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Abstract. This paper is intended to be a short and convenient reference for some of the standard
definitions and notation of Q-analysis. Notation is established for relations between sets; simplicial
complexes determined by relations; g-connectivity and Q-analysis; the structure vectors and
methods of comparing them; antivertices; patterns on a complex; chain complexes and pattern
polynomials; the face and coface operators; #-forces; backcloth and traffic on the backcloth;
slicing; and strain pairs. The paper contains discussions of structure vector comparisons, the
relationship between the structure vectors and the defining relation, and strain pairs. The notation
and definitions are consistent with Atkin’s standard texts, and the paper is self-contained.

Introduction

This paper is intended to provide a short and convenient reference for some of the
standard definitions and notation of Q-analysis. Q-analysis has been developed by
Atkin and co-workers over a decade or more, and the standard references are Atkin’s
books (Atkin, 1974b; 1977; 1981), and papers (Atkin, 1974c; 1974d; 1975). This
paper attempts to summarise some of the structures which have been useful in
applications and to develop a consistent notation. All the definitions and notation
are consistent with Atkin’s work, but a number of notational extensions are given.
To make this presentation as useful as possible any deviations from Atkin’s notation
are explicitly noted. ‘

Relations
Consider two finite sets 4 and B. Let A ={a,, ..,a,} and B = {b,, .., b,}. Letp
be a relation between A4 and B, that is, for every a; € 4 and b; € B there is a rule to
decide if a; is p-related to b;. A very clear presentation of relations in terms of
propositional functions may be found in Lipschutz (1964). The notation a;pb;
means q; is p-related to b;. The complementary relation not-u is written symbolically
it (or sometimes ~u) and defined as: a;ﬁb,- if and only if g; is not p-related to b;.
Usually relations have the property that either a; pub; or a;fib; (but not both) for
every q; € A and b; € B, this being the ‘law of the excluded middle’.

Every relation determines a unique subset of A x B called its solution set. This is
denoted by u* and is defined by the rule

(a,,b,)eu'QAxB, lffﬁfllb,

By an abuse of language it is common to use the symbol g both for the relation and
for its solution set and to write # € 4 x B. The logical distinction between the
relation and its solution set is usually clear from context. The explicit notational
distinction between u and u* allows discrimination between relations with different
intentional meaning but the same solution set (Bandler and Johnson, 1972). If u and
and v are relations it is sometimes an advantage to allow u # » when p* = »*; the
observation of equal solution sets establishes a relationship between the propositions
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defining the relations, but does not require that the propositions have the same
meaning. The rule for defining u* means that any subset of 4 x B can be interpreted
as a solution set and thus defines a relation between A and B. This method of
defining relations is extensional and well suited to formal mathematical presentations,
and the abuse of language by using u both for the relation and for its solution set is
invariably used. In this presentation p* will not be used.

The inverse relation of u is denoted g~ It is defined as p™ € B x A with
(b, a,) € p™! if and only if (g;, b;) € u. In the special case that p is a 1-1 mapping,
™! is the usual inverse mapping.

A relation u € A x B can be represented by an incidence matrix M = [My], where

M = {1, iff g, is p-related to by,
Y710, otherwise.

If M is the incidence matrix of u it follows that its transpose, denoted by M7, is the
incidence matrix of the inverse relation u~!. For this reason p™! is sometimes written
as uT and called the transpose relation. Every relation has a unique incidence matrix
and every incidence matrix has a unique (extensional) relation. ;

By a similar abuse of language to that which uses the symbol u to represent both the
relation and its solution set, it is sometimes convenient to use the symbol u to represent
both the relation and its incidence matrix M. The notation is then extended so that g,
represents the ith row of the incidence matrix and y,'-f represents the jth column. The
appropriate interpretation for p is either given explicitly or is clear from the context.

A matrix M with arbitrary entries can be made into an incidence matrix with
entries 1 or 0 by a process of slicing. In its most general form slicing is a mapping
(usually nonlinear) on the set of m x n matrices. For all practical purposes it suffices
to consider the set of m x n matrices with integer entries, the symbol J being used to
represent the integers. Let s be a mapping, s: J = {0, 1}, called the slicing mapping.
Usually s is defined in terms of so-called slicing parameters o and § where

v o f1,  iffa<M;<8,
S(My) {0, otherwise.

The slicing mapping S: M —~ M is given by [M;] = [s(_]l};,)]. It is possible to
define a slicing mapping s; for each row, a slicing mapping §; for each column, or
even a slicing mapping s; for each matrix entry. Tyé slicing can then be extended as
M) = [s(Mp)], [My] = [si(Mp)], or [My]= [s;(My)], Tespectively. The use and
interpretation of slicing depend on the particular application. In Q-analysis the
i meaning is usually in terms of sliced traffic values on a restriction, of the backcloth,
 these terms being defined later in this paper.

Simplicial complexes determined by a relation
Let V = {uv,, .., s} be a set with elements called vertices. Let {vq,, Va,; «os Vo, } bea
subset of V. Any such subset determines an object written

O = (Vg 5 Vo5 oo va,)

which is called a p-simplex. In general more than one p-simplex is under investigation
and the notation o means the ith p-simplex. A simplex with p+1 distinct vertices is
said to have dimension p.

Every p-simplex can be represented as a polyhedron in p-dimensional space, a
O-simplex being a point, a 1-simplex being a line, a 2-simplex being a triangle, and so
on (see figure 1). This is why a psimplex has p+1 vertices.

Simplices have different properties from the sets of vertices which define them and
the angular brackets emphasise the simplex is not a set as such. For example, in set
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theory {v;, vy, v3} = {vs, v;}, but a similar identification for simplices is undesirable;
in general (v, vy, U3) # (v3, Us).

Much of the terminology and notation of Q-analysis comes from algebraic topology
(which does not mean that an understanding of algebraic topology is necessary to study
Q-analysis). In particular the subscript-superscript notation follows that of Hilton and
Wylie (1965), the subscript p of the symbol g} being the dimension of the simplex
and the superscript i being the index used to discriminate the various p-simplices.

Consider two simplices g, and q,, 0, = {v, Va,, - Vo, } and 6, = {vg,, vg,, ..., vg, }
The simplex g, is said to be a g-dimensional face of o,, or g-face of g,, if and only
if every vertex of o, is also a vertex of g,. The notation o, S 0, means g, is a face
of g,. In general

0,50, iff {vg,vg, .05} S {Us Va,s s Vo, } -

The face relation < so defined is a partial order on any set of simplices with vertex set V.

Let X be a set of simplices of mixed dimensions. X is a simplicial complex if and
only if g, € K and ¢, S g, imply g, € K. Two simplicial complexes can be
constructed from a relation u, p & A x B as follows. Let B be the vertex set for the
first complex. The set of simplices K 4(B, p) is defined as follows: (b,,, bg,, -, ba,)
belongs to K,(B, u) iff there exists a; € 4 such that g; is u-related to b; for
= a0, .., 0.

The notation o(g;) represents the simplex with vertices all those b; which are
p-related to g;. If it is known that g, is u-related to exactly p+1 distinct b; the
notation is extended to 6,(a;). In other words 0,(a;) = (bg,, ba,> - b,,,'), where
aub; iff j € {a, 0y, ..., &, }; and a; is called the name (possibly among many) of
the simplex o(g;). This notation is consistent with the definition of the sigma-mapping
0: A= K, (B, n) defined as 0: a; = o(q;). This makes it clear that the elements of A4
and the simplices of X ,(B, n) are different entities. In general the sigma-mapping is
many to one and into. The sigma-mapping notation does not appear in Atkin’s
standard texts, but sometimes it gives clarity in complicated applications.

Let o, be a simplex of K,(B, u) with o, = (bq,, b5 s Do) By definition this
means there exists @, € A4 which is p-related to each of the b, . Consider a simplex o,
which is a face of g, 0, S 0,. Let 6, = (bg, bg,, ..., bg). By definition of the face

Number of vertices Dimension Symbol and common name Geometric representation

1 0 6, point
1 o, line

3 2 o, triangle

4 3 g, tetrahedron

GHL DI

6 5 0

Figure 1. Simplices as polyhedra.
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relation {bg, bg , ..., bg } € {ba,; bg,> s c,'} Thus g; is also related to each of the
bp’ and hence o, € K,(B, ). Thus if o,, is a simplex of K 4(B, p), every face of g,
is also a simplex of K (B, p), and K,(B, n) is a simplicial complex.

The vertices of K,(B, p) can be identified with the O-dimensional simplices:

= (bp, forj=1,..,n

The largest value of p for which there exists 0, € K,(B, ) is said to be the
dimension of K,(B, u).

This completes the construction of the first simplicial complex from the relation pu,
# € AxB. The second simplicial complex is constructed in just the same manner for
the inverse relation u=! C B x A. This complex is written Kz(4, u~!) and is called the
conjugate complex of K (B, p).

When there can be no ambiguity K,(B, u) is abbreviated to X, and Kp(4, p 1)
is abbreviated to K.

The vertices of the simplex ¢(a;) in X, may be identified by looking along the ith
row of the incidence matrix representing u, so that b; is a vertex of o(a;) iff there is a
1 in the jth column. Similarly for K, the simplex a(b,) has the vertex a; iff there is
a 1 in the ith row of the jth column of the incidence matrix.

An example
Let figure 2 represent a Tunction between two roads. The intersection has been
divided into four ‘links’ labelled L,, L,, L,, and L,. There are three points of entry
into the junction, a, c, and e, and three points of departure, b, d, and f. There are
six ‘routes’ through the junction traversing various sets of links summarised in the
incidence matrix table 1. The relation A, where A € R x L is defined as: R; is
A-related to L; iff R, traverses ;.

The complex Kg(L, ) contains the named simplices

0;(ab) = (Ly, Ly}, oy(ad) = (L, L, Ly),  ap(cd) = (L3,

0,(cf) = (L3, Ly), ao(ef) = (Ly), a(eb) = ULy, Ly, L),
and their unnamed faces

Ly, Ly, (Ly, Ly), (L, Ly), Ly, Ls), Ly, (L)

In this example g;(ab) S o;(ad), 0,(ab) S o,(eb), 0p(cd) S o;(ad), gy(cd) S 0,(cf)
0p(ef) S gy(cf), and gy(ef) S o, (eb).

alLlL, e ‘

fl;.L,c
efd

Figure 2. The T-junction of two roads.

Table 1. The incidence matrix of A, A € R x L.

AL Ly Ly Ly
ab|{1 1 0 O
ad ] 1 1 1 O
¢cd |0 0 1 O
e {0 0 1 1
ef |0 0 0 1
eb {1 1 0 1
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The complex Kz (R, X\!) contains the named simplices

6;(Ly) = {ab, ad, eb),
02(L3) = (ad: Od: Cf))

a(L;) = {ab, ad, eb},
02 (L) = (cf, ef, eb),

and their unnamed faces

(ab, ad), (ab, eb), {ad, eb), (ad, cd), {(ad, cf), {cd, cfy,
(cf, ef), (cf, eb), (ef, eb), (ab}, (ad), {cd),
(ch), (ef), (eb).

In this example o,(L,) = 0,(L;), but clearly L; # L,.

Every simplicial complex has a geometric representation as a collection of convex
polyhedra in a euclidean space E¥. It has been demonstrated that the value of H for
this representation is at most 2N+1 when the complex has dimension N (Hilton and
Wylie (1965). The geometric representations for Kx(L, N) and K (R, A1) are given in
figure 3. ’

ab
O(L.) = U(L’)
eb ad
olL) olLy)
ef cd

o } cf
KoL, ny oD KR\
Figure 3. Geometric representations of simplicial complexes.

Chains of g-connection

Two simplices are said to be g-rear in K iff they share a g-dimensional face in X.
Two simplices 0, and o, in a complex X are joined by a chain of q-connection iff
there exists a finite sequence of simplices 0y, ..., Gy, » such that (1) o, S 0p,

(?) 0, S 0, and (3) 0,, and o,,,, share a common face asog,i=1,.,h"1,
where the least of the integers @, , f;, ..., Br-1, @ has value ¢ or more.

The sequence of simplices g, ..., 0, is called a chain of g-connection, or
g-connectivity, and it is said to have length (2—1). When a g-connectivity exists
between g, and g, that is, there exists an intermediate sequence of g-near simplices,
o, and o, are said to be g-connected. Every p-simplex is p-conniected to itself by a
chain of length zero. If g, and o, are g-connected they are also (g — 1)-connected for
g-D=0.

The number § (the bottom-q) associated with a simplex o, is the greatest value of ¢
for which o, is g-connected to a distinct simplex in K. The number g (the z0p-q)
associated with each simplex o, is the dimension of the simplex, in this case ¢ = r.
The eccentricity of the simplex o, is defined to be the rational number given by
ecc(6,) = (G—§/(§+1). This definition of eccentricity accords with intuition: §+1
is the greatest number of vertices o, shares with any simplex, and §—§ is the number
of vertices making o, different from that simplex. Thus (§—4§)/(§+1) is a measure of
the individuality, otherwise eccentricity, of o,. - ,

The relation ‘is g-connected to’ on the simplices of a complex X is reflexive,
symmetric, and transitive, that is, it is an equivalence relation which will be denoted
by 4. Let K, be the set of simplices in X with dimension greater than or equal to g.
Then «, partitions K, into equivalence classes of g-connected simplices. These
equivalence classes are members of the quotient set K, /v, and they are called the
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g-connected components of K. Every simplex in a g-component is g-connected to
every other simplex in that component, but no simplex in one g-component is
g-connected to any simplex in a distinct g-connected component.

The cardinality of K, /v, is denoted by @, and is the number of distinct
g-connected components in K. The determination of the components for each value
of g, and the listing of the numbers Qq, Oy, ..., On, Where N = dimKX, is termed a
Q-analysis of K. The vector (Qy, Q;, ..., Qn) is called the first structure vector of K
and is denoted by Q.

The computer programmes for Q-analysis usually list the named simplices in the
g-connected components on the assumption that all unnamed faces are implicitly in
the components at the appropriate g-values.

An example |
The Q-analysis of the Tjunction structures is given as:
Kgr(L, N KR, XY
q=2 ‘ q=2
(oi(ad), (02(eb)) (02(L1), 02L2)), (62(L3)), (02 (L))
qg=1 g=1
(02(ad), 61 (eb), 0, (ab)), (01 (ch) (02 (Ly), 02(L2)), (02 (L3)), (02(La))
=0 _ q=0
(02 (ad), 02 (eb), 0,(ab), 6, (cf), 0o (cd), oo (ef)) (02 (L1); 02 (L), 02(L3), G2(La)
. 0 1 2 01 2
0=01,2,2) 0=(1,3,3)

As noted previously o,(L,) = 0,(L,), so the first of the two-dimensional components

in ¥, contains only a single distinct simplex. This suggests a new link be defined for

t} * union of L, and L, as pieces of junctions. In this case the number of vertices of

Kg(L, A) is reduced by one, and this will change the structure of Kg(L, ) accordingly.
The merits of redefining sets depends on the particular application and this particular

case will not be further discussed here.

The first structure vector Q provides a measure of some of the global structure
of K in that it gives the number of g-connected components for each X, but it
overlooks the internal structure of the components of K. Qo corresponds to the
zeroth Betti number of the complex and it has been shown that K,(B, ) and
Kx(A, ™) have the same 0-Betti number (Dowker, 1952). Q, is the number of
arcwise connected pieces of the complex K, and when Q, is greater than 1 the
complex exists as Q, disconnected pieces. In this case the structure vector is the sum
of the structure vectors of the Q, separate subcomplexes of X. Without loss of
generality this paper considers only complexes with Qo = 1.

Let U be a unit vector with N entries all equal to 1:

v=q,..1.

The obstruction vector of a complex K is denoted by Q. If dimK = N, it is
defined as '
0=0-U, o 0=@-1,0-1..0v"1.
The obstruction vector indicates the obstruction to changes in various dimensionally
graded mappings defined on the complex. Given any g-connected component, then,
intuitively, there are exactly Q, —1 g-dimensional ‘gaps’ between it and the other
components. The notation here varies slightly from Atkin’s: here the vectors are
enclosed by round brackets (...) rather than curly brackets {...}, and the vectors are
written with the first entry for ¢ = 0, the second for ¢ = 1, etc, instead of the first
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entry for ¢ = N, the second for ¢ = N—1, and so on. Usually the dimensions
involved are written above the value @, , for example, the obstruction vector for

Ka(L, \) would be written as 0 = (0, 1, ).

It has been useful to define a second structure vector P where the entry P, is the
number of named simplices in the complex X with dimension greater than or equal
to g (Johnson, 1976).

Comparing the structure of complexes by their structure vectors

Let @ and Q' be the structure vectors of two complexes given by K = K,(B, p)
and X' = K (B, #"). Suppose there is a dimension p such that Q, = Q, for

q > p, and Q, < Q for ¢ < p. For high values of ¢ greater than p, @, > Q, will
usually be associated with some of the ¢(a;) having greater dimension, and hence
being g-connected at higher values of ¢, in K than X'. For low values of ¢ less than p,
Q, < Q, will usually mean more pairs o(a;) and ¢(g;) are not g-connected (and hence
not g+1, not g+2 connected, etc) in X' than in XK. This motivates the definition of
a comparison of the connectivity structures of two complexes based on their structure
vectors (Johnson, 1976).

If dimK' < dimK the structure vectors are made of equal length by defining
Q; = 0 and P; = 0 for dimK > q > dimK'". The flipover value of Q with respect
to Q' is defined when it exists as the lowest value of p such that @, > @, for q
greater or equal to p, and Q, < Qg for q less than p. If Q # Q' and there exists a
flipover value of Q with respect to Q' the notation Q' < @ and K' < K is used.

)¢ <o K is interpreted as a crude indication that more pairs of simplices are
g-connected in K than in X' for each g-value.

Let P and P’ be the second structure vectors of X and K' respectively. The
notation P'< P and X' <p K will be used when P # P’ and F, > P, for all values
of g. K'<p K is interpreted as meaning there are as many or more g-dimensional
simplices in K than in X' for each g-value. A weaker dimension comparison to allow
for the introduction of low dimensional simplices in X' may be achieved by defining
the flipover value, r, of P with respect to P’ as follows. The flipover value, r, of P
with respect to P’ when it exists is the lowest value of ¢ such that P, > P; for q
greater or equal to 7, and P, < P, for q less thanr. If P # P’ and there exists a
flipover value of P with respect to P’ the notation P' S P and XK' 5, K is used.

The flipover value of P with respect to P' may be different from that of Q with
respect to Q’, and either may exist without the other.

Neither the second structure vector nor the structure vector comparisons are to be
found in the standard texts on Q-analysis. However, they have Been used to compare
the structure of road intersections and to show this affects the road traffic flows they
can accommodate (Johnson, 1976).

Antivertices

In applications the observation that g; is not related to b; may be as important as the
observation that g, is related to b;. Such negative observations can be explicitly
recorded and integrated into the structure by use of the antivertices. A full description
and definition of antivertices requires consideration of the extended exterior algebra
(Atkin, 1974a; 1977) but the following will do for many practical purposes.

Let p be a relation between the sets A and B with incidence matrix M. Let ji be
its complementary relation, 4,ib; iff 4, is not p-related to b;, with incidence matrix M.
For each q; define an antivertex @; and let 4 be the set of all these antivertices. Similarly
for each b; define an antivertex b; and let B be the set of all these antivertices. The
relation u can be extended to the relation denoted u* € (4 U 4) x (B U B) by the
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definitions:
apth; iff a,ub;
Gu*b; iff afib;
a;uth; iff a;fib;
autb; iff aub; .

Let A* = (AU A) and Bt = (B U B). Then the incidence matrix of
ut € At x Bt has the form

LM M
w=(al

It is the case that all o(a;) and 6(d;) have-the same dimension, n—1, in K}(B*, u*)
when M has n columns. Similarly all the o(b;) and o(B;) have the same dimension in
KA, ut), viz m—1 where M has m rows. It has been suggested that the antivertices
have an important role to play in taxonomy and classification (Johnson, 1978; 1981).

Mathematical problems in Q-analysis
It is easy to find examples of distinct simplicial complexes which have the same
structure vector. However, there is an interesting question first posed by Atkin
which may be paraphrased as “under what conditions, if any, do the structure vectors
of K, and Kp determine the relation u € A x B”. A discussion of this problem
(Johnson, 1977) can be summarised as follows.

Let @, and Qp be the first structure vectors of K (B, ) and Kg(4, u™t),
respectively.

Question 1 )

Given the structure vectors Q4 and Qp can the relation g € A4 x B be reconstructed?
It has been shown that for every strictly positive integer vector ¥ there exists at

least one simplicial complex K with structure vector Q such that ¥ = Q. In other

words every such vector ¥ is the structure vector of at least one simplicial complex.

This suggests:

Question 2
Given the strictly positive integer vectors ¥ and V' is there a (unique) relation
S AxB such that V= Q, and V' = Q5?

It is clear this question can only be answered up to some kind of equivalence of
relations in which the particular names of the simplices are ignored. Permutations of
the rows and columns of the incidence matrix will not alter the structure vectors of
K4 and K, but simply give their simplices different names and permute their vertices.
The kind of isomorphism relevant to this discussion can be defined in terms of face-
saving maps (Atkin, 1977). A mapping ¥: K, = K, is a face-saving map iff o,
q-near o, in K, implies ¥(o,) is g-near ¥(g,) in K. If ¥ is one to one and onto and
its inverse is also face-saving it will be called a face-saving isomorphism. Thus the
relation u of question 2 can at best be determined up to face-saving isomorphism.

Let & and B8 be permutation matrices such that oM@ is the matrix M with rows and
columns permuted. By the previous discussion the complexes obtained from these
matrices are face-saving isomorphic and they have the same structure vectors. The
essence of question 2 lies in asking if there is a matrix M* where for all permutation
matrices M* # aMB, but M and M' have the same structure vectors. This question is
unanswered at the moment.
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It may be that Q, and Qg alone do not characterise the relation u by themselves,
but the extended complex may suffice. Therefore the question could be rephrased as
follows:

Question 3

Is u* and hence u characterised by Qf up to face-saving isomorphism, is u* and
hence u characterised by Qf up to face-saving isomorphism; and is u* and hence u
characterised by Q4 and Qy up to face-saving isomorphism?

These problems can be seen as more than mathematical curiosities: whatever their
answers there exists a class of simplicial complexes (and defining relations) for each
structure vector. This means the set of all complexes (relations) can be classified by
the structure vectors, a classification based entirely on the concept of connectivity.
There are many examples in the literature of the practical significance of multi-
dimensional structure and some special results for particular complexes. The possibility
of appealing to a substantial and coherent body of results within a classification when
studying data relations is very attractive.

These structural classification problems can be extended by consideration of slicing:
given a particular integer matrix there are many incidence matrices which can be
obtained by slicing. The relationships between the structures obtained by the various
slicings also merit investigation.

Patterns on a complex
Let X be a simplicial complex. Let J be a set called the coefficient set which will be
assumed to be the integers or rationals in this paper. In general the coefficient set
can be anything, but usually it must have algebraic properties consistent with those
imposed on the supporting complex.

A pattern on the complex K is a mapping m: K = J. WhenJ is a set of numbers
with a zero it makes sense to use the notation n?(0}) = #(a}) and #?(c}) = 0 for
p # q, and the mapping n can be resolved into the ‘submappings’ #” written

7 =n'ex'e  onV, N = dimK .

The meaning of the symbol @ will be left open for the time being. In the usual
development of algebraic topology @ corresponds to the direct sum of the graded
chain modules. Here it can be interpreted as the usual + on the number system J.

The inner product notation _
Elementary discussions of sets and mappings often disguise the fact that elements of
sets can be used to define mappings of mappings. In other words the roles of
elements and mappings can often be reversed, and often algebraic isomorphisms can
be deduced. Such so-called duality is very common in mathematics and forms a
central part of algebraic topology. The element-mapping distinction is often simply
a matter of viewpoint, but notation such as f(x) tends to disguise this.

The inner product notation as used in Q-analysis is defined as (¢, x) = w(0), so
that (o, ) is an element of the coefficient set J. The notation is not used to make
things look more fancy or out of a perverse desire to confound by using unfamiliar
notation, there are genuine advantages. The outstanding advantage is the clear
presentation of duality and the ease of definitions which involve both the complex

and its patterns.

Chain complexes and pattern polynomials

Let X be a simplicial complex with n simplices and dimension N, that is,

K = {0, .., 0"}. LetJ be the integers (in general J can be any ring) as the coefficient
ring. Form the set J x K of terms o;¢' where o is a coefficient and o' is a simplex.
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Let ¢ € C(K), where C(K) is the set of all formal linear combinations
n
c=oo'+..+a,0" = Y oo,
i=1

In algebraic topology such a sum is called a chain of simplices, this use of the word
chain being different from its use in the term chain of connection. Let C(K) obey
the addition rule

T qo'+ Y o= Y @+,
=3 1 1=

then C(K) is an additive abelian group (that is, a module) called the chain module of
K over J with identity ‘é , 00" where 0 is the additive identity of J.
Let K, be the set of simplices in K which have dimension exactly p. Form the

submodules of C(K) from J x K, as follows. Let C,(K) be the set of all formal

linear combinations .

Cp = gp+ ..t oo) = lzlo,q_o}, ,
where x is the number of p-simplices in K,. If C,(K) satisfies the above addition
rule it is called the p-chain module of K over J. In general the term chain group is
also used for the term chain modules.

The chain module ({X) can be written as the direct sum of the p-chain modules

CK) = Co(K) @ ...® Cy(K)
where N = dim K.

Atkin has shown how this dimensionally graded module can be made into an
exterior algebra by defining the wedge operator A on the vertex set (Atkin, 1977).

In the exterior algebra the chains of C(K) are polynomials, and this term is sometimes
used for the chains when the exterior algebra has not been explicitly constructed.

Pattern polynomials
Let # be a pattern on the complex K. Let k; = (o', 7). The polynomial given by

n
i-;1k,o‘ = kot+..+k,o" , for all ¢ € K,

may be used to represent both the complex and the pattern 7. By an abuse of
language the symbol 7 is used in the literature both to represept the pattern as a
mapping and to represent the above expression which is called a pattern polynomial.

A special pattern polynomial with k; = 1 iff o' € K, k; = 0 otherwise, gives a
representation of the complex X itself as the formal sum of every simplex in the
complex.

Patterns as mappings and patterns as pattern polynomials have different properties
which may confuse the unwary: a pattern gives a coefficient when applied as a mapping
to a set of simplices, but a pattern polynomial is a set of simplices with numbers
attached. Both interpretations of the term are useful in different circumstances and
the interpretation of the symbol « is usually clear from context.

In an obvious way an operator + can be defined on the set of pattern polynomials
as follows. Let = and p be pattern polynomials. The sum of # and p is defined as

fg,(""")"'*,é:f(""")“' ,2 rrco’,w)+(o',p)1a"

erv

S (¢, 7n+p)e’  [by definition] .
ierur
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I and I' are the index sets defining the pattern polynomials 7 and p. By this
definition the set of pattern polynomials is an additive abelian group.

The face operator .
The face operator maps every p-simplex in a complex X to the sum of its (p—1)-
dimensional faces. Formally the face operator, denoted £, is defined as

= i

fo, a{-:zs . Op-1 -
The linear extension of f is defined as

fZazO‘ = Za,-fa‘ )
so that

=5, 4) =[5, (B )
fe, = f(fo,) f(a;_?:s % q,’_lzs . .,,:); i, %
= 2 i_ .
04—22 Se %2

In general

f'ap = r! a‘-,zﬁ o 0’;,_, N

which motivates the definition of the exponential face operator as
5 1
f "= ;._1 f ",

so that applied to g, the result is

fro, = a{, Zso' o, ,

which is the polynomial having each p—r face of 0, just once.

The coface operator
The coface operator maps p-dimensional pattern polynomials to (p+ 1)-dimensional
pattern polynomials, A: II? — IIP*!, and is defined as

(fop41, P) = (Gp 41, Aw?),

where 7* € I® and is a pattern on K, and Gy41 € K.
A7 is interpreted as an operator A": IIP — P+ by the _defnﬁt{'on of f7 where

(F70pirs 1) = (f7 1G4y, ATP) = o = (fT*Gpr, A°7P) = . = (Gpr, A707)

so that A'nP is a pattern on the p+r dimensional simplices of X.
Like the face operator, the coface operator introduces unwanted factorial terms

when applied many times. After this has been adjusted by the factor 1/r! one of the
most important entities of Q-analysis is obtained: the exponential coface operator, A,

is defined as
(fo,, 7?~1) = (0,, Ar?~?)
so that -

- 1 1 N
(FrOp4r> ™) = 57 (f7Oppr, M) = 7 (Gpsr, A7) = (Gpur An?)

whereby Ar = (1/r)H A’ for r = 0.
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Changes in pattern values, r-forces
Atkin’s definition of f-force relates changes in pattern value at dimension ¢ to a
pattern at dimension ¢+1 (Atkin, 1977). The need to consider changes in pattern
values at both dimension ¢ and ¢+1 has also been necessary in the study of
g-transmission of changes (Johnson, 1981). The definition of t-force given here is
part of the story,.but it is simple and suffices for many applications. The term ¢-force
is established in literature, but the equivalent definition of p-force is preferred here.
Let {7y, 71, 72, ...} be a sequence of ‘points’ in time (now times) where 7; < 7;
means 7; is before 7;, and this is assumed to be the case when i < j. Let the notation
w, mean the pattern = on the complex K at time 7, and Gﬂ’,” will denote an incremental

change in w5 with respect to 7;, where this is defined as

(05, 872) = (0,, 77) ~ (g, ).

8n% is called the p-dimension force, or pFforce on the complex K between time 7,
and time 7;. The number (g,, Bw‘,'l) is called the value of the force. A force is '
attractive iff its value is positive, it is repulsive iff its value is negative. The absolute
value, that is, the unsigned value of a force is called its magnitude.

Backcloth and traffic

The fundamental tenet of Q-analysis is that the connectivity structure of a simplicial
complex will play a determining role in the values patterns can take on the complex,
and the way these patterns can change. Atkin has shown this to be the case in physics
(Atkin, 1965; 1971) and the many examples in the literature support this view for
social systems (Atkin, 1972; 1978). :

In general changes in the value of a pattern depend both on the complex and on
patterns defined on the conjugate. More generally many patterns on different
complexes will be related to each other and the set of these complexes can be
considered to be a relatively static backcloth which supports a traffic of activity
represented by the patterns and their changes as r-forces. Thus, in general, the term
backeloth refers to a set of simplicial complexes and the word traffic is the collective
term for patterns and #-forces.

Whereas the time-space backcloth of physics is assumed to be unchanging, the
backcloth for human activity appears to change over time. Much of social planning
and administration involves changing the backcloth to prescribé the possible traffic, a
sinister example being the fictional introduction of Newspeak; “It was intended that
when Newspeak had been adopted once and for all and Oldspeak forgotten, a heretical
thought—that is, a thought diverging from the principles of Ingsac—should be literally
unthinkable, at least so far as thought is dependent on words” (Orwell, 1949).

Strain pairs

Implicit in the definition of ¢-force is that the backcloth does not change with the
changing pattern values. Atkin has likened this to a “framework under stress”
(Atkin, 1974b) where the geometry of the framework is unchanged. The concept of
strain pair is introduced to allow for a description of those cases in which the back-
cloth also changes.

Let P: Ax B x C - {true, false} be an open sentence (Lipschutz, 1964), that is,
given a € 4, b € B, ¢ € C, K(a, b, ¢) is a proposition which can be judged either
true or false by observation or deduction. Associated with P is a cubic incidence
matrix M = [M;;] where

1, iff P(a, b;, cx) = true

Mip = { .
0, iff P(a;, by, ci) = false.
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Each ¢, € C can be used to define an incidence matrix M., by the rule

M) = Miik

which can be con51dered the incidence matrix of a relation denoted by u,, .

Let ¢ and ¢’ be elements of C. The incidence matrices M, and M,» can be
constructed by the above rule, and these give the relations u, and u.. Every
a € A determines a simplex in X,(B, p.) which will be denoted o,(a),. The element a
also determines the simplex g;(a), in K (B, p./). In general these two simplices are
different. The polynomlal expression (@) — 0,(a), will be called a strain pair on a
with respect to ¢’ from c.

In the case C is a set of times, the strain pair represents a change in the structure
associated with a between time ¢ and time c'.

Consider a pattern 7 whose values also depend on the set C and use the notation ,
and 7 to represent w restricted to ¢ and ¢’, respectively. The notation of strain pair
can be extended so that

(o:(a)c': ﬂc')os(a)c' - (ar(a)c: ”c)ar(a)c

is the strain pair with respect to ¢' and ¢ on a under m. The absolute value
l(ogta)y » M) —(0,(a),., )| will be called the magnitude of the strain.

Shcmg t-forces, and strain pairs

Let M be a matrix with arbitrary entries, and let M represent a weighted relation
between the sets 4 and B. If A and B are finite there are a finite number of distinct
incidence matrices which can be obtained from M by slicing. Let the set C index
these incidence matrices and by implication the slicing procedures which produce
them. This gives the incidence matrices M, and relations #., ¢ € C. The strain pair
oy(a); — 6.(a), is produced by charging from a view of the structure of M determined
by slicing type ¢ to a view of the structure of M determined by slicing type c¢'.

The meaning and/or legitimacy of slicing sometimes causes worry. From the
mathematical point of view all slicing is legitimate, the procedure giving it meaning.
From the point of view of applications the particular slicing is given meaning in terms
of thresholds, that is, ranges of pattern values outside of which specified things
cannot occur. For example one can define a relation between villages in India
according to their separation being less than twelve kilometers. The structure sliced
at twelve km (as opposed to, say fifteen km) is peculiarly relevant to those villagers
who can walk up to twelve km to a market in a day. Although this structure may be
different from that sliced at, say eleven km, it permits a clear analysis and interpretation
of how a class of people determined by the 12 km slicing may behave as traffic on
the 12 km structure (Johnson and Wanmali, 1981).

Slicing can be given a general interpretation in terms of traffic on the sliced
structure. Given any matrix M, the finest slicing is that which makes every nonzetro
entry a 1 in the incidence matrix and leaves all the zeros as they are. If A has m
elements and B has n elements let K, .and K be the complexes obtained from the
finest slicing. Then every column of M defines a pattern #(/) on the named simplices

of K,:
(0@, 7)) = Mz, fori=1,.,m,

and every row of M defines a pattern I1({) on Kj:

(G'(b,'), H(l)) = i > fOI' ] = 1, vy B
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Also every row of M defines another graded pattern on K, as oy, 7o) = 112', with
wP@i) = APw°(), i = 1, .., n; and every column of M defines another graded pattern
on KB as «ai>s HO(])) = Mb with Hq(j) = Aqno(j)s ] = 1’ .y M.

As the slicing gets coarser and named simplices are sliced out of the complexes these
patterns are automatically adjusted since it is implicitly assumed the patterns take
value zero on any simplex not belonging to the complex on which they are defined.
Thus slicing introduces a filtered set of strain pairs which ‘clip out’ the simplices and
their pattern values, these originally being determined by the finest slicing.
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