2 1 1 1 -1 
dv 3 4 1 4 3 1 4 3 3 2 
d8 4 3 1 4 4 1 3 4 3 2 
& 5 4 1 4 4 1 3 3 6 3 
dlo 2 2 -1 3 2 -1 2 2 3 3 

PDI ranks the alternatives by comparing dis- 
cordance q-connectivity. S k* in Eq. (5) is used to 
find the number of common dissatisfied criteria be- 
tween alternatives and then the discordance equiv- 
alence classes and q-connectivity can be found by 
using the same method as applied to finding PCI. 
The resultant S k* is shown in Table 5, with 

S k* = Bk*(Bk*)  T --  eTe ,  (5)  

where 

b ~ * = { 1  if b ~ = 0 ,  
0 otherwise 

a n d e =  (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). 
The matrix S 5. when 05 = 0.50 for Example 3 is 

shown in Table 8. 
The PDI for alternative di is defined similar to 

the PCI, 

PDIi = Ok qik --  qik , 

k 

where 

I " - - 3  k* and -- Ls I qik = Sii j l j ¢  i 

After computing the PDI for all the alterna- 
tives, PDIi is then normalized, 

P D I N i  - 
PDIi  

maxs P D b "  

The PDI's and PDIN's for Example 3 are listed in 
Table 9. 

3.2. Ranking the alternatives 

Two methods are used to rank the alternatives, 
as shown below: MCQA I uses PRIl(project rat- 
ing index 1) and MCQA II uses PRI2. These PRI's 
are defined as follows: 

PRI1, p. = ([1 - P S I N / ]  p + [ 1 - P C I N i ] P )  '/p 

and 

PRI2 p = ([1 - P S I N , ]  p + [1 - P C I N , ]  p 

+ [ P D I N i ] P )  l/p.  

A lower value indicates a better alternative un- 
der these methods. Table 10 lists the results from 
using the indices listed in Table 9. 

The ranking order (best to worst) for PRTI 
with ties indicated in brackets is: 

Table 9 
The project indices for Example 3 using 10 equal slicing levels 

PSI PSIN PCI PC1N PDI PDIN 

dl 17.0 0.31 0 0 5.0 1 
d2 23.4 0.42 1.6 0.22 3.7 0.74 
d3 55.5 1 4.5 0.61 0.1 0.02 
d4 33.7 0.61 1.8 0.24 3.5 0.70 
d5 30.0 0.55 0 0 1.1 0.22 
d6 52.2 0.94 5.1 0.69 0.1 0.02 
d7 31.9 0.57 1.8 0.24 1.3 0.26 
d8 43.9 0.79 3.6 0.49 0 0 
d9 14.0 0.25 0.9 0.12 3.1 0.62 
dl0 38.8 0.70 7.4 1 0.1 0.02 
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Table 10 
The project rating for Example 3 using 10 equal slicing levels 

PRT 11 PRT 12 PRT2 ~ PRT22 

aj 1.69 1.22 2.69 1.58 
a2 1.36 0.97 2.10 1.22 
a3 0.39 0.39 0.41 0.39 
a4 1.15 0.85 1.85 1.10 
as 1.45 1.10 1.67 1.12 
a6 0.37 0.32 0.39 0.32 
a7 1.18 0.87 1.44 0.91 
a8 0.72 0.55 0.72 0.55 
a9 1.63 1.15 2.25 1.31 
al0 0.30 0.30 0.32 0.30 

dlo, d6, d3, ds, d4, dT , d2, ds, dg, dl . 

while for PRT2, it is: 

dlo, d6, d3, ds, d7, [d4, ds], d2, d5, d9, dl 

The order of preference based on the four results 
is: 

dlo, d6, d3, ds, [d2, d4, ds, dT], dg, dl . 

4. Summary and discussion 

Q-analysis appears to be helpful in organizing a 
knowledge base such as the one of the expert sys- 
tem which was developed at the University of Ar- 
izona for analyzing histopathological images, as 
discussed in Duckstein et al. (1988). Example 1 is 
a simplified version of the example in that paper, 
where the two sets used for Q-analysis are the di- 
agnostic clues, set C (the vertices) and the diagnos- 
tic categories, set D (the simplices). The matrix A 
represents an indication (on an ordinal scale) of 
the value (or extent of usefulness) of each diagnos- 
tic clue for each diagnostic category. 

The direct analysis of the complex, which con- 
siders the data from the viewpoint of the know- 
ledge base, helps in determining a feasible 
number of diagnostic categories. Thus Q-analysis 
helps to identify the diagnostic categories which 
are more easily recognized. 

Q-analysis of the conjugate complex provides 
an indication of the usefulness of the diagnostic 

clues. Thus, if it were possible to use only two di- 
agnostic clues, it would be more advantageous to 
choose two from different equivalence classes than 
two from the same equivalence class. 

In order to study how the simplices (diagnostic 
clues) conform to the complex (represented in the 
histologic example by the matrix given in Example 
1) and to determine whether there are any simpli- 
ces (clues) that are totally disconnected, the follow- 
ing indices have been proposed: q-connectivity, 
structure and obstruction vectors, eccentricity, 
complexity, stability, traffic and backcloth. 

q-Connectivity describes the global relationship 
among equivalence classes. The structure and ob- 
struction vector indicate the potential for simplify- 
ing the representation of the relationships. In the 
MCQA example, eccentricity expresses the extent 
to which a criterion stands out from other criteria, 
with respect to equivalence class membership. Spe- 
cifically, given that a criterion first appears alone 
in a class, eccentricity indicates the numbers of lev- 
els for which this is the case before another criteri- 
on also appears in the class. Thus, a non-zero 
eccentricity is found only for a criterion that first 
appears alone in an equivalence class. If there is 
a criterion, c j, with infinite eccentricity, then the 
q-connectivity of the simplicial chain that includes 
cj is zero. Further discussion of the use of these in- 
dices to evaluate criteria in MCDM is found in 
Chin et al. (1991) and Ozelkan and Duckstein 
(1996). 

Complexity provides a measure of the tightness 
of the interweaving between the elements of two 
sets, C and D. Complexity could be an extremely 
useful indicator in the automatic reconfiguration 
of microprocessors, as the type and duration of 
tasks evolve. Stability is related to complexity, 
and also to the sensitivity of Q-analysis results to 
noise. This sensitivity may be expressed as struc- 
tural change, either for a constant slicing level 
when a disturbance occurs or when the slicing 
level is changed, even in the absence of a distur- 
bance. 

The previous indices represent the backcloth of 
the system under consideration. This backcloth 
may be used as a support for traffic (pattern), that 
is, a dynamic change of the systems structure, such 
as a disappearance of cancer following therapy. 
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Points to be investigated further thus include: 
• When is a high value of the obstruction vector 

and/or the eccentricity desirable? 
• How are the various definitions of complexity 

matched with the problem type and how are 
the results interpreted? 

• What is the relationship between complexity 
and stability, that is, how are the sensitivity to 
noise or disturbance and the choice of slicing 
level (threshold) measured? 

• How can global result combine the Q-analyses 
corresponding to different thresholds? Here the 
indices used in Pfaff and Duckstein (1981) and 
Hiessl et al. (1985) may be useful. 

• What is backcloth and what is traffic when 
studying, for example, the results of therapy? 

• How can a trade-off be effected between various 
indices provided by Q-analysis? Here, a multi- 
criterion decision-making method with non-nu- 
merical or qualitative criteria (Goicoechea et 
al. (1982) or Szidarovszky et al. (1986)) may 
be appropriate. 
To end this discussion, the step by step proce- 

dure for performing Q-analysis may be described 
as follows, using the two examples of histopatho- 
logical expert systems: the clue-diagnostic cate- 
gory module and the microprocessor-task module. 
• Define the set of simplices: 

Case A: Diagnostic categories D. 
Case B: Tasks T. 

• Define the set of vertices: 
Case A: Clues C. 
Case B: Microprocessors M. 

• Establish threshold levels, select definition of in- 
dices such as complexity and traffic. 

• Perform Q-analysis and calculate the indices. 
• Interpret the results and if necessary, repeat the 

analysis changing either the threshold or index 
definitions (especially the definition of complex- 
ity). 

The drawbacks of Q-analysis include the follow- 
ing. 
1. Only qualitative measures of relationships are 

obtained, in contrast with statistical analysis; 
however, statistical analysis would require rep- 
lications of homogeneous sets of data. 

2. The mathematical theory behind the technique 
is not simple; however, a deep understanding 

of the theory is not required for application 
and correct interpretation of the results. 

3. There are many indices that can be used, so 
conventions must be adopted for future com- 
parisons of results. 

4. The interpretation of results is not always 
straightforward. 
The advantages of Q-analysis that have been 

pointed out in the body of this paper (simplicity, 
flexibility, use in many fields, etc.) are listed in 
Conclusions. 

° 

1. 

. 

. 

Conclusions 

Referring to the analysis presented in Duck- 
stein et al. (1988), the results of applying Q- 
analysis to aid in organizing a knowledge base 
are encouraging; equivalence classes of the di- 
agnostic clues that cut across histological cate- 
gories are defined, as well as clues whose 
usefulness might be reexamined. The effect of 
the slicing parameter appears to be quite sub- 
stantial, so a careful prior and on-going 
analysis of this aspect of the problem is neces- 
sary. 
Q-analysis provides a unique multidimensional 
view of the structural relationship between 
two sets, here the set of clues, C, and the set 
of diagnoses, D. In the dynamic reconfiguration 
problem, the sets are tasks, T and microproces- 
sors, M. 
The advantages of the Q-analysis technique are 
as follows. 
3.1. It is simple to use, requiring only "book- 

keeping" types of calculations. 
3.2. It is flexible, there is no problem in chang- 

ing slicing levels or criteria definitions. 
3.3. It provides ordering on both direct and 

conjugate complexes; for example, q-levels, 
eccentricity, equivalence classes, and ele- 
ments of the obstruction vector provide 
an order on the cj's and 6's.  

3.4. It is applicable to several aspects of know- 
ledge base analysis; for example, comput- 
erized histopathological image analysis. 

3.5. It can be used in multicriterion decision- 
making methods as demonstrated in 
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Example 3, as well as many other problems 
involving the dynamic analysis of  the 
structure of a binary relation. 

Appendix A. The Q-analysis algorithm 

1. Let data matrix A(m×n ) consist of  m catego- 
ries(alternative) and n clues(criteria). 

2. P(m×n) is formed by quantifying A and normal- 
izing the values for each criterion. 

3. B(mxn ) is the (0-1) incidence matrix where each 
element is equal to one if the corresponding 
element in P is equal to or greater than a 
threshold parameter, else it is equal to zero. 

4. S(mxm ) ~---BB x -  E(mxm ) where E is a matrix 
whose elements are all one. 

5. The structure vector Q(m) is taken from the di- 
agonal (top left corner to bot tom right corner) 
of  S. 
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