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Abstract

This paper contains a survey of tAgheory of simplicial complexes and graphs, a combinatorial
homotopy theory developed recently. The initial motivation arises from the use of simplicial complexes
as models for a variety of complex systems and their dynamics. This theory diverges from classical
homotopy theory in several crucial aspects. Itis related to prior work in matroid theory, graph theory,
and work on subspace arrangements.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

In his book[3] Atkin says: “In order to capture the geometric essence of any natural
systemN, we must choose an appropriate formal geometric structure into which the observ-
ables ofN can be encoded. It turns out to be useful to employ what is ternsegddicial
complexas our formal mathematical framework.. A simplicial complex. .. is a natural
generalization of the intuitive idea of a Euclidean space, and is formed by interconnecting
a number of pieces of varying dimension. The mathematical apparatus, which has its roots
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in algebraic topology, gives us a systematic procedure for keeping track of how the pieces
fit together to generate the entire object, and how they each contribute to the geometrical
representation dil.”

Atkin proceeded to model a variety of social and technological networks using simplicial
complexes. Examples range from soccer and its strategic subtleties to the committee struc-
ture at the University of Essex. (In the latter case simplices correspond to committees, with
the members represented by the vertices. Combinatorial “holes” in the complex correspond
to “missing” committees, that is, committees with a membership suitable for certain issues
to be addressed.) In order to analyze and compare social structures he developed a measure
on complexes which he termé&@analysis[1,2]. It is reminiscent of measuring the con-
nected components of a topological space, except that Atkin was interested in measuring
thecombinatorialconnectivity of the complex.

The central object dD-analysis is an integer vector associated with a simplicial complex
A as follows. Suppose the dimension #fis d. Let 0<¢g <d, and letg,t € 4 be two
simplices. Calle and t g-near if they share a simplex of dimensiay that is, if their
intersection contains at leagt- 1 elements. The two simplices ageonnectedf there is
a sequence

0-7 617 "'»O-nsry

such that consecutive simplices araear. This notion of connectivity generates an equiv-
alence relation on the simplices dffor each choice of}. Define

O =(q0,91, - -, 9a),

whereg; is the number of equivalence classes obtained by chogsing Observe that for

g =0 one obtains exactly the number of connected componerntsiefved as a topological
space, and fog = d one simply obtains the number of simplices of maximal dimension.
Atkin and others use@®-analysis to study phenomena such as traffic flow and television
viewing habits (see e.§R0]).

Laubenbacher became intereste@#analysis as a potential tool to analyze the dynamic
network of interactions in socio-technical complex systems. One goal was to associate
gualitative measures with different dynamic modes of the system. As an example, consider
a collection of stock traders, say at the New York Stock Exchange. The buying and selling
decisions of each individual trader depend in part on information obtained from a variety of
sources, on software that analyzes market trends, and on the actions of other select traders.
How is the system affected when, for instance, one or more traders are equipped with faster
data links than others? As another example, consider the drug traffic interception efforts
of government authorities in the Southwestern US. Through a variety of means, including
blimps stationed in strategic positions along the US—Mexican border, data are collected
on air and ground traffic bringing illegal drugs into Arizona, California, New Mexico, and
Texas. One smuggling method is to fly drugs to clandestine air strips on the US side of the
border and then use other planes and ground transport for further distribution. Is it possible
to use observed air traffic patterns of a partially known network of clandestine airstrips
to reconstruct the unknown part? Finally, these kinds of questions have counterparts in
other systems of interactions, such as the gene regulatory network of an organism or the
interaction of species in an ecosystem.



H. Barcelo, R. Laubenbacher / Discrete Mathematics 298 (2005) 39-61 41

While Q-analysis is sometimes useful for questions of this sort, it is a very crude invariant
of a complex, just like the set of connected components of a topological space does not
contain a great deal of information about the space. Atkin had realized this and proposed
a definition for a group associated with a simplicial complex, similar to the fundamental
group of a pointed topological spaf@. But it too should be an invariant of certain aspect of
the combinatorial rather than the topological structure of the complex. A rigorous definition
of such a group was given [22], together with an algorithm for its computation. At that
point it had become clear that this group had to be part of a general theory, with Agkin’s
analysis representing dimension zero. The theory should be similar to the classical homotopy
theory of a pointed topological space. However, it should depend on the combinatorial
structure of the complex, rather than on its properties when viewed as a topological space.
In applications, the individual simplices have interpretations that should not be lost in the
computation of invariants. For instance, topologically, any two triangulations of a 2-sphere
are equivalent, whereas combinatorially they will in general be very different.

Such a new combinatorial homotopy theory,

Al(A,00), n>=1, 0<g<dim(4), oo e 4,

was presented if6], termedA-theory, in honor of Atkin. It is similar to classical homotopy
theory in some respects and different in others. Similarities include such properties as
a Seifert—-van Kampen Theorem for the combinatorial fundamental group, a long exact
sequence associated with the relative theory, and the fact that the higher dimensional groups
are abelian. Differences include, for instance, the fact that complexes that are contractible as
topological spaces can have nontrivlagiroups, and lack of invariance under triangulation.
Using a completely different definition, a combinatorial homotopy theijfyI") for graphs

I’ was also defined and related to #¢heory of simplicial complexes.

A fascinating aspect dk-theory is that once it was well defined and applied to different
simplicial complexes, it was discovered that, in fact, it is related to constructions arising in
quite diverse contexts. We briefly describe three examples that will be revisited in greater
depth in the last section of this paper. In the early 1970s, Maurer, in his study of matroid
basis graphs, was led to develop a homotopy theory for matroid complex¢&{s8ection
4]). As Maurer mentions, the classical notion of path homotopy applies to graphs, but his
notion is not the same, nor is it the same as Tuf&§. It turns out that thed;-group of a
matroid corresponds exactly to Maurer’s graph homotopy group. Later on, in 1977, Lovasz
[24] introduced new topological methods for proving some connectivity results in graph
theory. One of his techniques consists of attaching 2-cells to all 3- and 4-cycles of a graph,
before computing its (classical) fundamental group. It so happens that this computation is
equivalent to calculating the;-group of the original graph. More recently, Babson et al.

[5] discovered that thd ,,-groups of the order complexes associated with the intersection
lattice of some arrangements of linear subspaces coincide with the homotopy groups of the
(real) complements of those arrangements, a fact also (independently) proved by Bjoérner
[9], for the case = 1. All these constructions, and several more, can be formulated within
the framework ofA-theory, proving it to be an interesting theory.

In the next section we give the definition Aftheory, both for simplicial complexes and
for graphs. The definitions are illustrated with examples. It is worthwhile to note that both
definitions are important to understand all aspects of the theory, so both should be kept
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in mind. In Section 3, an algorithm for computing the abelianization ofAleroups is
described, while in Section 4, we recall some classical behavior exhibited Bygrmups,

and explain how the two definitions are related. The last two sections are devoted to several
applications ofA-theory.

1. Definitions and theorems

As mentioned in the introduction, there are two frameworksAdheory, one using
simplicial complexes and the other using graphs. The two approaches are closely related
and we will recall them here. All details and proofs can be four@jn

1.1. A; of simplicial complexes

We begin with a simplicial compleA of dimensiond, a fixed integer, with 0< ¢ <d,
and a given maximal simplexg (with respect to inclusion) of dimension greater than or
equal tog. For further details regarding the following definitions see Section[g]of

Definition 1.1. (1) Two simplicess andt of 4 areg-connectedif there is a sequence of
simplices (in4)

0,01,02,...,0n,T,

such that any two consecutive ones shageface, that is, they have at least 1 vertices
in common. Such a chain will be calledjechain

(2) The complex1 is g-connectedif any two simplices in4 of dimension greater than
or equal tog areg-connected.

(3) A g-loop in 4 based atsg is ag-chain beginning and ending a§. Denote aj-loop
00, 01, - .., 0, 00 bY (00, 01, . .., 0, 60) = (0). Itslengthis n. (Note that ther; need not
be distinct.)

Two such combinatoriai-loops of simplices aré&-homotopic if they can be deformed
into each other without breaking agydimensional connections. More precisely, we have
the following definition.

Definition 1.2. Let~4 be the equivalence relation on the collectiomdbops in4, based
atop, generated by the following three conditions.

(1) Theg-loop
(0) = (00, ...,0i,0i41, ..., Opn, GO)
is equivalent to the-loop
(¢") = (00, ...,0i,0i,0i31, ..., Gp, G0).

That is, loops can be “stretched” by repeating a simplex without changing its equiva-
lence class.
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1313

Fig. 1.0 andz, two equivaleng-loops.

(2) Suppose that) and(t) have the same length. They are equivalent if there is a diagram
as inFig. 1 The diagram is to be interpreted as follows. A horizontal or vertical edge
between two simplices indicates that they shagef@ce. Each row in the diagram is a
g-loop based atg, while each column representsgi@hain starting at; and ending at
7;. Thus,(o0) is equivalent tat) ((o)~4 (7)) if there is a sequence gfloops based at
oo connecting them. Such a diagram is said to b&4momotopy betweefw) and(7).

(3) A g-loop is calledA-contractibleif it is A-homotopic to the constantioop at the base
simplexayg.

This equivalence relation is callédhomotopy and the equivalence class of a lo@p
is denoted bya], while the set of all equivalence classes is denoteel%)(;ﬂ, 00).

The next natural step is to concatengti®ops based atg in order to obtain groduct
operation onA‘{(A, a0). Having done so, it is easily shown thﬁi(A, 00) IS a group with
unit element the equivalence class of the constant (or trivial) {egp In this group, the
inverse of an element] is given by the equivalence class of the same loop traversed in
the opposite direction. So, we have obtained a far{mIZ/(A, oo)} of groups, one for each
0< g <d =dim(4).

The subscript suggests that these definitions and groups might be extended to higher
dimensions. Indeed, this is the case, and in f{aef,(A, 0o)} is the A-counterpart of the
fundamental group of a simplicial complex,(4, o). The generalization of these concepts
to {A (4, 60)} groups can be found if6] and will not be reproduced here. As it turns out,
they are also thé-counterpart of the higher homotopy groups of a simplicial complex,
7, (4, ag). We now describé\-theory of graphs.

1.2. A; of graphs
The definition ofA-theory for graphs parallels closely that of the homotopy groups of a
topological space. We start by recalling some elementary constructions from graph theory.

For more details see Section 5[6f.

Definition 1.3. LetI'1=(V1, E1), I'2=(V2, E2) be simple graphs, thatis, graphs without
loops and multiple edges.
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(1) TheCartesian producf’; x I'2 is the graph with vertex séf; x V,. There is an edge
between(uy, up) and(v1, vp) if eitherus =v1 andusvy € Ez orup=vp anduqvy € E1.

(2) Agraph mapf : I'y — Iz is aset mag/s — V> such that, ifuv € Eq, then either
fu)y=f)or fu)f() € Ea.

(3) Letl,, be the graph withn + 1 vertices labeled , ..., m, and edgesi — 1)i for
i=1...,m.

(4) Letvy € I'1, v € I'p bedistinguished base verticeshAsedgraph mapf : (I'1, v1) —
— (I'2, v2) is a graph map such thgt(vy) = vo.

Next, we recallG-homotopy of graph maps arigthomotopy equivalence of graphs.

Definition 1.4. (1) Let f, g : (I'1, v1) — (I'2, v2) be based graph maps. Thieandg are
calledG-homotopi¢ denoted byf~g, if there is an integet: > 1 and a graph map

¢: Iy x1, — Iy,

such thaip(—, 0) = f, and¢(—, m) = g, and such thap(v1, i) = v» for all i.

(2) We call(I'1, v1) and(I'2, v2) G-homotopy equivaleriftthere exist based graph maps
f:I'n— I'zandg : I'; — I'y such thaigf~gidr, and fg~gidr,. The mapg andg
are calledG-homotopy inversesf each other.

(3) A graph mapf : (I'1, v1) — (I'2, v2) is G-contractibleif it is G-homotopic to the
graph map that sends all vertices (thus edges) to the base vegrtex

The base point for the graph, will be the vertex labeled 0, and the boundary,,) of
I, consists of the vertices labeled 0 andGiven this,Af(F, vp) is the set of5-homotopy
classes of graph maps

f o (m, 0) — (I, vo),

forallm > 1, such thayf (dl ,,,) =vo. Note that we allownto vary, thatis, we allow arbitrarily

fine subdivisions of the discrete “unit” interval, for it can be shown that two maps from the
discrete unit interval of different heights can be viewed as being defined on the highest one,
without change of homotopy type.

The equivalence class of a ndp Af (I', vo) isdenoted by 11. ForAf (I', vp) to become
agroup, one needs an operation onits equivalence classes. Intuitively, if one represents a map
f U, 0 — (I', vo), by the chairl,,, whose vertexis labeled byf (i), for all 0<i <m,
and wheref (0) = f(m) = vg, then the group operatidry] * [g] simply corresponds to
“stacking” up the two labeled chains correspondingtandg, in this order. It is a routine
exercise to show that the stacking operation is well defined, and@@f, vo) IS a group.

2. Examples
2.1. Simplicial A-theory

(1) Consider the 2-dimensional simplicial complex, with four maximal faces of
dimension 2 shown inFig. 2, and letg = 1.
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S

Fig. 2. A 2-dimensional complex with1 = 1.

So O 0, O3 Oy
) O O Oy )
%o Op %0 %) Op

Fig. 3. Contraction of the 4-loop.

/N

Fig. 4. A 2-dimensional compleAs, with A%(Az) ~Z.

It is not difficult to “contract” the loope) = (60, 61, g2, 03, 00) to the trivial constant
loop (60). Such a contraction is illustratedig. 3. Moreover, one also easily sees that, for
this complex, all the loops ar-contractible, thus making thA% group trivial. Note that
the (classical) fundamental group of this complex is also trivial.

(2) On the other hand, if we look at the 2-dimensional simplicial comgigxshown in
Fig. 4, which has five faces of dimension @ne realizes (after some calculations) that the
loop

(00, 01, 02, 03, 04, 00)

is notA-contractible. A combinatorial explanation in terms of a “gangster problem” is given
in example (5). In fact, it can be shown that t.h%group for this simplicial complex is
isomorphictdZ. In comparison, the (classical) fundamental group for this complexis clearly
trivial, since the complex is contractible as a topological space.

But there is a way to modify this complex so that the non-contractible loop becomes
A-contractible. Simply “fill in the combinatorial hole” of the complex by adding a new 2-
dimensional simplex as is donefig. 5. A contraction of the loofiao, o1, 02, 03, 64, 00)
is shown inFig. 6.
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Fig. 5. Filling the combinatorial hole ir . A%(A’Z) S
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Fig. 7. Contraction of the square.

In this case theﬁ}—group becomes trivial as is the (classical) fundamental group of this
modified complex4’,.

2.2. A-theory of graphs

(3) TheA-theory for graphs and for simplicial complexes are very similar. Consider the
graphI” consisting of a single cycle on four vertices — v1 — v2 — v3. This cycle is
G-contractible, as can be seerfiiy. 7. Indeed, &5-homotopy is given by the map

¢o:I'xly—T,
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where onl” x {0} the map is the identity. OR x {1}, ¢ is defined byp (vo, 1) =¢(v3, 1) =vo,
and¢(v1, 1) = ¢(v2, 1) = vq1. Finally, onI" x {2} all vertices are sent tag. Note that for
esthetic purposes, Ifig. 7the ordered pairgy;, j) are labeled; ;. Thus theAf-group of
the 4-cycle graph is trivial. One also notes that there argraphmaps

¢:I'xly—T

that would “retract” the 4-cycle. Indeed, assuming that the intdryahas lengthm =
1 and that¢’ is such a map, we must havg(v;,0) = v; and ¢'(v;, 1) = vg for all
0<i<3. But then,¢’ is not a graph map, for whilév,, 0) and (vp, 1) are adjacent in
the graphl” x |1 their imagesyp, andvg (respectively), are not adjacentfn One realizes
that the situation in the simplicial case is analogous. That is, the 4-loop in example (1)
could not be contracted to the trivial loop without going through the intermediate loop,
(00, 01, 01, 00, 60). One additional remark is worth mentioning. While interpreting the
4-cycle graphl” as a loop inR?, one realizes that its (classical) fundamental group is
nontrivial, and that in fact it is isomorphic @. Note, however, that attaching a 2-cell to
this cycle would yield a space with (classical) fundamental group trivial, and thus equal to
AS ().

1(4) In a similar manner, one can easily verify that the 3-cyce-rsomotopy contractible
as well. In this case, the obvious map: I' x I — I (similar to the one defined in
example (3)) is indeed the correct graph map, which contracts the 3-cycle to a point. Again,
the situation is analogous to that of thecontraction of loops with three simplices for the
simplicial approach.

(5) On the other hand, thecycle graph, for >5, does not-contract to a point. One
way of seeing it fom = 5 is via the creative interpretation given by Mdlg5], and known
as thegangster problem

Suppose the vertices of a graph are towns and the edges, roads connecting the towns. In
each town there is a member of a gangster syndicate. The gangsters decide to meet in one
of the towns. For safety reasons they decide that each day they will move from one town to
an adjacent one or rest in the same town and if two of the gangsters are in adjacent towns
originally, then at all steps of the journey these gangsters must be in adjacent towns, or in
the same town. The problem is: For which graphs is it possible for the gangsters to meet in
one of the towns?

It is not difficult to see that, indeed, the restrictions on the gangsters’ movements do
correspond to our notion db-homotopy of graphs. The days represent the interyal
(if mdays are needed) and the adjacency (or resting in the same town) restriction on the
movements represent the notion of graph map. Thus, drawing a 5-cyclef-igs 8 with
vertices labeled 12, 3, 4, 5 and with the additional edd@, 4}, one sees that the gangsters
can all meet, forexample, on the third day, in town 1. Indeed, on the second day, the gangsters
from towns 4 and 5 moved to town 1, while the gangster from town 3 moved to town 2. On
the other hand, it is clearly impossible for all the gangsters to meet at any time, in any town,
if the additional edge (road), 4} is not present. Again, one sees that the situation with
the simplicial approach was similar. We had a non-contractible 5-loop of 2-dimensional
simplices (sharing a 1-face) which could Aecontracted by filling a combinatorial hole
with an additional 2-simplex.



48 H. Barcelo, R. Laubenbacher / Discrete Mathematics 298 (2005) 39-61

1 14,5 1,2,34,5

Fig. 8. A gangster meeting.

3. Calculation of A}(4, 60)

Computing the (abelianization) of‘{-groups turns out to be easier than one may first
think. Moreover, it is via this computation that one is led to a deeper understanding of
the link between the4?- and A’{-groups. We quickly review this calculation here. For
more details se¢6]. In case the reader is wondering about the base simplex (or base
vertex), it should be mentioned thawi§ andtg (or vo, fp) are maximal simplices id (ver-
tices inI") that areg-connected (connected), tha# (4, oo) = A% (4, o), (or, AS (I', vo) =
AZ (I, 10)).

LetI'=1"7(A) be the graph with vertices corresponding to all simplice$ of dimension
greater than or equal tp Two verticesv andw are connected by an edge if and only if
the corresponding simplicesandt share aj-face. Letvg be the distinguished vertex &7F
corresponding tep. This graph is said to be tlieconnectivity graph off. One realizes that
there is a one-to-one correspondence betwgglenps in4 based atg and cycles i that
containvg. Recall that the topological fundamental group!, vo) is a free group with free
generators. Moreover, to each cyclefobne can associate a specific element@f, vp).

Let N be the normal subgroup af (I, vg) generated by the elements corresponding to the
3- and 4-cycles of .

Theorem 3.1(Barcelo et al[6, Theorem 2.7). A‘{(A, oo0)=mn1(I", vo)/N.

Itis also worth mentioning that one can repld&eby the generally much smaller graph,
I'ax Whose vertices correspond to all maximal simplices (with respect to inclusidinfof
dimension greater than or equalgoFrom this theorem it is not too difficult to understand
why the following one holds true.

Theorem 3.2(Barcelo et al.[6, Theorem 5.16] Let A4 be a simplicial complexwith
distinguished maximal simplexy, 0< g < dim(4). LetI'? (A4) be the connectivity graph of
A in dimension gandI'hax(4) € I'?(4) be the subgraph as defined above. Then

AL(4, 60) = AT (T'(A), v0) = AT (I'ha(4), vo).
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Now that the relation between tM andA‘lI groups is well established, we can give a
unified definition for the higheA-homotopy groups. Let

n
I, =1lm x - xly,

denote then-fold Cartesian product df,, for somem. I}, is called am-cubeof height m
Its distinguished base poiilg O = (0, .. ., 0), and itsboundary dl”,, is the subgraph df;,

containing all vertices with at least one coordinate equal torf. dthis being said, one can
show that the subscriph in the above notation can be “omitted”.

Definition 3.3. Let AS(TI", vg), n>1, be the set of homotopy classes of graph maps
f(1",0) — (I, vo),

such thatf (01") = vg. Forn =0, Ag(F, vo) is the pointed set of connected components of
I', with the component containing as distinguished element. The equivalence class of a
map f in AS (T, vo) is denoted by f1.

Since all the boundary points of arcube are given the valug, one easily sees that the
operation of “stacking” cubes makes sense fforl). As one expects, it can be shown that
the sets

AS(I", vo)

(n>1) are groups, and that Theorem 3.2 holds true fot zill.

So, if one computes the fundamental group of a grapty’, vg), and quotients out the
normal subgroup generated by all 3- and 4-cycles, one obtainstgeoup of this graph.
But, inspired by Lovasz’ technique introduced[2#], one sees that the fundamentgi-
group of a grapli” is isomorphic to the classical fundamental group of the topological space
X obtained froml” by attaching 2-cells along the boundary of each 3- and 4-cyclé of

A (I, vo) = m1(XT, vo).

This was an important milestone enabling one to conneddtheory to a wide variety of
situations. Of course, the next natural question is whether there is an analogous topological
space that can be constructed foralt 2. The answer is yes, but requires more detail and
(hard) work than one would initially envision. The details can be fourd]inintuitively,
the spaceXr is a cell complex obtained by successively attaching ffoe 1,2,...) m
dimensional cells to thercubes ofl” (possibly degenerate-cubes; this is analogous to
the fact that the 3-cycle (triangle) can be viewed as a degenerate 4-cycle (square)), yielding
a cubical complex, that bears some resemblance to Kan complexes. By this we (roughly
speaking) mean that if all the faces of mrcube belong to the spacér then them-cube
itself belongs to the space. This is another important step, for it conAdbtksory to the
realm of (real) arrangements of linear subspaces.
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4. Classical behavior

As we saw through the examples of Sectio®2heory and classical homotopy theory
behave quite differently at times. It is now time to explore their similarities. As we saw in
the last section, tha;! (4, ap) andAY (I', vo) groups are intimately related. Thus, we shall
refer to both of them at once, using,-groups for notation.

One of the first similarities comes from the fact that thefundamental groups, like
their 71 counterparts, angot abelianin general. Moreover, for all > 2, the A, -groups are
abelian, likewise for ther, groups of topological spaces.

Another common characteristic is a Seifert—-van Kampen theorem. That is, one may ask
whether one can compui®; of a simplicial complex (graph) as the free productAf
of appropriate subcomplexes (subgraphs), modulof their intersection. This is indeed
true, even though one must add an extra condition on the intersection of the subcomplexes
(subgraphs), in addition to requirirggconnectivity of the complex (graph), the subcom-
plexes (subgraphs), and the intersection. This extra condition amounts to requiring that if
there are 3- or 4-cycles with some of their simplices (vertices) belonging to the intersection
then these 3- and 4-cycles must entirely lie in one of the subcomplexes (subgraphs) that are
being intersected.

The last similarity we shall mention here is in connection to a reldtileeory. Relative
A-groups with respect to a subcomplex (subgraph) have been defined. Briefly, given a
subgraph (subcompleX)’ c I', and a distinguishe¢n — 1)-faceF of 1", (n >2), the
relative A, (I', I'’, vo) group is the set of al\-homotopy classes of graph maps

f:d",0) — (I, vo),

such thatF is mapped intd”, together with the natural multiplication. One familiar with

the classical homotopy theory will recognize this definition asMfamalog of the relative
homotopy theory for simplicial complexes. So we do obtain a long exact sequence, and, as
expected, thel,,-relative groups are abelian.

5. Applications

In this section we review recent applicationgfetheory and connections to work related
to A-theory.

5.1. Maurer's approach

In [27] Maurer studied matroid basis graphs. The basis graph of a matroid has a vertex
for each basis and an edge for each pair of bases that differ by the exchange of a single
pair of elements. It was well known that, for any connected grpthe spanning trees,
viewed as sets of edges, form the bases of a matroid. The basis graphs, called tree graphs
(for the vertices correspond to the spanning treds afid are denoted here ), of such
matroids had been already extensively studiEsi17,19,28] Maurer’s contribution was
to completely characterize basis graphs for all matroids. For this, he studied the common
neighbor (CN) subgraphs of the basis graph of a matroid. In a g@phthe distance
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between two vertices, v’ is 2, then the set of vertices consistingwof” and all vertices
adjacent to both is called a common neighbor subgraph. Maurer’'s main theorem (in its first
form) is the following:

Theorem 5.1 (Maurer[27, Theorem 2.1]. G is a basis graph of a matroid if and only if

e itis connected

e each common neighbor subgraph is a squarpyramid or an octahedron

e in every leveling each common neighbor subgraph satisfies the positioning condition
and

o for somevg the neighborhood subgrap¥i(vo) is the line graph of a bipartite graph.

We shall not go into details of conditions (3) and (4). Suffice it to say that while the first
two conditions are relatively easy to verify, these other two are generally not reasonably
dealt with. In fact, this is the reason that motivated Maurer to look for a condition that might
replace them. For this, he developed the following notion of homotopy.

(1) If the distance between two vertices 1 anduv,1 of G is equal to 2, then the paths
Pr=wv1- Vg 10k V41 vy @andPa=vyp--- Uk_]_v]/cvk_i_]_ -+ - v, are said to differ by a
2-switch. In our language this simply means that the 4-cygleiwi vi 4 1v;) allows us
to A;-deform Py into P, as seen irfrig. 3.

(2) If the distance betweery_1 andvyy1 is equal to 1 andP3 = vy -+ - Vgp_1Vp41 " - - Up,
then P, and Ps3 are said to differ by a shortcut. For us, this means that the 3-cycle
vr—1V; V41 allows us to directlyA-deform Py into Ps.

(3) If vg—1 =vryr1@ndPg=vy1--- vk—1Vk42 - - - Uy, thenPp and P4 are said to differ by a
deletion. Again, for us this simply means that the p&tttan beA;-deformed into the
pathP4 by simply repeating the vertex,_;.

(4) Finally, Maurer declares two pathsmotopidf one can be transformed into the other
by a finite sequence of these elementary deformations.

It is easy to see that Maurer’s notion of homotopy is equivalent to our notioty of
homotopy. Then Maurer goes on to prove thdt if a basis graph, then any two paths with
the same end-points are homotopic. This is simply statingAIfa(ﬂ") is trivial. A word
of caution is in order here. While it is tempting to deduce that “surely”Aﬁegroup of a
graph whose CN subgraphs are either a square, a pyramid or an octahedron must be trivial
(since these subgraphs are cle@gontractible, as they consist of 3- and 4-cycles), this is
not necessarily the case. One look at Maurer’s proof reveals that conditions (3) and (4) are
needed to prove this theorem.

But the interesting fact is that Maurer hoped that his notion of homotopy would replace
conditions (3) and (4) of his main theorem. Indeed, Maurer finishes his paper with the
conjecture (still open) that is a basis graph if and only if

(1) I is connected;
(2) each CN is a square, pyramid, or octahedron; and
(3) AY(I) is trivial.
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One last important remark is that Maurer also claims (without proof) highotion of
homotopy (thus our notion oéf) might be the right one for graphs since

AJ(I'y x Tp) = AY(I'1) x A (T'2),

where(I'1 x I'7) denotes the Cartesian product of graphs,@ﬁdl"l) X Af(l"z) represents
the direct product of groups. This is not difficult to show using our definitionﬁf

5.2. Lovéasz’'s approach

In 1975, at the Fifth British Combinatorial Conference in Aberdeen, FfaBk and
Maurer[26] presented the following problem.

Theorem 5.2. LetI" be ak-connected graptvy, ..., v} € V(I'),andny, ..., n; positive
integers withm1 + - - - +n, =n=|V(I')|. Then there exists a partitiofVs, ..., Vi} of V(I")
such that

(1) vi e Vi,
(2) Vil =ni,
(3) V; spans a connected subgraphlofi =1, ..., k).

The casek = 2 is rather easy, and Frank, Milliken, Gyori and Lovasz independently
provided solutions for the cage= 3. But the most interesting one was provided by Lovasz,
for it was the only solution that could be generalized to alli3<n. The idea of the proof
was based on the following innovative concept.

Given a graphl’, add a new poina and connect it tas1, vp, .. ., v;. Denote this new
graph byI”. Next, construct a graph whose vertices are the spanning tréesf I, and
whose edgegl;, T;) are pairs of spanning trees whose intersecfion’’; contains a tree on
n—1vertices including. SoT; can be obtained frorf; by replacing an endline by another
endline. Then Lovasz proved thatlifis k-connected, thef is connected. Finally, the last
step in the proof consisted in constructing a cellular complgxcalled the arborescence
complex ofI', relative toa) which is

e simply connected and
e for which the homology groups (relative#) Ho(Cr) =- - - = H*=2(Cr) are all trivial,

wheneverl is k-connected.
One notices how similar the constructionlofs to the construction of the tree graph
associated t@" (as described in the subsection on Maurer’s work). In fact, this connection
is further developed and studied by Bjorner et al[lii]. As Bjérner mention$8], in the
language of greedoids (which matroids are), Lovasz’s arborescence complex is the basis
complex (in Maurer’s sense) of the branching greedoid determined by the rootedgraph
Moreover, also notice the strong similarity with our concepg-abnnectivity. We build
graphs from simplicial complexes by setting the vertices pbinplices and edges between
two of them if they aresufficiently(g-) connected.
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Fig. 9. Planar (left) and pseudoplanar (right) nets.

But the similarity does not stop here. While we do not want to recall the construction of
the full arborescence compléx, it is instructive to recall it in the case= 3. Consider the
triangles (3-cycles) and quadrilaterals (4-cycles) iand span a 2-cell on each of them, to
get the topological spadgr. On sees immediately that this is also the spEgedescribed
in Section 3. Lovasz goes on proving that'ifs a 3-connected{connected as well) graph
then the (classical) fundamental group of the cell comglexs trivial, yielding (for the
casek = 3) in theA-language, that thd;-group of X . is trivial.

The fact that this group is trivial is the last ingredient enabling Lovasz to prove Theorem
5.2. Even though we have not yet worked out all the details, we do believe that Lovasz’s
arborescence complexwould correspond to a subcomplex of our general infinite dimensional
cell complexX, and that the property that the fundamental group of the arborescence
complex is trivial would also translate to tlegroup of the appropriate subcomplexXof
being trivial, thus enlarging the pool of applicationsfetheory.

5.3. Malle’s approach

In 1983, Malle[25] developed a homotopy group for graphs, and defined what he calls
the string groupS(I") of a graph. It turns out tha§(I") = Af(l“). While Malle realized
that the (classical) fundamental group of a graph is isomorphic to his string gvolip,
whenever a graph has girth greater than or equal to 5, he does not make the step of showing
thatS(I') is indeed isomorphic to the quotiemnt(I")/N whereN is the normal subgroup of
n1(I") generated by 3- and 4-cycles. He also does not generalize his notion of string groups
to higher dimensions. On the other hand, Malle gives a complete description of graphs that
have trivial A -group.

Theorem 5.3(Malle [25, Theorem 6). A graphI has trivial Af—group if and only if it is
connected and each cycle Bfhas a pseudoplanar net if.

While we will not give the details of the definitions of planar and pseudoplanar nets, a
look atFig. 9reveals how it works. From the planar net (left) one sees that the lower cycle
is easilyA-deformed into the upper one via a series of 4-cycles, then the upper cycle is
A-contracted to a point via 3-cycles. In the pseudoplanar net (right), the situation is a bit



54 H. Barcelo, R. Laubenbacher / Discrete Mathematics 298 (2005) 39-61

different: the lower cycle i&-deformed (via 4-cycles) into two 6-cycles which in turn are
both A-contracted to a point.

5.4. Link to subspace arrangements

After having developed-theory it is natural to try it on diverse simplicial complexes,
in particular those interesting to combinatorialists. The first author admits to being entirely
biased toward the order complexes. Given a pBsés order complexi(P) is the simplicial
complex on the vertex s@twhosek-faces are th&-chainsxg < x1 <--- <xg in P.

The first poset for which we computed (the abelianization) pgroups was the Boolean
lattice B,,, that is, the poset of all subsets of the{det?, .. ., n}, ordered by inclusion. The
first computations gave the following results. (They were carried out with software written
by Luis Garcia, available from the authors.)

A?(A(Bg))“b is a free abelian group on 1 generator,
A%(A(B;;))“b is a free abelian group on 7 generators,
A2(A(Bs))™ is a free abelian group on 31 generators,
A3(A(Bs))™ is a free abelian group on 111 generators,
A‘l‘(A(B7))‘”’ is a free abelian group on ? generators?

For a long time the orders of the next grouﬁ%,(A(Bn))“b (forn>7 andg =n — 3),
remained unknown, for the computational complexity associated with the construction of
the order complex of a lattice grows very rapidly. No closed formula was known nor even
conjectured despite attempts (prior to 2001) at finding such a sequence in the On-Line
Encyclopedia of Integer Sequences by Slg@%%. What was then known is the following:

To computeAﬁ_?’(A(Bn)) one draws the grapﬁ’%;?((A(Bn)) whose vertices correspond

to the maximal chains aB,,, and whose edges correspond to pairs of maximal chains that
differ in exactly one place. But one realizes that this coincides with the 1-skeleton of the
permutahedron. Indeed, the permutahedign; is defined as the convex hull of all vectors

that are obtained by permuting the coordinates of the véti@; . . ., n). Its vertices can be
identified with the permutations &f, (the symmetric group overelements) in such a way

that two vertices are connected by an edge if and only if the corresponding permutations
differ by an adjacent transposition. The permutahedron is a classical obje¢81$der

a nice account of its combinatorial properties. One notes that there are no 3-cycles in the
1-skeleton of the permutahedron, for this would mean that one could write the identity
permutation as a product of three transpositions; the same reasoning yields that in fact there
are only even length cycles. A picture of the 3-dimensional permutahddgpthat is, the
convex hull of all the vectors obtained by permuting the coordinates of the @ctr3, 4)

can be seen ifig. 10

Thus, computing (the abelianization 0&}_[*3(41(3,1)) corresponds to computing the
fundamental group of the 1-skeleton of the permutahedron to which one attaches 2-cells
to each 4-cycle. For example, in the caselbf after filling the 6 squares, one is left
with 8 hexagons, of which 7 are generators AJ}r(A(B4)). Even though one had a nice
description of theX 4, ))-space no one knew how to compute its homotopy group. That
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Fig. 10. The 3-dimensional permutahedréfs.

is, until January 2001, when Eric Babson realized that this construction (adding 2-cells to
each 4-cycle of the 1-skeleton of the permutahedron) yields a space which is homotopy
equivalent to the complemend,, 3 of the (real) 3-equal arrangement!

The spaceM, 3 is defined as follows: For 2k <n, let V,; be the set of points
X =(x1, x2, ..., x,) € R" such that;, = x;, = - - = x;, for somek-set of indices Xi; <
ip<---<ip<n. M, =R"—V, . Thek-equal arrangements have been extensively stud-
ied, and, for example, Bjorner and WelKai3] had a formula for the dimensions of the
corresponding homology groups. Thus Babson was able to concludagth%(tA(Bn))“b
is a free abelian group on

2" 3n?—5n+8) —1

generators. In the meantime the “Bjorner—Welker” sequence of integers had also been
entered into the Sloane collection of integer sequences, since it occurs in other contexts as
well.

In the language of-theory, Babson’s result is as follows:

Theorem 5.4(Babsor5]).
AT3(A(By)) =11 (M, 3).

Proof. We shall give a very informal proof here, since the ideas are simple while the
necessary notation (and formal concepts) would only obscure the argument.

First, recall that the braid arrangement consists of all the (real) hyperpknes=
{(x1, ..., x0)lx; = x;}, for 1<i < j <n. The 3-equal K-equal) arrangement embeds in
the braid arrangement as each subspac®,af (V, ) is an intersection of some of its
hyperplanes. Given a (finite) hyperplane arrangemeRt'irits intersection with the (real)
(n — 1)-dimensional sphere—1 yields a cell complex. The dual of this cell complex is a
zonotope (i.e., the Minkowski sum of the line segments which are normal to the hyperplanes
in the arrangement). It turns out that for the braid arrangement the dual zonotope is the
permutahedron.

Next, it is also known that the complementR¥ of the subspace arrangement is ho-
motopic to the space obtained by removing the faces of the zonotope corresponding to
the subspaces belonging to the arrangement. For a proof of this fact see Proposition 3.1
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in [14]. Let us see what those faces are for the 3-equal arrangementmeh First,

one must remove the interior of the permutahedron (the unique 3-dimensional face), since
it corresponds to the subspace of all vectors of the form, x, x), for x € R. Second,

one must remove all 2-dimensional hexagons since they correspond to subspaces similar to
{(x,x,x,y)|x,y € R}, that is, a set of vectors with three of their coordinates equal. One
does not remove the 2-dimensional squares, for those correspond to subspaces similar to
{(x,x,y,y)|x,y € R} which donotbelong to the 3-equal arrangement. One then realizes
that this space is certainly homotopic to the one obtained by attaching 2-cells to the squares
of the 1-skeleton of the permutahedrfiy. [

With a bit more effort one can see how this argument generalizes to the following theorem,
also independently proved by Bjornéy.

Theorem 5.5(Babsor5]).
AR (A(By) Z T (M n—g).

We should remark that the interest in obtaining information on these spacearose in
connection with a problem from computer science (§&€12)). It was shown that the Betti
numbers of\f,, x are the essential ingredient in finding a lower bound for the complexity of
deciding membership i, x, using linear decision trees. More precisely the link with the
k-equal arrangement comes from thequal problem: givenreal numbersy, x2, ..., x,,
and an integek > 2, how many comparisons > x; are needed to decide if sorkef them
are equal? Note that the comparisans- x; >0 are special cases of the so-called linear
tests:i(x) >0. Thus the geometric reformulation reads:

Given the subspace arrangeméft;, how many linear tests are needed (by the best
algorithm in the worst case) to decidexike V,, ; for pointsx € R"?

Thus it was natural to expect that the topological complexity of the arrangement had
some bearing on the complexity of the algorithm. This is where the Betti numbafs pf
entered the scene. For more details on this topidsé4,12]

5.5. Link to pseudomanifolds

There is one last connection to yet another area of mathematics that deserves to be
mentioned. Recently, Josw[g1] introduced a (finite) group of projectivitie$](4), for
each simplicial complexi that is strongly connected, finite dimensional, and pure. The
motivation to introduce such groups was to solve a coloring problem for simplicial polytopes
which arose in the area of toric algebraic varieties. Joswig’s idea consists in associating a
finite group to each facet (maximal face with respect to inclusiory).dfor this, he first
constructs what he calls tldgial graph I'(4), of 4. The vertices of this graph are the facets
of 4 and there is an edge between two facets if the two facets share a codimension 1 face!
This is exactly oud 4.1 (4) if the dimension of is equal tod. Even though Joswig works
with pure simplicial complexes (all facets have the same dimension) his definition of the
dual graph is valid for non-pure complexes as well. Next, for each codimension 1 face
contained in two facets, 7 there is a unique elementa, t) which is contained i but
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not inz. Joswig'sperspectivity{o, 7] : ¢ — 7 is defined by setting

v(t,0) If w=uv(o,1),
we { otherwise. (5.1)
For a pathg = (g0, 01, . .. , 3,) in T'4-L(4), theprojectivity[¢] (from ag to 6,,) alongg is

the concatenation
[g] =00, 01, ..., 0,] =00, 61ll01, 62102, 63] - - - [0p—1, O]

of perspectivities. Thus the mép] is a bijection frompg to ¢,,. As usual, a loop based @}

is simply such a path that starts and endsyafoswig then realizes that the projectivity of the
concatenation of two paths is simply the concatenation of the corresponding projectivities,
thatis,[g * h] = [¢g][h]. Then Joswig'group of projectivitieof 4 atag, I1(4, 0g), is the

set of projectivities along loops basedrat It is a (permutation) subgroup of the symmetric
group on the set of vertices of. Despite the strong similarity with tha’ffl(A, ao) the
groups are not isomorphic in general. Nevertheless, both groups have similar properties.
Moreover, one of the connections between these groups was discovered by De Longueville
and Reinef23]. They showed that iff is ad-simplicial pseudomanifold which does not
contain a triangle as a minor (i.e., a link in some vertex-induced subcomplex) then there
is a well-defined surjective homomorphism fro«tﬁ_l(A, 00), dealing with “galleries of
facets” of 4, to Joswig’s group of projectivitieH (4, o).

There are still several other applicationsfetheory to other branches of mathematics
such as thevonderful modelsf subspace arrangements, as introduced by De Concini and
Procesi in16], and buildings, to name a few. We close this paper with an application to the
type of problems that provided the initial motivation for the developmewttifeory.

6. Combinatorial time series analysis

In this example we us&-theory to analyze multivariate time series of data in cases where
additional information about the local correlation between variables is available. This is
the case, for instance, when the time series arises from agent-based computer simulations
and we have knowledge about the interaction of agents at each time step. The techniques
developed are applicable to a wide range of real and simulated systems, including such
diverse examples as search-and-rescue operations and router networks for Internet packet
traffic. Both examples can be represented as autonomous agent systems with a need for
coordination through information exchange. Individual agents make decisions by interacting
with other agents, and coordination, or control, of the system relies in an essential way on
an understanding of the global structure of interaction flow.

We associate with a time series of system data a partially ordered set from which in
turn we derive a simplicial complex that provides global models for the dynamic structure
generated by local variable interdependence. The feature of special interest to us are the
structural properties of the flow of interactions in such interaction networks, ways to measure
and characterize it, and, ultimately, the ramifications of these measures for a control theory
of interaction networks.
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As an example we discuss here a computer simulation that the second author has co-
developed, together with Michael Coombs at New Mexico State University’s Physical Sci-
ence Laboratory, and Abdul Jarrah, presently at VBI. First, we briefly describe the simula-
tion, which we call AGENT, in its simplest form. AGENT consists of autonomous agents
x1, ..., Xy, €ach of which performs an unspecified task that tak&éme steps. After com-
pleting the task, each agent follows a procedure whereby it must file a report in an external
database before being allowed to continue. The database, however, can only process a lim-
ited number of agents at a time (has a limited channel capacity set by the par&neter
Thus, when the number of agents ready to report exceeds the size of the channel, a queue of
waiting agents forms. The size of the queue at any one time will depend on both the size of
the channel and the degree of agent synchronization (i.e., how many agents are in need of
the database at any one time). An agent’s goal is to maximize the percentage of time that itis
working at its task (i.e., it is assumed to be delay adverse). Its “fitness” is, therefore, defined
as the percentage of elapsed time that inasdelayed. Agents, therefore, have an inter-
est in desynchronizing from those with whom they are frequently in contention for access
to the database. Such desynchronization is regulated by a system-wide protocol whereby,
having experienced a certain degree of contention, an agent can impose desynchronizing
delays on the agent, or agents, who have blocked its database access. The research described
here concerns the analysis of patterns of desynchronization interactions arising from agents
following this protocol.

The state of ageny; is a vector

w; = (pl5 <o Pi—1, Pi+ls - - - pn)y

where p; is the number of times that agent was delayed by agent;. Each agenk;

has assigned to it a threshdidwhich represents its tolerance to delay. Wigmp; > T;,

then agenty; selects a fixed numbeP; of agents and delays them one time step (i.e.,
the response multiplier—-“fan-out”™—parameter). The agents to be delayed are selected by
x; using a decision functiorf; attached tor;. This function can be selected to be either
deterministic or stochastic. After delaying the other agentshanges its state; to the zero
vector. The system is initialized by assigning vectefsto all agents. For the simulation
results described here, the parameters were set to be the same for all agentsthaPis,
and7; = T for all i. The channel capacity parametis set as constant for a simulation

run.

For each simulation ofn time steps we construct a poset as follows. It has elements
xij,i=1...,n,j=1,...,m, corresponding to agenis at timej. It is best to think of
these as arranged in horizontal rows, withdicating the row number. The order relation
is generated by the following (covering) rule:

Xij <Xk, j+1,

if agentx; delays agenk; during the transition from tim¢ to time j + 1. Associated

with this poset, or segments of it, we can now consider two simplicial complexes, its order
complex and itgovering complexwhich is the simplicial complex generated by the lower-
order ideals. For purposes of computation the order complex is of limited value, since it is
generally far too large. The findings below made use of the covering complex only.
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Agent Interactions for P =8, T'=4

4242

4243

4244

Fig. 11. Interaction poset over three time steps.

It was observed that the AGENT synchronization protocol yields many different mech-
anisms both across parameterizations, and within a single pair of parameter settings. The
invariants of the simplicial complexes provide such a rich range of options for defining
structure in collective desynchronization events within a single time step that the cataloging
of mechanisms has only just begun. However, as an example of what there is to discover,
we describe one mechanism. This involves a very interesting phenomenon we have termed
“dynamic clustering”. Let4 be the covering complex for the interaction poset of AGENT
for a specified time series, and xA dynamic g-clusteof AGENT is a complete subgraph
of the I'’-graph ofA. Fig. 11 contains an example of a 3-time-step output from AGENT.
Fig. 12illustrates the dynamig-clusters for each time step.

Dynamic clusters regularly appear in simulation runs. We have found that the participants
in these clusters typically have lower than average fitness values. In other words, they form
“frozen cores” of agents within the agent set, around which the other agents are more or less
free to move. Since this typically happens for relatively higbalues, delay events have a
relatively high impact, and so agents will tend to freeze into permanent states of delay, and
the clusters expand by attracting additional agents.

However, we have observed that, with very high frequency, these clusters are prevented
from becoming permanently frozen by the evolution of nontrivial elements of thgroups
of the associated covering complexes; these act to free up agants2contains such an
example. Agent 18 has high fitness at time step 4242 A4nof the covering complex of
the poset representing the interaction at time step 4242 is trivial. Then, in time step 4243,
Agent 18 has become part of a large cluster, which reduced its fitness. At the sang time
of the order complex at step 4243 has a nontrivial element, with a representative indicated
with bold edges, involving Agents 2, 9, 10, 4, and 1. In time step 4244, Agent 18 has left
the dynamic cluster again, has regained its high fitness, ardhtigeoup in time step 4244
is back to being trivialFig. 13shows the parameter ranges that produce this phenomenon.

At present we do not have an explanation for this phenomenon and are unable to state
and prove precise results about it. We view this as an important open research question.
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Fig. 12. Dynamiaj-clusters in the interaction poset.
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