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Abstract

This paper contains a survey of theA-theory of simplicial complexes and graphs, a combinatorial
homotopy theorydeveloped recently.The initialmotivationarises from theuseof simplicial complexes
as models for a variety of complex systems and their dynamics. This theory diverges from classical
homotopy theory in several crucial aspects. It is related to prior work in matroid theory, graph theory,
and work on subspace arrangements.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

In his book[3] Atkin says: “In order to capture the geometric essence of any natural
systemN, wemust choose an appropriate formal geometric structure into which the observ-
ables ofN can be encoded. It turns out to be useful to employ what is termed asimplicial
complexas our formal mathematical framework.. . . A simplicial complex. . . is a natural
generalization of the intuitive idea of a Euclidean space, and is formed by interconnecting
a number of pieces of varying dimension. The mathematical apparatus, which has its roots
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in algebraic topology, gives us a systematic procedure for keeping track of how the pieces
fit together to generate the entire object, and how they each contribute to the geometrical
representation ofN.”
Atkin proceeded to model a variety of social and technological networks using simplicial

complexes. Examples range from soccer and its strategic subtleties to the committee struc-
ture at the University of Essex. (In the latter case simplices correspond to committees, with
the members represented by the vertices. Combinatorial “holes” in the complex correspond
to “missing” committees, that is, committees with a membership suitable for certain issues
to be addressed.) In order to analyze and compare social structures he developed a measure
on complexes which he termedQ-analysis[1,2]. It is reminiscent of measuring the con-
nected components of a topological space, except that Atkin was interested in measuring
thecombinatorialconnectivity of the complex.
The central object ofQ-analysis is an integer vector associated with a simplicial complex

� as follows. Suppose the dimension of� is d. Let 0�q�d, and let�, � ∈ � be two
simplices. Call� and � q-near if they share a simplex of dimensionq, that is, if their
intersection contains at leastq + 1 elements. The two simplices areq-connectedif there is
a sequence

�,�1, . . . ,�n, �,

such that consecutive simplices areq-near. This notion of connectivity generates an equiv-
alence relation on the simplices of� for each choice ofq. Define

Q(�) = (q0, q1, . . . , qd),

whereqi is the number of equivalence classes obtained by choosingq = i. Observe that for
q=0 one obtains exactly the number of connected components of� viewed as a topological
space, and forq = d one simply obtains the number of simplices of maximal dimension.
Atkin and others usedQ-analysis to study phenomena such as traffic flow and television
viewing habits (see e.g.[20]).
Laubenbacher became interested inQ-analysis as a potential tool to analyze the dynamic

network of interactions in socio-technical complex systems. One goal was to associate
qualitative measures with different dynamic modes of the system. As an example, consider
a collection of stock traders, say at the NewYork Stock Exchange. The buying and selling
decisions of each individual trader depend in part on information obtained from a variety of
sources, on software that analyzes market trends, and on the actions of other select traders.
How is the system affected when, for instance, one or more traders are equipped with faster
data links than others? As another example, consider the drug traffic interception efforts
of government authorities in the Southwestern US. Through a variety of means, including
blimps stationed in strategic positions along the US–Mexican border, data are collected
on air and ground traffic bringing illegal drugs into Arizona, California, New Mexico, and
Texas. One smuggling method is to fly drugs to clandestine air strips on the US side of the
border and then use other planes and ground transport for further distribution. Is it possible
to use observed air traffic patterns of a partially known network of clandestine airstrips
to reconstruct the unknown part? Finally, these kinds of questions have counterparts in
other systems of interactions, such as the gene regulatory network of an organism or the
interaction of species in an ecosystem.
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WhileQ-analysis is sometimes useful for questions of this sort, it is a very crude invariant
of a complex, just like the set of connected components of a topological space does not
contain a great deal of information about the space. Atkin had realized this and proposed
a definition for a group associated with a simplicial complex, similar to the fundamental
group of a pointed topological space[2]. But it too should be an invariant of certain aspect of
the combinatorial rather than the topological structure of the complex.A rigorous definition
of such a group was given in[22], together with an algorithm for its computation. At that
point it had become clear that this group had to be part of a general theory, with Atkin’sQ-
analysis representingdimensionzero.The theory shouldbesimilar to theclassical homotopy
theory of a pointed topological space. However, it should depend on the combinatorial
structure of the complex, rather than on its properties when viewed as a topological space.
In applications, the individual simplices have interpretations that should not be lost in the
computation of invariants. For instance, topologically, any two triangulations of a 2-sphere
are equivalent, whereas combinatorially they will in general be very different.
Such a new combinatorial homotopy theory,

A
q
n(�,�0), n�1, 0�q� dim(�), �0 ∈ �,

was presented in[6], termedA-theory, in honor of Atkin. It is similar to classical homotopy
theory in some respects and different in others. Similarities include such properties as
a Seifert–van Kampen Theorem for the combinatorial fundamental group, a long exact
sequence associated with the relative theory, and the fact that the higher dimensional groups
are abelian. Differences include, for instance, the fact that complexes that are contractible as
topological spaces can have nontrivialA-groups, and lack of invariance under triangulation.
Using a completely different definition, a combinatorial homotopy theoryAG

n (�) for graphs
� was also defined and related to theA-theory of simplicial complexes.
A fascinating aspect ofA-theory is that once it was well defined and applied to different

simplicial complexes, it was discovered that, in fact, it is related to constructions arising in
quite diverse contexts. We briefly describe three examples that will be revisited in greater
depth in the last section of this paper. In the early 1970s, Maurer, in his study of matroid
basis graphs, was led to develop a homotopy theory for matroid complexes (see[27, Section
4]). As Maurer mentions, the classical notion of path homotopy applies to graphs, but his
notion is not the same, nor is it the same as Tutte’s[30]. It turns out that theA1-group of a
matroid corresponds exactly to Maurer’s graph homotopy group. Later on, in 1977, Lovász
[24] introduced new topological methods for proving some connectivity results in graph
theory. One of his techniques consists of attaching 2-cells to all 3- and 4-cycles of a graph,
before computing its (classical) fundamental group. It so happens that this computation is
equivalent to calculating theA1-group of the original graph. More recently, Babson et al.
[5] discovered that theAn-groups of the order complexes associated with the intersection
lattice of some arrangements of linear subspaces coincide with the homotopy groups of the
(real) complements of those arrangements, a fact also (independently) proved by Björner
[9], for the casen= 1. All these constructions, and several more, can be formulated within
the framework ofA-theory, proving it to be an interesting theory.
In the next section we give the definition ofA-theory, both for simplicial complexes and

for graphs. The definitions are illustrated with examples. It is worthwhile to note that both
definitions are important to understand all aspects of the theory, so both should be kept
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in mind. In Section 3, an algorithm for computing the abelianization of theA1-groups is
described, while in Section 4, we recall some classical behavior exhibited by theA-groups,
and explain how the two definitions are related. The last two sections are devoted to several
applications ofA-theory.

1. Definitions and theorems

As mentioned in the introduction, there are two frameworks forA-theory, one using
simplicial complexes and the other using graphs. The two approaches are closely related
and we will recall them here. All details and proofs can be found in[6].

1.1. A1 of simplicial complexes

We begin with a simplicial complex� of dimensiond, a fixed integerq, with 0�q�d,
and a given maximal simplex�0 (with respect to inclusion) of dimension greater than or
equal toq. For further details regarding the following definitions see Section 2 of[6].

Definition 1.1. (1) Two simplices� and� of � areq-connected, if there is a sequence of
simplices (in�)

�,�1,�2, . . . ,�n, �,

such that any two consecutive ones share aq-face, that is, they have at leastq + 1 vertices
in common. Such a chain will be called aq-chain.
(2) The complex� is q-connected, if any two simplices in� of dimension greater than

or equal toq areq-connected.
(3) A q-loop in� based at�0 is aq-chain beginning and ending at�0. Denote aq-loop

�0,�1, . . . ,�n,�0 by (�0,�1, . . . ,�n,�0)= (�). Its lengthis n. (Note that the�i need not
be distinct.)

Two such combinatorialq-loops of simplices areA-homotopic if they can be deformed
into each other without breaking anyq-dimensional connections. More precisely, we have
the following definition.

Definition 1.2. Let�A be the equivalence relation on the collection ofq-loops in�, based
at�0, generated by the following three conditions.

(1) Theq-loop

(�) = (�0, . . . ,�i ,�i+1, . . . ,�n,�0)

is equivalent to theq-loop

(�′) = (�0, . . . ,�i ,�i ,�i+1, . . . ,�n,�0).

That is, loops can be “stretched” by repeating a simplex without changing its equiva-
lence class.
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Fig. 1.� and�, two equivalentq-loops.

(2) Suppose that(�) and(�) have the same length. They are equivalent if there is a diagram
as inFig. 1. The diagram is to be interpreted as follows. A horizontal or vertical edge
between two simplices indicates that they share aq-face. Each row in the diagram is a
q-loop based at�0, while each column represents aq-chain starting at�i and ending at
�i . Thus,(�) is equivalent to(�) ((�)�A(�)) if there is a sequence ofq-loops based at
�0 connecting them. Such a diagram is said to be anA-homotopy between(�) and(�).

(3) A q-loop is calledA-contractibleif it is A-homotopic to the constantq-loop at the base
simplex�0.

This equivalence relation is calledA-homotopy, and the equivalence class of a loop(�)
is denoted by[�], while the set of all equivalence classes is denoted byA

q
1(�,�0).

The next natural step is to concatenateq-loops based at�0 in order to obtain aproduct
operation onAq

1(�,�0). Having done so, it is easily shown thatA
q
1(�,�0) is a group with

unit element the equivalence class of the constant (or trivial) loop(�0). In this group, the
inverse of an element[�] is given by the equivalence class of the same loop traversed in
the opposite direction. So, we have obtained a family{Aq

1(�,�0)} of groups, one for each
0�q�d = dim(�).
The subscript suggests that these definitions and groups might be extended to higher

dimensions. Indeed, this is the case, and in fact,{Aq
1(�,�0)} is theA-counterpart of the

fundamental group of a simplicial complex,�1(�,�0).The generalization of these concepts
to {Aq

n(�,�0)} groups can be found in[6] and will not be reproduced here. As it turns out,
they are also theA-counterpart of the higher homotopy groups of a simplicial complex,
�n(�,�0).We now describeA-theory of graphs.

1.2. A1 of graphs

The definition ofA-theory for graphs parallels closely that of the homotopy groups of a
topological space. We start by recalling some elementary constructions from graph theory.
For more details see Section 5 of[6].

Definition 1.3. Let�1=(V1, E1), �2=(V2, E2) be simple graphs, that is, graphs without
loops and multiple edges.
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(1) TheCartesian product�1 × �2 is the graph with vertex setV1 × V2. There is an edge
between(u1, u2) and(v1, v2) if eitheru1=v1 andu2v2 ∈ E2 oru2=v2 andu1v1 ∈ E1.

(2) A graph mapf : �1 −→ �2 is a set mapV1 −→ V2 such that, ifuv ∈ E1, then either
f (u) = f (v) or f (u)f (v) ∈ E2.

(3) Let Im be the graph withm + 1 vertices labeled 0,1, . . . , m, and edges(i − 1)i for
i = 1, . . . , m.

(4) Letv1 ∈ �1, v2 ∈ �2 be distinguished base vertices.Abasedgraphmapf : (�1, v1) −
→ (�2, v2) is a graph map such thatf (v1) = v2.

Next, we recallG-homotopy of graph maps andG-homotopy equivalence of graphs.

Definition 1.4. (1) Letf, g : (�1, v1) −→ (�2, v2) be based graph maps. Thenf andg are
calledG-homotopic, denoted byf�Gg, if there is an integerm�1 and a graph map

� : �1 × Im −→ �2,

such that�(−,0) = f , and�(−,m) = g, and such that�(v1, i) = v2 for all i.
(2)We call(�1, v1) and(�2, v2)G-homotopy equivalentif there exist based graph maps

f : �1 −→ �2 andg : �2 −→ �1 such thatgf�Gid�1 andfg�Gid�2. The mapsf andg
are calledG-homotopy inversesof each other.
(3) A graph mapf : (�1, v1) −→ (�2, v2) isG-contractibleif it is G-homotopic to the

graph map that sends all vertices (thus edges) to the base vertexv2.

The base point for the graphIm will be the vertex labeled 0, and the boundary�(Im) of
Im consists of the vertices labeled 0 andm. Given this,AG

1 (�, v0) is the set ofG-homotopy
classes of graph maps

f : (Im,0) −→ (�, v0),

for allm�1, such thatf (�Im)=v0. Note that we allowmto vary, that is, we allowarbitrarily
fine subdivisions of the discrete “unit” interval, for it can be shown that two maps from the
discrete unit interval of different heights can be viewed as being defined on the highest one,
without change of homotopy type.
Theequivalence class of amapf inAG

1 (�, v0) is denotedby[f ]. ForAG
1 (�, v0) to become

agroup, oneneedsanoperationon its equivalenceclasses. Intuitively, if one representsamap
f : (Im,0) −→ (�, v0), by the chainIm whose vertexi is labeled byf (i), for all 0� i�m,

and wheref (0) = f (m) = v0, then the group operation[f ] ∗ [g] simply corresponds to
“stacking” up the two labeled chains corresponding tof andg, in this order. It is a routine
exercise to show that the stacking operation is well defined, and thatAG

1 (�, v0) is a group.

2. Examples

2.1. Simplicial A-theory

(1) Consider the 2-dimensional simplicial complex, with four maximal faces of
dimension 2, shown inFig. 2, and letq = 1.
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Fig. 2. A 2-dimensional complex withA1
1 = 1.

Fig. 3. Contraction of the 4-loop.

Fig. 4. A 2-dimensional complex�2, with A
1
1(�2) � Z.

It is not difficult to “contract” the loop(�) = (�0,�1,�2,�3,�0) to the trivial constant
loop(�0). Such a contraction is illustrated inFig. 3. Moreover, one also easily sees that, for
this complex, all the loops areA-contractible, thus making theA1

1 group trivial. Note that
the (classical) fundamental group of this complex is also trivial.
(2) On the other hand, if we look at the 2-dimensional simplicial complex�2, shown in

Fig. 4, which has five faces of dimension 2, one realizes (after some calculations) that the
loop

(�0,�1,�2,�3,�4,�0)

is notA-contractible.A combinatorial explanation in terms of a “gangster problem” is given
in example (5). In fact, it can be shown that theA1

1-group for this simplicial complex is
isomorphic toZ. In comparison, the (classical) fundamental group for this complex is clearly
trivial, since the complex is contractible as a topological space.
But there is a way to modify this complex so that the non-contractible loop becomes

A-contractible. Simply “fill in the combinatorial hole” of the complex by adding a new 2-
dimensional simplex as is done inFig. 5. A contraction of the loop(�0,�1,�2,�3,�4,�0)
is shown inFig. 6.
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Fig. 5. Filling the combinatorial hole in�2. A
1
1(�

′
2) � ∗.

Fig. 6. Contraction of the loop(�0,�1,�2,�3,�4,�0).

Fig. 7. Contraction of the square.

In this case theA1
1-group becomes trivial as is the (classical) fundamental group of this

modified complex�′
2.

2.2. A-theory of graphs

(3) TheA-theory for graphs and for simplicial complexes are very similar. Consider the
graph� consisting of a single cycle on four verticesv0 − v1 − v2 − v3. This cycle is
G-contractible, as can be seen inFig. 7. Indeed, aG-homotopy is given by the map

� : � × I2 −→ �,
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where on�×{0} themap is the identity. On�×{1},� is defined by�(v0,1)=�(v3,1)=v0,
and�(v1,1) = �(v2,1) = v1. Finally, on� × {2} all vertices are sent tov0. Note that for
esthetic purposes, inFig. 7the ordered pairs(vi, j) are labeledvi,j . Thus theAG

1 -group of
the 4-cycle graph is trivial. One also notes that there are nographmaps

� : � × I1 −→ �

that would “retract” the 4-cycle. Indeed, assuming that the intervalIm has lengthm =
1 and that�′ is such a map, we must have�′(vi,0) = vi and�′(vi,1) = v0 for all
0� i�3. But then,�′ is not a graph map, for while(v2,0) and (v2,1) are adjacent in
the graph� × I1 their images,v2 andv0 (respectively), are not adjacent in�. One realizes
that the situation in the simplicial case is analogous. That is, the 4-loop in example (1)
could not be contracted to the trivial loop without going through the intermediate loop,
(�0,�1,�1,�0,�0). One additional remark is worth mentioning. While interpreting the
4-cycle graph� as a loop inR2, one realizes that its (classical) fundamental group is
nontrivial, and that in fact it is isomorphic toZ. Note, however, that attaching a 2-cell to
this cycle would yield a space with (classical) fundamental group trivial, and thus equal to
AG
1 (�).
(4) In a similar manner, one can easily verify that the 3-cycle isG-homotopy contractible

as well. In this case, the obvious map�′ : � × I1 −→ � (similar to the one defined in
example (3)) is indeed the correct graph map, which contracts the 3-cycle to a point. Again,
the situation is analogous to that of theA-contraction of loops with three simplices for the
simplicial approach.
(5) On the other hand, then-cycle graph, forn�5, does notG-contract to a point. One

way of seeing it forn= 5 is via the creative interpretation given by Malle[25], and known
as thegangster problem:
Suppose the vertices of a graph are towns and the edges, roads connecting the towns. In

each town there is a member of a gangster syndicate. The gangsters decide to meet in one
of the towns. For safety reasons they decide that each day they will move from one town to
an adjacent one or rest in the same town and if two of the gangsters are in adjacent towns
originally, then at all steps of the journey these gangsters must be in adjacent towns, or in
the same town. The problem is: For which graphs is it possible for the gangsters to meet in
one of the towns?
It is not difficult to see that, indeed, the restrictions on the gangsters’ movements do

correspond to our notion ofG-homotopy of graphs. The days represent the intervalIm
(if m days are needed) and the adjacency (or resting in the same town) restriction on the
movements represent the notion of graph map. Thus, drawing a 5-cycle, as inFig. 8, with
vertices labeled 1,2,3,4,5 and with the additional edge{1,4}, one sees that the gangsters
canallmeet, for example, on the third day, in town1. Indeed, on the secondday, thegangsters
from towns 4 and 5 moved to town 1, while the gangster from town 3 moved to town 2. On
the other hand, it is clearly impossible for all the gangsters to meet at any time, in any town,
if the additional edge (road){1,4} is not present. Again, one sees that the situation with
the simplicial approach was similar. We had a non-contractible 5-loop of 2-dimensional
simplices (sharing a 1-face) which could beA-contracted by filling a combinatorial hole
with an additional 2-simplex.
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Fig. 8. A gangster meeting.

3. Calculation of A1
1(�,�0)

Computing the (abelianization) ofAq
1-groups turns out to be easier than one may first

think. Moreover, it is via this computation that one is led to a deeper understanding of
the link between theAG

1 - andA
q
1-groups. We quickly review this calculation here. For

more details see[6]. In case the reader is wondering about the base simplex (or base
vertex), it should be mentioned that if�0 and�0 (or v0, t0) are maximal simplices in� (ver-
tices in�) that areq-connected (connected), thenAq

1(�,�0)�A
q
1(�, �0), (or,A

G
1 (�, v0)�

AG
1 (�, t0)).
Let�=�q(�) be the graphwith vertices corresponding to all simplices of� of dimension

greater than or equal toq. Two verticesv andw are connected by an edge if and only if
the corresponding simplices� and� share aq-face. Letv0 be the distinguished vertex of�,
corresponding to�0. This graph is said to be theq-connectivity graph of�. One realizes that
there is a one-to-one correspondence betweenq-loops in� based at�0 and cycles in� that
containv0. Recall that the topological fundamental group�1(�, v0) is a free groupwith free
generators. Moreover, to each cycle of� one can associate a specific element of�1(�, v0).
LetN be the normal subgroup of�1(�, v0) generated by the elements corresponding to the
3- and 4-cycles of�.

Theorem 3.1(Barcelo et al.[6, Theorem 2.7]). Aq
1(�,�0)��1(�, v0)/N.

It is also worth mentioning that one can replace�q by the generally much smaller graph,
�q
max, whose vertices correspond to all maximal simplices (with respect to inclusion) of� of

dimension greater than or equal toq. From this theorem it is not too difficult to understand
why the following one holds true.

Theorem 3.2(Barcelo et al.[6, Theorem 5.16]). Let � be a simplicial complex, with
distinguished maximal simplex�0, 0�q� dim(�). Let�q(�) be the connectivity graph of
� in dimension q, and�q

max(�) ⊆ �q(�) be the subgraph as defined above. Then

A
q
1(�,�0)�AG

1 (�
q(�), v0)�AG

1 (�
q
max(�), v0).
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Now that the relation between theAG
1 andAq

1 groups is well established, we can give a
unified definition for the higherA-homotopy groups. Let

Inm = Im × · · · × Im

denote then-fold Cartesian product ofIm for somem. Inm is called ann-cubeof height m.
Its distinguished base pointisO = (0, . . . ,0), and itsboundary, �Inm, is the subgraph ofI

n
m

containing all vertices with at least one coordinate equal to 0 orm. This being said, one can
show that the subscriptm in the above notation can be “omitted”.

Definition 3.3. LetAG
n (�, v0), n�1, be the set of homotopy classes of graph maps

f : (In,O) −→ (�, v0),

such thatf (�In)= v0. Forn= 0,AG
0 (�, v0) is the pointed set of connected components of

�, with the component containingv0 as distinguished element. The equivalence class of a
mapf in AG

n (�, v0) is denoted by[f ].

Since all the boundary points of ann-cube are given the valuev0, one easily sees that the
operation of “stacking” cubes makes sense (forn�1).As one expects, it can be shown that
the sets

AG
n (�, v0)

(n�1) are groups, and that Theorem 3.2 holds true for alln�1.
So, if one computes the fundamental group of a graph,�1(�, v0), and quotients out the

normal subgroup generated by all 3- and 4-cycles, one obtains theA1-group of this graph.
But, inspired by Lovász’ technique introduced in[24], one sees that the fundamentalAG

1 -
group of a graph� is isomorphic to the classical fundamental group of the topological space
X� obtained from� by attaching 2-cells along the boundary of each 3- and 4-cycle of�:

AG
1 (�, v0)��1(X�, v0).

This was an importantmilestone enabling one to connect theA-theory to awide variety of
situations. Of course, the next natural question is whether there is an analogous topological
space that can be constructed for alln�2. The answer is yes, but requires more detail and
(hard) work than one would initially envision. The details can be found in[4]. Intuitively,
the spaceX� is a cell complex obtained by successively attaching (form = 1,2, . . .) m-
dimensional cells to them-cubes of� (possibly degeneratem-cubes; this is analogous to
the fact that the 3-cycle (triangle) can be viewed as a degenerate 4-cycle (square)), yielding
a cubicalcomplex, that bears some resemblance to Kan complexes. By this we (roughly
speaking) mean that if all the faces of anm-cube belong to the spaceX� then them-cube
itself belongs to the space. This is another important step, for it connectsA-theory to the
realm of (real) arrangements of linear subspaces.
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4. Classical behavior

As we saw through the examples of Section 2,A-theory and classical homotopy theory
behave quite differently at times. It is now time to explore their similarities. As we saw in
the last section, theAq

n(�,�0) andAG
n (�, v0) groups are intimately related. Thus, we shall

refer to both of them at once, usingAn-groups for notation.
One of the first similarities comes from the fact that theA1-fundamental groups, like

their�1 counterparts, arenot abelianin general. Moreover, for alln�2, theAn-groups are
abelian, likewise for the�n groups of topological spaces.
Another common characteristic is a Seifert–van Kampen theorem. That is, one may ask

whether one can computeA1 of a simplicial complex (graph) as the free product ofA1
of appropriate subcomplexes (subgraphs), moduloA1 of their intersection. This is indeed
true, even though one must add an extra condition on the intersection of the subcomplexes
(subgraphs), in addition to requiringq-connectivity of the complex (graph), the subcom-
plexes (subgraphs), and the intersection. This extra condition amounts to requiring that if
there are 3- or 4-cycles with some of their simplices (vertices) belonging to the intersection
then these 3- and 4-cycles must entirely lie in one of the subcomplexes (subgraphs) that are
being intersected.
The last similarity we shall mention here is in connection to a relativeA-theory. Relative

A-groups with respect to a subcomplex (subgraph) have been defined. Briefly, given a
subgraph (subcomplex)�′ ⊂ �, and a distinguished(n − 1)-faceF of In, (n�2), the
relativeAn(�,�′, v0) group is the set of allA-homotopy classes of graph maps

f : (In,O) −→ (�, v0),

such thatF is mapped into�′, together with the natural multiplication. One familiar with
the classical homotopy theory will recognize this definition as theA-analog of the relative
homotopy theory for simplicial complexes. So we do obtain a long exact sequence, and, as
expected, theAn-relative groups are abelian.

5. Applications

In this section we review recent applications ofA-theory and connections to work related
toA-theory.

5.1. Maurer’s approach

In [27] Maurer studied matroid basis graphs. The basis graph of a matroid has a vertex
for each basis and an edge for each pair of bases that differ by the exchange of a single
pair of elements. It was well known that, for any connected graph�, the spanning trees,
viewed as sets of edges, form the bases of a matroid. The basis graphs, called tree graphs
(for the vertices correspond to the spanning trees of� and are denoted here by�T), of such
matroids had been already extensively studied[15,17,19,28]. Maurer’s contribution was
to completely characterize basis graphs for all matroids. For this, he studied the common
neighbor (CN) subgraphs of the basis graph of a matroid. In a graphG, if the distance
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between two verticesv, v′ is 2, then the set of vertices consisting ofv, v′ and all vertices
adjacent to both is called a common neighbor subgraph. Maurer’s main theorem (in its first
form) is the following:

Theorem 5.1(Maurer [27, Theorem 2.1]). G is a basis graph of a matroid if and only if:

• it is connected;
• each common neighbor subgraph is a square, a pyramid, or an octahedron;
• in every leveling each common neighbor subgraph satisfies the positioning condition;
and

• for somev0 the neighborhood subgraphN(v0) is the line graph of a bipartite graph.

We shall not go into details of conditions (3) and (4). Suffice it to say that while the first
two conditions are relatively easy to verify, these other two are generally not reasonably
dealt with. In fact, this is the reason that motivatedMaurer to look for a condition that might
replace them. For this, he developed the following notion of homotopy.

(1) If the distance between two verticesvk−1 andvk+1 of G is equal to 2, then the paths
P1 = v1 · · · vk−1vkvk+1 · · · vn andP2 = v1 · · · vk−1v

′
kvk+1 · · · vn are said to differ by a

2-switch. In our language this simply means that the 4-cycle (vk−1vkvk+1v
′
k) allows us

toA1-deformP1 into P2 as seen inFig. 3.
(2) If the distance betweenvk−1 andvk+1 is equal to 1 andP3 = v1 · · · vk−1vk+1 · · · vn,

thenP1 andP3 are said to differ by a shortcut. For us, this means that the 3-cycle
vk−1vkvk+1 allows us to directlyA1-deformP1 into P2.

(3) If vk−1 = vk+1 andP4 = v1 · · · vk−1vk+2 · · · vn, thenP1 andP4 are said to differ by a
deletion. Again, for us this simply means that the pathP1 can beA1-deformed into the
pathP4 by simply repeating the vertexvk−1.

(4) Finally, Maurer declares two pathshomotopicif one can be transformed into the other
by a finite sequence of these elementary deformations.

It is easy to see that Maurer’s notion of homotopy is equivalent to our notion ofA1-
homotopy. Then Maurer goes on to prove that if� is a basis graph, then any two paths with
the same end-points are homotopic. This is simply stating thatAG

1 (�) is trivial. A word
of caution is in order here. While it is tempting to deduce that “surely” theAG

1 -group of a
graph whose CN subgraphs are either a square, a pyramid or an octahedron must be trivial
(since these subgraphs are clearlyA-contractible, as they consist of 3- and 4-cycles), this is
not necessarily the case. One look at Maurer’s proof reveals that conditions (3) and (4) are
needed to prove this theorem.
But the interesting fact is that Maurer hoped that his notion of homotopy would replace

conditions (3) and (4) of his main theorem. Indeed, Maurer finishes his paper with the
conjecture (still open) that� is a basis graph if and only if

(1) � is connected;
(2) each CN is a square, pyramid, or octahedron; and
(3) AG

1 (�) is trivial.
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One last important remark is that Maurer also claims (without proof) thathis notion of
homotopy (thus our notion ofAG

1 ) might be the right one for graphs since

AG
1 (�1 × �2) = AG

1 (�1) × AG
1 (�2),

where(�1×�2) denotes theCartesian product of graphs, andAG
1 (�1)×AG

1 (�2) represents
the direct product of groups. This is not difficult to show using our definition ofAG

1 .

5.2. Lovász’s approach

In 1975, at the Fifth British Combinatorial Conference in Aberdeen, Frank[18] and
Maurer[26] presented the following problem.

Theorem 5.2. Let�beak-connectedgraph, {v1, . . . , vk} ⊆ V (�),andn1, . . . , nk positive
integers withn1+· · ·+nk =n=|V (�)|.Then there exists a partition{V1, . . . , Vk} ofV (�)
such that

(1) vi ∈ Vi ,
(2) |Vi | = ni ,
(3) Vi spans a connected subgraph of� (i = 1, . . . , k).

The casek = 2 is rather easy, and Frank, Milliken, Györi and Lovász independently
provided solutions for the casek=3. But the most interesting one was provided by Lovász,
for it was the only solution that could be generalized to all 3�k�n. The idea of the proof
was based on the following innovative concept.
Given a graph�, add a new pointa and connect it tov1, v2, . . . , vk. Denote this new

graph by�′. Next, construct a graph̃� whose vertices are the spanning treesTi of �′, and
whose edges(Ti, Tj ) are pairs of spanning treeswhose intersectionTi∩Tj contains a tree on
n−1 vertices includinga.SoTj can be obtained fromTi by replacing an endline by another
endline. Then Lovász proved that if� is k-connected, theñ� is connected. Finally, the last
step in the proof consisted in constructing a cellular complexC� (called the arborescence
complex of�, relative toa) which is

• simply connected and
• for which the homology groups (relative toa)H 0(C�)=· · ·=Hk−2(C�) are all trivial,

whenever� is k-connected.
One notices how similar the construction of�̃ is to the construction of the tree graph�T

associated to� (as described in the subsection on Maurer’s work). In fact, this connection
is further developed and studied by Björner et al. in[10]. As Björner mentions[8], in the
language of greedoids (which matroids are), Lovász’s arborescence complex is the basis
complex (in Maurer’s sense) of the branching greedoid determined by the rooted graph�′.
Moreover, also notice the strong similarity with our concept ofq-connectivity. We build

graphs fromsimplicial complexesbysetting thevertices tobeq-simplicesandedgesbetween
two of them if they aresufficiently(q-) connected.
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Fig. 9. Planar (left) and pseudoplanar (right) nets.

But the similarity does not stop here. While we do not want to recall the construction of
the full arborescence complexC�, it is instructive to recall it in the casek=3. Consider the
triangles (3-cycles) and quadrilaterals (4-cycles) in�̃ and span a 2-cell on each of them, to
get the topological spaceC�. On sees immediately that this is also the spaceX�̃ described
in Section 3. Lovász goes on proving that if� is a 3-connected (k-connected as well) graph
then the (classical) fundamental group of the cell complexC� is trivial, yielding (for the
casek = 3) in theA-language, that theA1-group ofX�̃ is trivial.
The fact that this group is trivial is the last ingredient enabling Lovász to prove Theorem

5.2. Even though we have not yet worked out all the details, we do believe that Lovász’s
arborescencecomplexwouldcorrespond toasubcomplexofourgeneral infinitedimensional
cell complexX�, and that the property that the fundamental group of the arborescence
complex is trivial would also translate to theA-group of the appropriate subcomplex ofX�
being trivial, thus enlarging the pool of applications ofA-theory.

5.3. Malle’s approach

In 1983, Malle[25] developed a homotopy group for graphs, and defined what he calls
the string groupS(�) of a graph. It turns out thatS(�) = AG

1 (�). While Malle realized
that the (classical) fundamental group of a graph is isomorphic to his string group,S(�),
whenever a graph has girth greater than or equal to 5, he does not make the step of showing
thatS(�) is indeed isomorphic to the quotient�1(�)/N whereN is the normal subgroup of
�1(�) generated by 3- and 4-cycles. He also does not generalize his notion of string groups
to higher dimensions. On the other hand, Malle gives a complete description of graphs that
have trivialAG

1 -group.

Theorem 5.3(Malle [25, Theorem 6]). A graph� has trivialAG
1 -group if and only if it is

connected and each cycle of� has a pseudoplanar net in�.

While we will not give the details of the definitions of planar and pseudoplanar nets, a
look atFig. 9reveals how it works. From the planar net (left) one sees that the lower cycle
is easilyA-deformed into the upper one via a series of 4-cycles, then the upper cycle is
A-contracted to a point via 3-cycles. In the pseudoplanar net (right), the situation is a bit
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different: the lower cycle isA-deformed (via 4-cycles) into two 6-cycles which in turn are
bothA-contracted to a point.

5.4. Link to subspace arrangements

After having developedA-theory it is natural to try it on diverse simplicial complexes,
in particular those interesting to combinatorialists. The first author admits to being entirely
biased toward theorder complexes.GivenaposetP, itsorder complex�(P ) is the simplicial
complex on the vertex setPwhosek-faces are thek-chainsx0<x1< · · ·<xk in P.
The first poset for whichwe computed (the abelianization) ofA

q
1-groupswas the Boolean

latticeBn, that is, the poset of all subsets of the set{1,2, . . . , n}, ordered by inclusion. The
first computations gave the following results. (They were carried out with software written
by Luis Garcia, available from the authors.)

• A0
1(�(B3))

ab is a free abelian group on 1 generator,
• A1

1(�(B4))
ab is a free abelian group on 7 generators,

• A2
1(�(B5))

ab is a free abelian group on 31 generators,
• A3

1(�(B6))
ab is a free abelian group on 111 generators,

• A4
1(�(B7))

ab is a free abelian group on ? generators?

For a long time the orders of the next groups,A
q
1(�(Bn))

ab (for n�7 andq = n − 3),
remained unknown, for the computational complexity associated with the construction of
the order complex of a lattice grows very rapidly. No closed formula was known nor even
conjectured despite attempts (prior to 2001) at finding such a sequence in the On-Line
Encyclopedia of Integer Sequences by Sloane[29]. What was then known is the following:
To computeAn−3

1 (�(Bn)) one draws the graph�n−3
max(�(Bn)) whose vertices correspond

to the maximal chains ofBn, and whose edges correspond to pairs of maximal chains that
differ in exactly one place. But one realizes that this coincides with the 1-skeleton of the
permutahedron. Indeed, the permutahedron�n−1 is defined as the convex hull of all vectors
that are obtained by permuting the coordinates of the vector(1,2, . . . , n). Its vertices can be
identified with the permutations ofSn (the symmetric group overnelements) in such a way
that two vertices are connected by an edge if and only if the corresponding permutations
differ by an adjacent transposition. The permutahedron is a classical object; see[31] for
a nice account of its combinatorial properties. One notes that there are no 3-cycles in the
1-skeleton of the permutahedron, for this would mean that one could write the identity
permutation as a product of three transpositions; the same reasoning yields that in fact there
are only even length cycles. A picture of the 3-dimensional permutahedron�3, that is, the
convex hull of all the vectors obtained by permuting the coordinates of the vector(1,2,3,4)
can be seen inFig. 10.
Thus, computing (the abelianization of)An−3

1 (�(Bn)) corresponds to computing the
fundamental group of the 1-skeleton of the permutahedron to which one attaches 2-cells
to each 4-cycle. For example, in the case of�3 after filling the 6 squares, one is left
with 8 hexagons, of which 7 are generators forA1

1(�(B4)). Even though one had a nice
description of theX�(�(Bn))-space no one knew how to compute its homotopy group. That
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Fig. 10. The 3-dimensional permutahedron,�3.

is, until January 2001, when Eric Babson realized that this construction (adding 2-cells to
each 4-cycle of the 1-skeleton of the permutahedron) yields a space which is homotopy
equivalent to the complementMn,3 of the (real) 3-equal arrangement!
The spaceMn,3 is defined as follows: For 2�k�n, let Vn,k be the set of points

x = (x1, x2, . . . , xn) ∈ Rn such thatxi1 = xi2 = · · · = xik for somek-set of indices 1� i1<

i2< · · ·< ik�n. Mn,k = Rn −Vn,k. Thek-equal arrangements have been extensively stud-
ied, and, for example, Björner and Welker[13] had a formula for the dimensions of the
corresponding homology groups. Thus Babson was able to conclude thatAn−3

1 (�(Bn))
ab

is a free abelian group on

2n−3(n2 − 5n + 8) − 1

generators. In the meantime the “Bjorner–Welker” sequence of integers had also been
entered into the Sloane collection of integer sequences, since it occurs in other contexts as
well.
In the language ofA-theory, Babson’s result is as follows:

Theorem 5.4(Babson[5] ).

An−3
1 (�(Bn))��1(Mn,3).

Proof. We shall give a very informal proof here, since the ideas are simple while the
necessary notation (and formal concepts) would only obscure the argument.
First, recall that the braid arrangement consists of all the (real) hyperplanesHi,j =

{(x1, . . . , xn)|xi = xj }, for 1� i < j�n. The 3-equal (k-equal) arrangement embeds in
the braid arrangement as each subspace ofVn,3 (Vn,k) is an intersection of some of its
hyperplanes. Given a (finite) hyperplane arrangement inRn, its intersection with the (real)
(n− 1)-dimensional sphere,Sn−1 yields a cell complex. The dual of this cell complex is a
zonotope (i.e., theMinkowski sumof the line segments which are normal to the hyperplanes
in the arrangement). It turns out that for the braid arrangement the dual zonotope is the
permutahedron.
Next, it is also known that the complement inRn of the subspace arrangement is ho-

motopic to the space obtained by removing the faces of the zonotope corresponding to
the subspaces belonging to the arrangement. For a proof of this fact see Proposition 3.1
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in [14]. Let us see what those faces are for the 3-equal arrangement whenn = 4. First,
one must remove the interior of the permutahedron (the unique 3-dimensional face), since
it corresponds to the subspace of all vectors of the form(x, x, x, x), for x ∈ R. Second,
one must remove all 2-dimensional hexagons since they correspond to subspaces similar to
{(x, x, x, y)|x, y ∈ R}, that is, a set of vectors with three of their coordinates equal. One
does not remove the 2-dimensional squares, for those correspond to subspaces similar to
{(x, x, y, y)|x, y ∈ R} which donotbelong to the 3-equal arrangement. One then realizes
that this space is certainly homotopic to the one obtained by attaching 2-cells to the squares
of the 1-skeleton of the permutahedron�3. �

With abitmore effort one can seehow this argument generalizes to the following theorem,
also independently proved by Björner[9].

Theorem 5.5(Babson[5] ).

A
q
m(�(Bn))��m(Mn,n−q).

We should remark that the interest in obtaining information on these spacesMn,k arose in
connection with a problem from computer science (see[11,12]). It was shown that the Betti
numbers ofMn,k are the essential ingredient in finding a lower bound for the complexity of
deciding membership inVn,k, using linear decision trees. More precisely the link with the
k-equal arrangement comes from thek-equal problem: givenn real numbersx1, x2, . . . , xn,
and an integerk�2, howmany comparisonsxi �xj are needed to decide if somekof them
are equal? Note that the comparisonsxi − xj �0 are special cases of the so-called linear
tests:l(x)�0. Thus the geometric reformulation reads:
Given the subspace arrangementVn,k, how many linear tests are needed (by the best

algorithm in the worst case) to decide ifx ∈ Vn,k for pointsx ∈ Rn?
Thus it was natural to expect that the topological complexity of the arrangement had

some bearing on the complexity of the algorithm. This is where the Betti numbers ofMn,k

entered the scene. For more details on this topic see[7,11,12].

5.5. Link to pseudomanifolds

There is one last connection to yet another area of mathematics that deserves to be
mentioned. Recently, Joswig[21] introduced a (finite) group of projectivities,�(�), for
each simplicial complex� that is strongly connected, finite dimensional, and pure. The
motivation to introduce suchgroupswas to solve a coloring problem for simplicial polytopes
which arose in the area of toric algebraic varieties. Joswig’s idea consists in associating a
finite group to each facet (maximal face with respect to inclusion) of�. For this, he first
constructs what he calls thedual graph,�(�), of�. The vertices of this graph are the facets
of � and there is an edge between two facets if the two facets share a codimension 1 face!
This is exactly our�d−1

max(�) if the dimension of� is equal tod. Even though Joswig works
with pure simplicial complexes (all facets have the same dimension) his definition of the
dual graph is valid for non-pure complexes as well. Next, for each codimension 1 face
contained in two facets�, � there is a unique elementv(�, �) which is contained in� but
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not in �. Joswig’sperspectivity[�, �] : � → � is defined by setting

w �→
{
v(�,�) if w = v(�, �),
w otherwise.

(5.1)

For a pathg = (�0,�1, . . . ,�n) in �d−1
max(�), theprojectivity[g] (from �0 to �n) alongg is

the concatenation

[g] = [�0,�1, . . . ,�n] = [�0,�1][�1,�2][�2,�3] · · · [�n−1,�n]
of perspectivities. Thus themap[g] is a bijection from�0 to�n. As usual, a loop based at�0
is simply suchapath that starts andendsat�0. Joswig then realizes that theprojectivity of the
concatenation of two paths is simply the concatenation of the corresponding projectivities,
that is,[g ∗ h] = [g][h]. Then Joswig’sgroup of projectivitiesof � at�0, �(�,�0), is the
set of projectivities along loops based at�0. It is a (permutation) subgroup of the symmetric
group on the set of vertices of�0. Despite the strong similarity with theAd−1

1 (�,�0) the
groups are not isomorphic in general. Nevertheless, both groups have similar properties.
Moreover, one of the connections between these groups was discovered by De Longueville
and Reiner[23]. They showed that if� is ad-simplicial pseudomanifold which does not
contain a triangle as a minor (i.e., a link in some vertex-induced subcomplex) then there
is a well-defined surjective homomorphism fromAd−1

1 (�,�0), dealing with “galleries of
facets” of�, to Joswig’s group of projectivities�(�,�0).
There are still several other applications ofA-theory to other branches of mathematics

such as thewonderful modelsof subspace arrangements, as introduced by De Concini and
Procesi in[16], and buildings, to name a few.We close this paper with an application to the
type of problems that provided the initial motivation for the development ofA-theory.

6. Combinatorial time series analysis

In this example we useA-theory to analyzemultivariate time series of data in cases where
additional information about the local correlation between variables is available. This is
the case, for instance, when the time series arises from agent-based computer simulations
and we have knowledge about the interaction of agents at each time step. The techniques
developed are applicable to a wide range of real and simulated systems, including such
diverse examples as search-and-rescue operations and router networks for Internet packet
traffic. Both examples can be represented as autonomous agent systems with a need for
coordination through informationexchange. Individual agentsmakedecisionsby interacting
with other agents, and coordination, or control, of the system relies in an essential way on
an understanding of the global structure of interaction flow.
We associate with a time series of system data a partially ordered set from which in

turn we derive a simplicial complex that provides global models for the dynamic structure
generated by local variable interdependence. The feature of special interest to us are the
structural propertiesof the flowof interactions in such interactionnetworks,ways tomeasure
and characterize it, and, ultimately, the ramifications of these measures for a control theory
of interaction networks.
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As an example we discuss here a computer simulation that the second author has co-
developed, together with Michael Coombs at New Mexico State University’s Physical Sci-
ence Laboratory, and Abdul Jarrah, presently at VBI. First, we briefly describe the simula-
tion, which we call AGENT, in its simplest form. AGENT consists of autonomous agents
x1, . . . , xn, each of which performs an unspecified task that takesm time steps. After com-
pleting the task, each agent follows a procedure whereby it must file a report in an external
database before being allowed to continue. The database, however, can only process a lim-
ited number of agents at a time (has a limited channel capacity set by the parameterS).
Thus, when the number of agents ready to report exceeds the size of the channel, a queue of
waiting agents forms. The size of the queue at any one time will depend on both the size of
the channel and the degree of agent synchronization (i.e., how many agents are in need of
the database at any one time).An agent’s goal is tomaximize the percentage of time that it is
working at its task (i.e., it is assumed to be delay adverse). Its “fitness” is, therefore, defined
as the percentage of elapsed time that it isnot delayed. Agents, therefore, have an inter-
est in desynchronizing from those with whom they are frequently in contention for access
to the database. Such desynchronization is regulated by a system-wide protocol whereby,
having experienced a certain degree of contention, an agent can impose desynchronizing
delays on the agent, or agents, who have blocked its database access. The research described
here concerns the analysis of patterns of desynchronization interactions arising from agents
following this protocol.
The state of agentxi is a vector

wi = (p1, . . . , pi−1, pi+1, . . . , pn),

wherepj is the number of times that agentxi was delayed by agentxj . Each agentxi
has assigned to it a thresholdTi which represents its tolerance to delay. When�jpj >Ti ,
then agentxi selects a fixed numberPi of agents and delays them one time step (i.e.,
the response multiplier—“fan-out”—parameter). The agents to be delayed are selected by
xi using a decision functionfi attached toxi . This function can be selected to be either
deterministic or stochastic.After delaying the other agents,xi changes its statewi to the zero
vector. The system is initialized by assigning vectorswi to all agents. For the simulation
results described here, the parameters were set to be the same for all agents, that is,Pi =P

andTi = T for all i. The channel capacity parameterS is set as constant for a simulation
run.
For each simulation ofm time steps we construct a poset as follows. It has elements

xij , i = 1, . . . , n, j = 1, . . . , m, corresponding to agentsxi at timej. It is best to think of
these as arranged in horizontal rows, withj indicating the row number. The order relation
is generated by the following (covering) rule:

xij < xk,j+1,

if agentxi delays agentxk during the transition from timej to time j + 1. Associated
with this poset, or segments of it, we can now consider two simplicial complexes, its order
complex and itscovering complex, which is the simplicial complex generated by the lower-
order ideals. For purposes of computation the order complex is of limited value, since it is
generally far too large. The findings below made use of the covering complex only.
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Fig. 11. Interaction poset over three time steps.

It was observed that the AGENT synchronization protocol yields many different mech-
anisms both across parameterizations, and within a single pair of parameter settings. The
invariants of the simplicial complexes provide such a rich range of options for defining
structure in collective desynchronization events within a single time step that the cataloging
of mechanisms has only just begun. However, as an example of what there is to discover,
we describe one mechanism. This involves a very interesting phenomenon we have termed
“dynamic clustering”. Let� be the covering complex for the interaction poset of AGENT
for a specified time series, and fixq.A dynamic q-clusterofAGENT is a complete subgraph
of the�q -graph of�. Fig. 11contains an example of a 3-time-step output from AGENT.
Fig. 12illustrates the dynamicq-clusters for each time step.
Dynamic clusters regularly appear in simulation runs.We have found that the participants

in these clusters typically have lower than average fitness values. In other words, they form
“frozen cores” of agents within the agent set, around which the other agents aremore or less
free to move. Since this typically happens for relatively highP values, delay events have a
relatively high impact, and so agents will tend to freeze into permanent states of delay, and
the clusters expand by attracting additional agents.
However, we have observed that, with very high frequency, these clusters are prevented

frombecoming permanently frozen by the evolution of nontrivial elements of theA1-groups
of the associated covering complexes; these act to free up agents.Fig. 12contains such an
example. Agent 18 has high fitness at time step 4242, andA1 of the covering complex of
the poset representing the interaction at time step 4242 is trivial. Then, in time step 4243,
Agent 18 has become part of a large cluster, which reduced its fitness. At the same timeA1
of the order complex at step 4243 has a nontrivial element, with a representative indicated
with bold edges, involving Agents 2, 9, 10, 4, and 1. In time step 4244, Agent 18 has left
the dynamic cluster again, has regained its high fitness, and theA1-group in time step 4244
is back to being trivial.Fig. 13shows the parameter ranges that produce this phenomenon.
At present we do not have an explanation for this phenomenon and are unable to state

and prove precise results about it. We view this as an important open research question.
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Fig. 12. Dynamicq-clusters in the interaction poset.

Fig. 13. Parameter space.
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